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A LIMITED MEMORY ALGORITHM FOR BOUND

CONSTRAINED OPTIMIZATION

by

Richard H� Byrd� Peihuang Lu� Jorge Nocedal and Ciyou Zhu

ABSTRACT

An algorithm for solving large nonlinear optimization problems with simple bounds is de�

scribed� It is based on the gradient projection method and uses a limited memory BFGS

matrix to approximate the Hessian of the objective function� It is shown how to take advan�

tage of the form of the limited memory approximation to implement the algorithm e�ciently�

The results of numerical tests on a set of large problems are reported�

Key words� bound constrained optimization� limited memory method� nonlinear optimization�
quasi�Newton method� large�scale optimization	

Abbreviated title� A Limited Memory Method

�� Introduction�

In this paper we describe a limited memory quasi�Newton algorithm for solving large nonlinear
optimization problems with simple bounds on the variables	 We write this problem as

min f
x� 
����

subject to l � x � u� 
����

where f � �n � � is a nonlinear function whose gradient g is available� the vectors l and u
represent lower and upper bounds on the variables� and the number of variables n is assumed
to be large	 The algorithm does not require second derivatives or knowledge of the structure of
the objective function� and can therefore be applied when the Hessian matrix is not practical to
compute	 A limited memory quasi�Newton update is used to approximate the Hessian matrix in
such a way that the storage required is linear in n	
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The algorithm described in this paper is similar to the algorithms proposed by Conn� Gould
and Toint �� and Mor�e and Toraldo ���� in that the gradient projection method is used to deter�
mine a set of active constraints at each iteration	 Our algorithm is distinguished from the these
methods by our use of line searches 
as opposed to trust regions� but mainly by our use of limited
memory BFGS matrices to approximate the Hessian of the objective function	 The properties
of these limited memory matrices have far reaching consequences in the implementation of the
method� as will be discussed later on	 We �nd that by making use of the compact representations
of limited memory matrices described by Byrd� Nocedal and Schnabel ��� the computational cost
of one iteration of the algorithm can be kept to be of order n	

We used the gradient projection approach ���� ���� �� to determine the active set� because
recent studies ��� �� indicate that it possess good theoretical properties� and because it also
appears to be e�cient on many large problems ��� ���	 However some of the main components
of our algorithm could be useful in other frameworks� as long as limited memory matrices are
used to approximate the Hessian of the objective function	

�� Outline of the algorithm�

At the beginning of each iteration� the current iterate xk� the function value fk � the gradient
gk� and a positive de�nite limited memory approximation Bk are given	 This allows us to form a
quadratic model of f at xk�

mk
x� � f
xk� � gTk 
x� xk� �
�

�

x� xk�

TBk
x� xk�� 
����

Just as in the method studied by Conn� Gould and Toint �� the algorithm approximately min�
imizes mk
x� subject to the bounds given by 
�	��	 This is done by �rst using the gradient
projection method to �nd a set of active bounds� followed by a minimization of mk treating those
bounds as equality constraints	

To do this� we �rst consider the piece�wise linear path

x
t� � P 
xk � tgk� l� u��

obtained by projecting the steepest descent direction onto the feasible region� where

P 
x� l� u�i �

���
��

li if xi � li
xi if xi � li� ui�
ui if xi � ui	


����

We then compute the generalized Cauchy point xc� which is de�ned as the �rst local minimizer
of the univariate� piece�wise quadratic

qk
t� � mk
x
t���

The variables whose value at xc is at lower or upper bound� comprising the active set A
xc�� are
held �xed	 We then consider the following quadratic problem over the subspace of free variables�
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min fmk
x� � xi � xci � �i � A
x
c�g 
����

subject to li � xi � ui �i �� A
xc�� 
����

We �rst solve or approximately solve 
�	��� ignoring the bounds on the free variables� which can
be accomplished either by direct or iterative methods on the subspace of free variables� or by a
dual approach� handling the active bounds in 
�	�� by Lagrange multipliers	 When an iterative
method is employed we use xc as the starting point for this iteration	 We then truncate the path
toward the solution so as to satisfy the bounds 
�	��	

After an approximate solution �xk�� of this problem has been obtained� we compute the new
iterate xk�� by a line search along dk � �xk�� � xk that satis�es the su�cient decrease condition

f
xk��� � f
xk� � ��kg
T
k dk� 
����

and that also attempts to enforce the curvature condition

jgTk��dkj � �jgTk dkj� 
����

where �k is the steplength and �� � are parameters that have the values ���� and ���� respectively�
in our code	 The line search� which ensures that the iterates remain in the feasible region� is
described in x�	 We then evaluate the gradient at xk��� compute a new limited memory Hessian
approximation Bk�� and begin a new iteration	

Because in our algorithm every Hessian approximation Bk is positive de�nite� the approximate
solution �xk�� of the quadratic problem 
�	���
�	�� de�nes a descent direction dk � �xk�� � xk for
the objective function f 	 To see this� �rst note that the generalized Cauchy point xc� which is a
minimizer of mk
x� on the projected steepest descent direction� satis�es mk
xk� � mk
x

c� if the
projected gradient is nonzero	 Since the point �xk�� is on a path from xc to the minimizer of 
�	���
along which mk decreases� the value of mk at �xk�� is no larger than its value at xc	 Therefore we
have

f
xk� � mk
xk� � mk
x
c� � mk
�xk��� � f
xk� � gTk dk �

�

�
dTkBkdk�

This inequality implies that gTk dk � � if Bk is positive de�nite and dk is not zero	 In this paper
we do not present any convergence analysis or study the possibility of zigzagging	 However� given
the use of gradient projection in the step computation we believe analyses similar to those in ��
and �� should be possible� and that zigzagging should only be a problem in the degenerate case	

The Hessian approximations Bk used in our algorithm are limited memory BFGS matrices

Nocedal ��� and Byrd� Nocedal and Schnabel ���	 Even though these matrices do not take
advantage of the structure of the problem� they require only a small amount of storage and� as we
will show� allow the computation of the generalized Cauchy point and the subspace minimization
to be performed in O
n� operations	 The new algorithm therefore has similar computational
demands as the limited memory algorithm 
L�BFGS� for unconstrained problems described by
Liu and Nocedal ��� and Gilbert and Lemar�echal ���	

In the next three sections we describe in detail the limited memory matrices� the computation
of the Cauchy point� and the minimization of the quadratic problem on a subspace	

�



�� Limited Memory BFGS Matrices�

In our algorithm� the limited memory BFGS matrices are represented in the compact form
described by Byrd� Nocedal and Schnabel ��	 At every iterate xk the algorithm stores a small
number� say m� of correction pairs fsi� yig� i � k � �� � � � � k �m� where

sk � xk�� � xk� yk � gk�� � gk�

These correction pairs contain information about the curvature of the function� and in conjunction
with the BFGS formula� de�ne the limited memory iteration matrix Bk	 The question is how to
best represent these matrices without explicitly forming them	

In �� it is proposed to use a compact 
or outer product� form to de�ne the limited memory
matrix Bk in terms of the n�m correction matrices

Yk � yk�m � � � � � yk��� � Sk � sk�m� � � � � sk��� � 
����

More speci�cally� it is shown in �� that if 	 is a positive scaling parameter� and if the m correction
pairs fsi� yig

k�m
i�k��� satisfy s

T
i yi � �� then the matrix obtained by updating 	I m�times� using the

BFGS formula and the pairs fsi� yig
k�m
i�k�� can be written as

Bk � 	I �WkMkW
T
k 
����

where
Wk �

h
Yk 	Sk

i
� 
����

Mk �

�
�Dk LT

k

Lk 	ST
k Sk

�
��

� 
����

and where Lk and Dk are the m�m matrices


Lk�i�j �

�

sk�m���i�

T 
yk�m���j� if i � j
� otherwise�


����

Dk � diag
h
sTk�myk�m � � � � � s

T
k��yk��

i
� 
����


We should point out that 
�	�� is a slight rearrangement of equation 
�	�� in ���	 Note that
since Mk is a �m� �m matrix� and since m is chosen to be a small integer� the cost of computing
the inverse in 
�	�� is negligible	 It is shown in �� that by using the compact representation 
�	��
various computations involving Bk become inexpensive	 In particular� the product of Bk times a
vector� which occurs often in the algorithm of this paper� can be performed e�ciently	

There is a similar representation of the inverse limited memory BFGS matrix Hk that ap�
proximates the inverse of the Hessian matrix�

Hk 	
�

	
I � �Wk

�Mk
�WT
k � 
����

�



where
�Wk 	

h
�

�
Yk Sk �

i

�Mk 	

�
	
 � �R��

k

�R�T
k R�T

k 
Dk �
�

�
Y T
k Yk�R

��

k

�
� �

and


Rk�i�j �

�

sk�m���i�

T 
yk�m���j� if i � j
� otherwise	


����


We note that 
�	�� is a slight rearrangement of equation 
�	�� in ���	
Representations of limited memory matrices analogous to these also exist for other quasi�

Newton update formulae� such as SR� or DFP 
see ���� and in principle could be used for Bk in
our algorithm	 We consider here only BFGS since we have considerable computational experience
in the unconstrained case indicating the limited memory BFGS performs well	

Since the bounds on the problem may prevent the line search from satisfying 
�	�� 
see x���
we cannot guarantee that the condition sTk yk � � always holds 
cf	 Dennis and Schnabel ����	
Therefore to maintain the positive de�niteness of the limited memory BFGS matrix� we discard
a correction pair fsk� ykg if the curvature condition

sTk yk � eps kyk� 
����

is not satis�ed for a small positive constant eps	 If this happens we do not delete the oldest
correction pair� as is normally done in limited memory updating	 This means that them directions
in Sk and Yk may actually include some with indices less than k �m	

�� The generalized Cauchy point�

The objective of the procedure described in this section is to �nd the �rst local minimizer
of the quadratic model along the piece�wise linear path obtained by projecting points along the
steepest descent direction� xk � tgk� onto the feasible region	 We de�ne x� � xk and� throughout
this section� drop the index k of the outer iteration� so that g� x and B stand for gk� xk and
Bk 	 We use subscripts to denote the components of a vector� for example gi denotes the i�th
component of g	 Superscripts will be used to represent iterates during the piece�wise search for
the Cauchy point	

To de�ne the breakpoints in each coordinate direction we compute

ti �

���
��


x�i � ui��gi if gi � �

x�i � li��gi if gi � �

 otherwise�


����

�



and sort fti� i � �� � � � � ng in increasing order to obtain the ordered set ftj � tj � tj��� j � �� ���� ng	
This is done by means of a heapsort algorithm ��	 We then search along P 
x�� tg� l� u�� a piece�
wise linear path which can be expressed as

xi
t� �

�
x�i � tgi if t � ti
x�i � tigi otherwise	

Suppose that we are examining the interval tj��� tj �	 Let us de�ne the 
j � ���th breakpoint as

xj�� � x
tj���

so that on tj��� tj �
x
t� � xj�� ��tdj���

where
�t � t � tj��

and

dj��i �

�
�gi if tj�� � ti
� otherwise�


����

Using this notation we write the quadratic 
�	��� on the line segment x
tj���� x
tj��� as

m
x� � f � gT 
x� x�� � �

�

x� x��TB
x � x��

� f � gT 
zj�� � �tdj��� � �

�

zj�� � �tdj���TB
zj�� � �tdj����

where
zj�� � xj�� � x�� 
����

Therefore on the line segment x
tj���� x
tj��� m
x� can be written as a quadratic in �t�

�m
�t� � 
f � gTzj�� � �

�
zj��

T
Bzj��� � 
gTdj�� � dj��

T
Bzj����t

��

�

dj��

T
Bdj����t�

	 fj�� � f �j���t �
�

�
f ��j���t

��

where the parameters of this one�dimensional quadratic are

fj�� � f � gTzj�� � �

�
zj��

T
Bzj���

f �j�� � gTdj�� � dj��
T
Bzj��� 
�	��

f ��j�� � dj��
T
Bdj��� 
�	��

Di�erentiating �m
�t� and equating to zero� we obtain �t� � �f �j���f
��

j��	 Since B is positive

de�nite� this de�nes a minimizer provided tj�� ��t� lies on tj��� tj�	 Otherwise the generalized
Cauchy point lies at x
tj��� if f �j�� � �� and beyond or at x
tj� if f �j�� � �	
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If the generalized Cauchy point has not been found after exploring the interval tj��� tj �� we
set

xj � xj�� � �tj��dj��� �tj�� � tj � tj��� 
����

and update the directional derivatives f �j and f ��j as the search moves to the next interval	 Let us

assume for the moment that only one variable becomes active at tj � and let us denote its index
by b	 Then tb � tj � and we zero out the corresponding component of the search direction�

dj � dj�� � gbeb� 
����

where eb is the b�th unit vector	 From the de�nitions 
�	�� and 
�	�� we have

zj � zj�� ��tj��dj��� 
����

Therefore using 
�	��� 
�	��� 
�	�� and 
�	�� we obtain

f �j � gTdj � dj
T
Bzj

� gTdj�� � g�b � dj��
T
Bzj�� ��tj��dj��

T
Bdj�� � gbe

T
b Bz

j

� f �j�� ��tj��f ��j�� � g�b � gbe
T
b Bz

j 
�	��

and

f ��j � dj
T
Bdj

� dj��
T
Bdj�� � �gbe

T
b Bd

j�� � g�beb
TBeb

� f ��j�� � �gbe
T
b Bd

j�� � g�beb
TBeb� 
�	���

The only expensive computations in 
���� and 
����� are

eb
TBzj � eb

TBdj��� eb
TBeb�

which can require O
n� operations since B is a dense limited memory matrix	 Therefore it would
appear that the the computation of the generalized Cauchy point could require O
n�� operations�
since in the worst case n segments of the piece�wise linear path can be examined	 This cost would
be prohibitive for large problems	 However� using the limited memory BFGS formula 
�	�� and
the de�nition 
�	��� the updating formulae 
�	���
�	��� become

f �j � f �j�� ��tj��f ��j�� � g�b � 	gbz
j
b � gbw

T
b MWT zj � 
�����

f ��j � f ��j�� � �	g�b � �gbw
T
b MWTdj�� � 	g�b � g�bw

T
b Mwb� 
�����

where wT
b stands for the b�th row of the matrix W 	 The only O
n� operations remaining in 
�	���

and 
�	��� are WTzj and WTdj��	 We note� however� from 
�	�� and 
�	�� that zj and dj are
updated at every iteration by a simple computation	 Therefore if we maintain the two �m�vectors

pj 	 WTdj �WT 
dj�� � gbeb� � pj�� � gbwb�

�



cj 	 WT zj � WT 
zj�� � �tj��dj��� � cj�� ��tj��pj���

then updating f �j and f ��j using the expressions

f �j � f �j�� ��tj��f ��j�� � g�b � 	gbz
j
b � gbw

T
b Mcj �

f ��j � f ��j�� � 	g�b � �gbw
T
b Mpj�� � g�bw

T
b Mwb�

will require only O
m�� operations	 If more than one variable becomes active at tj � an atypical
situation � we repeat the updating process just described� before examining the new interval
tj � tj���	 We have thus been able to achieve a signi�cant reduction in the cost of computing the
generalized Cauchy point	

Remark� The examination of the �rst segment of the projected steepest descent path� during the

computation of the generalized Cauchy point� requires O
n� operations� However all subsequent

segments require only O
m�� operations� where m is the number of correction vectors stored in

the limited memory matrix�

Since m is usually small� say less than ��� the cost of examining all segments after the �rst
one is negligible	 The following algorithm describes in more detail how to achieve these savings
in computation	 Note that it is not necessary to keep track of the n�vector zj since only the
component zjb corresponding to the bound that has become active is needed to update fj

� and
fj
��	

Algorithm CP� Computation of the generalized Cauchy point�

Given x� l� u� g� and B � 	I �WMWT

� Initialize

For i � �� � � � � n compute

ti ��

���
��


xi � ui��gi if gi � �

xi � li��gi if gi � �

 otherwise


n operations�

di ��

�
� if ti � �
�gi otherwise

F �� fi � ti � � g
p �� WTd 
�mn operations �
c �� �
f � �� gTd � �dTd 
n operations�
f �� � � 	dTd� dTWMWT d � �	f � � pTMp 
O
m�� operations�

�tmin �� � f �

f ��

told �� �
t �� minfti � i � Fg 
using the heapsort algorithm�
b �� i such that ti � t 
remove b from F�	

�t �� t � �

�



� Examination of subsequent segments
While �tmin � �t do

xcpb ��

�
ub if db � �
lb if db � �

zb �� xcpb � xb

c �� c��tp 
O
m� operations�

f � �� f � ��tf �� � g�b � 	gbzb � gbw
T
b Mc 
O
m�� operations�

f �� �� f �� � 	g�b � �gbw
T
b Mp� g�bw

T
b Mwb 
O
m�� operations�

p �� p� gbwb 
O
m� operations�

db �� �

�tmin �� �
f �

f ��

told �� t

t �� minfti � i � Fg 
using the heapsort algorithm�

b �� i such that ti � t 
Remove b from F�

�t �� t� told

end while

� �tmin �� maxf�tmin� �g

� told �� told � �tmin

� xcpi �� xi � tolddi� � i such that ti � t

� For all i � F with ti � t� remove i from F 	

� c �� c� �tminp

The last step of this algorithm updates the �m�vector c so that upon termination

c � WT 
xc � xk�� 
�����

This vector will be used to initialize the subspace minimization when the primal direct method
or the conjugate gradient method are used� as will be discussed in the next section	

Our operation counts only take into account multiplications and divisions	 Note that there
are no O
n� computations inside the loop	 If nint denotes the total number of segments explored�
then the total cost of Algorithm CP is 
�m���n�O
m���nint operations plus n logn operations
which is the approximate cost of the heapsort algorithm ��	

�� Methods for subspace minimization�

Once the Cauchy point xc has been found� we proceed to approximately minimize the quadratic
model mk over the space of free variables� and impose the bounds on the problem	 We consider

�



three approaches to minimize the model� a direct primal method based on the Sherman�Morrison�
Woodbury formula� a primal iterative method using the conjugate gradient method� and a direct
dual method using Lagrange multipiers	 Which of these is most appropriate seems problem de�
pendent� and we have experimented numerically with all three	 In all these approaches we �rst
work on minimizing mk ignoring the bounds� and at an appropriate point truncate the move so
as to satisfy the bound constraints	

The following notation will be used throughout this section	 The integer t denotes the number
of free variables at the Cauchy point xc� in other words there are n� t variables at bound at xc	
As in the previous section F denotes the set of indices corresponding to the free variables� and
we note that this set is de�ned upon completion of the Cauchy point computation	 We de�ne
Zk to be the n � t matrix whose columns are unit vectors 
i	e	 columns of the identity matrix�
that span the subspace of the free variables at xc	 Similarly Ak denotes the n� 
n� t� matrix of
active constraint gradients at xc� which consists of n � t unit vectors	 Note that AT

kZk � � and
that

AkA
T
k � ZkZ

T
k � I� 
����

���� A Direct Primal Method�

In a primal approach� we �x the n� t variables at bound at the generalized Cauchy point xc�
and solve the quadratic problem 
�	�� over the subspace of the remaining t free variables� starting
from xc and imposing the free variable bounds 
�	��	 Thus we consider only the points x � �n of
the form

x � xc � Zk
�d� 
����

where �d is a vector of dimension t	 Using this notation� for points of the form 
�	�� we can write
the quadratic 
�	�� as

mk
x� � fk � gTk 
x� xc � xc � xk� �
�

�

x� xc � xc � xk�

TBk
x� xc � xc � xk�

� 
gk � Bk
x
c � xk��

T 
x� xc� �
�

�

x� xc�TBk
x� xc� � 


	 �dT �rc �
�

�
�dT �Bk

�d� 
� 
�	��

where 
 is a constant�
�Bk � ZT

k BkZk

is the reduced Hessian of mk� and

�rc � ZT
k 
gk �Bk
x

c � xk��

is the reduced gradient of mk at xc	 Using 
�	�� and 
�	���� we can express this reduced gradient
as

�rc � ZT
k 
gk � 	
xc � xk��WkMkc�� 
����

��



which� given that the vector c was saved from the Cauchy point computation� costs 
�m� ��t�
O
m�� extra operations	 Then the subspace problem 
�	�� can be formulated as

min �mk
 �d� 	 �dT �rc � �

�
�dT �Bk

�d� 
 
�	��

subject to li � xci �
�di � ui � xci i � F � 
�	��

where the subscript i denotes the i�th component of a vector	 The minimization 
�	�� can be
solved either by a direct method� as we discuss here� or by an iterative method as discussed in
the next subsection� and the constraints 
�	�� can be imposed by backtracking	

Since the reduced limited memory matrix �Bk is a small�rank correction of a diagonal matrix�
we can formally compute its inverse by means of the Sherman�Morrison�Woodbury formula� and
obtain the unconstrained solution of the subspace problem 
�	���

�du � � �B��

k �rc� 
����

We can then backtrack towards the feasible region� if necessary� to obtain

�d� � �� �du�

where the positive scalar �� is de�ned by

�� � maxf� � � � �� li � xci � � �dui � ui � xci � i � Fg� 
����

Therefore the approximate solution �x of the subproblem 
�	���
�	�� is given by

�xi �

�
xci if i �� F

xci � 
Zk
�d��i if i � F 	


����

It only remains to consider how to perform the computation in 
�	��	 Since Bk is given by

�	�� and ZT

k Zk � I � the reduced matrix �B is given by

�B � 	I � 
ZTW �
MWTZ��

where we have dropped the subscripts for simplicity	 Applying the Sherman�Morrison�Woodbury
formula 
see for example ����� we obtain

�B�� �
�

	
I �

�

	
ZTW 
I �

�

	
MWTZZTW �

��

MWTZ
�

	
� 
�����

so that the unconstrained subspace Newton direction �du is given by

�du �
�

	
�rc �

�

	�
ZTW 
I �

�

	
MWTZZTW �

��

MWTZ�rc� 
�����

Given a set of free variables at xc that determines the matrix Z� and a limited memory BFGS
matrix B de�ned in terms of 	�W and M � the following procedure implements the approach
just described	 Note that since the columns of Z are unit vectors� the operation Zv� amounts

��



to selecting appropriate elements from v	 Here and throughout the paper our operation counts
include only multiplications and divisions	 Recall that t denotes the number of free variables and
that m is the number of corrections stored in the limited memory matrix	

Direct Primal Method�

�	 Compute Z�rc by 
�	�� 

�m� ��t� O
m�� operations�

�	 v �� WTZ�rc 
�mt operations�

�	 v �� Mv 
O
m�� operations�

�	 Form N 	 
I � �

�
MWTZZTW �

� N �� �

�
WTZZTW 
�m�t �mt operations�

� N �� I �MN 
O
m�� operations�

�	 v �� N��v 
O
m�� operations�

�	 �du �� �

�
�rc � �

��
ZTWv 
�mt� t operations�

�	 Find �� satisfying 
�	�� 
t operations�

�	 Compute �xi as in 
�	�� 
t operations�

The total cost of this subspace minimization step based on the Sherman�Morrison�Woodbury
formula is

�m�t� �mt� �t �O
m�� 
�����

operations	 This is quite acceptable when t is small� i	e	 when there are few free variables	
However in many problems the opposite is true� few constraints are active and t is large	 In this
case the cost of the direct primal method can be quite large� but the following mechanism can
provide signi�cant savings	

Note that when t is large� it is the computation of the matrix

WTZZTW �

�
Y T

	ST

�
ZZT

h
Y 	S

i
�

�
Y TZZTY 	Y TZZTS

	STZZTY 	�STZZTS

�

in step �� which requires �m�t operations� that drives up the cost	 Fortunately we can reduce
the cost when only a few variables enter or leave the active set from one iteration to the next
by saving the matrices Y TZZTY� STZZTY and STZZTS	 These matrices can be updated to
account for the parts of the inner products corresponding to variables that have changed status�
and to add rows and columns corresponding to the new step	 In our computational experiments
in x� we have implemented this device	 In addition� when t is much larger then n � t� it seems
more e�cient to use the relationship Y TZZTY � Y TY � Y TAATY � which follows from 
�	��� to
compute Y TZZTY 	 Similar relationships can be used for the matrices STZZTY and STZZTS	
An expression using these relationships is described at the end of x�	�	

��



���� A primal conjugate gradient method�

Another approach for approximately solving the subspace problem 
�	�� is to apply the con�
jugate gradient method to the positive de�nite linear system

�Bk
�du � ��rc� 
�����

and stop the iteration when a boundary is encountered or when the residual is small enough	
Note that the accuracy of the solution controls the rate of convergence of the algorithm� once the
correct active set is identi�ed� and should therefore be chosen with care	 We follow Conn� Gould
and Toint �� and stop the conjugate gradient iteration when the residual �r of 
�	��� satis�es

k�rk � min
����
q
k�rck�k�rck�

We also stop the iteration at a bound when a conjugate gradient step is about to violate a bound�
thus guaranteeing that 
�	�� is satis�ed	 The conjugate gradient method is appropriate here since
almost all of the eigenvalues of �Bk are identical	

We now describe the conjugate gradient method and give its operation counts	 Note that the
e�ective number of variables is t� the number of free variables	 Given Bk � the following procedure
computes an approximate solution of 
�	��	

The conjugate gradient method�

�	 �r �� �rc computed by 
�	�� 

�m� ��t�O
m�� operations�

�	 p �� ��r� �d �� �� and �� �� �rT �r 
t operations�

�	 Stop if k�rk � min
����
p
k�rck�k�rck

�	 �� �� maxf� � �l � �xc � �d� �p � �ug 
t operations�

�	 q �� �Bkp 
�mt operations�

�	 �� �� ���p
Tq 
t operations�

�	 If �� � �� set �d �� �d� ��p and stop�

otherwise compute�

� �d �� �d� ��p 
t operations�

� �r �� �r � ��q 
t operations�

� �� �� ��� �� � �rT �r� � �� ����� 
t operations�

� p �� ��r � �p 
t operations�

� go to �

��



The matrix�vector multiplication of step � should be performed as described in ��	 The total
operation count of this conjugate gradient procedure is approximately


�m� ��t� 
�m� ��t� citer �O
m��� 
�����

where citer is the number of conjugate gradient iterations	 Comparing this to the cost of the
primal direct method 
�	��� it seems that� for t �� m� the direct method is more e�cient unless
citer � m��	 Note that the costs of both methods increase as the number of free variables t
becomes larger	 Since the limited memory matrix Bk is a rank �m correction of the identity
matrix� the termination properties of the conjugate gradient method guarantee that the subspace
problem will be solved in at most �m conjugate gradient iterations	

We should point out that the conjugate gradient iteration could stop at a boundary even when
the unconstrained solution of the subspace problem is inside the box	 Consider for example the
case when the unconstrained solution lies near a corner and the starting point of the conjugate
gradient iteration lies near another corner along the same edge of the box	 Then the iterates
could soon fall outside of the feasible region	 This example also illustrates the di�culties that
the conjugate gradient approach can have on nearly degenerate problems ���	

���� A dual method for subspace minimization�

Since it often happens that the number of active bounds is small relative to the size of the
problem it should be e�cient to handle these bounds explicitly with Lagrange multipliers	 Such
an approach is often referred to as a dual or a range space method 
see ����	

We will write
x 	 xk � d�

and restrict xk � d to lie on the subspace of free variables at xc by imposing the condition

AT
k d � AT

k 
x
c � xk�

	 bk�


Recall that Ak is the matrix of constraint gradients	� Using this notation we formulate the
subspace problem as

min gk
Td� �

�
dTBkd 
�	���

subject to AT
k d � bk 
�	���

l � xk � d � u� 
�	���

We �rst solve this problem without the bound constraint 
�	���	 The optimality conditions for

�	����
�	��� are

gk �Bkd
� �Ak�

� � �� 
�	���

AT
k d

� � bk� 
�	���

��



Pre�multiplying 
�	��� by AT
kHk� where Hk is the inverse of Bk� we obtain

AT
kHkgk � AT

k d
� �AT

kHkAk�
� � ��

and using 
�	��� we obtain

AT

kHkAk��
� � �AT

kHkgk � bk� 
�����

Since the columns of Ak are unit vectors and Ak has full column rank� we see AT
kHkAk is a

principal submatrix of Hk	 Thus 
�	��� determines ��� and hence d� is given by

Bkd
� � �Ak�

� � gk� 
�����


In the special case where there are no active constraints� we simply obtain Bkd
� � �gk�� If the

vector xk�d� violates the bounds 
�	���� we backtrack to the feasible region along the line joining
this infeasible point and the generalized Cauchy point xc	

The linear system 
�	��� can be solved by the Sherman�Morrison�Woodbury formula	 Using
the inverse limited memory BFGS matrix 
�	��� and recalling the identity AT

kAk � I � we obtain

AT
kHkAk �

�

	
I � 
AT �W �
 �M �WTA��


We have again omitted the subscripts of M�W and 	 for simplicity	� Applying the Sherman�
Morrison�Woodbury formula we obtain


AT
kHkAk�

�� � 	I � 	AT
k
�W 
I � 	 �M �WTAkA

T
k
�W �

�� �M �WTAk	� 
�����

Given gk� a set of active variables at xc that determines the matrix of constraint gradients
Ak� and an inverse limited memory BFGS matrix Hk� the following procedure implements the
dual approach just described	 Let us recall that t denotes the number of free variables and let
us de�ne ta � n � t� so that ta denotes the number of active constraints at xc	 As before�
the operation counts given below include only multiplications and divisions� and m denotes the
number of corrections stored in the limited memory matrix	

Dual method

If ta � �� compute d� � �Hkgk � ��

�
gk � �W �M �WT gk as follows

� w �� �WTgk 
� operations�

� w �� �Mw 
O
m�� operations�

� d� �� ��

�
gk � �Ww 

�m� ��n operations�

If ta � �� compute

�	 u � �AT
kHkgk � b � ��

�
AT

k gk �AT �W �M �WT gk � b

� b �� AT
k 
x

c � xk� 
� operations�

��



� v �� �WTgk 
� operations�

� v �� �Mw 
O
m�� operations�

� u �� AT
k
�Wv 
�mta operations�

� u �� ��

�
AT

k gk � u� b 
ta operations�

�	 �� � �
AT
kHkAk�

��u � �	u � 	�AT
k
�W 
I � 	 �M �WTAkA

T
k
�W �

�� �M �WTAku

� w �� �WTAku 
�mta operations�

� Form �N � 
I � 	 �M �WTAkA
T
k
�W �

� �N �� 	WTAkA
T
kW 

�m� �m�ta operations�

� �N �� I � �M �N 
O
m�� operations�

� w �� �N�� �Mw 
O
m�� operations�

� �� �� 	�AT
k
�Ww 
�mta operations�

� �� �� �	u � �� 
ta operations�

�	 d� � �Hk
Ak�
� � gk� � ��

�

Ak�

� � gk�� �W 
 �M �WTAk�
� � v�

� w �� �WTAk�
� 
�mta operations�

� w �� �Mw � v 
�m operations�

� d� �� ��

�

Ak�

� � gk� � �Ww 

�m� ��n operations�

Backtrack if necessary�

� Compute �� �max f� � li � xc � �
xk � d� � xc� � ui� i � Fg 
t operations�

� Set �x � xc � ��
xk � d� � xc�	 
t operations�

Since the vectors STgk and Y T gk have been computed while updating Hk ��� they can be
saved so that the product �WT gk requires no further computation	

The total number of operations of this procedure� when no bounds are active 
ta � ��� is

�m� ��n�O
m��	 If ta bounds are active�


�m� ��n� �mta � �m�ta �O
m��

operations are required to compute the unconstrained subspace solution	 A comparison with the
cost of the primal computation implemented as described above� given in 
�	���� indicates that
the dual method would be less expensive when the number of bound variables is much less than
the number of free variables	

However� this comparison does not take into account the devices for saving costs in the
computation of inner products discussed at the end of x�	�	 In fact� the primal and dual ap�
proaches can be brought closer by noting that the matrix 
I � �

�
MWTZZTW �

��
M appearing

in 
�	��� can be shown to be identical to the matrix 
I � 	 �M �WTAkA
T
k
�W �

�� �M in 
�	���	 If the

��



second expression is used in the primal approach� the cost for the primal computation becomes
�m�ta��mt��t�O
m��� making it more competitive with the dual approach	 We have used this
expression for the primal method in our computational experiments	 Also� in the dual approach�
as with the primal� we save and reuse the inner products in �WTAkA

T
k
�W that are relevant for the

next iteration	

�� Numerical Experiments

We have tested our limited memory algorithm using the three options for subspace mini�
mization 
the direct primal� primal conjugate gradient and dual methods�� and compared the
results with those obtained with the subroutine SBMIN of LANCELOT ���	 Both our code and
LANCELOT were terminated when

kP 
xk � gk� l� u�� xkk� � ����� 
����


Note from 
�	�� that P 
xk � gk� l� u�� xk is the projected gradient	� The algorithm we tested is
given as follows	

L�BFGS�B Algorithm

Choose a starting point x�� and a integer m that determines the number of limited memory
corrections stored	 De�ne the initial limited memory matrix to be the identity and set k �� �	

�	 If the convergence test 
�	�� is satis�ed stop	

�	 Compute the Cauchy point by Algorithm CP	

�	 Compute a search direction dk by either the direct primal method� the conjugate gradient
method or the dual method	

�	 Perform a line search along dk� subject to the bounds on the problem� to compute a
steplength �k� and set xk�� � xk � �kdk	 The line search starts with the unit steplength�
satis�es 
�	�� with � � ����� and attempts to satisfy 
�	�� with � � ���	

�	 Compute rf
xk���	

�	 If yk satis�es 
�	�� with eps� ��� � ����	� add sk and yk to Sk and Yk 	 If more than m
updates are stored� delete the oldest column from Sk and Yk 	

�	 Update ST
k Sk� Y T

k Yk � Lk and Rk� and set 	 � yTk yk�y
T
k sk �

�	 Set k �� k � � and go to �	

The line search was performed by means of the routine of Mor�e and Thuente ��� which at�
tempts to enforce the Wolfe conditions 
�	�� and 
�	�� by a sequence of polynomial interpolations	
Since steplengths greater than one may be tried� we prevent the routine from generating infeasible
points by de�ning the maximum steplength for the routine as the step to the closest bound along

��



the current search direction	 This approach implies that� if the objective function is bounded
below� the line search will generate a point xk�� that satis�es 
�	�� and either satis�es 
�	�� or
hits a bound that was not active at xk	 We have observed that this line search performs well in
practice	 The �rst implementation of our algorithm used a backtracking line search� but we found
that this approach has a drawback	 On several problems the backtracking line search generated
steplengths for which the updating condition 
�	�� did not hold� and the BFGS update had to be
skipped	 This resulted in very poor performance in some problems	 In contrast� when using the
new line search� the update is very rarely skipped in our tests� and the performance of the code
was markedly better	 To explore this further we compared the early version of our code� using
the backtracking line search� with the L�BFGS code for unconstrained optimization ��� 
which
uses the routine of Mor�e and Thuente� on unconstrained problems� and found that L�BFGS was
superior in a signi�cant number of problems	 Our results suggest that backtracking line searches
can signi�cantly degrade the performance of BFGS� and that satisfying the Wolfe conditions as
often as possible is important in practice	

Our code is written in double precision FORTRAN ��	 For more details on how to update
the limited memory matrices in step � see ��	 When testing the routine SBMIN of LANCELOT
��� we tried three options� BFGS� SR� and exact Hessians	 In all these cases we used the default
settings of LANCELOT	

The test problems were selected from the CUTE collection �� 
which contains some problems
from the MINPACK�� collection ���	 All bound constrained problems in CUTE were tested� but
some problems were discarded for one of the following reasons� 
a� the number of variables was less
than �� 
b� the various algorithms converged to a di�erent solution point� 
c� too many instances
of essentially the same problem are given in CUTE� in this case we selected a representative
sample	

The results of our numerical tests are given in Tables �� � and �	 All computations were
performed on a Sun SPARCstation � with a ���MHz CPU and ���MB memory	 We record the
number of variables n the number of function evaluations and the total run time	 The limited
memory code always computes the function and gradient together� so that nfg denotes the total
number of function and gradient evaluations	 However for LANCELOT the number of function
evaluations is not necessarily the same as the number of gradient evaluations� and in the tables we
only record the number 
nf� of function evaluations	 The notation F� indicates that the solution
was not obtained after ��� function evaluations� and F� indicates that the run was terminated
because the next iterate generated from the line search was too close to the current iterate to be
recognized as distinct	 This occurred only in some cases when the limited memory method was
quite near the solution but was unable to meet the stopping criterion	 In Table � nact denotes
the number of active bounds at the solution� if this number is zero it does not mean that bounds
were not encountered during the solution process	

��



L�BFGS�B L�BFGS�B LANCELOT LANCELOT
Problem n nact m�� m��� BFGS SR�

nfg time nfg time nf time nf time

ALLINIT � � �� �	�� �� �	�� �� �	�� �� �	��

BDEXP ��� � �� �	�� �� �	�� �� �	�� �� �	��

BIGGS� � � ��� �	�� �� �	�� �� �	�� �� �	��

BQPGASIM �� � �� �	�� �� �	�� ��� �	�� � �	��

BQPGAUSS ���� �� F� ���	�� F� ���	�� F� ����	�� �� ����	��

HATFLDA � � �� �	�� �� �	�� �� �	�� �� �	��

HATFLDB � � �� �	�� �� �	�� �� �	�� �� �	��

HATFLDC �� � �� �	�� �� �	�� � �	�� � �	��

HS��� �� �� � �	�� � �	�� � �	�� � �	��

HS�� � � � �	�� � �	�� � �	�� � �	��

HS�� � � �� �	�� �� �	�� � �	�� � �	��

JNLBRNGA ����� ���� ��� ���	�� ��� ����	�� �� ����	�� �� ����	��

JNLBRNGB ��� �� �� �	�� �� �	�� � �	�� � �	��

LINVERSE �� � �� �	�� ��� �	�� F� ��	�� �� �	��

MAXLIKA � � F� ��	�� ��� ��	�� F� ���	�� �� ��	��

MCCORMCK �� � �� �	�� �� �	�� � �	�� � �	��

NONSCOMP �� � �� �	�� �� �	�� � �	�� � �	��

OBSTCLAE ���� ���� ��� ���	�� ��� ���	�� � ����	�� � ����	��

OBSTCLAL ��� �� �� �	�� �� �	�� � �	�� � �	��

OBSTCLBL ��� �� �� �	�� �� �	�� � �	�� � �	��

OBSTCLBM ����� ���� ��� ���	�� ��� ���	�� � ����	�� � ����	��

OBSTCLBU ��� �� �� �	�� �� �	�� � �	�� � �	��

PALMER� � � �� �	�� �� �	�� �� �	�� �� �	��

PALMER� � � F� �	�� �� �	�� �� �	�� �� �	��

PALMER� � � F� �	�� F� �	�� �� �	�� �� �	��

PALMER� � � �� �	�� �� �	�� F� ��	�� �� �	��

PROBPENL ��� � � �	�� � �	�� � �	�� � �	��

PSPDOC � � �� �	�� �� �	�� � �	�� � �	��

S��� � � �� �	�� �� �	�� F� ��	�� �� �	��

TORSION� ��� �� �� �	�� �� �	�� � �	�� � �	��

TORSION� ��� �� �� �	�� �� �	�� � �	�� � �	��

TORSION� ��� �� � �	�� � �	�� � �	�� � �	��

TORSION� ��� �� � �	�� � �	�� � �	�� � �	��

TORSION� ����� ����� ��� ���	�� ��� ����	�� �� ���	�� �� ���	��

Table �	 Test results of new limited memory method 
L�BFGS�B� using primal method for
subspace minimization� and results of LANCELOT�s BFGS and SR� options	

��



L�BFGS�B L�BFGS�B L�BFGS�B L�BFGS�B
Problem n m�� m�� m��� m���

nfg time nfg time nfg time nfg time

ALLINIT � �� �	�� �� �	�� �� �	�� �� �	��

BDEXP ��� �� �	�� �� �	�� �� �	�� �� �	��

BIGGS� � ��� �	�� ��� �	�� �� �	�� �� �	��

BQPGASIM �� �� �	�� �� �	�� �� �	�� �� �	��

BQPGAUSS ���� F� ���	�� F� ���	�� F� ���	�� F� ���	��

HATFLDA � �� �	�� �� �	�� �� �	�� �� �	��

HATFLDB � �� �	�� �� �	�� �� �	�� �� �	��

HATFLDC �� �� �	�� �� �	�� �� �	�� �� �	��

HS��� �� � �	�� � �	�� � �	�� � �	��

HS�� � � �	�� � �	�� � �	�� � �	��

HS�� � �� �	�� �� �	�� �� �	�� �� �	��

JNLBRNGA ����� ��� ���	�� ��� ���	�� ��� ����	�� ��� ����	��

JNLBRNGB ��� �� �	�� �� �	�� �� �	�� �� �	��

LINVERSE �� �� �	�� �� �	�� ��� �	�� �� �	��

MAXLIKA � F� ��	�� F� ��	�� ��� ��	�� ��� ��	��

MCCORMCK �� �� �	�� �� �	�� �� �	�� �� �	��

NONSCOMP �� �� �	�� �� �	�� �� �	�� �� �	��

OBSTCLAE ���� ��� ���	�� ��� ���	�� ��� ���	�� ��� ���	��

OBSTCLAL ��� �� �	�� �� �	�� �� �	�� �� �	��

OBSTCLBL ��� �� �	�� �� �	�� �� �	�� �� �	��

OBSTCLBM ����� ��� ���	�� ��� ���	�� ��� ���	�� ��� ���	��

OBSTCLBU ��� �� �	�� �� �	�� �� �	�� �� �	��

PALMER� � �� �	�� �� �	�� �� �	�� �� �	��

PALMER� � �� �	�� F� �	�� �� �	�� �� �	��

PALMER� � �� �	�� F� �	�� F� �	�� F� �	��

PALMER� � F� �	�� �� �	�� �� �	�� �� �	��

PROBPENL ��� � �	�� � �	�� � �	�� � �	��

PSPDOC � �� �	�� �� �	�� �� �	�� �� �	��

S��� � �� �	�� �� �	�� �� �	�� �� �	��

TORSION� ��� �� �	�� �� �	�� �� �	�� �� �	��

TORSION� ��� �� �	�� �� �	�� �� �	�� �� �	��

TORSION� ��� � �	�� � �	�� � �	�� � �	��

TORSION� ��� � �	�� � �	�� � �	�� � �	��

TORSION� ����� ��� ���	�� ��� ���	�� ��� ����	�� ��� ����	��

Table �	 Results of new limited memory method� using the primal method for subspace
minimization� for various values of the memory parameter m	
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L�BFGS�B L�BFGS�B L�BFGS�B LANCELOT
Problem n primal dual cg Hessian

nfg time nfg time nfg time nf time

ALLINIT � �� �	�� �� �	�� �� �	�� � �	��

BDEXP ��� �� �	�� �� �	�� �� �	�� �� �	��

BIGGS� � ��� �	�� ��� �	�� ��� �	�� �� �	��

BQPGASIM �� �� �	�� �� �	�� �� �	�� � �	��

BQPGAUSS ���� F� ���	�� F� ���	�� F� ���	�� � ����	��

HATFLDA � �� �	�� �� �	�� �� �	�� �� �	��

HATFLDB � �� �	�� �� �	�� �� �	�� �� �	��

HATFLDC �� �� �	�� �� �	�� �� �	�� � �	��

HS��� �� � �	�� � �	�� � �	�� � �	��

HS�� � � �	�� � �	�� � �	�� � �	��

HS�� � �� �	�� �� �	�� �� �	�� � �	��

JNLBRNGA ����� ��� ���	�� ��� ���	�� ��� ����	�� �� ����	��

JNLBRNGB ��� �� �	�� �� �	�� �� �	�� � �	��

LINVERSE �� �� �	�� �� �	�� ��� �	�� �� �	��

MAXLIKA � F� ��	�� F� ��	�� ��� ��	�� � �	��

MCCORMCK �� �� �	�� �� �	�� �� �	�� � �	��

NONSCOMP �� �� �	�� �� �	�� �� �	�� � �	��

OBSTCLAE ���� ��� ���	�� ��� ���	�� ��� ���	�� � ����	��

OBSTCLAL ��� �� �	�� �� �	�� �� �	�� � �	��

OBSTCLBL ��� �� �	�� �� �	�� �� �	�� � �	��

OBSTCLBM ����� ��� ���	�� ��� ���	�� ��� ���	�� � ����	��

OBSTCLBU ��� �� �	�� �� �	�� �� �	�� � �	��

PALMER� � �� �	�� �� �	�� �� �	�� �� �	��

PALMER� � F� �	�� F� �	�� �� �	�� �� �	��

PALMER� � F� �	�� F� �	�� �� �	�� �� �	��

PALMER� � �� �	�� �� �	�� �� �	�� �� �	��

PROBPENL ��� � �	�� � �	�� � �	�� � �	��

PSPDOC � �� �	�� �� �	�� �� �	�� � �	��

S��� � �� �	�� �� �	�� �� �	�� � �	��

TORSION� ��� �� �	�� �� �	�� �� �	�� � �	��

TORSION� ��� �� �	�� �� �	�� �� �	�� � �	��

TORSION� ��� � �	�� � �	�� � �	�� � �	��

TORSION� ��� � �	�� � �	�� � �	�� � �	��

TORSION� ����� ��� ���	�� ��� ���	�� ��� ���	�� � ���	��

Table �	 Results of new limited memory method using three methods for subspace minimization

primal� dual and cg�� for m � �� and results of LANCELOT using exact Hessian	

��



The di�erences in the number of function evaluations required by the direct primal and dual
methods are due to rounding errors� and are relatively small	 Their computing time is also
quite similar due to use of the form described at the end of x�	�	 Our computational experience
suggests to us that the conjugate gradient method for subspace minimization is the least e�ective
approach� it tends to take more time and function evaluations	 Even though Table � appears
to indicate that the cg option results in fewer failures� tests with di�erent values of m resulted�
overall� in three more failures for the cg method than for the primal method	 The limited memory
method is sometimes unable to locate the solution accurately� and this can result in an excessive
number of function evaluations 
F�� or failure to make further progress 
F��	 The reasons for
this are not clear to us� but are being investigated	

The tests described here are not intended to establish the superiority of LANCELOT or of
the new limited memory algorithm� since these methods are designed for solving di�erent types of
problems	 LANCELOT is tailored for sparse or partially separable problems whereas the limited
memory method is well suited for unstructured or dense problems	 We use LANCELOT simply as
a benchmark� and for this reason ran it only with its default settings and did not experiments with
its various options to �nd the one that would give the best results on these problems	 However�
a few observations on the two methods can be made	

The results in Table � indicate that the limited memory method usually requires more function
evaluations than the SR� option of Lancelot	 
The BFGS option of Lancelot is clearly inferior
to the SR� option�	 However in terms of computing time the limited memory method is often
the most e�cient� this can be seen by examining the problems with at least �� or ��� variables

which are the only ones for which times are meaningful�	 To our surprise we observe in Table �
that even when using exact Hessians� LANCELOT requires more time than the limited memory
method on many of the large problems	 This is in spite of the fact that the objective function in
all these problems has a signi�cant degree of the kind of partial separability that LANCELOT
is designed to exploit	 On the other hand� LANCELOT using exact Hessians requires a much
smaller number of function evaluations than the limited memory method	

Taking everything together� the new algorithm 
L�BFGS�B� has most of the e�ciency of the
unconstrained limited memory algorithm 
L�BFGS� ��� together with the capability of handling
bounds� at the cost of a signi�cantly more complex code	 Like the unconstrained method� the
bound limited memory algorithm�s main advantages are its low computational cost per iteration�
its modest storage requirements� and its ability to solve problems in which the Hessian matrices
are large� unstructured� dense� and unavailable	 It is less likely to be competitive� in terms of
function evaluations� when an exact Hessian is available� or when signi�cant advantage can be
taken of structure	 However this study appears to indicate that� in terms of computing time� the
new limited memory code is very competitive with all versions of LANCELOT on many problems	

A code implementing the new algorithm is described in ���� and can be obtained by contacting
the authors at nocedal�eecs	nwu	edu	
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