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Abstract. We present algorithms for generating deterministic sample sequences
using incremental grid-based sampling. Our algorithms are designed to generate
dense sample sequences over spaces common in robotics, such as the unit cube,
SO(3), and SE(3). Our sampling techniques provide the advantageous properties
of uniformity, lattice structure, and incremental quality. In addition, the inherent
structure of grid-based sequences not only enables them to be used in the place of
other sampling techniques in existing algorithms, but also permits the development
of new algorithms aimed at exploiting this structure.

1 Introduction

Numerous algorithms in robotics rely heavily on the generation of samples
over a continuous state space. Motion planning algorithms, for example, use
sampling along with efficient collision detection to find collision-free paths
in the configuration space. Hence, it is of great importance that the under-
lying sample sequences be as good as possible. Previous work has argued
that randomization is not the key to the success of modern motion planning
algorithms; rather, there are deterministic sampling schemes which can be
expected to perform as good or better than sampling uniformly at random
[9,10]. Furthermore, it was speculated that integrating sampling methods
more closely into motion planning algorithms could be advantageous com-
pared to viewing sampling as a “black box”. One way to do this is by using a
sample sequence with lattice structure, and developing algorithms which ex-
ploit that structure. In order to make this possible, it is of first importance to
develop sample sequences which have lattice structure as well as high incre-
mental quality, which is of great importance in many situations. Incremental
quality is the property that if the sequence is stopped after any number
of samples, the samples taken up to that point uniformly cover the space.
Previous work addressed this by the introduction of incremental grid-based
sequences which optimized discrepancy [11]. These sequences have high incre-
mental quality; however, the methods described require exponential space to
store the optimal ordering. This renders these methods unsuitable for high-
dimensional problems. In this paper, we introduce a new kind of grid-based
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sequence which optimizes a different uniformity measure. The orderings we
find are simple and compact to represent, making them suitable for high-
dimensional problems. In addition to this, we show how to use these sample
sequences to sample other topological spaces common in robotics, such as
SO(3) and SE(3). The methods we present use Platonic solids as a means
to apply sampling techniques originally developed for the unit cube to these
spaces, and were originally formulated in [23].
We begin by briefly overviewing important concepts in the area of unifor-

mity measures and uniform sampling techniques.

2 Uniformity Measures

Uniform sampling criteria and techniques have been developed by numerous
mathematicians over the past century. Excellent overviews of the subject
include [12,13]. Here we briefly introduce only the concepts needed for this
paper. Let X = [0, 1]d ⊂ R

d define a space over which to generate samples.
Define a range space, R, as a collection of subsets of X. Let R ∈ R denote
one such subset. Reasonable choices for R include the set of all axis-aligned
rectangles, the set of all balls, or the set of all convex subsets.
Let µ(R) denote the Lebesgue measure (or volume) of subset R. If the

samples in P are uniform in some ideal sense, then it seems reasonable that
the fraction of these samples that lie in any subset R should be roughly µ(R)
(divided by µ(X), which is simply one). We define the discrepancy [22] to
measure how far from ideal the point set P is:

D(P,R) = sup
R∈R
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in which | · | applied to a finite set denotes its cardinality.
Whereas discrepancy is based on measure, a metric-based criterion, called

dispersion, can be introduced:

δ(P, ρ) = sup
q∈X

min
p∈P

ρ(q, p). (2)

Above ρ denotes any metric, such as Euclidean distance or `∞. Intuitively,
this corresponds to the radius of the largest empty ball (assuming all ball
centers lie in [0, 1]d).
Intuitively, discrepancy can be thought of as enforcing two criteria: first,

that no region of the space is left uncovered; and second, that no region is
left too full. Dispersion eliminates the second criterion, leaving only the first.
It can be shown that low discrepancy implies low dispersion [13]. It is easy to
conceive of a uniformity criteria that emphasizes the second criterion, rather
than the first. A criterion such as this would require that points be spread
as far away from each other as possible; we call this mutual distance, and
introduce it in Section 4.
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3 Uniform Sampling Techniques

Motivated by integration and optimization problems, sampling issues have
been studied extensively in the applied mathematics community. Sample sets
and sequences were developed to replace the random sequences traditionally
used for these applications; they received the name quasi-Monte Carlo to
denote this connection. Due to the fundamental importance of numerical
integration, and the intricate link between discrepancy and integration error,
most of the quasi-Monte Carlo literature focuses on the discrepancy measure
introduced in Section 2.
Low-discrepancy sampling methods can be divided into three categories:

Halton/Hammersley sampling, lattices, and (t, s)-sequences and (t,m, s)-nets.
The first category represents one of the earliest methods, based on the orig-
inal ideas of van der Corput [20]. The Halton sequence is a d-dimensional
generalization that uses van der Corput sequences of d different bases, one
for each coordinate [3]. The Hammersley point set is an adaptation of the
Halton sequence [4]. For the ith sample of a Hammersley point set with N el-
ements, the first coordinate is i/N and the last d−1 coordinates are the same
as the ith sample of a (d−1)-dimensional Halton sequence. The construction
of Halton/Hammersley samples is simple and efficient, which has led to their
widespread application. However, the constant in their asymptotic analysis
increases superexponentially with dimension [13].
The second category is lattices, which can be considered as a general-

ization of grids that allows nonorthogonal axes [12,18,21]. Rank-1 lattices
were introduced by Korobov [7]; a rank-1 lattice of N points is the set
{{ih/N} : i = 0, . . . , N − 1}, in which h is a d-dimensional generating vec-
tor of integers (depending on N) and {·} represents the fractional part of the
real value (modulo-one arithmetic). While historically lattices have required
the specification of N in advance, making them examples of low-discrepancy
point sets, there has been increasing interest in extensible lattices, which are
infinite sequences [5].
The third category is (t, s)-sequences and (t,m, s)-nets [13]. The key idea

for these techniques is to enforce zero discrepancy over a particular subset
of axis-aligned rectangles known as canonical rectangles, and all remaining
elements of the range space will contribute only small amounts to the overall
discrepancy. The most famous and widely-used (t, s)-sequences are Sobol’ and
Faure (see [13]). The Niederreiter-Xing (t,s)-sequence has the best-known
asymptotic constant, (a/d)d, among all low-discrepancy sequences; in the
expression, a is a small constant [14].

4 Optimal Grid Sampling Techniques

In contrast to the sampling techniques discussed above, we introduce methods
based on incremental sampling of grid points. In [11], grid sample sequences
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which optimized discrepancy were introduced. In that work, it was shown how
to construct discrepancy-optimal grid sampling sequences, and several inter-
esting properties of such sequences were proven. In this section, we examine
optimal grid sampling sequences with respect to a different quality measure.
The new sequence will retain the good properties of the discrepancy-optimal
sequences and will add key new advantages.
Before proceeding to describe the sequence itself, several definitions will

be useful. Consider a classical grid in the d-dimensional unit cube, Id =
[0, 1]d ⊂ R

d; we define a multiresolution classical grid of resolution level l,
Pn

l to be a grid with 2dl points (i.e., 2l points per axis). More formally,
Pn

l =
{(

i1/2
l, · · · , in/2

l
)

: i ∈ Z, 0 ≤ i ≤ 2l − 1
}

. One may also define the

grid region associated with point j at resolution level l:Gj,l =
[

j1, j1 + 1/2
l
)

×

· · · ×
[

jn, jn + 1/2
l
)

.
Our previous work focused on optimizing discrepancy; however, discrep-

ancy is only one of several interesting and useful uniformity criteria. In addi-
tion to this, discrepancy-optimal sequences currently suffer from the require-
ments of both exponential time to compute and exponential space to store.
By optimizing a different uniformity criterion, we will derive sequences which
eliminate the exponential space requirement, leading to sequences which have
very compact, efficient representations. We call this criterion mutual distance;
the mutual distance of a set S is

ρm(S) = min
x,y∈S

ρ(x, y)

Our sequence will be designed to maximize this property; intuitively, it cor-
responds to forcing sequence points to be as far from each other as possible.
The rest of this section proceeds as follows. First, we will describe the

representation that our ordering takes and how it is used to generate sam-
ples. Second, we prove the existence of optimal orderings admitting the rep-
resentation given. Third, we show how we compute optimal orderings and
approximations of the optimal orderings.

4.1 The digital construction method

In Section 3, we described (t,m, s)-nets and (t, s)-sequences. The most com-
mon method of generating such sample sets and sequences is known as the
digital construction. The digital construction of a (t,m, s)-net (in base 2)
takes a set of generator matrices and computes sample locations based on
multiplying these vectors by the bit representation of the sample index. Our
approach for computing grid orderings which optimize mutual distance uses
this same idea.
Consider the integers [0, 1, . . . , 2d− 1]. Each integer can be written in the

following form:

x =

d−1
∑

i=0

ai2
i, ai ∈ Z2.
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The following matrix defines an ordering in four dimensions.









1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1









An integer x = a0 + a12
1 + a22

2 + a32
3 ∈ [0, 15] is written in vector form as

(a0 a1 a2 a3)
′. Multiplying this vector on the left by the given matrix yields an-

other vector, whose elements are interpreted as the coordinates of a 4-dimensional
grid. Applying the transformation to the sequence {0, 1, . . . , 15} yields an order-
ing which optimizes mutual distance for the grid of resolution level 1. Points
in higher resolution levels are obtained by recursively applying this ordering.

Fig. 1. An example of the digital construction method in 4 dimensions.

Hence, there is a straightforward bijection between this set of integers and
the group Z

d
2. Now consider a d×d matrix, with each element eij ∈ Z2. If this

matrix is full rank, it defines a linear transformation for the vector space Z
d
2

over Z2 (using standard matrix/vector multiplication). Via this transforma-
tion, and the previously-mentioned bijection, the bit representations of the
integers [0, 1, . . . , 2d − 1] are mapped to d-dimensional vectors corresponding
to grid points. Each transformation represents a unique ordering of the set
of all grid points in the grid of resolution 1. See Figure 1 for an example.
It is clear that the space of all grid orderings is much larger than the or-
derings that can be generated by matrices of this type. It is desirable that
our orderings take this form, due to its compact representation and the ease
of computation it affords. Fortunately, there exist orderings which both op-
timize mutual distance and which admit this representation; we proceed to
show that this is the case.

4.2 Optimal orderings using the digital method

A grid ordering which optimizes mutual distance is defined to be a sequence of
points such that, given the first k elements of the sequence, the (k+1)-th ele-
ment is chosen to maximize the mutual distance of the set {x1, x2, . . . , xk+1}.
If we use a generator matrix to specify an ordering, we do not need to com-
pute the matrix as a unit; rather, we may build it column by column. This
is the case because only the first i columns affect the location of the first 2i

samples, since in the bit representation of the first 2i integers, the final d− i
elements are zero. Our approach, then, will be to construct the generator
matrix by selecting d generator vectors one at a time. The selection of the
(i+1)-th generator vector will be determined by the 2i samples generated by
the first i generator vectors. In this section, we show that such a construction
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is possible, and what the column selection criteria should be. We begin with
a useful lemma:

Lemma 1. Let Gi = {g1, g2, . . . , gi} be i linearly independent vectors in Z
d
2,

and let Si = Span(Gi) = {x : x =
∑

j ajgj , aj ∈ Z2}. Take some vector

u ∈ Z
d
2 \ Si, and construct the sets Gi+1 = Gi ∪ u and Si+1. If the distance

from u to its nearest neighbor in Si is d, then the distance from every element

of Si+1 \ Si to its nearest neighbor in Si is also d.

Proof. The set Si+1 \ Si is simply the left coset of Si generated by u. It is
obvious that the difference between any element of the coset and any element
of Si is an element of the coset; its magnitude is the same as the distance
between u and some element of Si. Hence the distance from every element of
Si+1 \ Si to its nearest neighbor in Si is d.

While simple at first glance, this lemma is important for understanding
grid orderings constructed using the digital method. After choosing i gener-
ator vectors and generating the points corresponding to them, the remaining
2d−i grid points are divided into equivalence classes (each of size 2i), corre-
sponding to different choices of the next generator vector gi+1. The above
lemma shows that all vectors in a given equivalence class have the same
distance to the set of points generated by the first i generator vectors.

Proposition 1. The first generator vector is (1 1 . . . 1)′.

Proof. The first point in the sequence (for any choice of initial generating
vector) is the zero vector. Hence, the first generator vector g1 should be
chosen to be maximally distant from the zero vector. That vector is clearly
(1 1 . . . 1)′.

Proposition 2. Let Gi = {g1, g2, . . . , gi} be i linearly independent vectors

in Z
d
2 with g1 = (1 1 . . . 1)′, and let Si = Span(Gi) = {x : x =

∑

j ajgj , aj ∈

Z2}. If the next generator vector gi+1 is chosen to be some vector u ∈ Z
d
2

which is maximally distant to Si, then mutual distance is maximized for all

samples in the sequence with indices in the range (2i, 2i+1].

Proof. In order that the mutual distance be maximized for sample index
2d + 1, the vector chosen must be maximally distant from the set Si, as
assumed. Since selecting this vector as the next generating vector will result
in the generation of the next 2i elements of the sequence, we must show
that making such a selection will maximize mutual distance for the next 2i

elements. Assume that the distance from u to Si is r. Then, the mutual
distance of the resulting set is ρm(Si ∪u) = min(r, ρm(Si)). Taking gi+1 = u,
we know by Lemma 1 that each element in the set Si+1 \ Si (that is, each of
the next 2i elements in the sequence) is also of distance r to Si. Also, it is the
case that ρm(Si+1 \ Si) = ρm(Si). So, the addition of the next 2

i elements
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does not change the mutual distance of the set, which after the addition of
the vector u was already min(r, ρm(Si)). Thus at each point of the sequence
with index in the range (2i, 2i+1], the mutual distance remains maximized.

Hence, by choosing the (i+1)-th generator vector to maximize the distance
from the set generated by the previous i generator vectors, we maximize the
mutual distance for the next 2i elements of the sequence. By constructing our
generator matrix from d such vectors, then, we obtain an ordering for the first
2d points of the sequence which optimizes our criterion of mutual distance.
To obtain the entire infinite sequence, then, it remains only to specify how to
apply to generator matrix to samples whose index is greater than or equal to
2d (note that the first sample has index 0, so the first 2d elements have index
up to 2d − 1). As in the case of the discrepancy-optimal sequence [11], we
apply the ordering recursively to each of the 2d grid regions corresponding to
the first 2d points. After the top-level grid region is selected by applying the
generator matrix to the first d bits of the sample index, the position within
that region is found by applying the generator matrix to the next d bits of
the sample index. This process is repeated until the final sample location is
found.

Theorem 1. The sequence generated by the above procedure optimizes mu-

tual distance at every point in the sequence.

Proof. We show this by induction on the resolution level l. By Propositions
1 and 2, the sequence optimizes mutual distance for the first 2d samples,
which corresponds to l = 1. Now, assume that the sequence optimizes mutual
distance for resolution level l, and examine the sequence during resolution
level l + 1. It is clear that within a particular grid region, the points are
added in an order which maximizes the mutual distance (this follows directly
from the fact that the generator matrix maximizes mutual distance, and the
matrix is applied recursively to each grid region). Now, it is also the case
that if some point is added to a particular grid region (chosen recursively as
described above), a corresponding point is added to every other grid region
in the space before any another point is added to the initial grid region (this
is because the grid region is determined by the lowest dl bits of the sample
index, which cycle through all possibilities before a higher bit changes). This
implies that if some point x of resolution level l + 1 occurs in the sequence
and decreases the mutual distance, the next 2dl points to be added will be
points corresponding to x, but in different grid regions. This implies that
they will not reduce the mutual distance, because they will have the same
distance from their neighbors that x had from its neighbors. Note that points
from neighboring grid regions do not interact in such a way as to decrease
the mutual distance, because there will always be an analogous point in the
same grid region with identical distance, and we know that all intra-grid
region distances follow a mutual distance-maximizing ordering. Since each
point x which reduces the mutual distance is added according to the optimal
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ordering given by the generator matrix, and all other points do not reduce
the mutual distance, we see that each point added in resolution level l + 1
is added in a way that maximizes the mutual distance. Hence the inductive
hypothesis is seen to be true and the theorem proved.

4.3 Useful Properties for Motion Planning

In [11], several properties of discrepancy-optimal grid sequences were shown.
The same properties hold for the sequences optimizing mutual distance; we
present the two main properties here. For each of these properties, dimension
is considered to be constant. However, at various points we note dependence
on dimension; in all cases, dimension has only a limited effect on practical
performance.
A first consideration is the amount of time required to generate each

sample. If it is computationally expensive to generate the sample sequence,
this may offset time gained through the quality of the sequence. Hence, we
give bounds on the time required to generate a particular sample.

Property 1. The position of the i-th sample in the d-dimensional sampling
sequence Sd can be generated in O(log i) time.

Proof. The bit representation of the i-th sample contains O(log i) bits. Thus
the vector representing the sample will have this length. There will be O(log i)
recursions (the number of recursions is the number of bits divided by the
dimension). Each recursion requires O(d2) operations, which is constant time
since d is constant. Hence the total time is O(log i).

Property 2. Let the number of samples taken so far be N . Then, the existence
of a neighbor (in the current resolution level) of any of these samples can be
found in O(logN) time.

Proof. Given the index of sample i, one can find its position in O(log i) time.
Then, depending on the total number of samples, N , taken, add the appro-
priate quantity to the calculated position, reflecting the desired neighbor. To
calculate the index of this sample, one can easily use the inverse of the pro-
cedure used to generate the position (the inverse of the generator matrix is
easily computed, since it is full rank). Then a hash table can be queried to
see if a sample of that index exists, in constant time. The cost to compute
the inverse index is at most O(logN), so the total cost is O(logN).

These properties indicate the potential of the sequences we have intro-
duced. These samples can be generated very quickly (especially given the fact
that all mathematical operations can be done using simple bit operations). In
fact, samples such as these are likely to cost much less than “good” random
points, such as those generated by sophisticated nonlinear congruential tech-
niques. In addition to this, sampling from a set of grid points gives implicit
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structure to the sample set. This structure can be exploited efficiently, which
could be of value when using the sample sequence for applications such as
motion planning.

5 Deterministic Sample Sequences for Spheres and
SO(3)

Thus far, we have considered sampling in the unit cube Id = [0, 1]d ⊂ R
d.

Problems in robotics, however, typically result in much more complex topo-
logical spaces. Algorithms for tasks such as motion planning typically take
samples from the unit cube and transform them to the appropriate space.
However, it may be possible to design sample sequences explicitly with par-
ticular topological spaces in mind. In this section, we consider the case of
spheres and SO(3). We will then discuss how to sample SE(3) using these
methods. We begin with some brief definitions.

5.1 Definitions and Quality Measures for Points on Spheres and
SO(3)

We consider generating samples over spheres and SO(3). Let Sd represent a
d-dimensional sphere, embedded in R

d+1 as

Sd = {x ∈ R
d+1 | ‖x‖ = 1}.

The set of all rotations in R
3 is denoted as SO(3), which is defined as

the set of all 3 × 3 orthonormal matrices. It will be helpful to sometimes
represent SO(3) as the set, H, of unit quaternions, each of which is expressed
as h = a + bi + cj + dk, with the identification h ∼ −h [8]. Note that it
appears that H = S3, except that antipodal points on S3 are identified in
the definition of H. This leads to a close relationship between sampling on
sphere and sampling on SO(3).

Discrepancy and dispersion may be defined for these spaces, analogous to
the case of R

d given in Section 2. The definition of discrepancy is identical;
a rotation-invariant measure µ is used (the Haar measure over the set of
all rotation matrices in SO(3)), and typical range spaces are the set of all
spherical caps (intersections of the sphere with half spaces) or the set of
all spherical slices (intersections of two half-spheres) [2,15]. Likewise, the
definition of dispersion is identical; the metric ρ is required to be rotation-
invariant.

We now proceed to outline a general method for generating samples on
spheres and SO(3). For more detail, see [23].
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Fig. 2. Distribution of points on the sphere S2 generated by a grid (Sukharev [19])
on each spherical face.

5.2 Generating Samples on Spheres and SO(3)

Our general approach to sampling is based on Platonic solids. In R
3, a Pla-

tonic solid or regular polyhedron, is a polyhedron for which every face is a
copy of a regular polygon, fixed over all faces, and the degree of every vertex
is fixed. Let (v, e, f) denote the numbers of vertices, edges, and faces of a reg-
ular polyhedron. Although there are an infinite number of regular polygons,
there are only five regular polyhedra: tetrahedron (4,6,4), cube (8,12,6), oc-
tahedron (6,12,8), icosahedron (12,30,20), and dodecahedron (20,30,12). The
notion of regular polyhedron can be generalized to higher dimensions to ob-
tain a regular polytope. In R

4, it turns out that there are six regular poly-
topes: simplex (5,10,10,5), cube (16,32,24,8), cross polytope (8,24,32,16), 24
cell (24,96,96,24), 120 cell (600,1200,720,120), 600 cell (120,720,1200,600).
The forth element in each sequence denotes the number of 3D cells (which
are regular polyhedra). Finally, in R

d for any d > 4, there are only three
regular polytopes: simplex, cube, and cross polytope.
We first address the problem of generating a uniformly distributed set of

points over Sd. Consider inscribing any (d+1)-dimensional regular polytope
inside of Sd, so that all of its n vertices lie in Sd. The set of vertices are
beautifully arranged around Sd so that the points are evenly spaced. Fur-
thermore, the edges of the polytope yield a regular lattice structure that is
natural for building roadmaps in planning problems. For the case of sampling
SO(3), we simply use a set of vertices that lie in one hemisphere (making
sure that no antipodal pairs of points appear in the set). The edges can be
obtained directly from the polytope by making the appropriate identification
of antipodal pairs.
Unfortunately, there are only a few combinations of n and d, for which

these ideal samples may be constructed for Sd and SO(3). This might be
suitable for some applications, such as picking a set of candidate directions
from Sd for gradient descent of a potential function; however, in general, we
would like to a have a nice distribution of points for any value of n.
To the best of our knowledge, it is impossible to perfectly space n points

around Sd, for any n and for d > 1. One simple idea that increases the number
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of samples is place one point in the center of each of the c d-cells of some
regular polytope, and lift it to Sd. If we take the union of these points with
the set of v polytope vertices, a nice point set of size c+ v may be obtained.
If more points are placed; however, the problem becomes more complicated.
Therefore, we are willing to tolerate some distortion in the distribution of
points. It still seems useful, however, to borrow some of the properties of
the regular polytopes to generate good samples. The general idea pursued in
this paper is to sample uniformly on the surface of the regular polytope, and
then transform generated distribution on the surface of the sphere. We next
describe this general method and discuss the induced distortion.

Consider a (d + 1)-dimensional regular polytope inscribed in the sphere
Sd. Suppose there exists a good method of sampling the surface of this poly-
tope. The faces (d-dimensional cells) of the polytope, if projected outward to
the surface of the sphere, form a tiling of the surface with the d-dimensional
spherical polytopes. Consider some particular face, F , and its corresponding
spherical face, F ′. Each point inside F can be described by the barycentric
coordinate systems induced by vertices of F after its triangulation. Now imag-
ine that a distribution of points is generated inside F . Each of the points in
this distribution can be obtained through several steps of linear interpolation
between the vertices of the barycentric coordinate systems. The distribution
on F ′ can be obtained then through similar steps of interpolating between
the vertices of F ′, except that the interpolation should be done on the surface
of the sphere [16]. This idea is similar to the one proposed in [1] for stratified
sampling of spherical triangles. As an example, consider a cube inscribed in
the sphere S2, and sample the surface of the cube by placing a Sukharev
grid [10,19] on each face of the cube. Using the proposed method we get a
distribution of samples on S2 as shown on Figure 2.

The distribution of points on the sphere Sd obtained by this method will
introduce distortion since spherical arcs corresponding to the intervals inside
F with the same length may have different lengths in F ′. The amount of the
distortion, and therefore bounds on the dispersion and discrepancy, can be
obtained through the analysis of the maximal arc differences.

This idea can also be adapted to SO(3) (and in general to the projective
space of any dimension). Take a four-dimensional regular polytope inscribed
in S3 and use only half of the faces to generate the distribution on the surface.
We pick the faces so that in the set of used faces, there must not exist a pair of
antipodal points, one from each of two different faces. This way the obtained
samples will cover exactly half of the sphere, which forms SO(3) surface.

While this approach can incorporate any uniform sampling method, we
use the grid sequences described above and in [11]. In what follows we intro-
duce the concept of a layered Sukharev grid sequence.
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5.3 Layered Sukharev Grid Sequences for Spherical Cubes

In the construction of our basic grid sequences, we considered only classical
multi-resolution grids. We can use these grid sequences to construct Sukharev
grids; a Sukharev grid of k points per axis is identical to a classical grid, with
the exception that the samples are placed in the center of the kd grid regions
rather than in the bottommost corner. We will be using a layered version
of this sequence; a layered Sukharev grid of resolution l is the union of all
Sukharev grids with 2i points per axis, for 0 ≤ i ≤ l. A layered Sukharev grid

sequence constructs the Sukharev grids one resolution at a time. Since each
individual Sukharev grid is a shifted version of a classical grid, we can use
the sequences previously described to generate the samples. In what follows
we generalize layered Sukharev grid sequence to the sphere Sd. We first show
how the points should be generated in each of the spherical cubes, and then
how all these points can be combined into one sequence on the sphere.

Consider a face, F , of a (d + 1)-cube inscribed in a sphere Sd. F is a
d-dimensional cube, which in each of its corners has d edges. If we project all
of these edges onto the surface of the sphere they form arcs, which delineate
a spherical d-cube, F ′. The lengths, α, of these arcs are equal for all edges of
F . If we consider those equatorial angles that correspond to the edges coming
from a common vertex of F , we can define an angular coordinate system for
the spherical face F ′. Indeed, the coordinates (x1, x2, ...xn−1) with all possible
values xi ∈ [0, α] specify all possible points of F

′.

The construction of the sequence, T , essentially follows the construction
of the layered Sukharev grid sequence for the unit cube, except that instead
of the Euclidean coordinate system we use the angular coordinate system
defined above. We call this a Sukharev spherical grid. The dispersion of the
resulting sequence can be calculated, as can the discrepancy, which is espe-
cially appropriate when using a discrepancy-optimal grid ordering to generate
the Sukharev spherical grid. These results can be found in [23]. It should be
fairly obvious that the time complexity of generating samples on a Sukharev
spherical grid is the same as for generating ordinary grid samples. Conse-
quently, Properties 1 and 2 from Section 4.3 hold.

5.4 Layered Sukharev Grid Sequences for S
d

Now that we have defined a sequence for each of the spherical cubes sepa-
rately, we need to define an ordering by which these will be combined to form
a sample sequence over the entire surface of the sphere. A straightforward
way to do this is to place one point from each of the faces’ sequences at a
time. The order in which the faces should be considered can be explicitly
computed using the same uniformity criteria used in computing the under-
lying grid sequence. This ordering, combined with the grid orderings of each
individual spherical cube, yields the entire sphere sampling sequence.
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6 Sample Sequences for Cross Products of R
n and S

d

We have defined the multiresolution grid sequences for the unit cube (Section
4), and the sphere Sd (Section 5). The spaces that arise in robotics are often
the cross products of these. For example, the set of all rotations and transla-
tions of a 3d rigid body, denoted as SE(3), can be represented by R

3×RP 3.
The rotations and translations of m multiple rigid bodies is represented by
(R3 × RP 3)m.
When designing uniform sequences for such spaces the parameterization

of the space together with the choice of measure and metric on the space
should be defined carefully. For SE(3) the Haar measure should be taken.
However, since there is no natural metric on SE(3), the weighted sum of
the metrics on R

3 and SO(3) is usually used. While the weighted metric
can be defined on general cross products of the spaces (which is assumed
in the construction below), in some cases particular techniques for designing
sequences might be advantageous.
In what follows we construct the multiresolution grid sequence for the

space that is a cross product of multiple copies of R
n and Sd. We define it

inductively, starting with any tuple of multiresolution grid sequences.
Let T1 and T2 be two multiresolution grid sequences. Let T1 be defined

over the space X1, and T2 be defined over the space X2. Either of X1 or X2

may be R
n or Sd. Let dim(T1) = d1 and dim(T2) = d2 be the dimensions

of these sequences. Let m1 (m2) be the number of points at the resolution
level 0 of sequence T1 (T2) respectively. (For example, the unit cube multires-
olution sequence sequence has 1 point at the resolution level 0, and sphere
sequence has 2(d + 1) points.) When weighted Eucledian metric is defined
on X1 ×X2 more points can be chosen at the resolution level 0 so that the
appropriate weights of X1 and X2 are respected. Then the number of points
at the resolution level l is m1 · 2

ld1 and m2 · 2
ld2 for sequence T1 and T2

respectively.
With each point p = (p1, ...pd) at the resolution level l one may define

the grid region associated with this point as Gp,l =
[

p1, p1 + a/2l
)

× ... ×
[

pd, pd + a/2l
)

, in which a = 1 for the unit cube sequence and a = α (Section
5) for the sphere sequence.
Next consider the space X = X1 × X2. The multiresolution grid se-

quence that we define for this space has m1 · m2 · 2
l(d1+d2) points at the

resolution level l. Each of these points can be expressed as p = (p1, p2) =
(p1,1, ...p1,d1

, p2,1, ...p2,d2
), where p1 ∈ T1 and p2 ∈ T2. Each of these points

has an associated grid region:Gp,l =
[

p1,1, p1,1 + a/2l
)

×...×
[

p1,d1
, p1,d1

+ a/2l
)

×
[

p2,1, p2,1 + b/2l
)

× ...×
[

p2,d2
, p2,d2

+ b/2l
)

.
The sequence forX is constructed one resolution level at a time. The order

in which the points from each resolution level are placed in the sequence can
be described as follows. The ordering, LX(), of the firstm1·m2·2

(d1+d2) points
determine the order of the grid regions whithinX and should be precomputed
in advance. Every successive m1 ·m2 · 2

(d1+d2) points in the sequence should
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Random Layered Sukharev
Sequence Grid Sequence

a) 1088 1067

b) 3460 3285

c) 3481 3202

Fig. 3. Problems involving: a) moving a robot (black) from the north pole to the
south pole. Multiple views of the geometry of the problem are shown (obstacles are
drawn in lighter shades); b) moving a robot from one corner of a 3d grid to the
opposite corner; c) moving an L-shaped object through the holes in the obstacles.
The comparisons of the number of nodes generated by different sampling strategies
are shown in the table.

be placed in these grid regions in the same order. Where exactly each point
should be placed within each of the grid regions should be determined by the
recursion procedure defined for [0, 1](d1+d2).

7 Experiments

We have implemented our algorithm in C++ and applied to implementations
of PRM-based planner [6] in the Motion Strategy Library. The experiments
reported here were performed on a 2 Ghz Pentium IV running Linux and
compiled under GNU C++.
Performance results are shown in Figure 3. The robot in the model a) is

allowed only to rotate; therefore, the configuration space is RP 3. The robots
in the models b),c) are allowed to translate and rotate; therefore the config-
uration space is R

3 ×RP 3. We compared the number of nodes generated by
the basic PRM planner using a pseudo-random sequence (with quaternion
components [17]), and the layered Sukharev grid sequences. The results for
pseudo-random sequences were averaged over 50 trials. When we tested the
deterministic sequences, we made sure that each particular problem does not
have any advantage due to coincidental alignment with the grid directions
of the sequence. Therefore, in each trial a fixed, random quaternion rotation
was premultiplied to each sample, to displace the entire sequence. The results
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obtained were averaged over 50 trials (a different random rotation was used
in each).
Based on our experiments we have observed that the performance of the

deterministic sequences is equivalent to the performance of the random se-
quences for the PRM-based planner, which makes it an alternative approach
to random sampling. It is important to note, however, that for some ap-
plications, such as verification problem, only deterministic guarantees are
acceptable, making random sequences inappropriate.

8 Conclusions and Future Work

In conclusion, we have presented a family of new grid-based sample sequences.
These sequences have the advantageous criteria of uniformity, lattice struc-
ture, and incremental quality. Our sample sequences, based on maximizing
the measure of mutual distance, have very compact representations and hence
are applicable to high-dimensional problems, unlike the grid-based sequences
of [11]. In addition to this, we have introduced methods for applying sam-
pling methods designed for the unit cube to such topological spaces as SO(3)
and SE(3). The sequences presented are widely applicable to algorithms in
robotics and motion planning. Like traditional Monte Carlo or quasi-Monte
Carlo sampling techniques, these sequences are uniform and have high incre-
mental quality; hence, they may be easily substituted into existing algorithms
in place of other sampling methods. In addition, these sequences have implicit
lattice structure, which permits the development of new algorithms designed
to exploit that structure.
There are several directions for future work. First, we plan to actually

compute these orderings for very high dimensions. Using approximation and
heuristic search techniques will enable good (though not optimal) orderings to
be found for up to several thousand dimensions. Second, the sampling method
presented for SE(3) hints at a more general approach to forming products
of multi-resolution sample sequences. We hope to study this more carefully
and formally characterize how to find such sequence products. Finally, we
plan to develop algorithms which specifically exploit the regularity implicit
in grid sample sequences. By integrating the sampling method more tightly
with planning rather than viewing it simply as a black box, it may be possible
to see significant advantages not otherwise available.
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