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i ! he problem of distributing a large number of points unifornlly over the su1face of a
;:;;;]

~ I sphere has not only inspired mathematical researchers, it has attracted the attention
5:"~~.
~ .of biologists, chemists, and physicists working in such fields as viral morphology,
~ ,-+ .

~ crystallography, molecular structure, and electrostatics. In two dimensions, the anal-
~:i
~; : ogous problem is simply that of uniformly distributing Coulomb potential law is a challenging problem, some-
-, i points on the circumference of a disk, and equally spaced times referred to as the dual problem for stable molecules.
f~ points provide an obvious answer. So we are faced with Certainly, uniformly distributing many points on the
~- : this question: What sets of points on the sphere imitate the sphere has important applicatio~ to the field of computa-

,"" ! role of the roots of unity on the unit circle? tion. Indeed, quadrature formulas rely on appropriately

~; ; One way such points can be generated is via optimiza- chosen sampled data-points in order to approximate area
!~ j tion with respect to a suitable criterion such as "general- integrals by taking averages in these points. Another ex-
,~- ; ize,d energy." Although there is a large and growing litera- ample arises in the study of computational complexity';
;§; ture concerning such optimal Spherical configuratio~ of where M. Shub "and'S. Smale [22] encountered the problem -

~ I N points when N is "small," here we shall focus on this of determining spherical points that maximize the product
question from an asymptotic perspective (N --00). of their mutual distances.

The discovery of stable carbon-60 molecules (Kroto, et These various points of view clearly lead to different ex-
, al., 1985)* with atoms arranged in a spherical (soccer ball) tremal conditions imposed on the distribution of Npoints.

..~ pattern has had a considerable influence on current scien- Except for some special values of N (e.g., N = 2, 3, 6, 12,

-," tific pursuits. The study of this CGO buckminsterfullerene 24) these various conditions yield different optimal con-
-,O" also has an elegant mathematical component, revealed by figurations. However, and this is the main theme of this ar-

F.R.K Chung, B. Kostant, and S. Sternberg [5]. Now the ticle, the general pattern for optimal configurations is the
.search is on for much larger stable carbon molecules! same: points (for Nlarge) appear to arrange themselves ac-
:- Although such molecules are not expected to have a strictly cording to a hexagonal pattern that is slightly perturbed in

:j;, " spherical structure (due to bonding constraints), the con- order to fit on the sphere.
;cf ' struction of large stable configurations of spherical points To make this more precise, we introduce some notation.

i.s of interest here, as an initial step in hypothesizing more We denote by 82 the unit sphere in the Euclidean space R3:
complicated molecular net structures. 2 -3. xI-

In electrostatics, locating identical point charges on the 8 -{x E R .I .I -I}.

sphere so that they are in equilibrium with respect to a Lebesgue (area) measure on 82 is denoted by 0", so that

'Curl, Kroto, and Smalley received the 1996 Nobel Prize in Chemistry for their work on fullerej,~~.

:,. C 1997 SPRINGER-VERlAG NEW YORK. VOLUME 19. NUMBER I, 1997 5

--~~ ~~



o(8~ = 41T. A generic subset of 82 withN elements will be were obtained first by W. Habicht and B. 1. van d
denoted by WN. Associated with a configuration WN = {XI, Waerden [13]. They proved that for some constant C> rX2, ..., XN} is a partitioning of the sphere into Dirichlet '

(Voronoi) cells DI, ..., DN: ( 81T ) lfl N-lfl- CN-z..-J :5 dN:5 ( 81T ) lfl N-lfl.

Dj := {x E 82 : ~ -Xjl = min ~ -xkl}, j = 1, ..., N. ~ ~
ISksN

..The essential idea for establishing the lower bound is to
These Dmchlet cells are closed subsets of 82 satisfying project the hexagonal tiling of the plane onto the sphere,

N from which the dommant term
U Dj = 82, Dj n Dk has empty interior if j :#: k.
j=1 (8 )lfl c5'= 1T N-lfl

For large numbers of points, we have observed experi- 1'1 .~

mentally (numerically) that all but exactly 12 of the
Dirichlet cells for an optimal configuration are hexagonal. can be seen to arise via the fo~owing he~tic argument
The exceptional cells are pentagons. For a planar hexagonal lattice normaJi!-ed so that the

minimal distance between points is 1,

Why Hexagons? {m + nei~ : m,n E 7l},
In the plane, we have the regular hexagonal tiling, and the
centers and vertices of such hexagons solve several im- the Dirichlet cell of each lattice point is a hexagon with
portant extremal problems in the plane. One example is area \13/2. Considering an optimal arrangement of N
the best-packing problem: Arrange nonoverlapping disks ~oints on the sphere, we now imagine that a typical point
of the same fixed radius so that the number of disks per 18 the center of a Dirichlet cell whose projection on a tan-
unit area is maximized. Likewise, the so-called best-cover- gent plane is part of a suitably scaled hexagonal lattice.
ing problem is solved by the same points generated from (Here, we ignore the 12 pentagonal cells.) The required
the hexagonal tiling. scaling factor c5N is obtained by equating total areas:

We cannot tile the sphere using only hexagons. This is
a consequence of the formula for the Euler characteristic: N ~ 8F.r = 41T,
F -E + V = 2, where F is the number of faces, E is the 2

number of edges, and V is the number of vertices. A mod- hi h . th al ~ (8 -1;: 3)lfl N -lfl ~ th..w c gives e v ue UN = 1T1 V OJ J.or e ap-
ification of the hexagonal pattern such as the addition of . t .. al distan b tw . .prOXIma e numm ce e een pomts.
some pentagonal faces IS needed for spherical tessellation. Th t hni f h al . ti h als bAgam .

fr th Eul h t . ti . t ~ 11 th e ec que 0 exagon proJec ons as 0 een

, om e er c arac ens c 1 J.O ows at any
tiling f th h . tin I .' I f h recently employed by the authors to study a general class

0 e sp ere COnslS g exc uslve y 0 exagons and ..
pentag t h tl 12 tag ( .of nummal-energy problems that we now describe.

ons mus ave exac y pen ons assummg ex-
actly 3 edges emanate from each vertex). These 12 pen-
tagons may be viewed as the deformations (perturbations) Extremal Energy
in the hexagonal pattern, enabling it to fit on the sphere. Fekete points xi, x~, ..., 4 on the sphere are points that

As an example, we have for N = 32 the familiar soccer minimize

ball design, which has 12 pentagonal and 20 hexagonal
faces. The dual structure of the soccer ball consisting of E(l, WN):= I ~j -xkl-l.

l,sj<ksN
carbon atoms placed at the vertices of the faces is the pre-
viously mentioned C60 molecule. Another, rather ancient Physically, this represents the energy of N charged parti-
and more complicated example is depicted on the cover of cles that repel each other according to Coulomb's law.
The Mathematical InteUigencer, vol. 17, no. 3 (summer More generally, one may consider points that minimize the

1995), as the tiling of the ball beneath the lion's paw in as-energy
statue guarding the gates of a Chinese palace (finding the
pentagonal faces amongst the many hexagonal ones there E(s, WN) := I ~j -xkl-s, s> o.
.. di l,sj<ksN
18 an amusmg version).

As s ~ 00, with N fixed, the s-energy is increasingly domi-
Best Packing on the Sphere nated by the term involving the smallest of the distances. In
This is one of the most studied problems in the mathe- this sense, the problem leads to the best-packing problem.
matical literature dealing with spherical point arrange- Of related interest are points that maximize the product
ments. It is also referred to as Tammes's problem, or the of the distances
hard-spheres problem. It asks us to maximize the smallest
distance among N points on the Sphere. (For background I1 ~j -xkl.

, ISj<k:SN
see, e.g., [6].)

Asymptotic results on This is equivalent to minimizing the logarithmic energy

dN:= max ~ ~j-Xkl E(O,<zJN):= I 10g-1-,
XL xNE$2 I,sJ<ksN ISj<ksN ~j -xkl
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-~_.. -"-: ~~d extremal points for this problem are called logarith-

mic extreme points or elliptic Fekete points.

~ Finally, we mention the criterion of maximizing the sum

E of powers of the distances
~ I ~j-xkla, a>O.

1Sj<kSN

This problem is only interesting for a < 2; for even N and

a ~ 2, an extremal configuration is obtained by placing half

the points at the north pole and the other half at the south
..pole. "

I Extensive computations for optimal configurations and

: ' their corresponding extremal energies have been reported

.1 ,'..';--in a number of articles. Most deal with the Coulomb case
-' f,j ~~~

(s = 1 ) [ 10 12] but other values have also been considered" "

.;,,:";;.i~.~: [4,19,21]. A particularly convenient listing is provided by
., :!~i;:.u;;~-,:,-,,~

Sloane an d Smith who have made their findings
"C;'., fiCUUllt, , ,

";: accessible via the internet address netlib. att. com. For large

numbers N (say, N ~ 100), these computations are far from

trivial, and in fact are sometimes used for testing global

optimization routines [2].
The bad (yet fascinating) news arising from computa- Figure 1. The 122 electrons in equilibrium and their Dirichlet

lions i.5 that there are many local minima for the s-energy cells.

problem that are not global minima. In addition; the local

:.{ minima have energies very close to the global minimum.--,
~ These facts make it very difficult to determine the precise is fmite. indeed a simple calculation shows its value to be

I1:j m~n~mum: It is. estimat~d that the num~er of distinct local 21-8/(2:'- 5). ~ enables the direct use of potential-theo-

E mInima (lgnonn~ rota~ons and reflections of the sphere) retic tools. Wagner [24,25] and Rakhmanov, Saff, and Zhou_I j grows exponentIally WIth N (see [11])... [20] have thereby shown that
; On the other hand, the good news IS that, WIth only a

~; handful of exceptions, the structures of extremal configu- 2-8
~; ralionscomputedfor32 sNs 200withs = Oands = 1 do ~(5, N) = ~N2 -RN,8' 0 < S < 2, N~ 2, (2)

.indeed exhibit the hexagonal-pentagonal pattern of

~. Dirichlet cells. See, for example, Figure 1, which shows 122 where for some positive constants G1 = G1(s) and Gz =

E(;1 points in equilibrium along with their Dirichlet cells for the Gz(S),
; case s = 1. Its dual structure (the cage formed by the cells), 1+s/2 1+8/2 3

which is displayed in Figure 2, provides a spherical candi- G1N s RN,s s GzN. ( )

date for the network pattern of carbon-240 molecules. All Thus the dominant term in the energy is provided by Nl/2

I.' of the figures in this. article w~re provid~d b~ Y~u Zhou time~ the energy l(s) for the uniform distribution. The case

and appear along WIth extensIve tables m his thesIS [26]. of minimal logarithmic energy (which in a limiting sense

~ A ..corresponds to s = 0) can be likewise treated, yielding

~ symptobcs for Extremal EnergIes

~;j 

\ Although the precise determination of optimal configura- 1 (4) 1
~ lions for large N s~ems remote at best, exp~cit construc- ~(O, N) =  "i log -; N2 -"iN log N -RN,O, N ~ 2, (4)

-tions of configurations that are close to optimal may well

~ b~ within reach. A first step toward this goal is to deter- with
~ " mine precise asymptotics for the extremal energies.

5: ~~- Results in this direction are due to G. Wagner, E.A G1N s RN,o s GzN.

; ':'5: Rakhm~ov, ~.B. Saff, and .Y.M. Zhou (for 0 < s < 2 and The challenging next step is to determine whether the limit

for logarIthmic extremal pomts), and the authors (for s >

~;.~ 0). R. Alexander [1], J. Beck [3], and K. B. Stolarsky [23] ..RN,s

have obtained results for the maximal distance sums. ~ ~

~ Denote by ~(s, N) the minimal energies:

I .:; ~ 5 .=. .::> actuallyexisffi (for each fixed s ~ 0). For the. case s = 1 of
~ ( , N) .nun(E(5, (lJN) .(lJN C $l.}, s -O. Fekete points, we coI\iecture that it does eXISt and equalsI -.For 0 < 5 < 2, the energy integral ~

; (Y3)1/2 (1) ~ ( 1 1 )1 1 -3 -,- L.. -
~ 1(5) = -c'4;)2 J J "j;-=-YJS du(x) du(y) (1) 81r 2 n=O \i3n-+l Y3n+2

~: szxsz = 0.55305 ...,
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In this direction, we quote the
Rakhmanov-Saff-Zhou [20,26]:

For every N ~ 2, there are subsets Dl, ..., DN of 82
such that

N
U Dj = 82, Dj n Dk has empty interior if j *' k,
j=l M r:-. (6)
a(Dp = 41T/N, diam (Dp :S 7/ v N, j = 1, ..., N.

The essential feature here is the sufficiency of the constant
7 appearing in the diameter estimate. Although it is not
sharp (in fact, the value 6 suffices for N ~ 3100), it Cannot
be replaced by a constant less than 4. (The best asymptotic
constant is not known.) Figure 3 illustrates this partition-
ing for N = 400.

To show the usefulness of such a partition, we prove
the lower bound of Inequality (3); that is, RN,s ~ C1Nl+sfl
for 0 < s < 2. This argument is much simpler than the orig-
inal one by Wagner and yields a numerical value for the
constant Cl.

Using the sets in Eqs. (6), we put da* := (N/41T)du and
do1 := da*Iv.. Then choosing the points Xl,.'" XN ran-t ,

Figure 2. Dual structure for 122 electrons in equilibrium. domly and independently from Dl;. .., DN, respectively,
we get for the expected value of the energy

which involves the value of the Riemann zeta function at I I... I I ~ do"t(xv dU;(xv ...dO'*~XN)
1/2. This conjectured limit is again derived from consider- lsi<j:SN /",t xJl
ations of the hexagonal-pentagonal tiling of the sphere (see = .!. I f f -~ d~(x) da"'!:(y)[17]). Computational results up to 200 points give a value 2 i*j Di Dj ~ -ylS t J
close to 0.5523 [12,20]. 1 1

For s ~ 2, the energy integral (1) is infinite and the rep- = 2" I. I ~-=li da*(X) dO'*(y)
resentation (2) no longer meaningful because the remain- y

der becomes dominant. This transition in asym~totic be- -f f f ---2- do1(x) do1(y)
havior is likely due to the fact that for s ~ 2, the influence i=l Di Di ~ -YF
on the energy of "nearby points" starts to grow substan- l(s) N 1 l(s) 2 1 l+stl.
tially. In fact, for s = 2, the authors [17] have shown (us- :S 2 N2 -i1;l [diam(Di)]s:S 2 N -7i N .

ing spherical harmonics) that

.~(2, N) 1
lim=-N-= N2logN 8'

and for s > 2,

C1Nl+sfl :S ~(s, N) :S C2l"ll+stl.,

where Cl and C2 are positive constants (depending on s).
Moreover, a hexagonal tiling projection' technique yields
the upper estimate

I

lim sup N-l-stl. ~(s, N) :S .!. (~ ) stl. 'L(S), S > 2, (5) I

N-= 2 81T

where 'L(S) is the zeta function of the quadratic number
field Q( ~). Also, we have conjectured that inequality I
(5) holds with equality for the ordinary limit. I

Equal-Area Partitioning
For various purposes it is useful to have a partitioning of
the sphere into N equal-area parts with small diameters. It
is not difficult to see that the optimal diameter lengths Figure 3. Partition of the sphere into 400 equal-area parts with
should have order N-1/2. diameters $ 7/Y'400
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ted value is bounded by [I(s)/2)N2 -binatorial designs. By definition, a configuration Cl)N =
is also a configuration that meets this {Xl, ..., XN} is a spherical t-design if

ntly, Inequality (3) holds wi~ .CI.= ins. 1 1 N
qual-area requirement, partitiomng the -i f(x) dO"(x) = -2. f(xj) (7)

of small diameters is a problem related 41T 82 N j= I

at is, to the optimal separation of points for all polynomials f in three variables of degree :5 t.
fact, the previously mentioned result of Spherical t-designs with small N and large t provide ex-
der Waerden resulting from hexagonal cellent integration formulas for smooth functions. How-
leads to an asymptotic order of ever, there seem to be no explicit constructions available

that work for large t. Extensive computer searches by
4 J2:;- = ~ Hardin and Sloane [14] have led to the discovery of spher-

"VN " ":'\727 V N ical t-designs for t up to 13 with conjectured minimal num-

.ber of points. For example, they found a spherical 13-de-
_size of the diam~ters. nfi sign with 9ft points. -0
expect that optimal s-energy co gura- We use N( t) to denote the minimum number of points for
ell-separation~ property; that is, the ~ which a spherical t-design exists. From OQr asymptotic point

Pair of pomts of the configuration .y Jf\!N" .of view, we want to study the behaVior of N( t) as t -00. It
ed below by G N. At this wnting, such is not so hard to show that N(t) 2: Ct2. This may be viewed
established for s = 0 [21], s = 1 [8], and as a natural bound, since 82 is a two-dimensional algebraic

.1 .th variety. The space of polynomials of degree:5 t restrictedpeTties also play an Important ro.e m e to the sphere has dimension (t + 1)2. So the requirements
ture formulas, as we now explam. for a spherical design constitute (t + 1)2 equations, and from

this, one Can show that one needs at least Ct2 points. A rather
ns difficult problem seems to be the following.
rtance is the use of uniformly distributed P ( ills ) ~T (t) O(t2'\ f t...rove or prove: -L1 = ) or -00.
here for numencalmtegration purposes.
the analysis of satellite data from the Hardin and Sloane [14] even conjecture that N(t) :5

ne frequently wants to approximate inte- ~t2 (1 + 0(1)). The best result so far is due to J. Korevaar
2

ere by arithmetic averages at some well- and J. L. H. Meyers [16]. They proved N(t) = O(t3). An in-
e mathematical problem is to choose con- teresting relation with extremal energies was pointed out
[Xl,N, ..., XN,N} (tYPically N is very big) by Korevaar [15]. Introducing the modified Coulomb en-
erence ergy

1 1 1 N I 1_4 f,-9- f(x) da(x) -- N L f(Xj,N) E(I, r; Cl)N) := L I_. - I'1T />- j-l lSj<kSN ~1 TXk

even zero) for a large class of functions. where r is a parameter, 0 < r < 1, he considers the mini-
of functions have been considered in the mizing configurations CI)%). It follows from Korevaar's re-
example we mention the class of indica- sults that if the minimizing configurations are well sepa-
spherical caps which leads to the notion rated [i.e., if there is a constant C > 0 such that
discrepancy.
d classes give rise to a sequence of con- ix<r) -xC{)j2: C, 1 :5j < k :5 N,
at are asymptoticaUy uniformly distrib- 1 ":\IN

e that for every spherical cap A with area for allN and all r E (0, ~)], the~N(t) = O(t~ as t -00. This

approach clearly merits further study.
l:5j:5N:xj,NEA} 1N = "4;O"(A), Spiral Points

A variety of algorithms has been proposed for the explicit
at for large N, each spherical cap gets its construction of uniformly distributed points on the sphere.
ts. This is equivalent to the property that Some begin with uniformly distributed points over a rec-

N 1 tangular area which are then transformed via cylindrical
L /{Xj,N) = -i /{x) da(x) projection onto the sphere. Others employ sequences ofro-
j-l 41T 82 . h d hi . tations of the sphere whic , un er stereograp c proJec-

uous functionf on 82. tion, correspond to Mobius transformations in the plane
with smooth functions, it is natural to con- (cf. [18]).
f polynomials up to a certain degree. This A popular and simple technique is that of icosahedral
'on of spherical designs, which was intro- dissection, which proceeds as follows: For each triangular
P. Delsarte, J. M. Goethals, and J. J. Seidel face of the icosahedron, the midpoints of the sides are
ed because of certain analogies with com- joined to form four new triangles. The centers of the new

VOlUME 19. NUMBER 1. 1997 9
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triangles are then radially projected onto the sphere, yield- Then the point set WN = {( 9k, cPk) If= 1 is called a gener~- ..

ing a total of 80 points. Continuing the dissection process ized spiral set on 82. For N = 700, these points are nrus-
produces N = 20.4n points, n = 0, 1, One appar- trated in Figure 4.

ent drawback of this method is the restricted The construction of these spiral points

values for N. A worse fault is their bad per- has the following geometrical interpre-

forrnance with respect to the energy cri- tation. One cuts the globe with Nhor-

teria discussed earlier. What's more, izontal planes spaced 2/(N -1)

they are not asymptotically uni- units apart, forming N circles of

forrnly distributed. To see this, it is latitude on the sphere [the first

enough to observe that after the and last of these are the de-

first step, the points are centered generate circles (points) con-

at 80 spherical triangles which sisting of the south and north

do not all have the same area poles]. Each latitude contains

(the projection process in- precisely one spiral point. To

creases the areas of the "middle obtain the kth spiral point,

triangles" more than the rest). As one proceeds upward from the

the further steps in the process (k -l)st point (9k-1l cPk-U

yield the same number of points in along a great circle (meridian) to

each of the 80 triangles, asymptotic the next latitude and travels coun-

uniform distribution cannot hold. The terclockwise along it for a fixed dig-

lackluster behavior of these points was tance (independent of k) to arrive at the

also detected by J. Cui and W. Freeden [7], kth point (9k, cPk), as illustrated in Figure

who have developed a general- Figure 4. Generalized spiral points for N = 700. 5. This fixed distance ~ the

ized discrepancy test for com- value that must be assIgned

paring the proportion of points in spherical regions with to(cPk -cPk-U Vl~, and the result of Habicht and van

the normalized areas of the regions. der Waerden for best packing suggests that it should be

Motivated by hexagonal tilings and numerical experi- close to

Imentation, Rakhrnanov, gaff, and Zhou [20] have recently

introduced the following simple construction, which ap- 5N = ( 81T ) ~ 1 == 3.809 1 ; I

pears for large N to have a considerable advantage over ""V'3 ~ ~ \

the above-mentioned algorithms. Using spherical coordi- 'j
nates (9, cp), O:s 9:S 1T, 0 :s cP:s 21T, we set that is,

2(k -1) (~ -cp ) V~ == 3.809
9k = arccos(hk), hk = -1 + ""(N-=-i)' 1:S k :S N, k k-l ~.

3.6 1 ) (8) The choice of the smaller constant 3.6 in Eqs. (8) is based
cPk = ( cPk-l + ""VN V~ (mod 21T), on numerical experimentation and can be viewed as an ac-

N 1 hk commodation to the fact that distances shrink when a

2 :S k :S N -1, cPl = cPN = O. hexagonal lattice is orthogonally projected from a tangent

plane to the sphere. [More generally, in Eqs. (8) one can

introduce a parameter C in place of 3.6 and adjust its value

appropriately for the application at hand.]

At least for N up to 12,000, the generalized spiral points

~ have energies in reasonable agreement with represen-

tations (2) and (4). For example, on comparing computed

values for the energy of spiral points with the theoretical
estimates for the minimal energy when s = 0, it can be

proved that

E(O, WN) -~(O, N) :S 114 log N, 2:S N:s 12,000, !

and it is likely that the WN actually perform much better 1
; .Ithan this estimate indicates. An asymptotic analysis of ~ .~f

lthese generalized spiral points awaits further investigation.
I

.j
!
1
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