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A perspective of biomolecular simulations today is given, with illustrative appli-
cations and an emphasis on algorithmic challenges, as reflected by the work of a
multidisciplinary team of investigators from five institutions. Included are overviews
and recent descriptions of algorithmic work in long-time integration for molecular
dynamics; fast electrostatic evaluation; crystallographic refinement approaches; and
implementation of large, computation-intensive programs on modern architectures.
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1. INTRODUCTION: CHALLENGES, PROGRESS,

AND ILLUSTRATIVE APPLICATIONS

Computational techniques for modeling large biological molecules have emerged rapidly
in recent years as an important complement to experiment. Computer-generated models and
simulation data are essential for analyzing structural and kinetic details that are difficult to
capture experimentally for large, floppy macromolecules in solution. Modeling approaches
also permit systematic studies of the dependence of equilibrium and kinetic properties on
internal (e.g., the amino acid sequence) and external (e.g., the salt concentration in the
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TABLE 1

The Steady Advances of Molecular Dynamics Simulations: Representative Biomolecular

Systems, Simulation Times, and Computers

1978 1988 1998

System Oligopeptides in vacuum,
with unified atom repre-
sentation and simplified
force treatment

12–24 base pair DNA in
vacuum, with long-range
interactions truncated

Fully solvated protein mod-
els with each atom rep-
resented and with coun-
terions and long-range
interactions considered

Size (atoms): 250 2,500 12,500

MD time: 1 ps 10 ps 1 ns

Desktop machine: Hand calculator Sun 3 Sun Ultrasparc II
0.000001 MFlop 0.4 MFlop 461 MFlop

Laboratory DEC Vax 11/780 DEC Vax 6000 SGI Origin 2000
computer: (1 processor) (6 processors) (32 processors)

0.1 MFlop 8.4 MFlop 3.1 GFlop

Supercomputer: Cray 1 Cray Y-MP Cray T3E
(1 processor) (8 processors) (1,080 processors)
110 MFlop 2.1 GFlop 0.9 TFlop

environment) factors. Such studies can enhance our understanding of biological function
through the structure/function connection. New lines of experimentation can be proposed on
this basis, and many important practical applications, from medicine to technology, follow.

Though the field of computational molecular biophysics can be considered relatively
young, it is developing rapidly with the increasing availability of faster computers, larger
memory capacities, and parallel architectures, as well as with new algorithmic develop-
ments in allied fields (see Table 1). Algorithmic progress is essential for tackling basic
obstacles that complex biomolecular systems pose: (1) large system sizes in the natural
environment of biopolymers (solvent, salt, other biomolecules); (2) wide range of motion
timescales, from fast electronic rearrangements (femtosecond timescale) to global defor-
mations (milliseconds and longer); (3) overall structural diversity and complexity of the
systems investigated.

As Table 1 shows, impressive progress has already been achieved in lengthening simula-
tion times and increasing system sizes. Typical simulation times and system sizes are shown
in the table, but there are extreme recent examples of unusually long or large simulations
(e.g., 1µs of a small protein [38], or nearly a million atoms). Thus, the development of more
efficient simulation algorithms and computational strategies is continuously motivated by
the remaining temporal gap needed to describe protein folding or ligand binding—more
than three orders of magnitude—and by a similar size gap, for simulating nanometric
biomolecular aggregates.

In addition to larger systems and longer simulation times, further progress in the field
must rely on new physical concepts. Examples include approaches for coarse graining
over time and length scales, merging macroscopic and microscopic models, and incorpo-
rating quantum descriptions of biomolecular systems. Multiscale approaches, successful
in other scientific applications with a disparity of timescales, are difficult to implement
for biomolecules since structural and dynamic features are so intimately coupled; yet the
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potential for success by such techniques exists [114]. Quantum extensions of classical
Newtonian mechanics are essential for a variety of properties that involve electronic rear-
rangements, such as energy transfer and photoprocesses in proteins.

This article describes some accomplishments of a collaborative group funded for 5 years
by the National Science Foundation, commencing in 1993, under the High-Performance
Computing and Communication initiative. The work described herein also provides a
perspective on activities in the field in general. The algorithmic areas covered in this
article are long-time integration (Section 2), rapid evaluation of electrostatic potentials
(Section 3), high-performance implementations of large simulation packages (Section 5),
and experimental-data refinement (Section 6). The remainder of Section 1 describes four
examples to illustrate the above computational challenges in terms of specific biomolecular
applications. Section 4 presents a case study in the merging of accelerated timestepping
and electrostatic protocols in a protein dynamics application. Future perspectives are de-
scribed in the final section. Readers are referred to general introductions to molecular and
biomolecular modeling found in [2, 24, 26, 43, 52, 82, 95].

1.1. Interpretation of Experiments Regarding Unfolding
of Immunoglobin Domains of a Muscle Protein

Molecular recognition and specific ligand/receptor interactions are central to many bio-
chemical processes. Recent experiments have analyzed certain ligand/protein interactions
by direct application of an external pulling force on the ligand. These experiments record, as
a function of time, the extension (ligand position) in response to the applied force. Together,
these measurements yield important structural information about the structure/function re-
lationships of the ligand/receptor complex, binding pathways, and mechanisms underlying
the selectivity of enzymes. The elastic properties of biopolymers—long DNA molecules
[90] and the muscle protein titin, for example—can also be investigated by such techniques.

The muscle protein titin contains about 30,000 amino acids. Its long filament structure
plays an important role in muscle contraction and elasticity. The I-band region of titin,
largely composed of immunoglobulin-like (Ig) domains, is responsible for the molecule’s
extensibility and passive elasticity.1 In atomic force microscopy experiments, sections of
titin composed of adjacent I-band Ig domains were stretched. Measuring the applied forces
and the resulting extension revealed a force/extension profile. The profile displays a pattern
of sawtooth-shaped peaks, with each force peak corresponding to the unfolding of a single
Ig domain. This pattern implies that the Ig domains unfold one by one under the influence
of an applied external force. Details of these structural changes, however, were not known.

Simulations usingsteered molecular dynamics(SMD) mimicked these experiments by
applying an external force to a protein/ligand complex in which the ligand is restrained to a
point in space by a harmonic potential. The restraint point is then shifted in a chosen direc-
tion, forcing the ligand to move from its initial position in the protein and allowing the ligand
to explore new contacts along its unbinding path. SMD has already been successfully applied
to studies of the dissociation of biotin from avidin [48, 66], the unbinding of retinal from
bacteriorhodopsin [64] and of retinoic acid from its nuclear hormone receptor [77], and the
extraction of lipids from membranes [91, 122]. A review of the method is provided in [67].

1 The termpassive elasticityused in the muscle field implies that part of the elastic muscle tissue which does
not generate forces.
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FIG. 1. (a) Force/extension profile from SMD simulations of the titin I27 domain with a pulling velocity
v= 0.5 Å/ps. The extension domain is divided into four sections: I, pre-burst; II, major burst; III, post-burst;
IV, pulling of fully extended chain. (b) Intermediate stages of the force-induced unfolding. All I27 domains are
drawn in the cartoon representation of the folded domain; surrounding water molecules are not shown. The four
figures at extensions 10, 17, 150, and 285Å correspond, respectively, to regions I to IV defined in (a). Figure
created using [61].

In the application of SMD to the force-induced unfolding of the immunoglobin domains
of titin [88], the starting structure for the SMD simulations was constructed on the basis
of a nuclear magnetic resonance (NMR) structure of the Ig domain I27 of the cardiac titin
I-band [63]. The 300-ps simulation of a single Ig domain solvated in a bubble of water,
shown in Fig. 1, was performed with the XPLOR 3.1 program. Twelve days of computer
time was needed on an SGI Onyx2 195-MHz MIPS R10000 processor.

The Ig domains consist of twoβ-sheets packed against each other, with each sheet
containing four strands, as shown in Fig. 1b. After I27 was solvated and equilibrated, SMD
simulations fixed the N-terminus and applied a force to the C-terminus in the direction of
the vector connecting the two ends. The force/extension profile from the SMD trajectory
shows a single force peak (see unraveling of chains in Fig. 1) at short extension, a feature
which agrees with the sawtooth-shaped force profile exhibited in atomic force microscopy
experiments. The simulation also explained in atomic detail how the force profile in Fig. 1a
arises, a sample trajectory being shown in Fig. 1b [88].

Still, these molecular views help interpret only part of these unfolding experiments: The
maximum force required for the experimental unfolding of an Ig domain (2000 pN) exceeds
the simulated force (250 pN) by a factor of about 10. This discrepancy is mainly due to the
associated 106-fold time gap between simulation and experiment. Naturally, algorithmic
work, such as that described in this article, e.g., the Langevin trajectory method, should
extend such calculations to significantly longer times. Such advances may also permit study
of the refolding process of the Ig domains. Presently, a simulation of 10 ns on a cluster of
eight PC workstations using the simulation program NAMD2 [72] requires 3 weeks.
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An alternative solution to overcome the problem described is suggested in another article
in this issue [55].

1.2. Protein/DNA Interactions

In addition to the spatial and temporal limitations, full account of the long-range elec-
trostatic interactions in biomolecules is another computational challenge, especially for
polyelectrolyte DNA. Investigations of DNA and of DNA/protein structures are important
for understanding basic biological processes such as replication, transcription, and recom-
bination. Advances in crystallography and NMR have elucidated the structures of many
protein/DNA complexes, but explanations of the physical mechanisms underlying the func-
tion of proteins binding to DNA require further explorations by means of simulations.

A recent simulation of the binding of an estrogen receptor to DNA [76] sought to explain
the mechanism underlying DNA sequence recognition by the protein. The estrogen receptor
recognizes and binds to specific DNA sequences for the purpose of controlling expression of
specific genes. The simulations complexed a dimer of the protein’s DNA binding domain to
an asymmetric segment of DNA to help identify by comparison the binding interactions and
structural features important for sequence recognition: one side of the DNA was identical to
the target sequence and the other side was altered, containing two mutations in the sequence
(see Fig. 2).

The simulations were performed using the program NAMD [97] on the solvated pro-
tein/DNA complex involving approximately 36,600 atoms (Fig. 2). The 100-ps simulation
required 22 days in 1996 on eight HP 735 workstations. The full electrostatic interactions
are evaluated through the use of a multipole expansion algorithm, namely the program
DPMTA [105] (see Section 3). This proper electrostatic treatment was crucial for the sta-
bility of the simulated DNA and for proper description of the local water environment. The
simulations revealed that water molecules bridging the protein–DNA contacts are instru-
mental in the recognition of the target DNA sequence [76].

1.3. High-Density Lipoprotein Aggregates

Molecular aggregates, large networks of several biomolecular systems, pose special chal-
lenges to modelers due to the system complexity. Not only are some complexes, such as
lipid/proteins, extremely difficult to crystallize; they may exhibit multiple conformational
states. For example, the protein apolipoprotein A-I (apoA-I), a component of high-density
lipoproteins (HDL), is known to have different conformations in the states with bound and
unbound lipids. In addition to the 243-residue protein apoA-I, HDL particles consist of phos-
pholipids and several smaller proteins. Experiments show [69] that typical nascent HDL
particles are discoidal in shape, consisting of two apoA-I proteins surrounding a circular
patch of lipid bilayer.

To explore this complex system, computer modeling has been used to predict and test a
three-dimensional description of this system [101]. In the absence of an atomic-resolution
model, the geometry was constructed on the basis of the regularity in the apoA-I sequence
as well as experimentally observed properties of reconstituted HDL particles. The resulting
model, shown in Fig. 3, was tested for stability via simulated annealing [101].

The modeled HDL particle consists of 2 proteins, 160 lipid molecules, and 6000 water
molecules (46,000 atoms total). The large size of the system required the use of truncated
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FIG. 2 (TOP). Simulated complex of an estrogen receptor (ER) homo dimer complexed to an asymmetric
DNA segment. The structure is oriented such that the viewer is looking along the so-called recognition helices
lying in adjacent major grooves of the DNA. The segment contains on one half-site the target sequence of ER
and on the other half-site the target sequence with two base pairs mutated; the latter base pairs are emphasized
graphically. Shown are also the sodium ions (as van der Waals spheres) and the sphere of water molecules included
in the simulations. For a better view of the protein and the DNA, half of the sphere of water was cut. Figure created
using VMD [61].
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long-range interactions (implemented via a switching function in the range 10–12Å). The
250-ps simulation was run by the program NAMD2 described in Section 5 employing
a two-timestep protocol (see Section 2). On a four-processor HP K460 the simulation
required 13 days. Recent performance improvements in NAMD2 [72] can halve the required
computing time.

The predicted structure for this system (Fig. 3) awaits experimental verification and
further theoretical studies. A future goal is to treat the long-range electrostatic interactions
of HDL particles more accurately by avoiding truncation and relying on fast Ewald schemes
(see Section 3).

1.4. Quantum Dynamics of Bacteriorhodopsin

An example of a system that demands a quantum mechanical treatment is the proton
transport associated with light absorption in photosynthesis. Bacteriorhodopsin (bR) is a
protein that exhibits the simplest known form of biological photosynthetic energy storage.
It absorbs light and converts its energy into a proton gradient across the cellular membrane
of archaebacteria, transported through vectorial proton translocation [87]. To understand
how proton transport is coupled to light absorption, the photodynamics of the retinal chro-
mophore that intercepts the proton conduction pathway must be explored. Namely, upon
the absorption of light, the chromophore undergoes a subpicosecond phototransformation
in the dihedral orientations around a double bond. The main reaction product triggers later
events in the protein that induce pumping of a proton across the bacterial membrane. The
structural details of bR, as shown in Fig. 4, are consistent with this pump mechanism.

The primary phototransformation of bR has been suggested to proceed on three potential
surfaces associated with different electronic states [117]. Accordingly, it cannot be de-
scribed via a straightforward solution of Newton’s classical equations of motion. Instead,
the quantum mechanical nature of the nuclear degrees of freedom must be confronted in
order to account properly for jumps between the three surfaces. To this end, a formally exact
quantum-mechanical procedure reported in [14, 92] has been adopted and the motion of bR
described quantum mechanically [15]. The procedure expanded the wave function for the
nuclear motion of bR on each electronic state in terms of linear combinations of multidimen-
sional Gaussians. Each such Gaussian is represented as a product of “frozen” Gaussians,
one factor for each of the 11,286 degrees of freedom of the protein. The Gaussians are
characterized by mean positions and momenta that obey classical equations of motion. For
the solution of these equations, the classical MD program NAMD [72] had been adapted
for the quantum simulations. The phase factors of the bR wave function associated with
each of the multidimensional Gaussians are propagated using the Lagrangian which is also
supplied by NAMD.

A 1-ps quantum trajectory, sufficient to account for the femtosecond photoprocess in bR,
required 1 week of CPU time on a 195-MHz MIPS R10000 processor of an SGI-Onyx2.
Several trajectories were run and resulted in retinal’s all-trans→ 13-cisphotoisomerization

FIG. 3 (BOTTOM, Previous Page). Predicted structure of an rHDL particle. Two apoA-I molecules (light
and medium gray) surround a bilayer of 160 POPC lipids (dark gray). The hydrophilic lipid head groups (top and
bottom) are exposed to the solvent while the hydrophobic tails (center) are shielded by the amphipathic protein
helices. Figure created using VMD [61].
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FIG. 4. Bacteriorhodopsin and retinal binding site. Retinal is shown in van der Waals sphere representation,
and part of nearby residues are shown in surface representation. Transmembrane helices A, B, E, F, G are shown
as cylinders, and helices C, D are shown as thin helical tubes to reveal the retinal binding site. Figure created with
VMD [61].

process proceeding on a subpicosecond time scale in agreement with observations. The
results revealed that during the isomerization the protonated Schiff base moiety of retinal
in bR can switch from ligation with one water molecule to ligation with another water
molecule and leave retinal in a conformation suitable for subsequent proton pumping [117].

Naturally, one seeks to extend quantum simulations to other systems and over longer
simulation times. It is also desirable to combine quantum simulations of nuclear motion with
a synchronous quantum-chemical evaluation of electronic potential surfaces and their non-
adiabatic coupling. Respective simulations will require computer resources which exceed
presently available hardware speeds by a factor of 100.

2. MOLECULAR DYNAMICS INTEGRATION: LONG-TIMESTEP APPROACHES

2.1. Overview

In molecular dynamics (MD) simulations, the Newtonian equations of motion are solved
numerically to generate atomic configurations of a molecular system subject to an empirical
force field. Although far from perfect and from agreement with one another, biomolecu-
lar force fields are reasonably successful today; they incorporate various experimental and
quantum-mechanical information, with parameters chosen to reproduce many thermody-
namic and dynamic properties of small molecules (the building blocks of macromolecules).
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The typical composition of potential energy functions is

E(X) =
∑
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2+
∑

bond anglesi

Sθi (θi − θ̄i )
2

+
∑

dihedral anglesi

∑
n

(
V nτi

2
[1± cos(nτi )]

)
+

∑
atomsi< j

(−Ai j
/

r 6
i j + Bi j

/
r 12

i j

)
+

∑
atomsi< j

(Qi Qj /D(ri j ) ri j )+ · · · . (2.1)

In these expressions, the symbolsb, θ , τ , and r represent, respectively, bond lengths,
bond angles, dihedral angles, and interatomic distances. All are functions of the collective
Cartesian positionsX. The bar symbols represent equilibrium, or target values. Atomic-
sequence-dependent force constants are associated with each interaction. In the third term,
each dihedral angle can be associated with one or more rotational index (n). In the Lennard–
Jones term (fourth),A andB denote the attractive and repulsive coefficients, respectively.
In the Coulomb term (last), the valuesQ denote the atomic partial charges, and the function
D(r ) represents a distance-dependent dielectric function, which sometimes is used. Other
similar terms are often added to account for hydrogen bonds, planar moieties (via improper
dihedral terms), and more. See [112], for example, for a general introduction into the
construction, usage, and implementation of these force fields.

Even assuming the perfect force field, we face the difficulty of simulating long-time
processes of these complex and inherently chaotic systems. Such numerical propagation
in time and space of large systems with widely varying timescales is well appreciated
in the computational physics community. Simulation of planetary orbits forms a notable
example. Although in biomolecules, the target processes are not measured in years but
rather in seconds (putting aside evolutionary processes), the timescale disparity is just as
computationally limiting. The fastest high-frequency modes have characteristic oscillations
of period P= 10 fs, more than 10 orders of magnitude smaller than the slow and large-
amplitude processes of major biological interest. Since each timestep is very costly—
requiring a force evaluation for a large system, a calculation dominated by long-range
nonbonded interactions—computational biophysicists have sought every trick in the book
for reducing this cost and, at the same time, increasing the feasible timestep.

2.2. The Equations of Motion

The classical Newtonian equations of motion solved at every timestep of MD are

M V̇(t) = −∇E(X(t)), Ẋ(t) = V(t), (2.2)

where X and V are the collective position and velocity vectors, respectively;M is the
diagonal mass matrix;∇E(X(t)) is the collective gradient vector of the potential energy
E; and the dot superscripts denote differentiation with respect to time,t . Often, frictional
and random-force terms are added to the systematic force to mimic molecular collisions
through the phenomenological Langevin equation, which in its simplest form is

M V̇(t) = −∇E(X(t))− γM V(t)+ R(t), Ẋ(t) = V(t), (2.3)

〈R(t)〉 = 0, 〈R(t)R(t ′)T〉 = 2γ kBTMδ(t − t ′). (2.4)
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Hereγ is the damping constant (in reciprocal units of time),kB is Boltzmann’s constant,T
is the temperature,δ is the usual Diracδ symbol, andR is the random Gaussian force with
zero mean and specified autocovariance matrix. The Roman superscriptT denotes a matrix
or vector transpose. As we will show below, the Langevin heat bath can prevent systematic
drifts of energy that might result from the numerical discretization of the Newtonian system.
The trajectories generated by Newtonian and Langevin models are different.

2.3. The Leap-frog/Verlet Method and Its Limitations

The typical integrator used for MD is the leap-frog/Verlet method [127]. Its generalization
to the Langevin equation above is given by the iteration sweep

Vn+1/2 = Vn +M−11t

2
[−∇E(Xn)− γM Vn + Rn]

Xn+1 = Xn +1tVn+1/2 (2.5)

Vn+1 = Vn+1/2+M−11t

2
[−∇E(Xn+1)− γM Vn+1+ Rn+1].

The name “leap-frog” arises from an alternative formulation in terms of positions at integral
steps but velocities at half-steps (i.e.,X0, V1/2, X1, V3/2, . . . ). Here, the superscriptsn refer
to the difference-equation approximation to the solution at timen1t . The superscripts used
for Rare not important, asR is chosen independently at each step; when the Diracδ function
of Eq. (2.4) is discretized,δ(t − t ′) is replaced byδnm/1t . The popular Verlet method is
recovered by settingγ andRn to zero in the above propagation formulas.

Classic linear stability dictates an upper bound on the timestep for the Verlet method
of 2/ω or P/π , whereω is the oscillator’s natural frequency andP is the associated pe-
riod. Recent studies of nonlinear stability [89, 115] indicate a reduced upper bound of√

2/ω= P/(
√

2π). Given the approximately 10-fs period for the fastest period in bio-
molecules, the Verlet bound on the timestep is1t < 2.2 fs. For the Langevin generalization
of Verlet only a linear stability bound applies, and this bound is(2ω− γ )/ω2= (P/π)−
[(γ P2)/(4π2)] (we assume thatγ <2ω for an underdamped oscillator). Of course, ade-
quate resolution of the fast processes and good numerical behavior may require much smaller
timesteps than those dictated above, on the order of 0.01 fs or even smaller [35, 113]. Still,
typical values used today in single-timestep, unconstrained biomolecular simulations are
0.5 or 1 fs.

2.4. Constrained Dynamics

Constraining the fastest degrees of freedom by augmenting the equations of motion via
Lagrange multipliers has made possible an increase from 0.5 or 1 fs to around 2 fs, sometimes
slightly higher, with modest added cost. The algorithm known widely as SHAKE [109] and
its variant RATTLE [3] are implemented in many molecular packages. The Verlet-based
constrained MD algorithm becomes the iterative sequence

Vn+1/2 = Vn −M−11t

2
∇E(Xn)+G(Xn)Tλn

Xn+1 = Xn +1tVn+1/2

(2.6)
g(Xn+1) = 0

Vn+1 = Vn+1/2−M−11t

2
∇E(Xn+1),
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where the vectorsλn are determined fromg(Xn+1)= 0. Here them× n matrix G is the
Jacobian of the vectorg, which specifies them constraints (i.e., componenti of g is
b2

i − b̄2
i = 0), andλ is the vector ofmconstraint multipliers. The added cost of the constrained

formulation is small because efficient iterative schemes are used to adjust the coordinates
after each timestep so that the constraints are satisfied within a specified tolerance (e.g.,
ε= 10−4) [109]. The process can be recast in the framework of iterative nonlinear-system
solvers such as SOR, an analogy which helps explain convergence properties, as well as
improve convergence via introduction of an additional relaxation parameter [9].

Unfortunately, the SHAKE approach cannot be extended to freeze the next fastest vibra-
tional mode, heavy-atom bond angles, because the overall motion is altered significantly
[10, 53]. This strong vibrational coupling is also the reason for failure of highly damping (but
stable) methods for stiff differential equations, like the implicit-Euler, for general biomolec-
ular dynamics [116, 135]. Other approaches for integrating the equations of motion exactly
in the constrained space [6, 7, 68, 107] are described in the context of crystallography and
NMR refinement (Section 6).

2.5. Other Ways to Achieve Speedup in MD

Additional ways to reap speedups from MD simulations are simplified treatments of the
long-range forces. The number of bonded forces—arising from bond length, bond angles,
and dihedral angle terms—only grows linearly with the number of atoms. In contrast, the
number of nonbonded forces—van der Waals and electrostatics—has a quadratic depen-
dence on the system size. For computational manageability, these nonbonded forces have
been considered in the past only within a certain pairwise distance, e.g., 8 or 12Å. How-
ever, this procedure clearly misrepresents long-range interactions in highly charged systems,
such as nucleic acids, and can also prevent formation of appropriate dispersive networks
between the surrounding water and the biopolymer as the simulation evolves and the struc-
ture becomes more compact. More recently, the long-range electrostatic forces have been
approximated by suitable expansions that reduce the computational complexity to nearly
linear, such as multipoles and Ewald summations (see Section 3). The rapidly decaying
van der Waals forces can still be treated by cutoff techniques, though more sophisticated
schemes than straightforward truncation—smooth switching and shifting functions [121]—
are needed to tame the artifacts that might otherwise result from abrupt changes in energy.

Another practical procedure for cutting the work per MD timestep is to use a nonbonded
pairlist and update it only infrequently (see Table 3 later for an example). Such pairlists
must be constructed for energy evaluations to record the pair interactions considered in
the simulation protocol (e.g., long-range force class). All bonded interactions that atomi
forms are excluded from the nonbonded pairlist associated with atomi , or { ji }, as well as
atoms beyond a spherical cutoff range that might be employed. This list determination is
especially important in force-splitting approaches, which update forces in different classes
at varying, appropriately chosen frequencies. Such multiple-timestep (MTS) schemes were
suggested two decades ago for MD [123] and have recently become popular in biomolecular
dynamics simulations with the introduction of symplectic variants.

2.6. Symplectic Integrators

Important mathematical contributions regarding symplectic integrators and MTS schemes
have made possible further speedup factors in biomolecular simulations. In fact, the good
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observed performance of leap-frog/Verlet has been attributed to the method’s symplectic-
ness, an area-preserving property of Liouville’s theorem associated with certain conserva-
tive integrators of Hamiltonian systems [111]. Backward analysis shows that symplectic
integrators lead to trajectories that are very nearly the exact trajectories of slightly differ-
ent Hamiltonian systems; in practice, this also implies no systematic drifts in energy if the
timestep is sufficiently small. The use of the symplectic integrators developed in the physics
and mathematics communities spread quickly to the computational chemistry community.
It was shown that the popular Verlet method is symplectic, as are the RATTLE scheme for
constrained dynamics [85] and the impulse–MTS method [18].

2.7. MTS Schemes and Resonance Problems

Symplectic and time-reversible MTS methods for biomolecular dynamics have been de-
scribed in the early 1990s [47, 126]. A natural splitting for MD simulations is the following
three-class hierarchy: bonded forces are considered “fast” and resolved at an inner timestep
1τ ; forces within a certain cutoff (e.g., 6̊A) are denoted as “medium” and recalculated
at the middle timestep1tm= k11τ ; the remaining, slow forces are only computed every
1t = k2tm= k11τ , the outermost timestep. The ratior = k1k2=1t/1τ determines the
overall speedup, since the majority of the work in the total force evaluation stems from
the slow component [11]. Typical timestep regimes are1τ = 0.5 fs,1tm around 1 or 2 fs,
and1t = 4 fs. The requirement of symplecticness unfortunately necessitates the merging
of the slow forces with remaining terms via periodic “impulses” rather than extrapola-
tion. The earlier, extrapolative variants exhibited systematic energy drifts and were largely
abandoned.

To illustrate, a Verlet-based impulse–MTS scheme for a three-class division is described
by the following algorithm:

IMPULSE–MTS ALGORITHM.

V ← V +M−11t

2
∇Eslow(X)

For j = 0, k2− 1

V ← V +M−11tm
2
∇Emid(X)

For i = 0, k1− 1

V ← V +M−11τ

2
∇Efast(X)

X← X +1τV (2.7)

V ← V +M−11τ

2
∇Efast(X)

end

V ← V +M−11tm
2
∇Emid(X)

end

V ← V +M−11t

2
∇Eslow(X).

Note that the application of the slow force components (∇Eslow) modifies velocities by a
term proportional tok1k21τ—r times larger than the changes made toX andV in the inner
loop—only outside of the inner loop (i.e., at the onset and at the end of a sweep covering1t).
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This impulse yields undesirable resonance effects when the outermost timestep is nearly
equal to a period of a fast oscillation. This resonance problem was anticipated from the
beginning [47] and first reported for simple oscillator systems [18]. The detailed analysis of
resonance in Ref. [89] first established a predictive formula for how these general artifacts
are related to the timestep and to the integrator used. In particular, it was shown how
the most severe, third-order, resonance occurs for the implicit-midpoint scheme when the
timestep is about half the fastest period (see Fig. 1 of [89]). The resonant timesteps are
method dependent [115]. The instability problem for1t nearly equal to the half-period
was later reported for the impulse–MTS [12, 46]. Detailed analyses of resonance artifacts
in extrapolative versus impulse–MTS schemes are presented in [12, 110], where hybrid
schemes are proposed to balance stability with accuracy. Resonance instabilities can in
general be avoided only by restricting1t , though certain implicit symplectic schemes can
be devised which remove low-order resonances for model systems [115]. Extensions of
the impulse–MTS method can delay these resonances (see subsection 2.8), and stochastic
extrapolative force-splitting approaches like LN [11] strongly alleviate them [110] (see also
subsection 2.9).

In biomolecular systems, the first such resonance for Verlet-based impulse–MTS methods
occurs at about1t = 5 fs—half the period of the fastest oscillation. Although not explained
by resonance in the papers which first applied these MTS variants to biomolecules [60, 130],
large energy growth has been reported beyond this threshold; see also recent illustrations
in [19]. Barth and Schlick found that the introduction of stochasticity into MTS schemes
delays resonance artifacts of impulse–MTS to an outer timestep near the period (10 fs) rather
than half-period; see vivid illustrations for two proteins in Ref. [12], a solvated protein in
[110], and also Fig. 7 here. Thus, with this severe limit on the outermost timestep (and
hence the ratior ), speedup factors are at most 5 with respect to single-timestep simulations
at the inner timestep1τ for Newtonian dynamics (larger for Langevin).

The speedup can be estimated if the ratios of times spent on evaluating the fast and
medium forces, with respect to the total force, are known (i.e.,r f = T∇Efast/T∇E and
rm= T∇Emid/T∇E). As derived in [11], the speedup of the triple-timestep impulse–MTS
method over Verlet (or the Langevin analog) can be estimated from the formula

impulse–MTS speedup= k1/[(rm + k1r f )+ (1/k2)]. (2.8)

Usingk1= 4,k2= 2, r f = 0.02, andrm= 0.15, we obtain the observed speedup of approxi-
mately 5. Smaller values ofrm andr f will increase the speedup. Of course, a largerk2 value
would also increase the speedup, but this is possibly limited due to resonance artifacts.

Current work focuses on alleviating these severe resonance artifacts, or overcoming this
timestep barrier so that larger computational gains can be realized from MTS methods. The
next two subsections describe such strategies.

2.8. The Mollified Impulse Method

A modification to the impulse scheme has been proposed by Skeel and co-workers that
is designed to compensate for the inaccuracies due to the use of impulses to approximate a
slowly varying force [46]. Thismollified impulse–MTS scheme retains symplecticness by
using a conservative “mollified” force. This is accomplished by substitutingEslow(A(X))
for the slow energy functionEslow(X) whereA(X) is a time-averaging function. More
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specifically, the averaged positionsA(X) are to be the result of averaging the given positions
X over vibrations due to the fast force∇Efast(X). The effect is to

replace ∇Eslow(X) with AX(X)
T∇Eslow(A(X)), (2.9)

whereAX(X) is a sparse Jacobian matrix. As an example of averaging, letXa(t) be the
solution of anauxiliary problemM Ẍa=−∇Efast(Xa) with Xa(0)= X, Ẋa(0)= 0, where
the integration is done by the same Verlet integrator used forEfast, and let the average be
calculated from theLongLinearAverageformula [120]

A(X) = 1

1t

∫ 21t

0

(
1− t

21t

)
Xa(t) dt,

where the integral is evaluated using the composite trapezoid rule [46].
This method has been implemented in an experimental version of the program NAMD

[97] and tested on a 20-Å-diameter sphere of flexible TIP3P water at 370◦ K. A switching
function [60] was used with a cutoff of 6.5̊A to separate long-range electrostatic forces
from the other forces. Shown in Fig. 5 are graphs of total pseudo-energy as a function
of t for the impulse method, forLongLinearAverage, and for another mollified impulse
methodEquilibrium that definesA(X) to be a projection onto the equilibrium value of the
bond lengths and bond angles [65]. (The pseudo-energy is the actual energy withEslow(X)
replaced withEslow(A(X)).) The energy rises rapidly for the impulse method but is nearly
flat for theEquilibriumversion of the mollified impulse method. The maximum achievable
timestep with this approach is around this value (e.g., 6.25 fs) if a drift of a few percent per
nanosecond is tolerated.

FIG. 5. Total pseudo-energy (in kcal/mol) vs simulation time (in fs) for the time-averaging andEquilibrium
mollified impulse variants versus the standard impulse–MTS method. The outer timestep1t for all methods is
6.25 fs.
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2.9. The LN Method for Langevin Dynamics

A different, nonsymplectic approach that can extend1t to the 100-fs range and produce
large overall speedups (e.g., an order of magnitude) is the stochastic LN approach [10, 11]
(so called for its origin in a Langevin/normal-mode scheme) [134, 135]. In contrast to
the MTS methods above, extrapolation of slow forces rather than impulse is used, but the
Langevin heat bath prevents systematic energy drifts. The stochastic nature of the governing
equations makes the method appropriate for thermodynamic and configurational sampling,
a crucial objective in biomolecular simulations; the coupling strength to the heat bath can
be minimized by choosing the damping constant as small as possible, just sufficient to
guarantee numerical stability [11, 12, 110]. Choosingγ as small as possible is important
for minimizing the altering of the Newtonian modes by the Langevin treatment, an altering
which affects more significantly the lower-frequency modes.

The LN algorithm can be described as the following sequence:

LN ALGORITHM (with Force Splitting via Extrapolation).

Xr = X
Fs = −∇Eslow(Xr )

For j = 1 to k2

Xr = X + 1tm
2

V

Fm = −∇Emid(Xr )

F = Fm + Fs

For i = 1 to k1

evaluate the Gaussian forceR

X← X + 1τ
2

V

V ← (
V +M−11τ(F + Ffast(X)+ R)

) /
(1+ γ1τ) (2.10)

X← X + 1τ
2

V

end
end

In this version, the fast forces are calculated directly. It is also possible to propagate them
via a linearization of the equations of motion at the reference pointXr [110]. A derivation
and historical perspective of the LN method is given in [113].

A detailed comparison of LN trajectories to explicit Langevin trajectories showed excel-
lent agreement for the proteins bovine pancreatic trypsin inhibitor (BPTI) and lysozyme,
and a large water system, in terms of energetic, geometric, and dynamic behavior [11].
Similar results have been obtained for solvated BPTI [110] and solvated DNA dodecamers
[D. Strahs, X. Qian, and T. Schlick, work in progress]. Significantly, the outer LN timestep
can be extended to 50 fs or more, without notable corruption of the trajectories with re-
spect to single-timestep Langevin trajectories. Furthermore, dynamic behavior, as reflected
by spectral densities, computed from the trajectories by cosine Fourier transforms of the
velocity autocorrelation functions (procedure described in [110]), shows a good agreement
between LN and the explicit Langevin trajectories [11]. Asγ is decreased, the Langevin
and Newtonian (γ = 0) trajectories resemble each other more closely (see Fig. 6). This sug-
gests that the parameterγ should be kept as small as possible, just sufficient to guarantee
numerical stability of the method. An estimate for such aγ is given in [12] and refined in
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FIG. 6. BPTI spectral densities derived from the cosine Fourier transforms of the velocity autocorrelation
function for all atoms for LN versus the Verlet generalization to Langevin dynamics (BBK) as calculated from 6-ps
Langevin simulations for two choices of collision frequencyγ = 5 and 20 ps−1. Here1τ = 0.5 fs,1tm= 3.0 fs,
and1t =1tm for LN 1 and1t = 961tm= 288 fs for LN 96. Spectral densities for the Verlet method (γ = 0) are
also shown (dots).

[110]. The estimated value based on linear analysis is found to be much larger than that
used in practice, 5≤ γ ≤ 50 ps−1, which was determined heuristically.

The asymptotic LN speedup can be estimated (in the limit of largek2) from the fol-
lowing formula, which assumes that the fast forces are computed directly rather than by
linearization (see a related derivation in [11]):

LN speedup= k1/(rm + k1r f ). (2.11)

Usingk1= 4,r f = 0.02, andrm= 0.15, as in Subsection 2.7 we obtain the value of 17, which
agrees with our findings [11]. Smaller values ofrm andr f will increase the speedup. It was
shown that moderate values ofk2 can yield nearly the asymptotic speedup, since the medium-
force calculations become quite a significant percentage of the total work ask2 increases
and thus limit the realized speedup. Though it might be tempting to increase the medium
timestep to reduce the time of these calculations, stability analysis for a model problem
shows that the best compromise is to use1tm< P/2 (P= fastest period) and to propagate
the medium forces by a midpoint extrapolation approach (via position Verlet), as done in
the LN method; the slow forces are best treated by constant extrapolation with a moderate
1t >1tm that yields near-asymptotic speedup. This combination yields good accuracy for
the fast motions within the stochastic model and efficient performance overall [110].
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FIG. 7. Average bond energy and variance as calculated for impulse–MTS vs LN for Langevin simulations
of BPTI over 2 ps (γ = 20 ps−1) as a function of the outer timestep.

Though results of a linear analysis of resonance cannot be directly applied to complex
nonlinear systems (see [110] for specific examples), useful guidelines can be produced
[110, 115]. Theoretical analyses of resonances [12, 110] show that impulse methods are
generally stable except at integer multiples of half the period of the fastest motion, with the
severity of the instability worsening with the timestep; extrapolation methods are generally
unstable for the Newtonian model problem, but the instability is bounded for increasing
timesteps. This boundedness ensures good long-timestep behavior of extrapolation meth-
ods for Langevin dynamics with moderate values of the collision parameter. Analyses of
various hybrid impulse/extrapolation MTS schemes [110] and numerical results for linear
and nonlinear test problems support the notion that a valuable combination for long-time
dynamics simulations of biomolecules is a force splitting scheme using extrapolation, rather
than impulses, in combination with a weak coupling to a heat bath to alleviate the intrinsic
instability of extrapolative approaches. This combination works especially well for prob-
lems with a large disparity of timescales and with class-adapted splitting schemes that yield
the best balance between accuracy and stability.

Figure 7 compares the bond energy and associated mean for the protein BPTI (simulated
via the complex CHARMM potential) between Langevin LN and impulse–MTS trajectories.
We note that the presence of stochasticity alleviates the resonance near half the fastest period,
but notable resonance artifacts appear for outer timesteps near the period. This resonance can
be avoided by combining the stochastic model with extrapolation-based MTS. The Langevin
trajectories are not the same as the Newtonian analogs, and the difference depends on the
γ used, but for many thermodynamic and sampling applications they are appropriate. See
also Section 4 for a discussion on the pragmatic view that must be taken in biomolecular
simulations to balance accuracy with long-time behavior.

3. ELECTROSTATIC INTERACTIONS: FAST EVALUATION METHODS

3.1. Overview

Accurate evaluation of the long-range electrostatic interactions for a biomolecular sys-
tem remains the most computationally intensive aspect of MD simulations. Historically,
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the quadratic (O(N2)) computational complexity of the all-pairsN-body problem of elec-
trostatics was reduced by using truncated Coulomb potentials, where all interactions past a
certain distance were simply ignored. Though acceptable for some simulation experiments,
this cutoff approximation leads to unphysical behavior in many situations [131]. An al-
ternative “brute force” quadratic method tailored to specialized parallel hardware [25, 62]
increased the size of systems that could be simulated “exactly,” but the quadratic complexity
eventually overwhelmed such systems.

New algorithms (such as thefast multipole algorithm, FMA), and new implementations of
old algorithms (such as theparticle–mesh Ewaldmethod, PME) have dramatically reduced
the cost of performing accurate evaluations of the electrostatic interactions. These fast
methods have linear (O(N)) or O(N log(N)) computational complexity for theN-body
problem. For instance, the all-pairs electrostatic interactions in a biomolecular simulation
with infinite periodic boundary conditions can now be computed to reasonably high accuracy
for the same cost as a traditional 10- to 12-Å cutoff simulation through use of PME [21, 22].
Coupled with modern, inexpensive parallel processing hardware, these new methods enable
accurate simulations of large biomolecular systems (104–106 atoms) on machines readily
available to biochemists and biophysicists.

This section describes both the multipole-accelerated and the Ewald-derived fast algo-
rithms now used for MD simulations and their implementation on parallel machines.

3.2. Multipole-Accelerated Methods

Multipole-accelerated algorithms first appeared in the astrophysical literature for solving
the gravitationalN-body problem [5, 8]; the FMA of Greengard and Rokhlin appeared in
1987, placing this class of algorithms on a more rigorous theoretical footing [50]. The FMA
was soon adapted to the needs of electrostatic particle simulation for MD [23, 118]. The
multipole-accelerated algorithms overcome theO(N2) complexity of theN-body prob-
lem by using a hierarchy of approximations to represent the effect of increasingly distant
groups of charged particles on a particle of interest (Fig. 8). A convenient power-series

FIG. 8. (Left) Multipole accelerated algorithms all exploit an approximate representation of the effect of
groups of distant particles (shaded boxes) on particles of interest (solid box). The interactions of the particles of
interest with nearby particles must be computed explicitly since the approximations used for distant particles do
not converge at close range. (Right) A hierarchy of these approximations allows increasingly larger groups of
particles to be represented by a single power series as the distance from the particles of interest increases.
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representation of the Coulomb interaction is used to describe the interaction between groups
of charged bodies. The multipole expansion is one suitable power series representation
which converges quite rapidly when groups of particles are well separated. This rapid
convergence permits the series to be truncated at a relatively small number of terms and
still provide an accurate (within known error bounds) representation of the exact potential.
For close interparticle separations, the power series representation typically converges very
slowly or not at all; thus, Coulomb interactions involving nearby particles must be computed
directly via the 1/r law (Fig. 8).

Though the multipole expansion has desirable properties, other series expansions can also
be used [4, 37, 49, 128]. The basic idea of the FMA and similar algorithms is not restricted
to the Coulomb or Newton 1/r potentials; the formalism should be applicable to any
interaction function which can be approximated by a converging power-series expansion.
Similar algorithms have been constructed for 1/r n [39, 80] and Gaussian [32, 80] potentials;
a general prescription for handling various types of potentials is given in [80].

The hierarchy of approximations in the multipole-accelerated algorithms leads naturally
to the use of hierarchical data structures such as the oct-tree for representing the simulation
space [129]. The variants of multipole-accelerated algorithms [20] differ primarily in details
of how this tree is traversed and which rules are used to decide when two sets of particles are
sufficiently distant from each other to invoke the approximations; details of the power-series
representation of the Coulomb potential also vary.

Our multipole code D-PMTA, the distributed parallel multipole tree algorithm, is a mes-
sage passing code which runs both on workstation clusters and on tightly coupled parallel
machines such as the Cray T3D/T3E [20, 21, 104]. Reporting performance numbers for any
of these algorithms is always complicated by the fact that there are many variable parameters
(simulation and computer dependent) which govern both the accuracy and the efficiency
of the simulation. For instance, the optimal number of levels of spatial decomposition for
the oct-tree representation can vary for the same simulated biomolecule depending on the
workstation used (largely a reflection of whether the square root operation on a particular
machine is relatively fast or slow compared to other floating point operations). It is also
difficult to compare two different simulations for the same level of accuracy, since the ac-
curacy depends on the size of the test system, the number of terms retained in the multipole
expansions, and the number of levels of spatial decomposition employed. Nonetheless,
we have developed some standard test cases for judging the quality and efficiency of our
codes.

Figure 9 shows the parallel performance of D-PMTA on a moderately large simula-
tion on the Cray T3E for 71,496 atoms (equivalently 23,832 are water molecules). The
“low-accuracy” curves reflect 3–4 decimal digits of accuracy in the electrostatic potential
and 2–3 decimal digits in the force. The “moderate-accuracy” curves provide 4–5 decimal
digits in potential and 3–4 in force. Higher accuracy is possible at the expense of longer
runtimes. Accuracy was determined by comparing D-PMTA results to those of an exact
quadratic runtime code. In these figures, memory limitations on T3E nodes prevent us from
running the complete simulation on one processor, but the scaling behavior from four to
eight processors suggests that computing times for one processor are nearly four times
longer than those for four processors; thus, the 72 s required on one processor for moderate
accuracy is reduced to about 4 s onthirty-two processors.

On a cluster of 300-MHz Intel Pentium II machines with a 100-megabit switched ethernet
network and a variant of the Unix operating system, we find serial runtimes slightly faster
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FIG. 9. Performance (left) and scaling behavior (right) of D-PMTA on the Cray T3E for simulating 70,000
particles (see text for details).

than T3E nodes for the above test system. Good performance is still achieved on 16 nodes
(speedup of about 12), but the more limited ethernet networking restricts the scalability
somewhat compared with the T3E.

3.3. Periodic Systems

Many simulations are best suited for periodic boundary conditions, for example, to rep-
resent the properties of bulk media and to reduce surface effects. Infinite periodic boundary
conditions are constructed by replicating the original simulation cell out to infinity in all
directions. The potential on particlei in the original simulation cell due to all other particles
j in the cell and all periodic images of all particles can be written as

8i =
N∑

j=1
j 6=i if n=(0,0,0)

∑
n

Qi Qj

ri, jn

, (3.1)

wheren is an integer triple identifying a particular image cell;n= (0, 0, 0) indicates the
“real” simulation cell, and all other cells are identified by their displacement from the central
cell, i.e.,n= (1, 0, 0).

Ewald methods consider the periodic boundary case by construction, but it is also possible
to extend the multipole-accelerated algorithms to periodic boundary conditions. A single
power series can represent the effect of many aggregated copies of the original simulation
space on specific particles of interest [81], as shown in Fig. 10. An essentially infinite pe-
riodic region (say, a cubic meter) can be simulated for a computational cost of just a few
percent over the cost of the multipole methods applied to an original simulation cell of size
of order 10Å [81].

3.4. Ewald Methods

The Ewald summation was invented in 1921 [42] to permit the efficient computation
of lattice sums arising in solid state physics. The desirability of using periodic boundary
conditions in MD simulations leads to use of Ewald methods where the entire simulation
region is the “unit cell” of an infinite “crystal” lattice of copies of this unit cell.

Ewald recognized that the slowly and conditionally convergent sum of Eq. (3.1) can be
recast as two rapidly converging sums, one inreal spaceand one inreciprocal space. One
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FIG. 10. The periodic multipole algorithm creates exponentially larger aggregates of the original unit cell
(small solid box in center) to rapidly construct a large but finite periodic system.

physical explanation of Ewald’s observation is that an auxiliary Gaussian charge distribution
can be both added to and subtracted from the original charge distribution. The real space sum
is now in terms of the rapidly converging complementary error function erfc(r ) rather than
the slowly converging 1/r thanks to the Gaussian screening of the charges; the other sum of
Gaussian countercharges can be Fourier transformed into a rapidly converging form as well.

Ewald’s formalism reduces the infinite lattice sum to a serial complexity ofO(N2) in
a naive implementation. More efficientO(N3/2) implementations have been known for
some time [99]. This complexity has been further reduced toO(N log N) in more recent
formulations. A review of variants on Ewald summation methods which includes a more
complete derivation of the basic method is given in [124].

3.4.1. Particle–Mesh Ewald

One of the most efficient algorithms known for evaluating the Ewald sum is the PME
method of Dardenet al. [33, 34]. The use of Ewald’s “trick” of splitting the Coulomb sum
into real space and Fourier space parts yields two distinct computational problems. The
relative amount of work performed in real spacevs Fourier space can be adjusted within
certain limits via a free parameter in the method, but two distinct calculations remain. PME
performs the real-space calculation in the conventional manner, evaluating the erfc terms
within a cutoff radius. To speed up the Fourier space calculation, PME borrows from the
particle–particle, particle–mesh (P3M) method of Hockney and Eastwood [59] to interpolate
all the randomly spaced particles onto a regular mesh. The Fourier sum is then computed
via FFT techniques on the regular mesh and the results are interpolated back to the actual
particle sites. Another recently reported technique [13] is also derived from the P3M method
and avoids the Fourier sum entirely by using an iterative Poisson solver instead; this method
offers the possiblity of linear complexity in the number of particlesN and is also worthy
of further study.

PME originally employed Lagrange interpolation [33]; we have implemented a revised
PME formulation which uses B-spline interpolation functions [34]. The smoothness of
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FIG. 11. Performance (left) and scaling behavior (right) of the real space part of PME on the Cray T3D.

B-splines allows the force expressions to be evaluated analytically, with high accuracy, by
differentiating the real and reciprocal energy equations rather than using finite differencing
techniques.

Our interest has been to parallelize PME; some of our efforts are described in [125].
The three-dimensional (3D) FFT needed by PME is challenging to parallelize effectively
on distributed memory parallel computers due to the interprocessor communications re-
quirements of the algorithm and the relatively small size of the FFTs required even for
what are considered large molecular simulations in the late 1990s. This contrasts with the
direct part of Ewald methods which parallelize extrememly well. We first bias the work as
much as possible to the real-space term (essentially by increasing the cutoff radius for the
error function, which reduces the number of lattice vectors needed for good accuracy in the
Fourier term). The real-space sum is easily parallelized with a simple spatial decomposition
and appropriate attention to the overlap between adjacent regions due to the cutoff radius.
Performance for the real-space contribution alone is given in Fig. 11.

The Fourier sum, involving the 3D FFT, currently can run effectively on perhaps 8 proces-
sors in a loosely coupled network-of-workstations environment, and better implementations
will probably permit productive use of 16–32 workstations without exotic interconnection
hardware. On a more tightly coupled machine such as the Cray T3D/T3E, we obtained fair
efficiency on 16 processors, with a measured speedup of about 9, but efficiency falls off
fairly rapidly beyond 32 processors. Recently improved FFT libraries from the vendor are
expected to have better performance. Our initial production implementation was targeted
for a small workstation cluster, so we only parallelized the real-space part, relegating the
Fourier component to serial evaluation on the “master” processor. The 16% of the serial
work attributable to the Fourier sum limits our potential speedup on 8 processors to 6.25, a
value we are able to approach quite closely.

3.5. Performance Comparison

The results in the prior subsections represent isolated multipole and PME timings. A
complete MD simulation involves much more. In addition to computing the short-range
interactions from bonding forces, etc., the particle positions and velocities need to be updated
each timestep. Additionally, efficient MD programs use force splitting, as described in the
previous section, so it is not necessary to compute the Coulomb interactions (and thus
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TABLE 2

Serial Run Times for MD Simulations with Various Electrostatic Solvers

Runtime Accuracy
Solver (s) (see text) Code type

8 Å cutoff 100
12 Å cutoff 286
16 Å cutoff 645
PME-custom 289 Low Custom PME, tightly integrated
PME-custom 375 Moderate Custom PME, tightly integrated
PME-library 390 Low Library PME, loosely integrated
PME-library 408 Moderate Library PME, loosely integrated
DPMTA 472 Low Periodic multipole, 4 terms in the

multipole expansions
DPMTA 688 Moderate Periodic multipole, 8 terms in the

multipole expansions
DPMTA 1248 High Periodic multipole, 12 terms in

the multipole expansions

multipole or Ewald) at each small timestep. Within a long-time interval, the long-range
interactions are often interpolated from prior estimates. Still, the long-range force evaluation
remains the dominant computational cost of MD simulations.

Table 2 compares the running time of complete MD simulations (here a box containing
23,832 water molecules, or equivalently 71,496 atoms) performed with the different periodic
solvers, serial versions, as well as traditional methods utilizing cutoff radii. The simulation
was run for 1000 timesteps of 2 fs each, with a full Coulomb evaluation performed every 6
inner timesteps (except for the cutoff cases). The MD program used is SigmaX, developed
by Hermans and co-workers [57], which has been modified to accept both PME and our
multipole codes. “Low accuracy” represents 3–4 significant decimal digits in potential, or
2–3 figures in force. “Moderate” is 4–5 digits in potential and 3–4 digits in force. “High”
is 5–6 digits in potential and 4–5 decimal digits in force. Accuracy cannot be determined
in a comparable way for the cutoff cases and so is omitted.

The salient comparisons are between the low-accuracy PME library case (390 s) and the
low-accuracy DPMTA case (472 s). The multipole code uses the periodic option for a fair
comparison with Ewald methods (the cutoff code implements a nearest image convention
approximation of a periodic system). PME is clearly faster, running in only two-thirds the
time of DPMTA. This is in agreement with the findings of Petersen [100] and Esselink [41],
who find Ewald methods to be faster than multipole methods for systems of fewer than
about 100,000 particles.

The very fast PME custom times resulted from rewriting our PME code to share data
structures with SigmaX, thus avoiding the overhead involved in calling the original portable
library version of PME. This custom version also used a table lookup for erfc which reduced
accuracy somewhat but significantly improved speed. These optimizations combined for a
20% performance improvement at the cost of portability and extra development time. The
multipole codes would also benefit from a tighter integration with SigmaX, but this would
be more difficult to implement for the multipole than for the PME codes. These tightly
integrated custom PME codes compare well with cutoff calculations, giving runtime com-
parable to a 12-̊A cutoff simulation with much more thorough treatment of the electrostatic
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interactions. On different machines, we have examples of PME time equivalence to 10-Å
cutoff simulations. A more detailed discussion of these results can be found in [21, 22].

The serial speed advantage of PME must be traded against its poorer parallel performance;
with 32 or more processors DPMTA is a much better choice. Work continues on improving
the performance of both the multipole and Ewald solvers, as well as including such effects
as polarizability in the Coulomb potentials.

4. COMBINING MTS WITH EWALD OR ACCELERATED

MULTIPOLES: A CASE STUDY

4.1. Efficiency versus Accuracy

The MTS and Ewald methods described in the previous two sections can be combined
for simulations of biomolecules in aqueous solution. The underlying aim is to achieve
the most accurate simulations possible at a minimum cost of computer time. The desired
accuracy depends on the questions being addressed. For example, for applications which
seek to determine distributions of structural parameters or potentials of mean force, adequate
sampling of configuration space is important and, hence, a highly accurate integration
scheme is not required. On the other hand, simulations that are used to calculate response
functions, relaxation times, or rates of conformational transitions must employ accurate
integration schemes. A pragmatic view also recognizes that the molecular mechanics force
field itself is approximate and, hence, the systematic errors introduced by the discretization
or the Ewald representation of electrostatic interactions need not be much smaller than these
errors if dynamic exploration of large systems is the objective.

4.2. Implementation

The impulse–MTS [47, 126] and LN [11] methods have been implemented in the SigmaX
program [57]. Following other such approaches [44, 137], five separate integration timesteps
can be selected for calculation of the following terms:

1. bond-stretching forces,
2. angle-bending and out-of-plane twisting forces,
3. nonbonded interactions for pairs{i, j } separated by a distancedi, j ≤ Rcs,
4. nonbonded interactions for pairs{i, j } separated by a distanceRcs< di, j ≤ Rcl , and
5. Ewald or multipole-derived forces due to pairs separated bydi, j > Rcl .

The fifth term is computed as thedifferenceof the complete Ewald or multipole-derived
forces and the electrostatic forces for the third and fourth terms. This protocol employs
“distance classes” [47] and avoids using peculiar features of either method [102], so that
the two methods (Ewald and fast-multipole) are exchangeable within the same program.
Each of these forces successively changes more slowly with time and thus can be updated
less often; as calculation of each takes successively longer, the MTS scheme can reduce
the total processor time. A common practice in MD is to calculate terms 3 and 4 above
using precomputed atom pairlists. The expensive pairlist calculation can be performed less
frequently than the Ewald-sum calculations (see Table 3, whereRcs= 6 Å, Rcl = 10Å, and
the pairlists are computed every two PME evaluations).
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TABLE 3

Practical MD Protocol Used in a Simulation of T4 Lysozyme in Water

Interval (fs) Force or task Atom pairs CPU time (s)a Time/2 fs

2 Angles, bondsb 0.23 0.23
2 Short:d ≤ 6 Åc 896,000 0.59 0.59
6 Medium: 6< d ≤ 10 Åc 3,240,000 2.21 0.73

12 Long: PMEd 3.38 0.56
24 Pairlist 8.50 0.72

Sum [14.91] 2.83

a On a single SGI R10000 processor.
b Bond lengths are constrained with Shake.
c The interparticle separation distance is denoted byd.
d Particle mesh Ewald sum, computed with a mesh size of approximately 1Å, and parameters

as for “modest” accuracy, cf. Table 2.

4.3. Application to Lysozyme

Performance is illustrated with a simulation of a mutant of the protein T4-lysozyme in
aqueous solution. The mutant has one or two xenon atoms bound in a hydrophobic cavity
[40, 96]. The protein contains 162 amino acid residues corresponding to 2605 protein
atoms and one or two Xe atoms. With 5835 water molecules, there are 20,116 atoms in
total. The system is contained in a rectangular box with dimensions 62.4× 56.6× 56.6Å3

and simulated using periodic boundary conditions. The 6-ns simulation had two main goals:
(1) sample the distribution of the bound Xe atoms, in order to compute a simulated electron
density for comparison with X-ray diffraction studies of the complex [103]; (2) observe
conformational changes, in particular the slow motions of the active site cleft, which varies
significantly with crystal form and mutation [136]; related conformational changes had
already been captured in simulations [51].

4.4. Integration Protocol and Performance

The protocol adopted for this simulation used the impulse–MTS scheme [47, 126], and
details are shown in Table III. Bond-length forces were not calculated, as the bonds were
kept at fixed lengths using the SHAKE method. (This is necessary because the empirical
SPC water force field had been developed for rigid bonds [17, 56].)

The used MTS scheme results in a roughly equal distribution of the load over four
components repeated at successively longer intervals: 2, 6, 12, and 24 fs. The MTS protocol
results in a saving of processor time by a factor of over 5. The net figure of 2.8 s/step
(equivalent to 62 ps/1 day) on a single SGI R10000 processor is also recovered by dividing
the total reported processor time by the number of steps. Thus, the work per step beyond
force calculations is negligible.

This protocol leads to a slow increase of the total energy with time at a rate of 10−3 kcal/
mol/ps/degree of freedom [137]. In contrast, a simulation that omits the Ewald sum shows
a 50 times faster rise of the energy. The energy drift can be further reduced by choosing
smaller time steps (≤4 fs) [44]. This presents a difficult choice between accurate integration
on one side and extension of the simulation to longer times (or to multiple trial trajectories)
on the other. In particular, long-term trajectories exhibit global motions that can be observed
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repeatedly. Simulations with a less accurate protocol can be considered as exploratory; if
interesting global motions are observed, they can be confirmed by more accurate, but slower,
simulations. In fact, such calculations in progress for the lysozyme system described here
have progressed to where the conformational change described below has begun but not
completed (after 1.5 ns).

4.5. Lysozyme Dynamics Results

The 6-ns simulation performed isothermally, with coupling to a heat bath following the
Berendsen method [16], reveals that the protein has locally stable domains connected flex-
ibly [Geoff Mann, University of North Carolina]. Lysozyme consists of three principal
domains: an N-terminal lobe, a C-terminal lobe, and a connecting helix. During the course
of the simulation, these domains retain their overall conformations as reflected in hydro-
gen bonds, backbone dihedral angles, and covariances of atomic positions. However, the
separation between the opposing tips of the two lobes changes repeatedly by up to 8Å
during the simulation. Interconversions are captured between “open” and “closed” states
of the protein, schematically shown in Fig. 12. The change is reversible and occurs on a
nanosecond timescale. The opening/closing motion is required for the enzymatic function
of cleaving polysaccharide chains, and the range of conformations corresponds to that found
in crystal structures [136].

In earlier calculations without the Ewald sum and a single cutoff of 8Å, the conformation
of this protein had proved unstable, with unfolding of helices becoming apparent after ap-
proximately 1 ns of simulation time. By demonstrating stability of local structure combined
with large-scale global motions over long timescales, this result extends the findings of
the improved accuracy that results from inclusion of all electrostatic forces with Ewald or
multipole-accelerated code, reported by Pedersen and Darden [33, 83, 84, 131–133]. With
use of the MTS scheme, the additional computational cost of adding the Ewald calculation
is only a small fraction of the total cost.

FIG. 12. (Left) Open state of the T4 lysozyme molecule observed after approximately 3.6 ns of simulation.
(Right) Closed state observed after approximately 4.4 ns. The protein backbone is shown, as well as the side chains
of Thr21 and 142, and the distance between the Ca atoms of these two residues is indicated. The contact between
the side chains in the closed state at 4.4 ns is very similar to that found in the crystal structure that was used as a
starting point for these simulations.
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5. BIOMOLECULAR SIMULATION PROGRAMS: PERFORMANCE

ENHANCEMENTS VIA PARALLELIZATION

5.1. Challenges in MD Codes

The large computational power required to model biomolecules of current interest poses a
challenge. Even when the raw computational abilities provided by parallel supercomputers
enable such simulations, efficient exploitation by parallel software is often difficult. As an
example, consider the DNA-estrogen receptor (ER) complex, described in Subsection 1.2,
that consists of about 36,600 atoms. To understand the effect of the ER binding on the
conformation of the target DNA, simulation lengths of several nanoseconds are required.
Each simulation step of 1 fs takes about 6 s on an HP workstation. (Note that this figure uses
a newer version of NAMD than that used to obtain the results of Section 1.2.) However, the
million steps required to simulate a nanosecond imply more than 80 days of computation
on a single workstation. Employing multiple processors working in parallel can speed up
the simulations. Yet, the dependency of the results at each step on the previous one confines
parallelism to a single timestep. Parallelizing a 6-s computation in a scalable manner is
difficult because of the large communication-to-computation ratio it typically entails. The
structural complexity of biomolecular simulations, caused in part by the combination of
bonded and nonbonded forces, and the irregular spatial distribution of atoms, further exacer-
bates the problem. Electrostatic force computations, in particular, constitute a large fraction
of the overall computation. Simulating constrained dynamics is a formidable challenge for
parallelization and is not implemented in NAMD except for the option to constrain the
lengths of covalent bonds to hydrogens.

5.2. Spatial Decomposition

Several decomposition strategies have been investigated for this problem. Pure force
decomposition strategies store all the atom’s information at the central processor and only
distribute the sets of atom pairlists to multiple processors. Although reasonably effective
for a small number of processors, this strategy fails to scale up to larger parallel machines.
Distributing atoms to the various processors, say based on the index of each atom, improves
scalability but complicates communication requirements, as each processor may need to
communicate to all the others during each timestep. The strategy used in the NAMD program
developed at UIUC [72] is that of spatial decomposition: atoms are dynamically partitioned
into cubical regions of space. By choosing the dimensions of the cubes to be larger than the
interaction (cutoff) radius, we ensure that each cube communicates only with its neighboring
cubes. Though this strategy requires a small amount of extra communication to migrate
atoms to different cubes as they move through space, the overall saving in communication
is worthwhile due to the increase in locality.

5.3. Load Balance

In general, multiple cubes may be assigned to individual processors, and load balance
is achieved by selecting the set of cubes that reside on each processor (i.e., selecting the
mapping of cubes to processors). A technique used in the most recent version of NAMD is to
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separate the mapping of electrostatic force computations from that of the cubes themselves,
such that each pair of neighboring cubes (calledpatchesin NAMD) gives rise to a force
computation object. These objects are mapped to the processors, under the control of the
dynamic load balancing strategy.

5.4. Relation between Numerical Algorithm and Parallel Code

A parallel molecular code must deal with two sets of issues: those arising from the nu-
merical algorithm, and those dealing with management of parallelism. In earlier versions of
NAMD, the intertwining of the parallel code and the numerical algorithm made the program
somewhat difficult to understand and modify. A solution to this problem involves using
user-levelthreads. Eachpatchhas a single control thread associated with it. The function
associated with this thread, called thesequencer, essentially describes the life cycle of a
patch. As a result, it succinctly specifies the numerical algorithm used. At various points
during a timestep, this function waits for other computations to finish. Therefore, this thread
and the code associated with it are the only functions that need to be understood and possibly
recoded for any modification of the numerical algorithm of the MD program. As a result,
for a researcher interested in modifying the functional behavior of NAMD, parallelism must
be considered only to the extent of realizing that whenever the thread waits, it might be
waiting for a combination of local as well as remote data. Only researchers interested in
improving theparallel performanceof NAMD need to be concerned with the rest of the
code, that deals with interprocessor communication.

5.5. Implementation and Performance

NAMD is implemented in C++, a modern programming language with excellent support
for modularity. Though Fortran is the common language for scientific applications, and
C++ is thought to be slower than Fortran, C++ compilers have improved in recent years,
approaching the efficiency of Fortran. Use of a careful programming style improves the
efficiency further. This involves avoiding inefficient features of C++ such as virtual method
invocations in inner loops, and using in-line functions whenever possible. The use of C++
also appears to encourage programmers to use more sophisticated and efficient data struc-
tures. As a result of all these factors, NAMD performs faster than some of the Fortran-based
programs for equivalent tasks.

Most of the parallel modules in NAMD are implemented using Charm++ [70], a C++
based parallel programming library. The parallelization strategy employed in NAMD, as
described above, leads to having multiple patches and force objects on each processor. Each
of these objects must wait until the dependent data have arrived from remote processors.
Data-driven execution supported in Charm++ allows such dependencies to be implemented
without making the processor stop to await the data. Instead of allowing individual compu-
tations to issue areceiveinstruction, which might block the computations on the processor
entirely, data-driven execution employs ascheduleron each processor. The scheduler works
with a pool of messages that have already arrived on the processor (or have been locally
generated). Repeatedly, this scheduler selects a message from the pool and activates the
particular object which can process it. In addition to ensuring that no object or computation
can block the entire processor, this technique also helps to modularize parallel codes.

However, not all modules in NAMD were implemeted in Charm++. DMPTA, the fast
multipole library discussed in Section 3, has been implemented independently in PVM.
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TABLE 4

NAMD2 Performance on the Cray T3E for ER-ERE

(36,576 atoms), 12̊A Cutoff

Number of processors Time per step (s) Speedup

2 6.12 (1.97)
4 3.10 3.89
8 1.60 7.54

16 0.810 14.9
32 0.397 30.3
64 0.212 56.8

128 0.123 97.9

The sequencers associated with each patch were implemented using threads, while much of
the initialization code was implemented using a simple message passing style. Integrating
such disparate modules in a single program was a challenge. The Converse framework [71]
developed at the University of Illinois is used to support multiple languages and libraries in
a single application. Languages and libraries such as Charm++ and PVM are implemented
on top of Converse. Converse allows programmers to use the most appropriate parallel
programming model (embodied in a parallel coordination language such as Charm++ or
libraries such as PVM or MPI) for each module of the program, independently. In addition,
Converse also supports portability across a wide variety of parallel machines, with both
shared and distributed memory. Converse includes library modules that implement its basic
parallel operations using each of the supported parallel machine. Thus, programs imple-
mented using Converse run unchanged on all such machines. As a result, NAMD currently
runs on the CRAY T3D and T3E, IBM SP2-3, SGI Origin 2000, the ASCI Red machine,
and networks of workstations.

Table 4 shows performance of NAMD on the estrogen receptor DNA complex on the
Cray T3E. Speedup is excellent even for the largest number of processors (128), with a
speedup factor of 97.9. Reducing an 80-day computation to less than a day is an enormous
practical benefit.

6. CRYSTALLOGRAPHIC REFINEMENT: ACCELERATED TECHNIQUES

6.1. Overview

The analysis of X-ray diffraction data generally requires sophisticated computational
procedures culminating in structure refinement and validation. These procedures can be
formulated as constrained or restrained nonlinear optimization of a target function ex-
pressed in terms of positional coordinates and B-factors of covalently (e.g., protein) and
noncovalently (e.g., water molecules) linked atoms. The ultimate goal is to simultaneously
optimize the agreement of this atomic model with the observed diffraction data and with
a priori chemical information. In this section, we focus on enhancement of crystallographic
refinement by molecular dynamics-based simulated annealing.

The target function used for optimization typically depends on several atomic parameters,
including atomic coordinates. The form is complex because a large number of adjustable
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parameters (typically at least three times the number of atoms in the system) are involved.
The target function thus contains many local minima, and finding the global minimum
cannot be assured by any current method. The existence of many local minima confounds
local gradient optimization techniques such as conjugate gradient or least-squares methods
[54]. That is, such gradient descent schemes find a minimum near the starting point and
therefore cannot sample molecular conformation space well to find the most optimal so-
lution. Simulated annealing [73] as an optimization technique is thus a viable alternative.
Unlike gradient descent methods, simulated annealing can cross barriers between minima
and thus explore a greater volume of parameter space to find better models (deeper and/or
wider minima). Following its introduction to crystallographic refinement [30], there have
been major improvements of the original method in four principal areas: the measure of
model quality, the search of the parameter space, the target function, and the modeling of
conformational variability [29].

6.2. The Target Function

In crystallographic refinement, the global minimum of the target function

Erefinement(X) = Echem(X)+ wx ray Ex ray(X) (6.1)

is sought, whereX represents the parameters of an atomic model, such as atomic coordinates.
Echemcontains empirical information about chemical interactions, as shown in Eq. (2.1); it
is a function of all atomic positions, describing covalent (bond lengths, bond angles, torsion
angles, chiral centers, and planarity of aromatic rings) and nonbonded (intramolecular
as well as intermolecular and symmetry-related) interactions [58].Ex ray(X) describes the
difference between observed and calculated data, andwx ray is a weight appropriately chosen
to balance the gradients (with respect to atomic parameters) arising from the two terms.

The conventional form ofEx ray consists of the crystallographic residualELSQ, defined
as the sum over the squared differences between the observed (|Fo|) and calculated (|Fc|)
structure factor amplitudes for a particular atomic model,

Ex ray(X) = ELSQ(X) =
∑
hkl

(|Fo| − k|Fc|)2, (6.2)

wherehkl denotes the indices of the reciprocal lattice points of the crystal, andk is a relative
scale factor.

Reduction ofELSQ can result from improvement in the atomic model, but also from an
accumulation of systematic errors in the model or from fitting noise in the data [119]. It
has been suggested that this problem is partly attributed to the fact that the least-squares
residual is poorly justified when the model is far away from the correct one or is incomplete
[98]. An improved target for macromolecular refinement can be obtained using the more
general maximum-likelihood formulation [1, 31, 98, 106]. The goal of the maximum-
likelihood method is to use a statistically correct treatment of errors in the model and
in the observed diffraction data for the refinement procedure. The effects of model errors
(incorrectly placed and missing atoms) on the calculated structure factors are first quantified
with σA values, which correspond roughly to the fraction of each structure factor that is
expected to be correct. However, overfitting of the diffraction data causes the model bias to
be underestimated and undercorrected in theσA values. The effect of this overfitting can be
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reduced by “cross validating”σA values, i.e., by computing them from a randomly selected
test set which is excluded from the summation on the right hand-side of Eqs. (6.2) and (6.3)
[28, 74]. The expected values of〈|Fo|〉 and the corresponding variance (σ 2

ML ) are derived
from σA, the observed|Fo|, and calculated|Fc| [98]. These quantities can be used to derive
a Gaussian approximation of the general maximum-likelihood target function

Ex ray(X) = EML =
∑

hkl∈working set

1

σ 2
ML

(|Fo| − 〈|Fo|〉)2 . (6.3)

In order to achieve an improvement over the least-squares residual (Eq. (6.2)), cross vali-
dation was found to be essential [1] for the computation ofσA and its derived quantities in
Eq. (6.3).

6.3. Simulated Annealing for Conformational Searching

Annealing denotes a physical process wherein a solid is heated until all particles ran-
domly arrange themselves in a liquid phase and then is cooled slowly so that all particles
arrange themselves in the lowest energy state. By formally defining the targetE (Eq. (6.1))
to be the equivalent of the potential energy of the system, we simulate the annealing process
[73]. There is no guarantee that simulated annealing will find the global minimum (except
in the case of an infinitely long search) [79]. Still, compared to conjugate-gradient mini-
mization, simulated annealing achieves more optimal solutions by allowing motion against
the gradient. The likelihood ofuphill motion is determined by a control parameter referred
to astemperature. The higher the temperature, the more likely it is that simulated annealing
will overcome barriers. The input temperature typically has no physical meaning and is
merely a tool for overcoming barriers of the target function.

The simulated annealing algorithm requires a generation mechanism to create a
Boltzmann distribution at a given temperatureT . Simulated annealing also requires an
annealing schedule, that is, a sequence of temperaturesT1≥ T2≥ · · · ≥ Tl at which the
Boltzmann distribution is computed. Implementations of the generation mechanism differ
in the way they generate a transition, or move, from one set of parameters to another so as
to be consistent with the Boltzmann distribution at the given temperature. The two most
widely used generation mechanisms are Metropolis Monte Carlo [94] and molecular dy-
namics simulations. For X-ray crystallographic refinement, molecular dynamics has proved
to be extremely successful [30].

6.4. Torsion-Angle Molecular Dynamics for Refinement

A suitably chosen set of atomic parameters can be viewed as generalized coordinates
that are propagated numerically in time by the classical (Hamilton) equations of motion, as
described in the second section of this article (see Eq. (2.2)). Initial velocities are usually as-
signed randomly from a Maxwell distribution at the appropriate temperature. Assignment
of different initial velocities will produce a somewhat different structure after simulated
annealing. By performing several refinements with different initial velocities one can there-
fore improve the likelihood of success of simulated-annealing refinement. Furthermore,
this improved sampling can be used to determine discrete disorder and conformational
variability.
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Although Cartesian MD (i.e., employing flexible bond lengths and bond angles) places
restraints on bond lengths and bond angles (throughEchem, Eq. (6.1)), an alternative con-
strained formulation may be preferred [36]. This is supported by the observation that the
deviations from ideal bond lengths and bond angles are usually small in X-ray crystal struc-
tures. Indeed, fixed-length constraints have been applied to crystallographic refinement
by least-squares minimization [36]. It is only recently, however, that efficient and robust
algorithms have become available for MD in torsion-angle space [6, 7, 68, 93, 107].

Rice and Brunger [107] have applied an approach that retains the Cartesian-coordinate
formulation of the target function and its derivatives with respect to atomic coordinates so
that calculation remains relatively straightforward and topology independent. In this for-
mulation, however, the expression for the acceleration becomes a function of positions and
velocities. Iterative equations of motion for constrained dynamics in this formulation can
be derived and solved numerically [6, 7, 68, 107]. This approach is distinct from SHAKE
and RATTLE procedures outlined in the second section in that it integrates the equations
exactly in reduced variable space. Practical experience [A.T.B., unpublished] suggests that
the approximate SHAKE method is not suitable for crystallographic or solution NMR
refinement. The alternative approach, in contrast, appears to be robust and to have a signifi-
cantly increased radius of convergence in crystallographic refinement at high temperatures
compared to standard Cartesian MD [107].

6.5. Temperature Control

Simulated annealing requires the control of the temperature during molecular dynamics.
The current temperature (i.e., at stepn or time n1t) of the simulation (Tn) is computed
from the instantaneous kinetic energy

En
kin =

1

2
(Vn)TM(Vn) (6.4)

of the MD simulation. (As before, we useV for the collective velocity vector,M for
the corresponding mass matrix, andT for vector transposes.) The corresponding kinetic
temperature is then

Tn = 2En
kin

/
(NFkB), (6.5)

whereNF is the number of degrees of freedom (e.g., three times the number of atoms). One
commonly used approach to control the temperature of the simulation consists of coupling
the equations of motion to a heat bath. A friction-like term can be added to the right-hand
side of Eq. (2.2) as for Langevin dynamics in the form [16]

−γM Vn(1− T/Tn) (6.6)

to adjust the temperature. Unlike standard Langevin dynamics, the friction coefficientγ may
be negative, as well as positive, in this context, depending on whether the current temperature
is lower or higher than the target temperature. The magnitude ofγ is determined by the
ratio T/Tn.
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6.6. Why Does Simulated Annealing Refinement Work?

In crystallographic refinement, the global minimum of the specified target function is
sought by searching for the conformation or conformations of the molecule that best fit
the diffraction data while also maintaining reasonable bonded and nonbonded interactions.
Paradoxically, the very reasons that make simulated annealing such a powerful refinement
technique—the ability to overcome barriers in the target energy function—might seem to
prevent it from working at all; if it crosses barriers so easily, what allows it to stay in the
vicinity of the global minimum? Certainly, the system’s inertia at the specified temperature
allows it to cross energy barriers of the corresponding target function. This target temperature
must be large enough to overcome smaller barriers but low enough to ensure that the system
does not escape from the global minimum if reached.

While the temperature itself is a global parameter of the system, temperature fluctuations
arise principally from local conformational transitions—for example, from an amino acid
sidechain falling into the correct orientation. These local changes tend to lower the value of
the target function, thus increasing the kinetic energy, and hence the effective temperature,
of the system. Once the temperature coupling (Eq. (6.6)) has removed this excess kinetic
energy through “heat dissipation,” the reverse transition is unlikely, since it would require a
localized increase in kinetic energy where the conformational change occurred in the first
place. Temperature coupling retains a sufficient amount of kinetic energy to allow local
conformational rearrangements but does not supply enough energy to allow escape from
the global minimum. This explains the observation that on average the agreement with the
experimental data improves rather than worsens with simulated annealing.

6.7. Refinement Examples

Many examples have shown that simulated annealing refinement starting from reasonable
initial models (obtained by standard crystallographic techniques) produces significantly
better final solutions compared to those produced by least-squares or conjugate-gradient
minimization [27, 30, 45, 78, 107]. In recent tests [1, 107], arbitrarily “scrambled” models
were generated from an initial model ofα-amylase inhibitor built using experimental phase
information from multiple isomorphous replacement. The scrambling was achieved by
generating MD simulations at 600 K on the basis of the chemical potential energy alone
(i.e., without reference to the X-ray diffraction data). These scrambled structures were then
energy minimized to yield chemically reasonable starting models.

We have shown that these models represent realistic test cases for phasing by molecular
replacement: the scrambled structures contained sufficient information to solve the crys-
tal structure through an extensive molecular replacement search [1]. For a given model,
simulated annealing always outperforms gradient minimization. We also showed that sim-
ulated annealing with the least-squares target has a larger radius of convergence than
minimization with maximum likelihood and that this convergence is further improved by
the use of the maximum-likelihood target. For the most scrambled model an average phase
improvement—compared to the least-squares residual—of more than 15◦ is obtained. The
resulting structures are very close to the published crystal structure. Similar results were
obtained for a test case at lower (2.8Å) resolution and for two real cases involving new
crystal structures starting with an initial model built into a poor electron density map
[1, 75].
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7. FUTURE PERSPECTIVES

It is impressive to look back 20 years and appreciate how rapidly the field of biomolecular
modeling has progressed from the first dynamic simulation of a small protein in vacuum in
the late 1970s. Developments in theory, experiment, and computer technology have made
simulations of larger systems over longer times with greater accuracy possible. Animated
atomic models of enzymes in their solvent milieu can now be visualized on desktop worksta-
tions to discern key motional roles; DNA/protein complexes can be scrutinized to identify
local structural recognition elements; glimpses into complex biomolecular networks or re-
actions, such as lipid bilayers, motor proteins, and photoprocesses, are emerging; and further
insights into experimental observations related to elastic polymer deformations, transcrip-
tion regulation, or mutagenic tendencies of carcinogenic aromatic–DNA compounds are
possible. For many processes that require consideration of electronic rearrangements, the
development of improved quantum/classical and fast quantum modeling approaches is likely
to lead to significant advances on the horizon. Coarse-graining models and the combining
of atomic-level and polymer-level models are also promising directions for bridging the
gap between experimental and theoretical temporal and spatial frames.

Given these and other exciting algorithmic and application activities in the field, it is
not unrealistic to expect that computer modeling of biomolecules will become a general,
accurate tool for studying macromolecular structure and function in the near future. On a
basic level, modeling programs will likely become more accessible to the general scientific
community by requiring less specialized skills in molecular manipulation and simulation
protocol. Impressive, user-friendly graphical interfaces, in particular, aid modelers, signif-
icantly. Still, the success of modeling on a fine level will likely require expert experience
and, perhaps, some art as well as science, so as to determine the molecular and cellular
complexities that are essential to consider versus those that can be neglected or approxi-
mated.

The growing number of high-resolution solved structures, coupled with the huge amount
of incoming genomic sequence data, provide a strong impetus to improve modeling reli-
ability and to develop new application areas. This unprecedented wealth of biological in-
formation is driving the development of knowledge-based tools and new fields of scientific
challenges. Bioinformatics, structural genomics, and functional genomics are prominent
examples of these new areas. Predicting structure from sequence has been a long-time ap-
preciated quest; now it is also natural to ask modelers about the likelyfunctionassociated
with an experimentally determined structure. A combination of database-rooted analysis
and modeling is likely to be a particularly powerful duo for these tasks. Information-driven
modeling might even suggest to experimentalists which sequences to study in the hope of
producing new fold motifs.

In addition, theoretical approaches are proving invaluable in cataloging structural infor-
mation, and in the near future this is likely to extend to functional-based libraries. These
databases in turn are providing structures for validating current structure-prediction tools,
improving fold classification, and using structures for rational drug design. Indeed, the
pharmaceutical industries are benefiting tremendously from chemical libraries, both for
organic molecules and for biological macromolecules; enhanced tools for similarity and
diversity sampling and for bioactivity prediction are accelerating the rate at which new
potential drugs enter the phase of clinical trials. Together, knowledge-based science and
biomolecular simulations might ultimately prove to be reliable for making structural and
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functional predictions ahead of experiment, an important goal of the field. Such predictions
will be particularly valuable for systems that are not amenable to crystallization and other
experimental techniques.
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