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Improving Motion Planning Algorithms by Efficient
Nearest-Neighbor Searching

Anna Yershova, Steven M. LaValle

Abstract— The cost of nearest-neighbor calls is one of the bot-
tlenecks in the performance of sampling-based motion planning
algorithms. Therefore, it is crucial to develop efficient techniques
for nearest-neighbor searching in configuration spaces arising in
motion planning. In this paper we present and implement an
algorithm for performing nearest-neighbor queries in Cartesian
products of R, S

1 and RP
3, the most common topological spaces

in the context of motion planning. Our approach extends the
algorithm based on kd-trees, called ANN, developed by Arya and
Mount for Euclidean spaces. We argue the correctness of the
algorithm and illustrate substantial performance improvement
over brute-force approach and several existing nearest-neighbor
packages developed for general metric spaces. Our experimental
results demonstrate a clear advantage of using the proposed
method for both probabilistic roadmaps (PRMs) and Rapidly-
exploring Random Trees (RRTs).

Index Terms— Sampling-based motion planning, nearest-
neighbor searching, kd-trees, configuration space, RRTs, PRMs.

I. INTRODUCTION

NEAREST-neighbor searching is a fundamental problem
in many applications, such as pattern recognition, statis-

tics, and machine learning. It is also an important component
in several path planning algorithms. Probabilistic roadmap
(PRM) approaches [2], [17], build a graph of collision-free
paths that attempts to capture the connectivity of the config-
uration space. The vertices represent configurations that are
generated using random sampling, and attempts are made
to connect each vertex to nearby vertices. Some roadmaps
contain thousands of vertices, which can lead to substantial
computation time for determining nearby vertices in some
applications. Approaches based on Rapidly-exploring Random
Trees (RRTs) [20], [22], [24] rely even more heavily on
nearest neighbors. An RRT is a tree of paths that is grown
incrementally. In each iteration, a random configuration is
chosen, and the RRT vertex that is closest (with respect to
a predefined metric) is selected for expansion. An attempt is
made to connect the RRT vertex to the randomly-chosen state.

An approach that efficiently finds nearest neighbors can
dramatically improve the performance of these path planners.
Several packages exist, such as ANN ([26], U. of Maryland),
Ranger (SUNY Stony Brook), which are designed for efficient
nearest-neighbor generation in R

d. These techniques, however,
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cylinder torus projective plane

Fig. 1. Some 2D manifolds obtained by identifications of the boundary points
of subsets of R

2. Arrows on a pair of opposite edges indicate identification of
the opposite points on the edges. If arrows are drawn in opposite directions,
then there is a twist in the identification.

are developed uniquely for Euclidean spaces and cannot be
applied directly to path planning algorithms because of the
topologies of configuration spaces. The topologies that usually
arise in the context of motion planning are Cartesian products
of R, S1, and RP 3, real projective space, for which metric
information must be appropriately processed by any data
structure that performs correct nearest-neighbor computations.
Several other nearest-neighbor packages exist, such as sb(S)
[9], and cover trees [7], that answer nearest-neighbor queries
in general metric spaces. These packages use the metric
function provided by the user as a “black box” for building
a data structure based only on metric evaluations between the
data points. Since any valid metric can be provided as the
input, these methods are very general and usually introduce
high computational overhead for Euclidean spaces and simple
topological spaces that arise in motion planning.

Kd-trees [13], [28], [4] are well known for their good
performance on Euclidean data sets. They usually outperform
other approaches in practice, except in rare pathological cases.
In this paper, we show how the kd-tree-based nearest-neighbor
algorithm and part of the ANN package of Arya and Mount
[26] can be extended to handle topologies arising in motion
planning. The resulting method retains the performance ben-
efits of kd-trees by introducing a very little computational
overhead for handling the appropriate constraints induced by
the metric and topology of the configuration space. First, we
formulate the problem and describe the appropriate metric
spaces in Section II. A literature overview of existing tech-
niques for nearest-neighbor searching is covered in Section III.
We then present our algorithm and prove the correctness of the
approach in Section IV. We demonstrate the efficiency of the
algorithm empirically in Section V. Our experiments show the
performance improvement of the proposed algorithm over us-
ing linear-time naive nearest-neighbor computations, the sb(S)
library, and the cover-tree library. The speedup is a few orders
of magnitude in some cases. We also present experiments that
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show substantial performance improvement in the PRM and
RRT methods applied to difficult path planning examples. We
have implemented the proposed method as a software package
publicly available at [29].

II. PROBLEM FORMULATION

The configuration space, C, which arises in motion planning
problems is usually a non-Euclidean manifold or a collection
of manifolds. A 2D rigid body freely translating and rotating
in the plane has the configuration space C = R

2×S1, in which
circle S1 represents the 2D rotations. 3D rigid body rotations
lead to three-dimensional real projective space configurations,
RP 3. Toroidal manifolds arise as the configuration spaces
of revolute joints of a manipulator. In the case of multiple
bodies the resulting configuration space is a Cartesian product
of the copies of R, S1, and P 3. When several of the joints
of a manipulator form closed loops, the configuration space
is usually a collection of submanifolds of one of the above
configuration spaces (see [23] for more details).

Many of these d-dimensional configuration spaces can be
represented by defining a subset of R

d, and identifying appro-
priate pairs of boundary points to obtain the desired topology.
For example, several two-dimensional manifolds can be ob-
tained by identifying points on the unit square or unit circle
in the plane, as shown in Figure 1. When motion planning is
performed on such configuration spaces, an appropriate metric
needs to be defined, and the search for nearest neighbors
must be performed with respect to the metric and topology
of the space. In this section we describe the metrics that are
used for the most common configuration spaces in motion
planning, and we formulate the nearest-neighbor problem for
these spaces.

A. Common Metric Spaces

Throughout this paper we consider the following metric
spaces.

1) Euclidean one-space: it arises from rigid translations,
and is represented by (0, 1) ⊂ R. The metric for two points
p, q ∈ R

1 is defined as

distR(q, p) = |q − p|.

2) Circle, S1: it can be represented by S1 = [0, 1]/0 ∼ 1,
a unit interval with identified endpoints. This configuration
space arises from 2D rigid rotations. The metric for two points
p, q ∈ S1 is defined as

distS1(q, p) = min(|q − p|, 1 − |q − p|).

3) Real projective space, RP 3: it can be represented by
three-dimensional sphere embedded in R

4 with antipodal
points identified. That is, RP 3 = S3/x ∼ − x, in which
S3 = {x ∈ R

4 | ||x|| = 1}.
Each element x = (x1, x2, x3, x4) ∈ RP 3 is a unit

quaternion, x1 + x2i + x3j + x4k, representing a 3D rotation.
The metric for two points x, y ∈ RP 3 is defined as the length
of the arc between these two points on the surface of the sphere

distRP 3(x, y) = min(cos−1(x · y), cos−1(x · (−y))),

in which (x · y) denotes the dot product for vectors in R
4.

Note: Sometimes Euler angles are used for repre-
senting 3D rigid rotations instead of quaternions. In
this case, each rotation is represented as a vector
(x1, x2, x3), xi ∈ [−π, π]/ − π ∼ π. Since the topology
of the space is S1 × S1 × S1, the techniques described in the
following sections can be used for Euler angles representation
as well as quaternions.

4) Cartesian products of the spaces above: Given two
metric spaces, (T1,distT1

) and (T2,distT2
), the weighted

metric for two points, q, p, in the Cartesian product T1 × T2

is defined as

distT1×T2
(q, p) =

√

µT1
dist2T1

(q, p) + µT2
dist2T2

(q, p),

in which the weights, µT1
and µT2

, are arbitrary nonzero real
constants.

B. Problem Formulation

Consider one of the metric spaces described in Section II-
A, T = T1 × · · · × Tm, in which each Ti is one of R, S1 or
RP 3. Consider the weighted metric defined on this manifold,
distT : T ×T → R. Suppose that a set of n data points, S, is
a subset of T . The problem is: given any query point q ∈ T ,
efficiently report the point p ∈ S that is closest to q.

Note that the brute-force computations of all the distances
is one way of finding a correct nearest neighbor. However,
our goal is to achieve significantly faster running times. We
allow some preprocessing time for organizing the data points
in a data structure. In return, we expect that the answer to the
nearest-neighbor query is found significantly faster than the
brute-force computations.

III. NEAREST-NEIGHBOR SEARCHING OVERVIEW

There has been a significant interest in nearest-neighbor
and related problems over the last couple of decades. For
Euclidean data sets kd-tree-based methods proved to be one
of the most effective in practice. The kd-tree data structure is
based on recursively subdividing the rectangle enclosing the
data points into subrectangles using alternating axis-aligned
hyperplanes. Given the appropriate distance measure between
points and rectangles in the space, kd-trees allow eliminate
some of the points in the data set from the search during
the query phase. Given a query point, q, it may be possible
to discard some of the points in the data set based only on
the distance between their enclosing rectangle and the query
point. That is, based on one metric computation, the whole set
of points inside the rectangle is eliminated from the search.
The classical kd-tree uses O(dn lg n) precomputation time,
and answers orthogonal range queries in time O(n1−1/d).
One of the first appearances of the kd-tree is in [13], and
a more modern introduction appears in [11]. Improvements to
the data structure and its construction algorithm in the context
of nearest-neighbor searching are described in [28]. In [4] it
is shown that using kd-trees for finding approximate nearest
neighbors allows significant improvement in running time with
a very small loss in performance for higher dimensions. Other
data structures for nearest-neighbor searching in Euclidean
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spaces are used for high-dimensional problems [15], and for
dynamic data [1].

Different techniques have been developed for nearest-
neighbor searching in general metric spaces [10], [14]. Many
efficient algorithms [8], [19], [7] were implemented and tested
on various data sets [9], [7]. Most of these techniques consider
the metric as a “black box” function provided to the algorithm.
Usually these methods group the points in such a way that it
is possible to eliminate some groups of points from the search
in the query phase based on some inexpensive test. In the way,
this approach is similar to kd-tree-based approach, in which
the points are eliminated from the search if they are enclosed
by a rectangle far enough from the query point. However, since
these techniques are more general and allow any metric space
to be searched, they are usually not as efficient on Euclidean
spaces as techniques designed primarily for Euclidean spaces,
such as kd-trees [9].

The goal of this paper is to show how to adapt kd-trees to
handle spaces described in Section II, introducing only a little
computational overhead for handling topological constraints
and, therefore, keeping the simplicity and efficiency of kd-
trees. Next Section introduces our method.

IV. APPROACH BASED ON KD-TREES

First, we elaborate on possible ways of using kd-trees for
given spaces, and then we present our approach.

A. A Naive Way to Use Kd-Trees

To apply kd-tree-style reasoning to the metric spaces of
interest, a naive approach would be to embed a given manifold
into a higher-dimensional Euclidean space, and then treat the
set of points lying on this manifold as a Euclidean data set.
For example, the set of all rotations can be represented using
3 × 3 matrices, which places them in Euclidean space R

9.
The drawback of this approach is that the dimensionality
of the space is significantly increased, which often implies
worse performance of nearest neighbor methods. Moreover,
the Euclidean metric in the resulting Euclidean space is
different from the natural metric defined over quaternions. For
many applications this is not tolerable, and kd-trees cannot be
immediately applied. Next we show how a different approach
can be taken so that the kd-tree data structure is adapted
naturally and efficiently to the metric spaces of interest.

B. Representing the Spaces of Interest

Consider the metric spaces of interest before the identifica-
tions are done. That is, the circle is considered as a unit interval
in R

1 and the quaternion real projective space as a 3D sphere
embedded in R

4. The kd-tree can be first constructed inside
R

1 and R
4. Next, to obtain a correct answer to the nearest-

neighbor query, identifications and the correct metric are used
in the query phase. That is, when computing distances from
the query point to a point or an enclosing rectangle of a set
of points, the correct metric respecting the topology of the
space is used. In this manner, a rectangular decomposition is
done on these non-Euclidean spaces, and, at the same time,
the correct metric is used throughout the search.

In the rest of this subsection we define the notion of enclos-
ing rectangle, and distance between a point and a rectangle in
each of the defined metric spaces.

1) Euclidean one-space: The enclosing rectangles are reg-
ular intervals in R

1, and the distance between a point, p, and
a rectangle, [a, b], is the usual Hausdorff metric:

distR(p, [a, b]) = inf
r∈[a,b]

distR(p, r).

2) Circle S1: The enclosing rectangle for a set of points
on the circle is any subinterval of [0, 1]. The distance between
a point, p, and a rectangle, [a, b], is the Hausdorff distance on
S1:

distS1(p, [a, b]) = inf
r∈[a,b]

distS1(p, r).

3) Real projective space RP 3: Rectangles that enclose the
data lying on the unit sphere S3 ⊆ R

4 are usual rectangular
regions [a1, b1]× · · · × [a4, b4] in R

4. The distance between a
point, p, and a rectangle, R, could be defined as the Hausdorff
distance between p and the intersection of R with the surface
of the sphere. However, the distance that we use in this paper
is more efficient to compute and guarantees the correctness
of the nearest-neighbor search, as we prove in Section IV-G.
Essentially, the following is the Hausdorff distance between p
and R in R

4, respecting the identifications of RP 3:

distRP 3(p,R) = min(distR4(p,R),distR4(−p,R)).

4) Cartesian product of the spaces above: Consider the
topological space T , such that T is a Cartesian product T =
T1×· · ·×Tm of copies of R, S1 and RP 3. Enclosing rectangles
for this space are those formed by enclosing rectangles in the
projections of T on each of R, S1 and RP 3. The distance
between a point and a rectangle is defined as

distT (p,R) =

√

∑

i

µTi
dist2Ti

(p,R).

C. KD-Trees for the Spaces of Interest

The kd-tree-based approach for the nearest-neighbor prob-
lem formulated in Section II consists of first precomputing
the data structure for storing points, and then searching this
data structure when a query is given. In this subsection, we
describe the kd-tree data structure for the manifolds of interest
in more detail, and in the following subsections we provide
the algorithms for the construction and query phases.

Consider the set of data points, S, lying inside a d-
dimensional enclosing rectangle as described above. We build
the kd-tree data structure inside this rectangle, and define it
recursively as follows. The set of data points is split into two
parts by splitting the rectangle that contains them into two
child rectangles by a hyperplane, according to some specified
splitting rule; one subset contains the points in one child
box, and another subset contains the rest of the points. The
information about the splitting hyperplane and the boundary
values of the initial box are stored in the root node, and the two
subsets are stored recursively in the two subtrees. When the
number of the data points contained in some box falls below
a given threshold, a node associated with this box is called
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Fig. 2. A kd-tree: a) how a torus is subdivided, b) the corresponding binary
tree.

a leaf node, and a list of coordinates for these data points is
stored in this node.

We use splitting rules suggested in [26], which divide the
current cell through its midpoint orthogonal to its longest side.
If there are ties, it selects the dimension with the largest point
spread. However, in the case in which points are all on one
side of the splitting plane, the algorithm slides the plane toward
the first encountered data point. According to [26] these rules
perform very well with typical data sets in R

d.
Figure 2 illustrates how the splitting is done, and how the

corresponding binary tree looks for the data points on a torus.

D. Construction Phase

Our kd-tree is constructed using a recursive procedure,
which returns the root of the kd-tree (see Figure 3). This
construction algorithm is essentially identical to the case
of constructing a kd-tree in a Euclidean space [26]. The
identifications and proper metrics are not used in construction
phase, and the points are treated as lying inside some R

d as
described in the beginning of this Section.

E. Query Phase

The query phase must be handled differently in comparison
to a standard kd-tree, by incorporating the correct metrics
defined in Sections II and IV when traversing the tree. In
everything else, the search proceeds in the same manner as
the search in classical kd-trees. At first, the query algorithm
descends to a leaf node that contains the query point, finds
all distances from the data points in this leaf to the query
point, and picks up the closest one. It then recursively visits
only those surrounding rectangles that are closer to the query
point than the closest point found so far (with respect to
the correct metric). Those that are further are discarded from
consideration. Figure 4 describes the query algorithm.

We borrowed some efficient techniques from [3] to further
speed up the computations. Using squared distances prevents
calculating costly square roots. We also modified method of
incremental distance calculation for speeding up the calcula-
tions of a distance between the query point and a rectangle.
This method can be described as follows. Let T be a Cartesian
product of several manifolds, T = T1 × · · · × Tm, and let

BUILD KD TREE(P , d, T , m, b, s)
Input: A set of points, P , the dimension of the space, d, the
topology of the space, T , the number of points to store in a
leaf, m, the bounding box, b, for P , and the splitting rule, s.
Output: The root of a kd-tree storing P

1 if P contains less than m points
2 then return a Leaf storing these points
3 else split b into two subboxes, b1, b2, according

to s by plane l, orthogonal to dimension k.
4 Find P1 and P2, the sets of the data points

falling into boxes b1 and b2.
5 v1 =BUILD KD TREE(P1, d, T,m, b1, s)
6 v2 =BUILD KD TREE(P2, d, T,m, b2, s)
7 Create a Node v storing the splitting plane, l,

the splitting dimension, k, the topology of the
space TK of this dimension, the projection
of the box, b, on TK , and v1 and v2, the
children of v.

8 return v

Fig. 3. The algorithm for constructing kd-tree in topological space T .

coordinate axis k correspond to some space TK . Suppose that
a query point, q, and an enclosing rectangle for the data set, S,
in T are given. Divide R with a plane orthogonal to coordinate
axis k into two child rectangles R1 and R2. If it is known
that dist2(q,R) = dbox, then the squared distance from one
of the rectangles (without loss of generality it can be R1) to
q is also dbox. To calculate dist2(q,R2), note that R2 has
the same projections as R on every Ti except for TK , by
definition of weighted metric in T (Section IV-B.4). Therefore,
if dist2TK

(q,R1) = dist2TK
(q,R), then

dist2T (q,R2) = dbox − dist2TK
(q,R1) + dist2TK

(q,R2).

Therefore, calculating distance from a point to a rectangle
node in d-dimensional space, T , takes O(d) time only for the
root node, and for any other node the time is proportional to
the time for calculating distance from a point to a rectangle
in TK , the subspace of T .

F. Making KD-Trees Dynamic

In some algorithms, such as the RRT, the number of
points grows incrementally while nearest-neighbor queries are
performed at each iteration. In this case, it is inefficient to
rebuild the kd-tree at every iteration. One approach to make
the nearest-neighbor algorithm dynamic is to use the point
insertion operation with tree rebalancing [27]. It is costly,
however, to ensure that the trees are balanced.

Another approach, which we used in our implementation, is
a standard method to perform static-to-dynamic transformation
of a data structure, called the logarithmic method [6]. For n
points, there is a tree that contains 2i points for each “1” in the
ith place of the binary representation of n. As bits are cleared
in the representation due to increasing n, the trees are deleted,
and the points are included in a tree that corresponds to the
higher-order bit which changed to “1”. This general scheme
incurs logarithmic-time overhead, regardless of dimension. It
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KDTree::SEARCH(q)
Output: the closest to q point p stored in kd-tree.

1 Calculate squared distance dbox from the box
associated with the root node to q.

2 p = NULL
3 root → SEARCH(dbox, ∞, p)
4 return p

Node::SEARCH(dbox, dbest, p)
Input: squared distance, dbox, from q to the box containing
current Node, and squared distance, dbest, from q to the
closest point, p, seen so far; dbest and p are to be updated.

1 if dbox < dbest

2 Split bK (the projection of the current Node onto
the space TK , stored in this Node) into two
subboxes, bK1

and bK2
, by the splitting line l,

corresponding to v1 and v2 respectively.
3 d1 = dist2TK

(q, bK1
)

4 d2 = dist2TK
(q, bK2

)
5 if d1 < d2

6 then v1 → SEARCH(dbox, dbest, p)
7 v2 → SEARCH(dbox − d1 + d2, dbest, p)
8 else v2 → SEARCH(dbox, dbest, p)
9 v1 → SEARCH(dbox − d2 + d1, dbest, p)

Leaf::SEARCH(dbox, dbest, p)
Input: squared distance, dbox, from q to the box containing
the current Leaf, and squared distance, dbest, from q to the
closest point, p, seen so far; dbest and p are to be updated.

1 Calculate squared distances from q to all the points
in the current Leaf, and update p and dbest.

Fig. 4. The algorithm portions for searching kd-tree on the root level and
internal and leaf nodes levels.

is also straightforward to implement, and leads to satisfactory
experimental performance.

G. Analysis

Proposition 1 The algorithm presented in Figure 4 correctly
returns the nearest neighbor.
Proof: We argue that the points in the kd-tree, that are not
visited by our algorithm cannot be the closest neighbors to the
query point, since they are always further from the query point
than some point which was already visited by the algorithm.
At first, the search procedure descends to the leaf node to
which the query point belongs. Therefore, the closest point
to the query point from this leaf will be the first candidate
to be the nearest neighbor. After searching this leaf node the
algorithm skips only those nodes (enclosing rectangles) that
are further from the query point than the candidate to the
nearest neighbor seen so far. Any point inside a node that was
skipped cannot be the nearest neighbor, since the point inside
a rectangle is further from the query point than the rectangle
itself. This holds true for Hausdorff distances defined on R

1

and S1 by definition. It is also true for the distance we used
on RP 3, since

distRP 3(q,R) ≤ distR4(q, p),

for all p ∈ R, by definition of distRP 3(q,R). Since the length
of the arc along the sphere is longer than the length of the
corresponding chord, we obtain

distRP 3(q,R) ≤ distR4(q, p) ≤ distRP 3(q, p),

for all p ∈ R.
Proposition 2 For n points in dimension d, the construction
time is O(dn lg n), the space is O(dn), and the query time is
logarithmic in n, but exponential in d.
Proof: This follows directly from the well-known complexity
of the basic kd-tree [13]. Our approach performs correct
handling of the topology without any additional asymptotic
complexity.

The metric evaluations are more costly due to identifications
in the manifold definition; however, this results only in a larger
constant in the asymptotic analysis. For example, each S1 sub-
space requires two more operations per distance computation
(see Sections II-A.2, IV-B.2), which essentially does not affect
the overall running time. For each RP 3 there are sometimes 3
to 6 additional operations per distance computation (see Sec-
tions II-A.3, IV-B.3). Two of these operations are cos−1, which
are expensive and sometimes take several orders of magnitude
longer than basic addition or multiplication operations. This
results in higher constants in the asymptotic running time for
spaces containing RP 3.

By following several performance enhancements recom-
mended in [26], the effects of high dimensionality on the query
time are minimized, yielding good performance for nearest-
neighbor searching in up to several dozen dimensions in both
ANN and our algorithm. Performance can be further improved
by returning approximate nearest neighbors, if suitable for a
particular motion planning method.

V. EXPERIMENTS

We have implemented our nearest-neighbor algorithm in
C++ as part of the new library, MPNN, for nearest-neighbor
searching on dynamic data sets in the context of motion
planning. This library is publicly available at [29]. The kd-
tree implementation that we used in MPNN is borrowed from
the ANN library. We then used MPNN in implementations of
RRT-based and PRM-based planners in the Motion Strategy
Library [21]. The experiments reported here were performed
on a 2.2 GHz Pentium IV running Linux and compiled under
GNU C++.

We have compared the performance of the MPNN library
to the brute-force algorithm as well as two general metric
space nearest-neighbor libraries, cover trees [7] and sb(S) [9].
Figures 5-7 indicate the performance of these methods in the
time to complete 100 queries in various topological spaces.
The performance improvement of the kd-tree-based approach
is several orders of magnitude in some cases over other
methods. As the dimension of the space increases, though,
the brute-force algorithm outperforms all the methods, as well
as kd-trees, because of the hidden exponential dependencies
on the dimension in these methods. However, the data sets
in motion planning often have small intrinsic dimensionality.
Obstacles and other constraints, such as kinematic or dif-
ferential constraints, reduce the effective dimension of the
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R
d

d MPNN naive cover tree sb(S)
3 0.2 + 0.01 0.22 0.63 + 0.01 2.43 + 0.02
6 0.34 + 0.01 0.38 0.79 + 0.1 14.0 + 0.08
9 0.48 + 0.02 0.56 1.36 + 0.19 41.7 + 0.46

12 0.64 + 0.14 0.74 3.72 + 0.77 90.6 + 0.91
15 0.77 + 0.47 0.94 9.52 + 1.30 158.3 + 1.76
18 0.97 + 1.61 1.14 23.0 + 2.16 238.3 + 3.25
21 1.16 + 2.17 1.55 51.5 + 2.36 273.4 + 3.19
24 1.40 + 3.20 1.65 84.4 + 3.31 327.6 + 5.71
27 1.58 + 3.70 1.78 135.4 + 3.59 373.3 + 6.59
30 1.80 + 4.11 2.04 242.0 + 4.33 392.8 + 7.59

Fig. 5. Nearest-neighbor computations are shown for 50000 data points
generated at random in Euclidean spaces R

d. The time to perform 100
queries is shown for the naive, brute-force algorithm. For other methods the
construction time is added to the time required to perform 100 queries.

(S1)d

d MPNN naive cover tree sb(S)
3 0.21 + 0.01 0.26 0.69 + 0.02 2.97 + 0.01
6 0.32 + 0.01 0.44 1.06 + 0.04 13.0 + 0.07
9 0.48 + 0.01 0.69 2.34 + 0.15 39.8 + 0.46

12 0.63 + 0.05 0.85 7.31 + 0.87 88.5 + 1.06
15 0.77 + 0.38 1.04 17.8 + 2.11 156.9 + 1.77
18 0.98 + 0.89 1.21 45.4 + 2.89 239.7 + 2.9
21 1.20 + 1.83 1.37 104.8 + 3.73 321.7 + 3.26
24 1.40 + 2.68 1.58 186.9 + 6.21 411.0 + 8.83
27 1.62 + 3.30 1.72 289.7 + 5.62 478.5 + 9.07
30 1.80 + 4.03 1.89 545.6 + 8.43 499.2 + 9.25

Fig. 6. Nearest-neighbor computations are shown for 50000 data points
generated at random in spaces (S1)d. The time to perform 100 queries is
shown for the naive, brute-force algorithm. For other methods the construction
time is added to the time required to perform 100 queries.

problem. Our experiments (see Figure 7) also suggest that kd-
trees outperform other methods in up to 56 dimensions on
randomly generated sets in (R3 ×RP 3)k due to the choice of
the constants in weighted metric. Rotations are usually given
smaller weight than translations in motion planning problems.
For example, µR3 = 1, µRP 3 = 0.15 are the standard values
used in MSL. This works to the advantage of kd-tree-based
approaches, and, therefore, makes them potentially applicable
to many motion planning problems with high-dimensional
configuration spaces.

Figures 8 and 9 show performance of the methods in
bidirectional RRT-based planners for 3-dof and 48-dof prob-
lems, respectively. Performance for a basic PRM applied to
a 6-dof example is shown in Figure 10. These experiments
suggest that the MPNN library can be effectively used in
up to 56-dimensional spaces with considerable running time
improvements in the performance of RRT-based and PRM-
based planning algorithms. It is important to note, however,
that nearest-neighbor searching does not represent the only
bottleneck in motion planning. Sampling strategies and colli-
sion detection issues are also critical. For the experiments,
we focused on examples that lead to a large number of

(R3 × RP 3)k

d k MPNN naive cover tree sb(S)
7 1 0.29 + 0.02 3.17 1.1 + 0.06 19.5 + 0.1

14 2 0.47 + 0.12 6.18 5.6 + 0.4 106 + 0.9
21 3 0.75 + 1.10 9.20 25.8 + 2.8 231 + 1.7
28 4 0.89 + 1.82 12.2 89.5 + 4.3 457 + 5.9
35 5 0.97 + 3.72 15.2 215 + 6.8 723 + 10.1
42 6 1.17 + 6.2 18.2 469 + 9.2 981 + 18.5
49 7 1.43 + 9.32 20.9 658 + 12.0 1205 + 21
56 8 1.63 + 11.2 24.0 1435 + 13.4 1374 + 27

Fig. 7. Nearest-neighbor computations are shown for 50000 data points
generated at random in spaces (R3

× RP 3)k . The time to perform 100
queries is shown for the naive, brute-force algorithm. For other methods the
construction time is added to the time required to perform 100 queries.

R
2 × S1 MPNN naive cover tree sb(S)
nodes 29,754 30,805 31,712 30,277

time (sec) 99.47 7,496.41 353.37 175.94

Fig. 8. This example involves moving the C-shaped object to the end of the
maze. There are many narrow corridors in the configuration space, R

2
×S1.

The problem was solved using a RRTConCon [25].

nodes so that the nearest-neighbor searching would dominate.
In general, the development of the most efficient algorithms
should involve consideration of all of these issues.

VI. CONCLUSIONS

We have presented and implemented a practical algorithm
for performing efficient nearest-neighbor search for the topo-
logical spaces that commonly arise in motion planning. We
have illustrated the importance of performing efficient nearest-
neighbor computations in the context of path planning. Our
method extends previous techniques designed for Euclidean
spaces by building kd-trees that respect topological identifica-
tions and the resulting distance metric.

Our method has been implemented, and is observed to
be orders of magnitude faster than naive nearest-neighbor
searching. It is substantially faster even in high-dimensional
spaces, which are of great importance in motion planning. We
evaluated the implemented algorithm as a means to accelerate
performance in both PRM and RRT algorithms. Substantial
improvement was observed in both cases; however, it is
important to note that the benefits are substantial only if
the nearest-neighbor computations dominate the total running
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(R3 × RP 3)8 MPNN naive cover tree sb(S)
nodes 18,920 18,485 20,907 22,210

time (sec) 2,055.57 4,152.19 5,273.14 6,161.47

Fig. 9. This 56-dimensional problem involves exchanging positions of
8 L-shaped objects contained in a rectangular box. It was solved using
RRTConCon [25].

R
3 × RP 3 MPNN naive cover tree sb(S)
nodes 37,634 37,186 35,814 37,922

time (sec) 191.96 2,302.49 187.99 361.43

Fig. 10. This example is solved using the PRM approach [17]. The goal is
to move the 3D rigid object out of the cage.

time. Collision detection is a competing bottleneck in path
planning algorithms; therefore, strong performance benefits
can be expected in cases in which the number of PRM or
RRT nodes is large in comparison to the number of primitives
in the geometric models used for collision detection.

Several directions are possible for future work. The exten-
sion to different topological spaces can also be applied to other
extensions of the kd-tree that have been used for nearest-
neighbor searching, such as the relative neighbor graph [3]
and balanced box-decomposition tree [5]. It has been shown
recently that it is possible to remove exponential dependencies
in dimension from the nearest-neighbor problem [16], [18].
Powerful new techniques are based on approximate distance-
preserving embeddings of the points into lower-dimensional
spaces. It remains to be seen whether these theoretical ideas
will lead to practical algorithms, and whether they will yield

superior performance for the dimension and number of points
that are common in path planning problems. In path planning
problems that involve differential constraints (nonholonomic
and kinodynamic planning), it might be preferable to use
complicated distance functions [12]. Such functions should be
well-suited for a particular nonlinear system, and they might
not even be symmetric. In these difficult cases, it remains to
determine practical, efficient nearest-neighbor algorithms.
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