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This article analyzes the relative impact of various types of

measurement uncertainties on different stages of structure

determination. The treatment of errors is an important part of

the experimental process and becomes critical when data

quality is barely suf®cient to solve and/or answer detailed

questions about the structure. The sources and types of

experimental errors are described and methods of minimizing

their impact are discussed. Practical calculations of sigma

estimates in DENZO and SCALEPACK are presented.
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1. Definitions

In this article, the terms `measurement error' and `measure-

ment uncertainty' will be used in their precise statistical

meanings. The formal meaning of error is the difference

between the result of a measurement and the true value of the

measurand. The true value of the measured quantity is typi-

cally not known, so the error is not known either and has to be

described by a statistical distribution. This distribution is

estimated based on the overall knowledge of how the

measurement was made and also on the internal consistency of

measurements. The width of the distribution is the uncertainty

of the measurement and in the case of a Gaussian probability

distribution the � is a synonym for this uncertainty. The

application of Bayes's theorem can convert the error prob-

ability distribution into the probability distribution of

measured value. This article focuses on estimating �, which

describes only the experimental input to the Bayesian

reasoning, rather than the subsequent applications of Baye-

sian statistics (French & Wilson, 1978).

Standard abbreviations for crystallographic phasing

methods are used: MAD, multiple-wavelength anomalous

diffraction; SAD, single-wavelength anomalous diffraction;

MIR, multiple isomorphous replacement. The abbreviation

for the method may be preceded by the atomic symbol of the

heavy atom or anomalous scatterer.

2. Introduction

The measurement of diffraction peak intensities starts the

multi-step process of obtaining a three-dimensional atomic

structure from the collected data. To solve the structure, all

measured intensities Im have to be on the same scale, prefer-

ably the same as that of the squared amplitude of the structure

factors:

Im � KjFj2; �1�
where K is the scale factor of a particular measurement and

|F|2 is the squared amplitude of the structure factor F.
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Any conclusions based on intensity measurements are

always affected by a degree of uncertainty resulting from the

errors inherent to the measurement process. Assuming a

Gaussian probability function of the intensity measurement

error, the estimate of uncertainty can be expressed by a sigma

value �I.

Procedures that determine the scale factor K have also a

level of uncertainty owing to the unavoidable computational

simpli®cations in describing the sample and the experimental

setup; for example, beam stability, geometry of diffraction and

X-ray absorption in the crystal.

During data processing, we usually assume that the intensity

of multiple measurements of a Bragg re¯ection, including

symmetry-related re¯ections, arises from a single structure

factor. However, this assumption may not be satisfactory in

many experimental situations, for example owing to structural

variations between crystals. To accommodate the above

potential uncertainties, (1) can be extended in the form

�Im � �I� � �K exp���K��jF� rFj2; �2�

where �I, �K and rF represent the estimates of uncertainties

regarding the intensity of a diffraction peak, a scale factor and

a structure factor of a given hkl, respectively. The � sign is a

shorthand notation to describe a Gaussian probability func-

tion which will be used throughout this paper. In case of a

structure factor, its uncertainty rF is the two-dimensional

Gaussian function of a complex variable. In cases when more

than one such sign appears in an equation, the probability

functions have to be appropriately convolved. The scale factor

K is determined by procedures (Otwinowski et al., 2003) that

make assumptions about the experiment. Uncertainty in K

mostly arises from these assumptions necessarily being only

approximate. It is convenient to describe the uncertainty of

the scale factor K in relative terms using the form exp(��K)'
(1 � �K). The main purpose of (2) is to emphasize that every

component of (1) has some level of uncertainty.

In macromolecular crystallography, there are two main

situations where we have to consider the signi®cance of errors.

Firstly, in molecular replacement and/or structure re®nement,

in which only the �I is signi®cant and its estimate is only

important for weak intensities (x2.2.1). Secondly, for obtaining

the phase information, which is always obtained from the

differences between the diffraction intensities. Such differ-

ences are typically relatively small and for this reason even

small uncertainties of the three types (�I, �K and rF) can be

signi®cant. Here, the consequences of errors are particularly

important for large intensities (x2.2.3.).

2.1. Types of errors

The classi®cation of measurement errors in crystallography

is based on statistical properties of their distribution and

correlations. The simplest type of error is one with no corre-

lation, described by a well de®ned, typically Gaussian, prob-

ability distribution. This is effectively a de®nition of random

error.

The error is called `systematic' when a group of measure-

ments is affected in a well de®ned, correlated fashion. When

such a correlation is included as a part of the problem analysis

it can be considered an effect rather than an error. The

remaining errors of large magnitude, which should be rare, are

called measurement outliers.

2.1.1. Random errors. An unavoidable source of random

error in measurements arises from the quantum nature of

X-rays. The resulting error is described by the Poisson distri-

bution of counting statistics, which can be effectively

approximated by a Gaussian function, with the � value being

the square root of the expected number of photons. The

relative error of a diffraction peak intensity measurement

owing to counting statistics is

1

n1=2
; �3�

where n is the number of photons. Random error results not

only from ¯uctuations in the number of photons in the peak,

but also from ¯uctuations in the number of photons in the

background measured together with the peak. Thus, to

effectively measure small differences in diffraction intensities,

a large number of photons is required.

(3) de®nes the lowest possible error in a measurement,

which needs to be adjusted for the ef®ciency of the instrument.

Random error from counting statistics in integrating detectors

(CCD and image plate) is multiplied by the detector inef®-

ciency factor, which is typically about 1.2. These detectors also

have electronic read-out noise and, in the case of CCDs, dark-

current noise, which add other components to the random

error. When considering the experimental strategy, the

oscillation range for diffraction images affects the X-ray

background and electronic read-out noise in opposite ways.

Since it is best to minimize the sum of these two effects, it is

convenient to convert the electronic noise into the equivalent

X-ray background noise by expressing it as a (wavelength-

dependent) number of photons per pixel.

Random-error magnitude, being very predictable, should be

assessed after a test exposure(s) to de®ne the optimal data-

collection strategy. Formal prediction of random and other

types of errors can be used to choose between the alternative

experimental strategies (Popov & Bourenkov, 2003).

2.1.2. Systematic errors. Systematic errors can be classi®ed

according to their sources and to the types of correlation

among the measured values of the diffraction peaks.

Systematic errors arise from simplifying assumptions about

the instrumentation, the sample and diffraction physics

and from approximations in computational procedures.

Depending on how the systematic error affects groups of

measurements, it can be characterized as belonging to one of

the following categories.

(i) Multiplicative errors. This class of systematic errors

affects groups of re¯ections by multiplying the observed

intensities by a factor. For example, a ¯uctuation in beam

intensity will make the diffracting re¯ections stronger or

weaker by the same factor. However, a more detailed analysis

of such ¯uctuations should take into account the fact that the



re¯ections start and stop diffracting at different times and

different speeds. Therefore, the real impact of beam ¯uctua-

tions is different for each re¯ection, but similar when re¯ec-

tions start and stop diffracting at about the same time. In a

more precise analysis, the multiplying factor becomes a func-

tion of the time when a re¯ection diffracts. Other sources of

multiplicative error arise from imprecise calibration of the

detector sensitivity (Barna et al., 1999; Gruner et al., 2001),

from decay of the image during scanning in an image-plate

scanner, from variations in ampli®er gains, from absorption,

crystal vibration, shutter error, non-uniform crystal rotation

resulting from imprecise gears or unstable servo-motor

control, from uncorrected overall and resolution-dependent

decay of the diffraction etc.

(ii) Nonlinear error. Nonlinear errors are a function of

scattered intensity rather then the diffracting conditions.

In typical experiments involving crystals from macro-

molecular samples such errors are not very signi®cant, unless

the detector has an improperly de®ned saturation limit or

unless an incorrect procedure of � cutoff before averaging of

symmetry-related re¯ections has been applied. Another

source of nonlinearity is the extinction during diffraction

problem encountered in small-molecule crystallography.

Protein crystals have much lower diffracting power, so

extinction should only be a source of error under unusual

circumstances; for example, in case of large crystals with

extremely low mosaicity (0.01� or less).

(iii) Non-isomorphisms. Frequently, non-isomorphism

within or between crystals is the main source of disagreement

between symmetry-related re¯ections. As a consequence, data

sets collected from more than one crystal of the same form

may show differences between them owing to differences in

the structure factors; so far, there is no satisfactory treatment

of this problem. A similar effect is created by rotational

pseudosymmetry considered as the exact crystallographic

symmetry. Freezing of protein crystals may result in a non-

uniform crystal lattice across the sample, with a noticeable

level of non-isomorphism between different parts of the

crystal. If such a crystal is larger than the beam, different parts

of the crystal may be exposed at different times, resulting in

discrepancies between the intensities of symmetry-related

re¯ections. Another type of non-isomorphism problem is

caused by large doses of radiation. Some chemical groups are

affected more readily than others (Burmeister, 2000; Ravelli &

McSweeney, 2000; Weik et al., 2000, 2002; Leiros et al., 2001).

In addition, molecules can rotate and translate in the crystal

lattice. Structure factors, even after the correction for decay,

may show substantial changes during a single data-collection

run.

(iv) Twinning and overlaps. The integrated intensities of

re¯ections quite often have an additional fraction of intensity

coming from systematically related re¯ections. There are two

sources of this problem: twinning and overlapping spots

resulting from closely spaced re¯ections (Dauter, 2003;

Parsons, 2003).

Twinning creates systematic overlap between the crystal

lattice and the lattice rotated by 180� around an axis other

than a twofold crystal symmetry axis. In merohedral twinning,

the frequency of which is underappreciated, the perfect

overlap of the lattices is not visible during indexing and

integration and can also create a false impression of crystal

symmetry during scaling. Measured intensities can be treated

as a sum of intensities arising from two twinned crystal lattices,

Im � I1 � I2 � K�kajFhj2 � �1ÿ ka�jFmhj2�; �4�

where ka and (1 ÿ ka) are scale factors describing the

contributions of each lattice and |Fh|2 and |Fmh|2 are the

squared amplitudes of the structure factors describing the ®rst

crystal lattice and the merohedrally twinned crystal lattice,

respectively. Unrecognized merohedral twinning may result in

seriously wrong estimates of diffraction intensities (Yang et al.,

2000).

Spot overlapping is sometimes hard to avoid owing to a long

crystal axis and/or high mosaicity. Integration of such a

diffraction pattern may result in diffraction intensities having

additional contributions from neighbouring spots,

Im � I1 � I2 � . . . � K�jFhj2 � k1jFh�1j2 � . . .�; �5�

where k1 is a parameter describing the level of intensity

contamination of a re¯ection with an hkl index by the intensity

of a partially overlapping spot.

(v) Other systematic errors. Large variations in the back-

ground may result in a systematic error of the background

estimate, which is subtracted from the observed peak pro®le.

This effect may arise from a complex pattern of diffuse scat-

tering. Such problems are mostly ignored in macromolecular

crystallography, but can sometimes contribute signi®cantly to

the measurement errors.

An improper integration or scaling procedure may produce

all kinds of systematic errors. Particular attention should be

paid to proper de®nition of the beam-stop shadow in order to

avoid systematically setting intensities to zero value in some

areas of detector. The same caution applies to re¯ections in

ice-ring areas.

2.1.3. Outliers. There is a group of sporadic but signi®cant

errors that do not belong to either random or systematic error

categories. For example, cosmic radiation or radioactivity can

randomly create large peaks in diffraction images (zingers).

As a consequence, some diffraction intensities calculated by

an integration program can be highly incorrect. Measurements

affected by such errors are called outliers. They can be

recognized during the analysis of symmetry-related observa-

tions by differing from other measurements much more than

expected from the estimates of experimental errors (Blessing,

1997). This simple concept of outlier analysis is not straight-

forward to apply in practice owing to its sensitivity to

assumptions about data errors. In particular, this analysis can

consider consequences of unaccounted for systematic effects

as outliers.
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2.2. Error assessment

Analysis of errors should start with an overall assessment of

how they affect the structure-determination procedure and

the ®nal result. For example, in the molecular-replacement

method the impact of errors is very different than in other

macromolecular crystallography procedures.

2.2.1. Molecular replacement. A target function in mole-

cular replacement can be the correlation function between

intensities predicted from the model and the observed inten-

sities (BruÈ nger et al., 1998). All other functions used in

molecular replacement have very similar properties. Random

errors have a minimal impact on the value of the correlation

function unless, on average, they reach the level of average

measured intensities, where averages are considered in reso-

lution shells. Owing to the model typically only approximating

the real structure, molecular replacement is usually limited to

low-resolution data, for which experimental random errors are

not signi®cant. However, molecular replacement is very

sensitive to systematically missing the strongest intensities

owing to detector saturation. Missing measurements effec-

tively have an implied value of zero in the simplest form of the

target function in the molecular-replacement method,

MR �P
hkl

ImodelIdata; �6�

and, in the case of re¯ections saturating the detector, it is

better to use approximate values of such re¯ections rather

than ignoring them. This could be achieved, for example, by

®tting intensities from the re¯ection tail, as discussed by Leslie

(1999) for MOSFLM. This option is also available in other

programs (Otwinowski & Minor, 1997). In a more elaborate

version of the target function,

MR �P
hkl

�Imodel ÿ hImodeli��Idata ÿ hIdatai�; �7�

the implied values of missing re¯ections are equal to the

average intensities in the resolution shells. It makes the

molecular replacement only slightly less sensitive to the

missing data.

2.2.2. Refinement of molecular structure. In a typical

macromolecular structure determination, the atomic re®ne-

ment of the model converges at an Rfree factor of about 20% or

higher. The main source of the discrepancy between the

predicted and the observed intensities arises from the atomic

model inadequately describing the diffracting electron density

rather than from the measurement error. A typical magnitude

of the structure-factor error of the atomic model is closely

related to the Rfree in atomic re®nement. The relative error of

the intensity is twice the relative error of the structure-factor

amplitude. As a consequence, only (relative) measurement

errors exceeding twice the Rfree value impact on the re®ne-

ment procedure.

2.2.3. Experimental phasing. Experimental phasing is based

on measuring differences of same-index (or symmetry-

related) re¯ections between different crystals in MIR, at

different wavelengths for dispersive differences in MAD and

between Friedel symmetry-related re¯ections in SAD,

MIRAS and MAD. The magnitude of these differences is

related to the magnitude of the phasing signal. The quality of

phasing information is de®ned by the phasing power, which

can be generalized as

phasing power � phasing signal

error of phasing signal
; �8�

where `phasing signal' represents the magnitude of the

phasing signal and its error is the sum of the contributions

from the experimental error and the error in the modeling of

the phasing signal, including non-isomorphisms. The magni-

tude of the phasing power is resolution dependent. The

resolution where the phasing power drops substantially below

1 de®nes in practice the limit of useful contribution to struc-

ture determination from a particular source (anomalous

differences etc.). Any discussion of phasing-power magnitude

has to consider that it can be improved equally well by an

increase in phasing signal or by reducing errors associated

with the signal (8). For different types of experiments, the

following practical observations can be applied.

(i) MIR. Phasing signal is high and typically the biggest

problem is that the phasing model does not account for non-

isomorphism between the native and the derivative structure.

(ii) Lanthanide MAD. Signal is high and the heavy-atom

structure is simple, so experiments tend to work very well.

(iii) Se (or Br) MAD. Phasing signal is high enough for the

method to work in the majority of well conducted experi-

ments. The large radiation dose can induce non-isomorphism

comparable in magnitude to the magnitude of dispersive

differences. There are a few strategies to overcome this

problem: using a large crystal and a low radiation dose,

collecting the same sector of the reciprocal space at the

different wavelengths before moving on to the next sector, or

simply ignoring dispersive differences, effectively making it a

SAD method with Bijvoet differences optimized by collecting

them at the maximum absorption (or ¯uorescence) wave-

length.

(iv) K-edge MAD from metals. Signal tends to be weak and

measurements have to be precise (Ramagopal et al., 2003).

(v) Sulfur SAD. Signal is at the very limit of being practi-

cally usable, so errors have to be very low. Focusing on

improvements in data collection, including integration, scaling

and radiation-damage correction analysis, can make this

method more widely applicable.

3. Correction of systematic effects

Systematic errors, when accounted for, can be considered to

be a feature of the experiment.

Some types of systematic effects have minimal impact on

the result (structure, phasing etc.). For example, systematic

underestimation of the diffraction intensity by a constant

factor will only produce a change in the overall scale factor

during atomic re®nement. Such a change will fully compensate

for this type of error. If such underestimation slowly changes

with resolution, its main impact will be a small change in the



overall B factor, an issue of little signi®cance. However, other

types of systematic effects, if ignored, may impact on structure

determination, particularly experimental phasing. The

following three categories of systematic effects can be

corrected for by more elaborate data analysis.

3.1. Scaling corrections

The practice of correcting for various multiplicative effects

has a long history (Hamilton et al., 1965; Fox & Holmes, 1966;

Monahan et al., 1967; Diamond, 1969; Rossmann, 1979;

Rossmann et al., 1979; Evans, 1993, 1997; Leslie, 1993, 1999;

Otwinowski, 1993; Otwinowski & Minor, 1997, 2001).

Absorption correction parameterized by spherical harmonics

(Katayama, 1986) has been added to most scaling programs in

the last few years. Corrections for inaccuracies in crystal

rotation and corrections for an integration inaccuracy, the so-

called `missing-tail' correction (Evans, 1997), are other recent

improvements.

3.2. Corrections for non-isomorphism

The assumptions about the internal isomorphism of crys-

tal(s) used to produce a single data set are often quite

problematic. For data with a high multiplicity of symmetry-

related re¯ections it is feasible to model non-isomorphisms, as

discussed previously (x2.1.2). This analysis can be performed

when merging already scaled data.

The introduction of intense synchrotron beamlines to

crystallography improved the resolution of data, particularly

from small crystals, but not necessarily the low-resolution

Rmerge statistics. Beam-intensity and goniostat-rotation ¯uc-

tuations are partially responsible for these results. Another

source of poor merging quality is the fact that high radiation

doses induce chemical changes that cannot be corrected by

time- and resolution-dependent scaling. These changes

represent a systematic effect that can be corrected for in

principle. The impact of uncorrected radiation-induced non-

isomorphism on MAD experiments is discussed below.

3.3. Merohedral twinning analysis

It was recently recognized that twinning by perfect super-

imposition of crystal lattices, if allowed by space-group

symmetry, is quite frequent (Yeates, 1997). One approach is to

correct the already scaled and merged data for this problem.

Such deconvolution of double (multiple) measurements

results in their errors being correlated. One can ignore this

correlation, but to include this additional information in

structure-solving programs, the programs would have to be

modi®ed to analyze merohedral twinning directly.

4. Error estimation

Experienced researchers can sometimes be assured that

experimental errors only impact structure determination and

®nal conclusions in a minimal fashion. In such a lucky situa-

tion, experimental errors may be ignored (x2.2.1.). Otherwise,

if practical, systematic errors should be corrected for and, if

errors are unavoidable, their consequences may be minimized

by optimal weighting of the results. Even if errors are small

enough to be ignored, their magnitude ®rst has to be estimated

in order to provide assurance of their insigni®cance.

4.1. Estimation of random errors

In theory, the rules for propagation of uncertainties in raw

data to the ®nal results are well de®ned (Fisher, 1959;

Diamond, 1969). Unfortunately, for virtually all detectors now

used in macromolecular crystallography, the pixel measure-

ments are highly correlated on the short distance scale. The

distances involved are short enough to make the errors of

separate Bragg peaks independent, but error correlations

complicate the estimates of individual intensity peak uncer-

tainties. Instead of calculating a random-error estimate from a

complex theory, the practical approach is to account for

differences in symmetry-related observations with equations

that have been validated by extensive experience. Owing to

the history of how such estimates were derived, they account

not only for random error but also for a small amount of

systematic errors present in all experiments.

The programs DENZO (Otwinowski, 1993) and MOSFLM

(Leslie, 1993) initially estimated errors of integrated diffrac-

tion peaks recorded on X-ray ®lm. Subsequently, their error-

estimate equations were adjusted to ®t detectors with larger

dynamic range. Since these two programs together are used in

more than 90% of the structure determinations deposited in

the PDB, their design philosophy de®nes the prevailing

approach to estimating random errors. The complex process

by which this is performed in DENZO is described below.

Preliminary error estimates, which are subsequently

adjusted to describe better the disagreements among

measurements in DENZO, are given by

�0 �
1P

i

p2
i =�bi � piI�

ed

P
i

p2
i �bi � piI� �

ed

nb

P
i

p2
i bi

�bi � piI�2
� �� �1=2

;

�9�

where pi is the fraction of a predicted pro®le in a particular

pixel i, bi is the calculated value of the background for the

pixel i, I is the pro®le-®tted intensity, nb is the number of pixels

used in background estimation and ed is the error density

parameter de®ned for each instrument, which can also be

overridden by the user (Gewirth, 1998). The sums are over all

the pixels in a re¯ection pro®le. The left sum is the main

contribution resulting from the uncertainty of the pixel

measurements in the peak area. The right sum under the

square root is the contribution of the background estimate

uncertainty to the measured intensity.

Next, the g (goodness of pro®le ®tting) factor is calculated,

describing how well the predicted pro®le ®ts a particular

intensity peak

g � 1

�ni ÿ 1�
P

i

�mi ÿ bi ÿ piI�2
ed�bi � piI�

� �1=2

; �10�
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where ni is the number of pixels in a re¯ection pro®le and mi is

the observed value of intensity for the pixel i. For weak

re¯ections, the parameter g should be relatively close to 1; if it

is systematically off by a large factor, the parameter ed should

be adjusted. The next step depends on the value of g:

�D � �0g for g > 1

�D � �0 for g < 1

�
: �11�

The values of �D and g are then output by DENZO. Subse-

quently, the SCALEPACK program applies an additional

level of adjustment to the output produced by DENZO,

�S � 1:2��D=g1=2� for g > 1

�S � 1:2��D=g1=2� for g < 1

�
: �12�

Together, (11) and (12) produce a simpler formula.

�S � 1:2�0g1=2: �13�
The steps described in (11) and (12) are performed separately,

instead of applying (13) directly, owing to the need to preserve

compatibility with the old DENZO output ®le format, which is

based on a previous (prior to version 1.97) method of esti-

mating random error.

The value of �S is subsequently scaled by a user-adjustable

factor ES (called the error scale factor in SCALEPACK), with

typical value 1.3, to make disagreements among symmetry-

related measurements consistent with the scaled �S:

�I � ES�S: �14�
However, even a scaled �S does not account for all types of

errors and additional adjustments are needed for a variable

component of systematic errors.

4.2. Estimation of systematic errors

4.2.1. Estimation of multiplicative errors. As described in

x1, multiplicative errors result from the imprecision of scale

factors applied to the integrated diffraction peak intensities.

The magnitude of such errors tends to be in the range of

single-digit percent. Still, such small errors can be of impor-

tance when calculating the differences between measurements

used in phasing procedures. Errors in the scale factors are

de®nitely not random and they have rather complex correla-

tions. There is a correlated component of errors that equally

affects the measurements of intensities in phasing differences,

so it does not impact on the differences themselves. Normally,

one is only interested in estimating the magnitude of the

remaining component of scaling errors, described by �K. The

practice of estimating the multiplicative errors by comparing

symmetry-related re¯ections has an advantage of estimating

only the relevant component of multiplicative errors. The

overall magnitude of the scaling error would have to be esti-

mated differently, but typically it can be ignored since it is of

little relevance to macromolecular crystallography.

The scaled errors (14) from an integration program can be

combined with �K into the ®nal estimated error of the

measurement,

�E �
1

K
��2

I � I2�2
K�1=2; �15�

The �E is used to check whether the observed differences

between symmetry-related measurements statistically agree

with the ®nal estimate of the measurement error. In an ideal

case, the normalized goodness-of-®t index (often called

normalized �2, one of the most important statistics in merging

programs) should be about 1. If it is signi®cantly below 1, the

errors are overestimated and either ES or �K should be

reduced. Such an adjustment does not have to be very precise

as, for example, a �2 of 0.9 means that the magnitude of

estimated error is probably underestimated only by about 5%.

If �2 is much larger then 1, it may indicate that ES and/or �K

should be increased. However, large increases of these para-

meters should not be automatically applied. Firstly, the values

of these parameters should be compared with the previous

measurements of similar crystals under similar experimental

conditions. In most cases, the values of ES and �K tend to be

consistent in similar experiments. Unexpectedly large values

of �2 may indicate that the error model de®ned by (15) is not

adequate. When a more detailed analysis eliminates the

obvious reasons for such a problem (poorly edited beam-stop

shadow, hardware failures, mistakes in processing etc.), the

most likely source of unaccounted for differences between

symmetry-related measurements is non-isomorphism.

4.2.2. Estimation of non-isomorphism error. Even though

variations in crystal structure factors arising from non-

isomorphism do not result from the measurement error, if left

uncorrected they can have the same impact on the merging

statistics and phasing differences. To include the non-

isomorphisms in the overall analysis of data variations, it is

convenient to convert the uncertainty in the structure factors

to the same scale as the measurement error.

In the case of non-isomorphism, it is reasonable to assume

that the level of structure-factor uncertainty is smaller than

the magnitude of structure factor. So we can approximate

jF� �Fj2 ' jFj2 � 2Re�FrF�: �16�
For centrosymmetric re¯ections, the equation simpli®es to the

form

jF� �Fj2 ' jFj2 � 2FrF: �17�
rF symbolizes a shorthand notation of a Gaussian probability

function of a complex variable, which describes the uncer-

tainty of the structure factor F. Since there is no standard

convention to describe the width of such a distribution, the

term h|rF|2i is used to unambiguously specify that width. (17)

needs to be integrated over the cosine of phase difference

between F and rF. When calculating the variance of the

resulting distribution, an average value of cosine squared

equal to 1/2 appears, resulting in |F|2 having the following

magnitude of uncertainty:

�h2Re�FrF�2i�1=2 � �22hcos2�'rF
ÿ 'F�ijFj2hjrFj2i�1=2

' �2�Im=K�hjrFj2i�1=2 �18�
and for centrosymmetric data the corresponding magnitude is



�h�2jFjrF�2i�1=2 � �22jFj2hjrFj2i�1=2 ' 2��Im=K�hjrFj2i�1=2:

�19�

The estimates of data variation from non-isomorphisms (18

and 19) should be combined with estimates of the measure-

ment error (15) to obtain an overall estimate of uncertainty.

Typically, we do not have an a priori estimate of h|rF|2i, so we

need to determine it by generalizing the procedure used to

estimate the values of ES and �K. All the parameters of this

overall estimate should be adjusted to obtain a reasonable

agreement between the predicted and the observed spread of

data.

(18) can also be applied to differences between measure-

ments caused by anomalous scattering in order to estimate the

magnitude of the phasing signal. When applying (19), one has

to remember that in that case there are no Bijvoet differences.

While analyzing the consequences of non-isomorphism, one

has to consider that its impact on experimental phasing is not

random, particularly in MAD experiments. For data measured

consecutively at different wavelengths, the correlations

between phasing signal and radiation-induced non-

isomorphism are very different for Bijvoet differences and for

dispersive differences. When rotating a crystal around twofold

symmetry, Friedel pairs diffract together, so radiation damage

affects them equally and does not affect the difference

between them. Otherwise, the members of Friedel pairs are

collected at various times during data collection at one

wavelength. Radiation-induced changes are quite uniform and

linear with dose, so they will still average similarly for both

components of the Friedel pair, reducing the error. For

dispersive differences, the phasing pairs will be collected at

systematically very different values of accumulated dose and

radiation-induced changes will correlate very strongly with the

measured dispersive differences. This is one of the reasons

why Bijvoet differences are the dominant source of the phase

information in MAD experiments and why many MAD

experiments are very similar in practice to single-wavelength

experiments (Rice et al., 2000).

5. Weighting data by error estimates

5.1. Using sigmas to define data limits

The purpose of estimating errors is to minimize their

consequences. The simplest form of using error estimates is to

decide which observations should be used at a particular stage

of analysis. The most widely used approach of this type is to

de®ne the resolution limit, which is typically different at

different stages of structure solution. For example, a reason-

ably de®ned upper resolution limit in the atomic re®nement is

when the average intensity falls below twice the average error

at the same resolution [the so-called I/�(I) test]. Typically, the

resolution limit will be lower in the heavy-atom re®nement

and still lower in direct methods to locate heavy-atom posi-

tions. Other criteria for excluding re¯ections are the ratio of

intensity to sigma for a particular re¯ection being larger than a

certain number or its sigma exceeding a particular value.

These criteria are simple to apply but unfortunately the

thresholds are rarely established by a formal statistical

reasoning; instead, they are derived from past experiences

with similar analysis. Rather than introducing limits, a better

method of using sigmas is to assign a continuous weight

between zero and one for every measurement, instead of

effectively restricting the weights to the values of zero and one

when using exclusion/inclusion criteria.

5.2. Using sigmas to calculate weights

In macromolecular crystallography, the measurement-error

estimates are used to calculate weights in heavy-atom and

atomic re®nement (Murshudov et al., 1997; Schneider &

Sheldrick, 2002). Other procedures, such as direct methods,

Patterson methods, molecular replacement, calculation of

difference maps, solvent ¯attening and non-crystallographic

averaging, typically do not use continuous weighting. This

shows that methods of macromolecular crystallography can

still be improved by means of optimal handling of uncertain-

ties. This would be especially important in case of weaker

observations, which are now rejected by data limits, but still

contain a certain amount of information. Applying weights at

all stages of the structure-determination process is part of a

general trend of implementing more elaborate Bayesian

statistical reasoning in macromolecular crystallography.

6. Discussion

The main challenge in a macromolecular crystallography

experiment is to obtain suf®cient experimental information to

solve a structure and/or answer detailed questions about it.

What de®nes this information is the signal-to-error ratio, so it

is equally important to maximize the signal and to minimize

the error. As we reach the radiation-damage limit, there are

few remaining methods to increase the number of diffracted

photons: growing larger crystals, improving the crystal

microscopic order and using multiple crystals. Additionally,

the phasing signal can be improved for some heavy atoms

(sulfur, iodine, calcium and a few others) by going to longer

wavelengths up to a point when crystal absorption severely

limits the number of diffracted photons. Since it is very dif®-

cult to increase the signal, minimizing errors becomes the

main pursuit.

In this light, errors should not be treated as just a nuisance

but rather as a subject of analysis. Their sources and magni-

tude should be understood even before the experiment. Since

many crystals and many data-collection sessions are typically

used to solve a structure, errors and their sources should be

continuously reassessed. It is important to separately estimate

each source of error, as they have to be minimized by

different, sometimes even con¯icting, approaches.

The main variability in inaccuracy of results produced by

instruments is in the amount of systematic rather than random

errors. There are often larger variations among instruments of

the same type than between types of the instruments, so it is

important to ascertain the quality of a particular experimental
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setup at a particular time. This assessment combined with the

expected magnitude of phasing signal can be used to reason-

ably predict the quality of phasing information and its suit-

ability to solve the structure.

Since a large fraction of overall error is systematic in nature,

it can be reduced by advances in experimental protocols and

corrected by data-analysis programs (Evans, 1999; Otwinowski

et al., 2003). Such progress will make weak phasing sources,

particularly those already present in native proteins, more

suitable for structure solving.

This work was supported by grant GM53163 from the

National Institutes of Health.

References

Barna, S. L., Tate, M. W., Gruner, S. M. & Eikenberry, E. F. (1999).
Rev. Sci. Instrum. 70, 2927±2934.

Blessing, R. H. (1997). J. Appl. Cryst. 30, 421±426.
BruÈ nger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P.,

Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M.,
Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L.
(1998). Acta Cryst. D54, 905±921.

Burmeister, W. P. (2000). Acta Cryst. D56, 328±341.
Dauter, Z. (2003). Acta Cryst. D59, 2004±2016.
Diamond, R. (1969). Acta Cryst. A25, 43±55.
Evans, P. R. (1993). Proceedings of the Daresbury CCP4 Study

Weekend. Data Collection and Processing, edited by L. Sawyer, N.
Isaacs & S. Bailey, pp. 114±123. Warrington: Daresbury Laboratory.

Evans, P. R. (1997). Proceedings of the CCP4 Study Weekend. Recent
Advances In Phasing, edited by K. S. Wilson, G. Davies, A. W.
Ashton & S. Bailey, pp. 97±102. Warrington: Daresbury Laboratory.

Evans, P. R. (1999). Acta Cryst. D55, 1771±1772.
Fisher, R. A. (1959). Statistical Methods and Scienti®c Inference.

Edinburgh: Oliver & Boyd.
Fox, G. C. & Holmes, K. C. (1966). Acta Cryst. 20, 886±891.
French, S. & Wilson, K. (1978). Acta Cryst. A34, 517±525.
Gewirth, D. (1998). HKL Manual. Charlottesville, VA, USA: HKL

Research, Inc.
Hamilton, W. C., Rollett, J. S. & Sparks, R. A. (1965). Acta Cryst. 18,

129±130.
Katayama, C. (1986). Acta Cryst. A42, 19±23.

Leiros, H. K. S., McSweeney, S. M. & SmalaÊs, A. O. (2001). Acta Cryst.
D57, 488±497.

Leslie, A. (1993). Proceedings of the CCP4 Study Weekend. Data
Collection and Processing, edited by N. Isaacs, L. Sawyer &
S. Bailey, pp. 44±51. Warrington: Daresbury Laboratory.

Leslie, A. G. W. (1999). Acta Cryst. D55, 1696±1702.
Monahan, J. E., Schiffer, M. & Schiffer, J. P. (1967). Acta Cryst. 22,

322.
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst.

D53, 240±255.
Otwinowski, Z. (1993). Proceedings of the CCP4 Study Weekend.

Data Collection and Processing, edited by N. Isaacs, L. Sawyer &
S. Bailey, pp. 56±62. Warrington: Daresbury Laboratory.

Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta
Cryst. A59, 228±234.

Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307±326.
Otwinowski, Z. & Minor, W. (2001). International Tables for

Crystallography, Vol. F, edited by M. G. Rossmann & E. Arnold,
pp. 226±235. Dordrecht: Kluwer Academic Publishers.

Parsons, S. (2003). Acta Cryst. D59, 1995±2003.
Popov, A. N. & Bourenkov, G. P. (2003). Acta Cryst. D59, 1145±1153.
Ramagopal, U. A., Dauter, M. & Dauter, Z. (2003). Acta Cryst. D59,

868±875.
Ravelli, R. B. G. & McSweeney, S. M. (2000). Struct. Fold. Des. 8, 315±

328.
Rice, L. M., Earnest, T. N. & Brunger, A. T. (2000). Acta Cryst. D56,

1413±1420.
Rossmann, M. G. (1979). J. Appl. Cryst. 12, 225±238.
Rossmann, M. G., Leslie, A. G. W., Abdel-Meguid, S. S. & Tsukihara,

T. (1979). J. Appl. Cryst. 12, 570±581.
Schneider, T. R. & Sheldrick, G. M. (2002). Acta Cryst. D58, 1772±

1779.
Gruner, S. M., Eikenberry, E. F. & Tate, M. W. (2001). International

Tables for Crystallography, Vol. F, edited by M. G. Rossmann & E.
Arnold, pp. 143±153. Dordrecht: Kluwer Academic Publishers.

Weik, M., Berges, J., Raves, M. L., Gros, P., McSweeney, S., Silman, I.,
Sussman, J. L., Houee-Levin, C. & Ravelli, R. B. G. (2002). J.
Synchrotron. Rad. 9, 342±346.

Weik, M., Ravelli, R. B., Kryger, G., McSweeney, S., Raves, M. L.,
Harel, M., Gros, P., Silman, I., Kroon, J. & Sussman, J. L. (2000).
Proc. Natl Acad. Sci. USA, 97, 623±628.

Yang, F., Dauter, Z. & Wlodawer, A. (2000). Acta Cryst. D56, 959±
964.

Yeates, T. O. (1997). Methods Enzymol. 276, 344±358.


	mk1

