
ar
X

iv
:q

ua
nt

-p
h/

06
07

06
5

v1

11
 J

ul
 2

00
6

Architecture of a Quantum

Multicomputer Optimized for Shor’s

Factoring Algorithm

A dissertation

submitted to the Department of computer science

of Keio University

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Rodney Doyle Van Meter III

July 2006

c© Copyright by Rodney Doyle Van Meter III 2006

All Rights Reserved

ii

Abstract

Quantum computers exist, and offer tantalizing possibilities of dramatic increases in

computational power, but scaling them up to solve problems that are classically in-

tractable offers enormous technical challenges. Distributed quantum computation of-

fers a way to surpass the limitations of an individual quantum computer. I propose

a quantum multicomputeras a form of distributed quantum computer. The quantum

multicomputer consists of a large number of small nodes and aqubusinterconnect for

creating entangled state between the nodes. The primary metric chosen is the perfor-

mance of such a system on Shor’s algorithm for factoring large numbers: specifically,

the quantum modular exponentiation step that is the computational bottleneck.

This dissertation introduces a number of optimizations forthe modular exponen-

tiation, including quantum versions of the classical carry-select and conditional-sum

adders, improvements in the modular arithmetic, and a meansfor reducing the amount

of expensive, error-prone quantum computation by increasing the amount of cheaper,

more reliable classical computation. Parallel implementations of these circuits are eval-

uated in detail for two abstract architectural models, one (called AC) which supports

long-distance communication between quantum bits, orqubits, and one which allows

only communication between nearest neighbors in a linear layout (calledNTC). My

algorithms reduce the latency, or circuit depth, to complete the modular exponentiation

of ann-bit number fromO(n3) to O(n log2 n) for AC andO(n2 log n) for NTC. In-

cluding improvements in the constant factors, calculations show that these algorithms

are one million times and thirteen thousand times faster onAC andNTC, respectively,

when factoring a 6,000-bit number. These circuits also reduce the demands on quantum

error correction from∼ 210n4 to ∼ 12n3 log2 n for AC and∼ 3n4 for NTC, potentially

reducing the number of levels of error-correction encodingor allowing execution on

more error-prone hardware.

Extending to the quantum multicomputer, I calculate the performance of several

types of adder circuits for several different hardware configurations. Five different

iii

qubus interconnect topologies and two different node sizesare considered, and two

forms of carry-ripple adder are found to be the fastest for a wide range of performance

parameters. Small nodes (up to five logical qubits) and a linear interconnection network

provide adequate performance; more complex networks are unnecessary untiln reaches

several hundred bits. As node size grows, it is important that the I/O bandwidth of a

node grow, as well, or performance can actually decline despite the overall decrease

in network activity. The links in the quantum multicomputerare serial; parallel links

would provide only very modest improvements in system reliability and performance.

Two levels of the Steane [[23,1,7]] error correction code will adequately protect our

data for factoring a 1,024-bit number even when the qubit teleportation failure rate is

one percent.

iv

Acknowledgements

I had the good fortune to become acquainted very early with

some characters of very high standing, and to feel the incessant

wish that I could even become what they were.

Thomas Jefferson, Autobiography

Many, many people have demonstrated a faith in me that can never be repaid, start-

ing with my parents, who never even suggested, so far as I recall, that there were any

limits to what I could accomplish (despite sometimes overwhelming evidence to the

contrary). (Though, at the same time, I have no recollectionthat they ever suggested I

had a future in the NBA.)

Most especially, I must thank my daughters Sophia and Estherand my wife Mayumi,

who put up with many hours of Daddy being physically present but mentally elsewhere.

My sisters Sheila and Lera for nearly forty years have suffered the indignities and lo-

gistical difficulties of a weird, sartorially challenged older brother who lives thousands

of miles away. To my grandparents, aunts, uncles, cousins and brother-in-law in a large

and close family I also owe an apology for living so far away.

Every life has its cusps, its turning points that forever change you. The biggest was

Caltech, but joining ISI was an unanticipated stroke of fortune. The friends and men-

tors I made in the Caltech and ISI days still carry me forward.Ross Berteig dragged

me to the three most life-changing classes I took at Caltech (Feynman, Ayres, and

Scudder), including the one that led me to ISI. At ISI, I met Wook, and my life would

never be the same in ways beyond enumerating; I owe no one a greater debt. Dale

Chase taught me how to be a good employee and person (and how toplay team vol-

leyball). Andi, Bobo, Brenda, Daryll, Dave, Dennis, Edie, Gabrielle, Grace, Greg,

Harold, Hugo, Irene, Jessica, John, John, Kevin, Kyu, Liralen, Mimi, Michelle, Min,

Myles, Pam, Rick, Ryuji, Sandy, Steve, Suz, Tiger, Yosufi andthe entire CINC-PAC,

WoW, volleyball, Half Moon Bay, Quantum, Nokia, NII, Keio, and Network Alchemy

v

crowds, just for being there (wherever “there” happens to be).

Thanks to Jim Hughes for help on classical cryptography, Reagan Moore for su-

percomputing advice, and the rest of the MSSTC EC for years ofcompanionship and

learning.

Without the support and encouragement of Takashi and Nobunori Shigezaki, Mark

Holzbach and the folks at Asaca and ShibaSoku, and the teaching of Yuko Yamaguchi

at Kichijoji Language School and Misaki-sensei at Keio, Japan would have remained a

remote, foreign land rather than the second home it has become.

When I began working on quantum computing three years ago, I received important

early encouragement from Prof. Kohei Itoh and Eisuke Abe of Keio University, Prof.

Kunihiro of the University of Electro-Communications, Drs. Kawano and Takahashi of

NTT CRL, Prof. Iwama of Kyoto University, Prof. Yamashita ofNAIST, Dave Bacon

of Washington, Mark Oskin of Washington, and Dr. Yamaguchi of Stanford. Professors

Yoshi Yamamoto, Seth Lloyd, Isaac Chuang, Andrew Steane, Mio Murao, Hiroshi Imai,

Seigo Tarucha and Akira Furusawa, and Yasunobu Nakamura andJ.W. Tsai of NEC,

and many researchers at NTT provided access to their labs andstudents, without which

I would never understand how to actually build a quantum computer. Prof. Yamamoto

and the others who created and staffed the summer schools in Okinawa and Kochi not

only taught me but brought me into their community. I look forward to deepening

collaborations with all of you over the coming years.

Although my name goes on the thesis, my coauthors on the half-dozen papers that

are incorporated deserve much of the credit: Kohei Itoh, Mark Oskin, Thaddeus Ladd,

Kae Nemoto, and Bill Munro. Thaddeus gets a special call out for writing advice as

well as teaching me physics. Joe Touch, Ted Faber, Bill Manning and Nick Burke all

read (sometimes awful) drafts of various papers and provided other important support.

Kevin Binkley’s stochastic engine, especially the geneticalgorithms, provided insight

into optimization problems that remain open. Suzanne and Bob Diller get credit for

cogent advice on the title and abstract of my dissertation, as well as providing years of

friendship. Michael Cohen and Prof. Sagawa of Aizu-Wakamatsu and Prof. Jun Murai,

Ryuji Wakikawa and Shoko Mikawa at the School of Internet ASIA Project provided

teaching opportunities which turned into wonderful learning experiences for me. Chip

Elliott and others at BBN have provided important encouragement, as well.

The music of Tatopani, Billy Higgins, John Coltrane, Louis Armstrong, King Crim-

son, Kodo, and a plethora of others kept me sane. Surprisingly, we have no favorite chef

vi

in this country (our favorite anywhere is Jose Luis Ugalde ofCafe Gibraltar), but ev-

eryone who has fed me startling and wonderful meals – you keepme going.

Without the cooking and baby-sitting of the indomitable Kazuko Arai, this thesis

would have taken a decade to complete, if it ever got done at all.

This work was supported in part by Ken Adelman and Dave Kashtan under the

Network Alchemy basic research funding plan, and by CREST-JST. Kae Nemoto also

provided funding for travel and a desk at NII. Karl and Pattieand Danner and Jenny put

me up in Cambridge.

This thesis was created using 100% free software. Thanks to the creators of Linux,

X, TEXand LATEX, GNU Emacs, xfig, dia, POVray, maxima/MACSYMA, octave, gnu-

plot, bison, flex, gcc, and more — and, in some cases, to the researchers on whose work

these tools are founded, though the code base has changed. And thanks to the creators of

the arXiv, scholar.google.com, researchindex.org, and citebase, without which I would

have missed much important research, and probably been forced to recreate it poorly

and tediously on my own.

I thank Y. Nakamura, T. Yamamoto, D. Wineland, and K. M. Itoh for the figures.

Thanks to all of the patient physicists who have put up with myslowness, including

Viv Kendon for help with Shor’s algorithm.

I have had, in effect, four advisers: Fumio Teraoka in computer networking, Kohei

Itoh in experimental physics, and Kae Nemoto and Bill Munro in theoretical physics.

All four have been oustanding. Kae worked harder on reviewing this dissertation than

anyone else; it would not be as clear and correct without her.Bill is the one personnot

on my committee without whom this technical work could not have been done. Thanks.

Thanks to Profs. Amano and Yamasaki, my other commitee members. I have also had

six godfathers and mentors: Wook, Darrell Long, Paul Mockapetris, Jun Murai, Rick

Carlson, and Bob Hinden. Without your advice and encouragement, I wouldn’t be

finishing a doctorate in such a challenging and fascinating subject.

vii

viii

Contents

Abstract iii

Acknowledgements v

Table of Contents ix

List of Tables xv

List of Figures xvii

1 Introduction 3

1.1 Computing Frontiers: Why Study Quantum? 4

1.2 Defining Quantum Computer Architecture 6

1.3 The Quantum Multicomputer . 7

1.4 This Dissertation . 9

1.4.1 Contributions . 11

1.4.2 Contents and Structure . 13

1.4.3 How to Read This Dissertation 14

1.5 What We’re Not Going to Talk About 14

1.6 Summary . 16

2 Reversible and Quantum Computation 18

2.1 Reversible Classical Computation 18

2.1.1 History and Importance . 19

2.1.2 Two-Bit Gates . 20

2.1.3 Three-Bit Gates: Toffoli and Fredkin21

2.1.4 Ancilla Management . 22

2.2 Introduction to Quantum Computing 24

ix

2.2.1 Notation and a Few Linear Algebra Notes 25

2.2.2 Schrödinger’s Equation . 26

2.2.3 Qubits . 27

2.2.4 Manipulating Qubits . 34

2.2.5 DiVincenzo’s Criteria . 41

2.2.6 Quantum Algorithms . 43

2.2.7 Distributed Quantum Computation 45

2.3 Error Management in Quantum Computers46

2.3.1 Error Models . 47

2.3.2 Quantum Error Correction Codes 48

2.3.3 Fault Tolerance . 53

2.3.4 Threshold Calculations and Concatenation 53

2.3.5 Why QEC Suppresses Over-Rotation Errors55

2.3.6 Other Error-Suppression Techniques 57

2.4 Summary . 58

3 Shor’s Algorithm for Factoring Large Numbers 60

3.1 The Importance of Factoring . 61

3.2 Historical Progress in Factoring 62

3.3 The Quantum Fourier Transform . 64

3.4 Prior Art in Quantum Adders . 66

3.4.1 Arithmetic Performance Notation 67

3.4.2 Linear-Time Adders . 67

3.4.3 O(logn) Adders . 71

3.4.4 Ultimate Limits on Performance of Addition 73

3.4.5 Summary . 74

3.5 Quantum Modular Exponentiation .75

3.5.1 VBE, BCDP and Others . 76

3.5.2 Cleve-Watrous Parallel Multiplication 77

3.5.3 Schönhage-Strassen . 79

3.6 Shor’s Algorithm . 79

3.7 Summary . 81

4 Taxonomy of Quantum Computing Technologies 83

4.1 Taxonomy Framework . 83

x

4.1.1 Basic Features . 83

4.1.2 Algorithmic Efficiency Features 85

4.1.3 Time and Gate Characteristics 87

4.1.4 Other Features . 89

4.1.5 Manufacturing and Operating Environment 90

4.2 Quantum Technologies . 92

4.2.1 Solution NMR . 92

4.2.2 Josephson Junction . 98

4.2.3 All-Silicon NMR . 100

4.2.4 Scalable Ion Trap . 101

4.2.5 All-Optical . 102

4.2.6 Quantum Dot . 102

4.2.7 Kane Solid-State NMR . 104

4.2.8 Optical Lattice . 105

4.3 Summary . 106

5 Networking 107

5.1 Qubus Entanglement Protocols .107

5.2 Teleportation . 110

5.2.1 Teleporting Data . 111

5.2.2 Teleporting Gates . 112

5.3 Multicomputer Networks . 113

5.4 Summary . 116

6 Performance of Large-Scale Systems 118

6.1 Managing Performance . 119

6.1.1 Error Correction, Architecture, and Clock Speed 121

6.1.2 AC andNTC Architectural Models 122

6.1.3 Notation . 123

6.2 Trading Classical for Quantum Computation 124

6.2.1 Introduction . 125

6.2.2 Indirection . 126

6.2.3 Theb Array . 126

6.2.4 The Algorithm . 130

6.2.5 Evaluating Cost and Selecting Word Length 130

xi

6.3 New Adder Types . 132

6.3.1 Basic Carry-Select Adder . 133

6.3.2 O(
√
n) Carry-Select Adder 135

6.3.3 O(logn) Conditional Sum Adder 136

6.3.4 Summary . 138

6.4 Monolithic Shor Performance .138

6.4.1 Mapping Adders to Architectures 140

6.4.2 Acceleration . 142

6.4.3 Example: Exponentiating a 128-bit Number 145

6.4.4 Asymptotic Behavior . 148

6.4.5 Results . 150

6.4.6 Error Correction Needs . 152

6.5 Summary . 154

7 The Quantum Multicomputer 156

7.1 System Overview . 156

7.2 An Engineer’s Definition of Scalability 157

7.2.1 Economics . 158

7.2.2 Infrastructure Needs . 158

7.2.3 Performance . 159

7.2.4 Single-Device Physical Limitations 160

7.3 System Overview . 161

7.3.1 Hardware Overview . 161

7.3.2 Node Architecture . 162

7.3.3 Network Topologies . 165

7.3.4 Software . 165

7.3.5 Summary . 167

7.4 Distributed QEC and Bus Design . 168

7.4.1 Distributed Logical Zeroes . 169

7.4.2 Distributed Data . 170

7.4.3 Implications for Link Design 175

7.4.4 Summary . 177

7.5 Distributed Form of Shor’s Algorithm 178

7.5.1 Algorithm . 179

7.5.2 Performance . 182

xii

7.6 Summary . 191

8 Conclusion 193

8.1 Complete Performance Estimates .. 195

8.2 Future Work . 197

8.3 Prospects . 199

8.4 Final Words . 201

A Glossary 202

B List of Papers and Presentations 205

Bibliography 208

xiii

xiv

List of Tables

2.1 CNOT truth table. 21

2.2 CCNOT (Toffoli gate) truth table. 22

2.3 Control-SWAP (Fredkin gate) truth table. 22

2.4 Erasing ancillae. 24

3.1 Transform values of the coefficients in the QFT. 65

3.2 Transform of different offsets into phase via the QFT. 66

4.1 Qubit technology basic characteristics 93

4.2 Features affecting algorithm efficiency 94

4.3 Clock speed and gate characteristics 95

4.4 Other Features . 96

4.5 Manufacturing and operating environment 97

5.1 Some common interconnect topologies. 114

6.1 Qubit technologies and recommended choice of adder 141

6.2 Parameters for our algorithms, chosen for 128 bits 145

6.3 Latency to factor a 128-bit number 146

6.4 ApproximateKQ for some different adder circuits 152

6.5 ApproximateKQ for complete modular exponentiation circuits 154

7.1 Characteristics of our five network topologies. 166

7.2 Strawman system summary . 167

7.3 Number of teleportations necessary for modular exponentiation 169

7.4 Breakpoints for the Steane [[7,1,3]] code 171

7.5 An estimate of the necessary teleportation error rate 174

7.6 Estimate of adder latency using monolithic teleportation blocks 185

7.7 Estimated latency for adders using decomposed teleportation blocks . . 187

xv

8.1 Number of teleportations and adder calls for modular exponentiation . . 195

8.2 Estimated time to complete distributed modular exponentiation 196

xvi

List of Figures

1.1 Quantum computer architecture .8

1.2 High-level quantum multicomputer block diagram 10

1.3 Current subsystem status . 11

2.1 Reversible gates . 23

2.2 The Bloch sphere. 28

2.3 Basic quantum gates . 36

2.4 OurCCNOT construction . 41

2.5 Error propagation in two-qubit gates. 48

2.6 Parity measurement for quantum error correction. 49

2.7 Circuit to create the|0L〉 state for the Steane [[7,1,3]] code. 52

2.8 Fault-tolerant error syndrome measurement algorithm.. 54

3.1 Length of factored RSA Challenge numbers 63

3.2 Scaling of number field sieve . 64

3.3 An eight-bit VBE adder. 69

3.4 Building blocks for the CDKM adder.71

3.5 An eight-bit CDKM adder. 72

3.6 An eight-bit carry-lookahead adder. 73

3.7 Concurrent modular multiplication 78

3.8 Cleve-Watrous parallel multiplication 78

4.1 A pair of coupled Josephson-junction charge qubits 99

4.2 Schematic of the all-silicon NMR computer 100

4.3 A six-zone ion trap . 103

5.1 Physical configuration of a qubus. 108

5.2 Phase space diagram of the qubus entanglement protocol.. 109

5.3 Logical equivalent of the qubus entanglement protocol.. 109

xvii

5.4 Teleporting a single qubit. .111

5.5 A teleported control-NOT (CNOT) gate. 113

5.6 Five important interconnect network topologies. 115

6.1 CCNOT constructions for our architecturesAC andNTC 123

6.2 Quantum-Addressable Classical Memory (QACM) 127

6.3 3-bit Quantum Select Circuit (Q-SEL) 128

6.4 Implicit indirection using a classical memory 129

6.5 Argument setting for indirection for different values of w 129

6.6 Multiplication Using Indirection, Based on Vedral’s Circuit 131

6.7 Total Cost . 131

6.8 Three-bit carry-select adder (CSLA) with multiplexer (MUX) 134

6.9 In-place post-select circuit .. . 135

6.10 Block-level diagram of four-group carry-select adder. 135

6.11 O(logn) MUX for conditional-sum adder 137

6.12 Scaling of number field sieve .139

6.13 Optimized, concurrent three bit VBE ADDER forNTC 141

6.14 More efficient modulo adder . 144

6.15 Execution time for our algorithms for space100n 148

6.16 Execution time v. space for our algorithms for 128 bits 149

6.17 Scaling of number field sieve (NFS) and Shor’s algorithms 151

6.18 Cleve-Watrous parallel multiplication 153

7.1 The five physical topologies analyzed in this thesis. 166

7.2 Distributed circuit to create the|0L〉 state for the Steane [[7,1,3]] code. . 171

7.3 Teleporting logical state using local QEC only 172

7.4 Teleporting logical state using intermediate, teledata distributed QEC. . 175

7.5 Local QEC only, no intermediate QEC, serial interface. 176

7.6 Details of a distributed 2-qubit VBE adder 180

7.7 Visual approach to determining cost for distributed VBEadder 181

7.8 Visual approach to determining cost for distributed CDKM adder 182

7.9 (Telegate) Performance of different adders on three different networks . 189

7.10 (Teledata) Performance of different adders on three different networks . 190

7.11 (Teledata) CDKM+line to carry-lookahead+2fully comparison 191

xviii

For my family

Chapter 1

Introduction

We are just started on a great venture.

Dwight Eisenhower, November 1942

The designer usually finds himself floundering in a sea of possi-

bilities, unclear about how one choice will limit his freedom to make

other choices, or affect the size and performance of the entire sys-

tem. There probably isn’t a ‘best’ way to build the system, or even

any major part of it; much more important is to avoid choosing a

terrible way, and to have clear division of responsibilities among the

parts.

I have designed and built a number of computer systems, some

that worked and some that didn’t.

Butler Lampson, “Hints for Computer System Design” [199]

As VLSI features continue to shrink, computers that depend on quantum mechan-

ical effects to operate are inevitable; indeed, quantum effects are predicted to affect

device behavior within a decade [236, 226, 51, 152, 110, 53].The fundamental archi-

tectural issue in these future systems is whether they will attempt to hide this quantum

substrate beneath a veneer of classical digital logic, or will expose quantum effects to

the programmer, opening up the possibilities of dramatic increases in computational

power [114, 94, 93, 39, 42, 296, 135, 3, 211, 248].

Small and unreliable they are, but quantum computers of up toa dozen nuclear

spins [243] and eight ions [139] exist. In these machines, the spin state of an atomic

nucleus or the energy level of an ion can represent a quantum bit, or qubit, the smallest

3

4 CHAPTER 1. INTRODUCTION

unit of quantum information. The three most famous quantum algorithms are Deutsch-

Jozsa [94], Grover’s search [135], and Shor’s factoring [296]. All three of these algo-

rithms have been experimentally implemented for small-scale problems [161, 76, 74,

174, 330, 339, 340, 138]. A further extremely broad range of experiments has demon-

strated numerous building blocks [347, 33, 313, 181, 239, 70, 268, 164] based on the

one- and two-qubit technology demonstrations we will see inChapter 4. Although

many theoretical and practical questions remain open, it seems reasonable to assert that

implementation of quantum computation is on the verge of moving from a scientific

problem to an engineering one. It is now time to ask what wecan build, and what

we shouldbuild. Various computer architecture researchers have begun investigating

the former question, working from the bottom up [84, 155, 256, 255, 324, 154]; this

dissertation and the related papers address the latter question, working from the top

down [334, 337, 336, 332, 333, 335].

1.1 Computing Frontiers: Why Study Quantum?

Why should computer engineers study quantum computation, and why now? Certainly

the field of classical computer architecture is not moribund, and offers far more imme-

diate impact for much less intellectual risk. Work that increases parallelism, reduces

power consumption, improves I/O performance, increases gate speed or reduces data

propagation delays is much more likely to be used in the real world, and far sooner than

quantum technologies. Intel began sampling a billion-transistor microprocessor chip

in October 2005, a 580 square-millimeter chip built in a 90 nanometer process. Some

researchers consider integration levels of a trillion transistors per silicon chip possi-

ble [228], though we are hardly done digesting the implications of a billion transistors

on a chip [262, 190, 61]. Clearly there is room on-chip for many architectural advances.

Ubiquitous computing, sensor networks, augmented reality, and mobile systems will

no doubt be among the most transformative technologies of the coming decades, rel-

egating today’s 3G Internet-connected mobile phones to thestatus of Neolithic stone

adzes [278]. In “back end” systems, continued research on computational grids and

storage are critical. Among computing exotica, electricalcircuits fabricated with nan-

otechnology [363, 36, 220, 322, 284], DNA computing [10], and amorphous computing

are all other possible fields of pursuit [6]. So, why quantum?

1.1. COMPUTING FRONTIERS: WHY STUDY QUANTUM? 5

Different researchers have different reasons for studyingquantum computing. Physi-

cists are learning fundamental facts about the quantum behavior of both individual par-

ticles and mesoscopic systems. Theoretical computer scientists are finding many fasci-

nating new questions (and answering some of them). But to a computer systems person,

quantum computation is about one thing:the pursuit of performance. If practical large-

scale quantum computers can be built, we may be able to solve important problems that

are classically intractable. Potential applications include cryptographically important

functions such as factoring, which appears to offer a superpolynomial speedup, and

scientifically important problems such as simulations of many-body quantum systems,

which may offer exponential speedup, though recent questions have been raised about

whether exponential speedup is achievable as the desired error bound is tightened [58].

Quantum computers therefore hold out the possibility of notjust Moore’s Law increases

in speed, but a change in computational complexity class andconsequent acceleration

on these, and possibly other, problems.

I will not directly address criticisms of the possibility ofquantum computation [104,

169], except to note that my response is different from that of Aaronson, who is excited

by the inherent beauty and theoretical importance of quantum mechanics while search-

ing for the ultimate limits to computation [3]. I, too, admire these factors, but more

importantly I believe it is inevitable, as silicon devices continue to scale down in size,

that we will have to deal with quantum effects. Many researchers are directing their

efforts at mitigating these effects; in my opinion, we will do better by embracing them,

even if “quantum computing” ultimately proves to have no computational advantage

over classical.

Studying quantum computing indirectly benefits classical systems, as well. Quan-

tum effects are being explored for direct exploitation as classical logic, for example, the

recent work on magnetic quantum dot cellular automata [153]. Plasmonics, the study of

electromagnetic waves propagating in the surface of a material, is developing rapidly,

and might offer improvements in how we move data within classical chips [258]. More

broadly, the whole area calledspintronics, directly or indirectly manipulating the spin

of small numbers of electrons, is already having an impact through the creation of tech-

nologies such as magnetic RAM (MRAM) [329, 351]. Quantum computers depend

on, and have served as an impetus for developing, thermodynamically reversible com-

puting. It has been suggested that classical computers mustemploy reversible logic

to exceed1022 floating point operations per second (10 zettaFLOPS) [91]. Quantum

computation serves as an excellent training ground for engineers destined to work in

6 CHAPTER 1. INTRODUCTION

these areas, as well as providing both fundamental and practical results that influence

the technological development of these areas.

My analogy is to the field of robotics. It has been more than eighty years since the

original use of the termrobot to mean an autonomous, mechanical humanoid (though

the idea goes back to antiquity) [65], and several decades since the debut of robotics as a

respectable field of inquiry. Yet the humanoid robots of science fiction do not roam the

streets of Tokyo in the first decade of the twenty-first century. This does not mean that

robotics as a field has been barren; indeed, robots dominate many forms of manufac-

turing, and related technologies spun off from robotics research are nearly ubiquitous.

Robotics depends on, and serves as an impetus for, research as diverse as computer

vision, speech recognition, fuzzy logic, virtual reality,and many mechanical advances.

The road to development has been long, and the results to datelook nothing like what

mid-twentieth century science fiction writers such as IsaacAsimov anticipated [22], but

the results have been extremely valuable nonetheless. So I expect it to be with quantum

computing.

1.2 Defining Quantum Computer Architecture

Quantum computer architectureis an emerging field, spanning the gap between device

physics and algorithms. If large-scale quantum computers are to be built, an overall

structural plan must be established; we refer to this plan asthe machine architecture

of the quantum computer. Figure 1.1 shows a representation of the relationship among

some subfields of quantum computing, and which subfields are part of the broader area

of quantum computer architecture. I include in this field essentially everything above

device physics up to the design and performance analysis of machines for specific algo-

rithms. The component which has (rightly) been the focus of the most work to date has

been quantum error correction, though effective high-level structures (including physi-

cal connection topologies), control structures, efficientalgorithm implementation, and

performance analysis are all receiving increased attention. Quantum computer archi-

tecture can draw heavily on classical computer architecture, but presents a number of

unique challenges.

In most quantum computing technologies, a qubit is the stateof a physical device,

more like the state of a flip-flop than a signal propagating through a circuit. Qubits that

are physically far apart cannot directly interact, so data must be shuffled from place to

place as they are required to interact with other qubits. Architects and compiler writers

1.3. THE QUANTUM MULTICOMPUTER 7

must cooperate to make this shuffling as efficient as possible. In the figure this topic is

represented as “interconnection technologies and topologies”. Solutions to this kind of

data transport problem form one of the key themes of this thesis.

Although they are not explicitly represented in the figure, quantum programming

languages and compilers, designed for programming quantumcomputers, can be viewed

as the interstitial glue that holds the whole system together [128]. Quantum programs

are executed classically, and must be able to manipulate both quantum and classical

data, and make branch and loop decisions based on classical data. The ability to look

at quantum data during program execution is extremely limited, as we will see when

we discuss measurement in Section 2.2.3; the operations on the quantum data are per-

formed more or less blind, without examining the data itself. In this sense, program-

ming a quantum computer is like programming a Connection Machine or systolic array,

though the analogy between qubit and CM processor is weak [312].

Because quantum computer architecture is a young field, manyissues have not yet

been addressed in the depth required to evaluate design choices. Often clock speed

and other architectural features are ignored as issues in quantum computing devices,

assuming that the quantum speed-up will dominate, making quantum algorithms prac-

tical on any physically realizable quantum computer. However, this is not necessarily

so. For example, Shor’s factoring algorithm runs in polynomial time and resources, but

the details of the polynomial matter: what degree is the polynomial, and what are the

constant factors? How much parallelism can be extracted from both the hardware and

software to reduce the wall-clock time consumed? All of these issues are of concern to

architects.

Some of these issues are attacked in this thesis. We will see others in Section 8.2,

on future work, at the end of the dissertation.

1.3 The Quantum Multicomputer

My thesis is the design of aquantum multicomputer. Any single, monolithic quantum

computer will have an ultimate limit to its storage capacityand performance. Borrow-

ing from classical multicomputer design and building on thefoundations of distributed

quantum computation that have been laid, these limitationscan be overcome. This dis-

sertation describes the architecture of a system suitable for running highly optimized

forms of Shor’s factoring algorithm, and examines the scaling of the performance from

sixteen to 1,024 nodes. This broad range of sizes allows us tosee clearly the important

8 CHAPTER 1. INTRODUCTION

Figure 1.1: Quantum computer architecture among some subfields of quantum compu-
tation.

1.4. THIS DISSERTATION 9

inflection points in behavior as the system scales up, endingat a performance point well

above the capabilities of classical systems.

A high-level block diagram of the hardware is shown in Figure1.2. Like all pro-

posed quantum computers, it is actually a hybrid quantum-classical system, and to

achieve performance balance the classical portion will be coupled to a supercomputer-

class machine. The classical front end is responsible for overall coordination, download

of programs and final upload of data, but has only a loose role in the execution of a pro-

gram. The nodes perform the actual computation. Each node consists of two halves, the

quantum part (Qnode), which holds the quantum data, and the classical part (Cnode),

which contains the real-time measurement and control circuitry (including program ex-

ecution) for the quantum device. There are two real-time interconnects, one classical

and one quantum; the quantum interconnect is based on thequbusapproach for its link

technology [303, 237]. These interconnects may be switched, node-to-node direct, or

shared; a major portion of this thesis is analysis of the traffic on the qubus-based quan-

tum interconnect for different possible topologies. We will not address the classical

portions of the system, except that classical communication and instruction execution

are implicitly included in our timing estimates.

A well-designed architecture can outlive the technological environment in which it

was originally created. However, some constraints are necessary as we discuss the ini-

tial implementation target, or we are left adrift on Lampson’s Sea. I have chosen a solid-

state qubit technology, such as Josephson-junction qubits(described in Sec. 4.2.2), as

a basis on which to build. Very, very roughly, I have chosen tolimit the estimated

production cost to one hundred million U.S. dollars, and thesize of the system to one

hundred meters square of floor space.

1.4 This Dissertation

The quantum multicomputer consists of three primary subsystems: the quantum com-

putational node hardware, the quantum interconnect hardware, and the software to run

on the system. The status of some of these subsystems is represented in Figure 1.3.

Node hardware is not a primary focus of this thesis; we leave it to other researchers

to meet the hardware requirements outlined in Chapter 7.1. Interconnect hardware

consists of basic link technologies and the manner of assembling a complete system,

namely the topology and any necessary lower-level switching mechanisms; finding an

appropriate topology is one of the primary contributions ofthis thesis. Finally, although

10 CHAPTER 1. INTRODUCTION

non−real−time classical interconnect

classical front end

real−time classical interconnect

qubus quantum interconnect

Cnode

Qnode

Cnode

Qnode

Cnode

Qnode...
... ...

...

Figure 1.2: High-level quantum multicomputer block diagram. Dashed lines are non-
real-time communication; solid lines are real-time communication, either classical (thin
lines) or quantum (thick lines). Cnode, classical node; Qnode, quantum node.

1.4. THIS DISSERTATION 11

Figure 1.3: The status, or relative maturity level, of various subsystems within the
quantum multicomputer. QFT, quantum Fourier transform; theo, theory; des, design;
impl, implementation.

the arithmetic and quantum Fourier transform (QFT) algorithms that make up Shor’s

factoring algorithm have been described at a high level, we make significant advances

in the former in this thesis. Although this thesis makes someprogress on distributed

quantum error correction (QEC), I believe this is very much an open problem, so it is

marked with both symbols in the figure.

1.4.1 Contributions

The primary contribution of this thesis is the architectureof a quantum multicomputer.

To validate design choices, a target workload of Shor’s algorithm for factoring large

numbers is used. This validation entails analysis and optimization of the performance

of arithmetic, especially adders, on both monolithic and multicomputer quantum sys-

tems. I have designed new types of reversible adder circuits, analyzed the parallelism

available in Shor’s algorithm, optimized Shor’s algorithm, and mapped it to various ar-

chitectures, following through with performance analysisfor two monolithic machine

types and a variety of adder circuits. From there, I extend toa multicomputer. I define

the capabilities necessary for a node. Detailed analysis shows that the interconnect links

may be serial, rather than parallel, and that a linear network topology will be adequate

12 CHAPTER 1. INTRODUCTION

into the high hundreds of nodes, when a switched network becomes more appropriate.

The performance is analyzed assuming nodes are built on high-speed solid-state qubits,

and the performance is found to be good. Finally, I investigate very loosely the prac-

tical constraints on the construction of such a system, including cooling, floor space,

packaging, interconnects, control equipment, and economics.

In summary, the contributions of this thesis are:

• Fast, architecturally realistic quantum modular exponentiation algorithms.

– Based on known and new principles, improvements in both asymptotic per-

formance and constant factors in the time required for modular exponen-

tiation. To factor a 6,000-bit number, for example, the performance im-

provement ranges from 13,000 times to one million times, depending on ar-

chitecture, compared to the previous best-known algorithm. The asymptotic

performance (circuit depth, or latency) improves fromO(n3) toO(n2 log n)

orO(n log2 n), again depending on architecture.

– A classical/quantum tradeoff that reduces the number of quantum gates that

must be performed.

– New square root-depth and logarithmic-depth adder circuits, used in some

forms of my modular exponentiation algorithms.

– Analysis of the demands of arithmetic circuits on the strength of quantum

error correction, showing that my new algorithms are substantially less de-

manding, and hence have higher probability of success and/or can be exe-

cuting using weaker QEC.

– A proposedarchitecturaltaxonomy of qubit technologies, complementary

to the DiVincenzo criteria that establish minimal necessary functionality.

– The most detailed architectural performance analysis to date.

• Architecture of a quantum multicomputer.

– Analysis of performance of adder circuits on various network topologies

showing that a linear network is adequate up to moderately large problem

sizes.

– Design of link transfer protocols based on quantum teleportation and QEC,

establishing that serial links perform adequately.

1.4. THIS DISSERTATION 13

– Delineation of required traits for the computational nodes.

– A high-level analysis of the overall system requirements, including floor

space and economics, assuming a solid-state qubit technology.

1.4.2 Contents and Structure

This dissertation is divided into eight chapters. The first and last are the overview and

conclusions, respectively. Chapter 2 consists primarily of a review of existing classical

and quantum material. Chapter 3 presents Shor’s algorithm.Chapter 4, the taxonomy

of quantum technologies, reviews the work of experimentalists, but the structure of

the taxonomy is original. Chapter 6 describes my contributions to understanding and

improving the performance of the modular exponentiation for Shor’s algorithm, and

Chapter 7 describes the architecture and performance of my quantum multicomputer.

Sections 2.1 and 2.2 introduce the fundamental concepts of reversible classical

and quantum computation, including the graphical and mathematical notations used

throughout this dissertation. Chapter 3 describes the quantum portions of Shor’s al-

gorithm for factoring large numbers, including adder circuits developed by various re-

searchers over the last decade to support Shor’s algorithm.The taxonomy in Chapter 4

describes existing experimental approaches to quantum computing developed in many

research organizations; I attempt to extract common themesin these technologies and

organize the information so that it is possible to determinethe architectural promise of

each technology. Chapter 5 is a quick sketch of the mechanisms we need for transfer-

ring data in our quantum multicomputer: the qubus approach to creating entanglement,

quantum teleportation, and the classical concepts of multicomputer networks.

The first section of Chapter 6 addresses the practical implications of scalability for

large quantum computing systems, including such mundane issues as economics and

floor space. The rest of the chapter details the mapping of theentire quantum mod-

ular exponentiation necessary for Shor’s algorithm to abstract quantum architectures.

Section 6.1 describes the management of performance, introducing theAC and NTC

architectural models and our performance notation and summarizing the techniques

presented in the following material. Section 6.2 accelerates the quantum portion of the

algorithm in exchange for more onerous classical computation. Section 6.3 details two

new reversible quantum adder algorithms, theO(
√
n)-depth carry-select andO(logn)-

depth conditional sum circuits. Section 6.4 brings all of the techniques together and

shows overall performance speedups for both architecturalmodels.

14 CHAPTER 1. INTRODUCTION

Chapter 7 advances the state of the art in distributed quantum computation by cre-

ating specific hardware models and performance estimates for the quantum multicom-

puter, starting with a system overview. Section 7.4 covers the distributed form of quan-

tum error correction and its impact on link design, and showsthat serial links are ac-

ceptable. Finally, Section 7.5 brings us to the goal of analyzing the behavior of Shor’s

algorithm on realistic hardware models.

A small glossary is provided as Appendix A.

1.4.3 How to Read This Dissertation

The primary target audience of this dissertation is computer systems researchers with

little or no prior background in quantum computing. As such,the mathematics are

limited and informal, but heavy on examples. Systems researchers will probably benefit

most from reading the dissertation linearly from beginningto end.

Physicists who are already familiar with quantum computingmay want to skip most

of Chapters 2 and 3, though they may find enough new tidbits in Section 2.1 to repay

the time invested. Such readers may be less familiar with some of the concepts in

Section 3.4 and Chapter 5, and are encouraged to skim Chapter4 for some insight into

the technology issues that matter to a system architect.

For those readers interested in only the major results, besides the overview and

conclusion chapters, the most important sections are 6.4, 6.3, 6.2, and especially 7.5.

1.5 What We’re Not Going to Talk About

Quantum information processing (QIP), despite its youth, is already a very broad field,

and there are many important and fascinating topics that I amnot going to present in

this dissertation. This section merely identifies a few for completeness, and provides

some pointers to further literature for those whose curiosity is piqued by this disser-

tation. Readers interested in more depth are referred first to popular [349, 245] and

technical [248, 177, 126, 273] texts on the subject.

Probably the most important area not addressed is computational complexity. Com-

puter science theorists are rapidly advancing our understanding of what quantum com-

puters are, and are not, capable of computing efficiently [42, 354, 48, 2, 3]. This re-

search is also advancing our knowledge of classical computational complexity, and has

the potential to ultimately shed light on the fundamentalP
?
= NP question.

1.5. WHAT WE’RE NOT GOING TO TALK ABOUT 15

Feynman originally conceived of a quantum computer as a device for quantum sim-

ulation [114, 211, 50, 7, 63, 58, 23]. Quantum simulation mayvery well be the first

production use of quantum computing technology. However, it bears less resemblance

to a general-purpose, programmable machine derived from known classical architec-

tural principles, which is my goal in this thesis.

Other important algorithms besides Shor’s factoring algorithm have been devel-

oped. The first quantum algorithm invented was Deutsch-Jozsa, which can determine

whether a function isconstant(returns the same value for all inputs) orbalanced(re-

turns zero for half of its inputs and one for the other half), using only a single call

to the function [94]. Grover’s search algorithm can search an unstructured space of

N possibilities inO(
√
N) time. It is sometimes referred to asamplitude amplifica-

tion and has been found to be useful for quantum counting, and as a wrapper for other

algorithms [135, 137, 55]. Although they are important, we will not delve into Si-

mon’s algorithm [299], Hallgren’s [143], or the fascinating topic of quantum random

walks [13, 166].

Quantum networking, especially as typified by quantum key distribution, is a vital

and fascinating area, and the only area of QIP in which products are already avail-

able [108, 261, 44]. Dense coding is also a clever and important idea by Bennett and

Wiesner [223, 47] which essentially allows one system to “presend” half of the bits in

a message to its partnerbeforecomputing the data. Many researchers have worked on

various aspects of quantum information theory, including quantum channel capacities

analogous to Shannon’s capacity for a classical channel. The last third of Nielsen and

Chuang deals with this topic, including derivation of quantum error correction from

this point of view [248].

Perhaps the most interesting advance in quantum computing theory in recent years

is the development ofcluster state computing, or one-way computing[277, 246]. We

refer to cluster state occasionally in this dissertation, but will not have the space to deal

seriously with it.

Researchers have begun designing programming languages for quantum comput-

ers [254], and several workshops have been held. Gay’s survey and extensive bibliog-

raphy is a good place to start studying this topic [128].

All of the quantum computers being seriously discussed today are essentially hybrid

computers: some of the data is quantum, but other data and allof the program are classi-

cal. We will confine ourselves to such systems for this thesis, though some researchers

have investigated the next advance in quantum computer architecture: truequantum

16 CHAPTER 1. INTRODUCTION

programs, leading to a quantum instruction set architecture (ISA) [247, 149, 264, 282].

Quantum games [231, 106], quantum computing through wormholes [27] and rel-

ativistically accelerated devices [275], and the amount ofcomputation that can be per-

formed by given amounts of matter [212] or even the Universe as a whole [213] are

mind-boggling ideas. We are not discussing quantum cellular automata (QCA) or quan-

tum Turing machines [39, 93, 126], despite their importance(quantum wires and the

original Lloyd model of a quantum computer are forms of QCA [210, 256]). We are

not going into any significant detail on entanglement theory. We are also not going to

discuss qutrits, or continuous quantum variables (qunats).

And, of course, even in a work the length of a thesis it is impossible to go into any

topic in the depth it truly deserves; the device technologies we discuss in Chapter 4

are but a few of the dozens of proposed and even instantiated types. In addition to the

taxonomy and references in this dissertation, I recommend the ARDA road map for its

breadth [20] and Chapter 7 of Nielsen and Chuang for its clarity of exposition [248].

1.6 Summary

The fundamental principles of small-scale quantum computing have been demonstrated

experimentally, and matching theory is progressing nicely, though both have plenty of

challenges ahead. What has been much less clear is whether truly scalable systems can

be built; indeed, the real-world feasibility of creating entanglement across thousands of

qubits remains very much open to question. Distributed quantum computation is one

possible way to overcome the limitations of an individual quantum computer. The basic

idea of distributed quantum computation is straightforward, but detailed analysis of its

implementation has been lacking: what hardware will it run well on, under what con-

ditions is it robust, and can it bring improvements in both qubit storage capacity and

algorithmic performance? This thesis clarifies these issues. The quantum multicom-

puter framework, like a good classical architecture, has the potential to far outlive the

technological environment in which it was originally conceived. Ladd has speculated

that production quantum computers are likely to be built on technologies which have

not yet been invented; the principles outlined here will apply even in that eventuality.

Before we can demonstrate that the quantum multicomputer has acceptable perfor-

mance and reliability for large but finite problems, we must evaluate and optimize the

proposed workload. Prior even to that, we begin by investigating the foundations of

classical reversible and quantum computation. The road to aworking, useful, reliable,

1.6. SUMMARY 17

economically viable quantum computer is long, dangerous, and in large measure un-

known, but, like Hokusai’s stages of the Tokaido, the sightsand stops along the way

are beautiful, fascinating and important. In the next chapter, we take the first step.

Chapter 2

Reversible and Quantum Computation

“[A civilized man] can go up against gravitation in a balloon, and

why should he not hope that ultimately he may be able to stop or

accelerate his drift along the Time-Dimension, or even turn about

and travel the other way?”

The Time Traveler, in H.G. Wells’ The Time Machine, 1895

In good time, as it were, we will come to our performance analysis of the arith-

metic necessary to run Shor’s algorithm for factoring largenumbers, and ourquantum

multicomputerarchitecture designed to run the algorithm. Let us begin prior to the

genesis of quantum computation, with the development ofreversible computing. Gates

in quantum computation depend on concepts developed for reversible classical com-

puting, which is sometimes also called “conservative logic”. Once we understand the

basics of reversible classical computation, it will be easier to understand the circuits

and algorithms for quantum computation presented in the second and third parts of

this chapter, first the basic principles of quantum computing then the major topic of

quantum error correction.

2.1 Reversible Classical Computation

In a reversible computation, it is possible to recover the complete initial state of the

system having only the final state. ANOT gate, for example, is reversible; applying a

secondNOT gate recovers the initial state with no loss of information.An AND gate

is not reversible; from the single output bit it is not alwayspossible to determine the

input state unambiguously. If the output is 1, we know that the input was 11, but if the

18

2.1. REVERSIBLE CLASSICAL COMPUTATION 19

output is 0, we can’t tell whether the input was 00, 01, or 10. Similarly, an OR gate is

not reversible; if the output is 1, we don’t know whether the input state was 10, 01, or

11. A single bit of output is insufficient to discriminate among the possible states of

multiple bits of input. These examples suggest an importantrule:

Reversible gates must have the same number of outputs as inputs, and

the mapping of input to output states must be1 : 1.

First, we briefly discuss the history and importance of reversible computation, then

show the important two-bit reversible gate, followed by three-bit gates and the emula-

tion of Boolean logic. We finish by presenting ancilla management techniques without

which the space required for most interesting computationswould grow unacceptably.

We do not discuss the thermodynamics of computation in any detail here; interested

readers will find this topic covered in the papers referencedhere.

2.1.1 History and Importance

Reversible computation was developed in the early 1970s by Charles Bennett [40], act-

ing on inspiration from Landauer’s discovery that theerasureof information requires

an increase in entropy [200, 41]. In traditional logic, erasing information may involve,

for example, discharging a capacitor, which dissipates energy. At first glance this ap-

pears to be an implementation-dependent fact, but Landauerproved that it is in fact

fundamental. Bennett initially proposed reversible Turing machines, and discussed re-

versibility in the context of the contents of several tapes.We shall discuss reversibility

in the form of circuits and gates, rather than Turing machines, in this thesis. In order

to be computationally complete, single-bit and even two-bit gates are not enough; at

least one three-bit operation is necessary. Fredkin and Toffoli invented the two most

commonly used three-bit reversible gates, discussed below[123].

Studying reversible computation is interesting in its own right [112]: Kerntopf has

identified more than sixty research papers on the topic, including a variety of basic logic

gates that we will not detail here [168]. Perhaps the most famous classical example of

reversible computing is the billiard ball computer developed by Fredkin, Feynman, and

others, in which colliding billiard balls compute functions 1. Such a system is easier

to design when conserving billiard balls, making reversible logic the obvious choice.

For more practical circuits, Bruce et al. recently designedreversible carry-ripple and
1Ross Berteig, Takako Matoba and I implemented a small-scalecircuit based on these principles in

1985, when taking Feynman’s class on “Potentialities and Limitations of Computing Machines”.

20 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

carry-skip adders using Fredkin gates, intended to be implemented in silicon [60]. Hall

designed a reversible instruction set equivalent to a PDP-10 [38] more than a decade

ago, before quantum computation became a hot research topic[142]. More recently,

Vieri, Frank and others, working in the Tom Knight group at MIT, designed and fabri-

cated a reversible microprocessor known as Pendulum [344, 343]. They developed not

only the microprocessor, but also a small compiler. Frank’sthesis discusses in detail

topics such as options for subroutine call and branch structure, and operating systems

for reversible computers; as reversible and quantum computer architectures advance,

this thesis will be a valuable resource [122].

Reversible computation benefits the thermodynamics of a system. The minimum

amount of energy that a circuit must dissipate is proportional to the number of bits

of information that areerased. Although the minimum amount of energy to erase a

bit is very small, this factor eventually must be addressed in classical systems. Athas,

Koller and their collaborators have investigated its importance for lowering power con-

sumption in adiabatic CMOS and found that power distribution and clocking issues are

manageable, but that the increase in chip area required is significant [25, 188]. They

suggest occasionally relaxing the constraints on reversibility, discarding a few interme-

diate results to reduce the area consumed. Their chips operate far above the theoretical

minimum for irreversible logic, but take advantage of adiabatic charging and discharg-

ing of capacitors to reduce power consumption. DeBenedictis has argued that building

a high-performance computer system capable of exceeding∼ 1026 logic gates per sec-

ond or 10 zettaFLOPS (1022 floating point operations per second), roughly 6-7 decimal

orders of magnitude more than the current most powerful systems, within a realistic

power budget (750 kilowatts to the active logic components)will require the use of

reversible logic [91].

2.1.2 Two-Bit Gates

Classically, the only important one-bit gate is theNOT gate, and, as noted, it is re-

versible. For two-bit gates, we have theCNOT andSWAP, and constructFANOUT.

First, let us look at the controlled-NOT gate, orCNOT. One variable (or input) is

designated as the control line, and the other as the target. If the control bit is one, a

NOT gate is performed on the target bit; if the control bit is zero, the target bit is left

unchanged. The output is the exclusive OR (XOR) of the two bits, and one of the input

bits: (a, b) → (a, a ⊕ b). Table 2.1 shows the truth table for aCNOT with A as the

2.1. REVERSIBLE CLASSICAL COMPUTATION 21

input output
A B A B
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Table 2.1:CNOT truth table.

control bit and B as the target bit. Applying aCNOT gate twice to the same bits returns

to the system to its original state,(a, b) → (a, a⊕ b) → (a, a⊕ b⊕ b) = (a, b).

Swapping two bits is an important capability. Physically, if data signals are prop-

agating through a circuit, routing of wires may accomplish the swap. However, if two

register bits are to be swapped, and no temporary storage location is available, we need

a different approach. In standard logic, three consecutiveXORs will swap two bits or

two entire registers without the use of intermediate, temporary variables [37]. A similar

trick, using threeCNOTs, can be done in reversible computation, as shown in Figure 2.1

on page 23.

In reversible notation, we must explicitly specify the fanout of a signal, an operation

generally done implicitly with a wire in irreversible logic. A CNOT performed with the

variable to be copied as the control and a zero in the target bit accomplishes this task

for us.

2.1.3 Three-Bit Gates: Toffoli and Fredkin

The two seminal reversible three-bit gates are the Toffoli and Fredkin gates. Table 2.2

shows the truth table for the control-control-NOT (CCNOT), or Toffoli gate. If both

control lines, A and B, are one, then aNOT gate is performed on the target bit, C,

otherwise, no action is performed. Table 2.3 shows the control-SWAP, or Fredkin, gate.

This gate has one control line (A) and two target lines (B and C). If the control is

one, the two targets have their values swapped; if the control is zero, the targets are

unaffected. Either of these gates is adequate to perform universal computation; any

computable circuit or equation can be reduced to a set of Toffoli gates or a set of Fredkin

gates. Smaller gates, such as theCNOT andNOT, can of course be simulated by setting

one or two of the inputs to the gate to zero or one, as appropriate.

Graphic symbols for these gates are shown in Figure 2.1. In all circuit diagrams in

this thesis, time flows left to right, a horizontal line represents a single bit through time,

22 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

input output
A B C A B C
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Table 2.2:CCNOT (Toffoli gate) truth table.

input output
A B C A B C
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Table 2.3: Control-SWAP (Fredkin gate) truth table.

and vertical line segments represent gates. A filled dot indicates a control variable,

while an open circle represent aNOT gate on that variable – the target of the gate, for a

CNOT or CCNOT.

2.1.4 Ancilla Management

Every temporary variable created — every term in a logical expression — consumes

a bit. For example, in the simple expression(A ∧ B) ∨ (C ∧ D), the terms(A ∧ B)

and (C ∧ D) each require a temporary bit during the calculation of the final result.

These temporary variables, in reversible logic terminology, areancillae. Without a

method for recovering these ancillae, the space required for a computation would grow

in direct proportion to the length of the computation. Of course, since we are using only

reversible gates in this computation, we could clean our ancillae (collect our garbage)

by applying the exact same set of gates in the reverse order. Unfortunately, that would

return the state of the entire system to the initial state, including resetting our desired

output to zero. We need a way to keep the output but clean up thegarbage, and maybe

2.1. REVERSIBLE CLASSICAL COMPUTATION 23

NOT

time

fanout swap

Toffoli AND Toffoli OR

=

One−Bit Gate

CNOT

=

Toffoli Fredkin

Two−Bit Gates

Three−Bit Gates

Two−Bit Gate Emulation Using Three−Bit Gates

B A⊕ B

AA

A Ā

0 A

AA

B

A

A

B

B

A B

A

A

B

C

A

B

(A · B) ⊕ C

A

B

C

A

(A · B) ⊕ (Ā · C)

(A · C) ⊕ (Ā · B)

A

B

0

A

B

A · B

A

B

A

B

A +B1

Figure 2.1: Reversible gates:CNOT, CCNOT (Toffoli), control-SWAP (Fredkin),NOT,
fanout and swap, and emulation of Boolean AND and OR using theToffoli gate.

24 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

Step action INPUT TEMPVARS TEMPOUT OUTPUT
0. initial state input 0 0 0
1. forward computation input garbage result 0
2. “copy” usingCNOT fanout input garbage result result
3. reverse computation input 0 0 result

Table 2.4: Erasing ancillae.

even “delete” the input if what we really want to keep is just the output.

Bennett discovered a method for cleaning ancillae while retaining the important

results bits. He originally constructed this method for Turing machines; we will de-

scribe it in terms of circuits and registers. We will illustrate the computation in terms of

three registers used in the computation itself (the INPUT, TEMPVARS for intermedi-

ate variables, and TEMPOUT, which holds the result immediately after completing the

computation), though in practice the roles assigned to bitsmay not be that clearly delin-

eated. A fourth register, OUTPUT, gets the final result. The computation is run forward

(step 1), then the results are “copied” out to the OUTPUT register (step 2)2, then the

ancillae are returned to their initial (generally, zero) state by reversing the computation

(step 3). This is illustrated in Table 2.4. Bennett also defined a seven-step method for

doing in-place computation (erasing the input state, leaving only the output), and Feyn-

man stated that he had a method for doing a2n-step irreversible computation reversibly

in only 3n steps, though as far as I can tell he did not publish this result and it has never

been replicated [113].

2.2 Introduction to Quantum Computing

Alice laughed. “There’s no use trying,” she said: “one can’t be-

lieve impossible things.”

“I daresay you haven’t had much practice,” said the Queen. “When

I was your age, I always did it for half-an-hour a day. Why, some-

times I’ve believed as many as six impossible things before break-

fast.”

Lewis Carroll , Through the Looking Glass, 1871

2In this thesis, we use the term “copy” to mean the fanout operation described above.

2.2. INTRODUCTION TO QUANTUM COMPUTING 25

A quantum computeris a device that takes advantage of quantum mechanical effects

to perform certain computations faster than a purely classical machine can. It relies on

quantum parallelism, using physical phenomena that can be held, like Schrödinger’s

cat, in more than one state at once, allowing us to compute on all of those states at

the same time, using a single operation. Quantum parallelism is best understood in the

context of the concepts ofsuperposition, entanglementandmeasurement; of course, we

must also learn how quantum data is represented and manipulated. A quantum com-

puter performs, in principle, exponentially many computations simultaneously; how-

ever, exponentially manyresultsof those computations cannot be read out, leaving us

with the fascinating problem of how to use such a machine to accelerate computations

that interest us. The most famous result in quantum computing to date, Shor’s algorithm

for factoring large numbers (which we will discuss in more detail in the next chapter),

appears to offer superpolynomial speedup, but no general method for finding quantum

analogs to classical algorithms is known.

This section reviews the basics of quantum computing. We begin with quantum

mechanics, presenting Dirac’sket notation, with a few notes on linear algebra, then

Schrödinger’s equation and Hamiltonian dynamics. We theninformally define a qubit,

discuss its state-vector and Bloch sphere representationsand corresponding manipula-

tions. Two-qubit gates and their relationship to the reversible gates presented above are

explained, along with constructions for the Toffoli gate. Once we have begun to under-

stand these fundamentals, we can discuss DiVincenzo’s criteria for physical realization

of quantum computation. We end the chapter with a discussionof distributed quantum

computation, which is the purpose of our proposed quantum multicomputer. Readers

are also referred to both popular [245, 349] and technical [177, 248] texts on the topic

for more breadth and depth.

2.2.1 Notation and a Few Linear Algebra Notes

First, let us introduce the notation commonly used in quantum computing. We will not

give rigorous definitions, instead limiting ourselves to a few of the practical matters that

a working engineer needs to understand.

|ψ〉 is Dirac’sketnotation for vectors, and this can be referred to as the state-vector

representation of a qubit.〈ψ| is thebra corresponding to the ket. The bra is a complex-

conjugate row vector and the ket is a column vector.〈ψ1|ψ2〉 is the dot product of the

two vectorsψ1 andψ2, and|ψ1〉〈ψ2| is their outer product.

26 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

For a single qubit,|0〉 is the zero state, and|1〉 is the one state. For a multiple-

qubit register, we will often write the binary expansion of the state as e.g.|0111〉 (a

four-qubit state with the value seven). This state can also be written |0〉|1〉|1〉|1〉 or

|0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |1〉, emphasizing that it is the tensor product of four separate two-

level systems. Sometimes, we will write|7〉 as the state of the set of qubits. Although

the number may be written base ten for convenience, it is represented in binary in the

quantum register (many physical phenomena, such as the energy levels of an atom, may

have more than two levels and therefore may use e.g.|2〉 to represent the third level,

but we will confine ourselves to two-level qubits in this thesis). The size of the register

will usually be understood from context, and if the integer is small the high-order bits

are of course understood to be zero. Occasionally, it may be necessary to write|0〉⊗k to

indicate a set ofk qubits all in the zero state.

We describe an arbitraryn-qubit quantum gate via the2n×2n matrixU , which must

be aunitary transform. A unitary matrix obeys the equationU †U = UU † = I, where

U † is the adjoint ofU . In keeping with normal matrix multiplication rules, a series of

gates or transforms applied to a register can be written

Uk · · ·U3U2U1|ψ〉 (2.1)

whereU1 is the first gate applied,U2 is the second, etc. This can be confusing, as we

draw circuit diagrams with time flowing left to right. We introduced the graphical nota-

tion for reversible gates in Chapter 2; we extend that to quantum gates in Section 2.2.4,

and larger circuits will appear in later chapters.

2.2.2 Schr̈odinger’s Equation

Schrödinger’s equation

ih̄
∂|ψ〉
∂t

= H|ψ〉 (2.2)

describes the dynamics of a quantum system. Solutions describing the time evolution

of the system are of the form

|ψ〉 → e−iHt/h̄|ψ〉 = U |ψ〉. (2.3)

H, in this equation, is an operator (represented as a matrix) known as theHamilto-

nian of the system, andU is the corresponding unitary transform. Solutions to the

2.2. INTRODUCTION TO QUANTUM COMPUTING 27

Schrödinger equation can be weighted, linear combinations of any of the possible so-

lutions, such that the weights all add up to 1. Experimentalists usually describe the

behavior of the system in terms of its Hamiltonian to emphasize the temporal nature of

the evolution, but we are interested in specific types of behavior achieved by using fixed

time intervals, so it will be easiest for us to use the unitaryoperators. Unitary operators

can, in turn, be expressed as gates, which we will use throughout this thesis.

2.2.3 Qubits

What’s a Qubit?

A qubit is either a true two-level system, such as the direction of polarization of a

photon or the direction of spin of an electron, or a pseudo-two-level system, such as

two energy levels of an atom that can be treated as a two-levelsystem. We will see

more examples in Chapter 4. Of course, an electron spins in either the “up” or “down”

direction, not zero and one, so we chose to label the two states as our zero and one

states, much as we choose e.g.+5 volts to be a logical one and ground to be a logical

zero in classical circuits. The difference between a classical bit and a qubit is that a

qubit can be in asuperpositionof the two states; it can be partially zero and partially

one. The state of a qubit can be written as

|ψ〉 = α|0〉 + β|1〉 (2.4)

whereα andβ are complex numbers,|α|2 is the probability of finding the qubit in the

state 0, and|α|2 + |β|2 = 1: the qubit must be found to be in one state or the other.

The above expression can also be written

|ψ〉 =

[

α

β

]

(2.5)

showing the same probabilities for finding the states 0 and 1,implicit in the position

within the vector. The top element of the vector correspondsto the zero state, and the

bottom element to the one state. Technically, the 0 and 1 inside the ket are labels for

the states; we could choose to represent any two basis vectors by|0〉 and|1〉, but in this

28 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

(|0〉 + i|1〉)/
√

2

(|0〉 − |1〉)/
√

2

(|0〉 + |1〉)/
√

2

|0〉

|1〉

(|0〉 − i|1〉)/
√

2
θ

φ

Figure 2.2: The Bloch sphere.

dissertation we will always use the convention that

|0〉 ≡
[

1

0

]

, |1〉 ≡
[

0

1

]

. (2.6)

The state of a single qubit is often thought of in terms of theBloch sphererepresen-

tation, in which the state of a qubit is a unit vector, as shownin Figure 2.2 (this sphere is

often called the Poincaré sphere by researchers working inoptics). If the vector points

at the north pole, our qubit is in the|0〉 state, and if it points at the south pole, the qubit

is in the|1〉 state. The north-south axis is theZ axis, the positiveX axis is toward the

reader (out of the page or screen, for a 2-D representation),and theY axis is right-left.

When the unit vector points toward you, that is the(|0〉+ |1〉)/
√

2 state, when it points

away from you that is the(|0〉 − |1〉)/
√

2 state. The positiveY axis is(|0〉+ i|1〉)/
√

2,

and the negativeY axis is(|0〉−i|1〉)/
√

2. Thephaseis the position of our vector about

theZ axis (the angleθ in the figure).

Physicists, especially theorists, occasionally refer to alarge unitary transform as a

quantum gate, but in this dissertation we will restrict the use of the termto smaller

units, which for most proposed implementations will be morephysically realistic. Our

gates will be one-, two-, and three-qubit transforms only.

2.2. INTRODUCTION TO QUANTUM COMPUTING 29

Quantum Registers and Weighted Probabilities

We will refer to a related set of two or more qubits as aquantum register. Two classical

bits can be in any of the four states00, 01, 10, and11. Two qubits can be in a weighted

combination of all four states at the same time. For two qubits, we can write

|ψ〉 = α|00〉 + β|01〉+ γ|10〉 + δ|11〉 (2.7)

where|α|2 + |β|2 + |γ|2 + |δ|2 = 1. For example, ifα = δ = 1/
√

2 andβ = γ = 0, we

have a fifty percent probability of finding|00〉 and a fifty percent probability of finding

|11〉, but no chance of finding the other states.

Similarly, three qubits can be in eight states, andn qubits can be in all2n possible

states at once,

|ψ〉 =

2n−1
∑

i=0

αi|i〉, (2.8)

subject to the constraint that their total weightsαi must sum to 1,

∑

|αi|2 = 1. (2.9)

Of course, some of theαi may be zero.

Entanglement

Two quanta can be in a shared state in which operations on one affect the other. The

quanta are said to beentangled. One consequence is that the probabilities of two entan-

gled qubits are not independent (but see Section 2.2.3 belowfor an important caveat). If

the state of the system is e.g.(|00〉+ |11〉)/
√

2 (α = δ = 1/
√

2, in the above notation),

when we measure the system, we will find either that both qubits are zero, or that both

qubits are one. Although each qubit has a 50% probability of being zero and a 50%

probability of being one, their state is not independent. Starting from this state, we will

never find one qubit to be zero and the other qubit to be one.

Entanglement is a continuous phenomenon, not discrete. There are numerous mea-

sures of the amount of entanglement present in a system, but they all use a scale running

from zero to one, where zero is completely unentangled and one is fully entangled (see

Munro et al. and references therein [238].) For the purposesof this thesis, our primary

interest will be in fully-entangled and fully-unentangledpairs of qubits, though the pro-

cess of purifying a set of partially entangled pairs of qubits into fully-entangled pairs

30 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

will figure into the qubus network protocol (Chapter 5 and Section 7.4) [77, 43, 303].

Decoherence

Quantum states are very fragile: excited atoms decay and spins of electrons and atomic

nuclei spontaneously flip. Any quantum system can be affected by interacting with

its environment, leaking information about its state out into the environment where we

cannot recover or use the information. We call this gradual decay of the state of a system

decoherence. When decoherence sets in, measurement of the system probably will not

produce the desired results, causing the failure of our quantum algorithm. The two key

measures of decoherence are theT1 andT2 times. T1 is the energy relaxation time,

andT2 is the phase relaxation time. Both processes are memoryless, with probabilistic

behavior. The amount of time we can count on the state of a qubit remaining in a usable

state is the minimum ofT1 andT2. Researchers determine these values experimentally,

and an important area of device research is extending these times by careful engineering

of the environment and control system.

Pure and Mixed States and the Density Matrix

Quantum states can be eitherpureor mixed. So far, we have discussed only pure states.

“Pure” does not mean that the superposition, when written out in state-vector form,

contains only one term; pure means that it ispossibleto write the state in state-vector

form. For example,|ψ〉 = |0〉 and|ψ〉 = (|0〉+ |1〉)/
√

2 are both pure states. However,

not all quantum states can be written out completely in the state-vector form. Experi-

mentalists often prefer to write the state using the2n × 2n density matrixform, which

can represent a more complex state of the system. In particular, the density matrix rep-

resentation allows us to write down a representation of the state of the system when the

complete state cannot be known, such as when part of the information in the quantum

state has leaked out into the environment. Using the exampleof our basic entangled

state,|ψ〉 = (|00〉 + |11〉)/
√

2, our density matrix is

ρ = |ψ〉〈ψ| =
1

2
|00〉〈00|+ 1

2
|00〉〈11| + 1

2
|11〉〈00| + 1

2
|11〉〈11| =

1
2

0 0 1
2

0 0 0 0

0 0 0 0
1
2

0 0 1
2

.

(2.10)

2.2. INTRODUCTION TO QUANTUM COMPUTING 31

The entries along the diagonal of the density matrix correspond to the probability of

finding the system in a particular state. To be a valid densitymatrix, the trace (the

sum of the diagonal) must be one, writtenTr(ρ) = 1. The trace must be one because,

when measured, the system will be found to be insomestate. For pure states, the

square of the density matrix also has trace one,Tr(ρ2) = 1. If the density matrix is

diagonalized (achieved via an appropriate change of basis), a pure state will have only

a single non-zero element. The eigenvector corresponding to this eigenstate is the state

of the system. The Bloch sphere can be used to visualize mixedstates of a single qubit

as points inside the sphere; the closer the state is to pure, the closer the length of the

vector is to unity.

In Section 2.2.3 above, we referred to a caveat on our definition of entanglement;

with this understanding of the difference between pure and mixed states we are now

ready to discuss it. The state of two qubits can, in fact, be dependent, without being

entangled, if the state is mixed. In contrast to the state in Equation 2.10, we can also

have the state

1

2
(|00〉〈00|+ |11〉〈11|) =

1

2

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

. (2.11)

In this mixed state, the state of the two qubits is not independent, but they are not

entangled; actions on one qubit cannot affect the state of the other. In this particular

case, the density matrix now represents classical dependent probabilities.

Measurement

Measurementof a qubit causes the collapse of the wave function, forcing the state

of the system into just one term of the superposition. In the famous thought experi-

ment of Schrödinger, measurement is opening the box containing his cat and finding

out if the cat is dead or alive. Until measurement takes place, the state of the system

can be in the superposition state, with various histories and outcomes only determined

probabilistically. When we measure the system, the state and history pick one consis-

tent “storyline” that the system must have followed, in effect choosing among possible

pasts based on their relative probabilities. If we measure such that more than one his-

tory is possible, the system remains in a state that is consistent with all of them, as in

the double-slit quantum interference experiment (see, forexample, V. I Ch. 37 of the

32 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

Feynman Lectures [115]).

In our basic example of|ψ〉 = |0〉, we know the system is 100% in the zero state.

Measurement of the qubit’s state will definitely produce a zero 3. For |ψ〉 = (|0〉 +

|1〉)/
√

2, zero and one each have a fifty percent probability of being found. Once our

measurement determines the state (e.g., 0), the entire system will be forced to a state

consistent with the idea that our qubit has been zero all along.

For two or more qubits, we can measure either the entire system, or only part.

Measuring a single qubit can alter the state of the system. For example, consider our

two-qubit state|ψ〉 = (|00〉+|11〉)/
√

2. If we measure the low-order bit (the right-hand

one of our pair), we have a fifty percent probability of each outcome, and our result will

force the system to a matching state. We can write the measurement outcome and the

resulting state as

0 : |ψ〉 → |0〉 (2.12)

1 : |ψ〉 → |1〉. (2.13)

In this case, measuring one qubit has determined the state ofthe other. For the state

|ψ〉 = (|00〉+ |10〉)/
√

2, we can factor the state as|ψ〉 = (|0〉+ |1〉)|0〉/
√

2. Measuring

the low-order qubit will clearly always yield the result 0. The state of the system then

moves to(|0〉 + |1〉)/
√

2; the high-order qubit (now our only qubit) has not changed.

We can say that two qubits wereseparable; there was no entanglement between them.

Measurement is a complex and sometimes counter-intuitive topic. It is important

and deep enough that books and conferences are devoted to it [17]. One good place to

start studying this topic is Preskill’s lecture notes [273]. We will see an example of how

to use measurement in the discussion of quantum error correction in Section 2.3.

The Partial Trace

We are now ready to discuss thepartial traceof a system. We use the partial trace for

various purposes, including expressing the loss of a photonin optical quantum comput-

ing or the “leaking” of information about the state out into the environment.

We can discuss the state of a system in terms of thesystemand thereservoir, where

system in this case refers to the qubits we are interested in and have control over, and

reservoir refers to the rest of the world. Initially, the system and the reservoir are not

3Assuming the measurement is performed along the Z (0/1) axis; we will not deal with measurements
in other bases in this dissertation.

2.2. INTRODUCTION TO QUANTUM COMPUTING 33

entangled; that is, they are separable, and the state can be written

ρ = ρS ⊗ ρR (2.14)

whereρ is our overall state,ρS is the state of the quantum system, andρR is the state of

the reservoir (which we can never know fully). Over time, information leaks out of the

quantum system into the larger world, or the reservoir. Ifρ(t) is the state at timet,

ρ = ρS ⊗ ρR.ρS(t) = TrR(ρ(t)) (2.15)

whereTrR is the partial trace with respect to the reservoir.

For a two-qubit system, numbering our qubits 0 and 1, in keeping with normal

computer architecture convention, we will letρ0 be the density matrix for the system

traced out over qubit 1, andρ1 be traced out over qubit 0. Defining the partial trace as

ρ0 = Tr1(ρ) = 〈10|ρ|01〉 + 〈11|ρ|11〉, (2.16)

where |01〉 is the basis vector for the zero state for qubit one. Noting that 〈0|0〉 =

〈1|1〉 = 1 and〈0|1〉 = 〈1|0〉 = 0, and that the trace is linear, the partial trace for the

example in equation 2.10 is

ρ0 =Tr1(ρ) =
1

2
Tr1(|00〉〈00|) +

1

2
Tr1(|11〉〈00|) +

1

2
Tr1(|00〉〈11|) +

1

2
Tr1(|11〉〈11|)

=
1

2
〈10|00〉〈00|01〉 +

1

2
〈10|11〉〈00|01〉 +

1

2
〈10|00〉〈11|01〉 +

1

2
〈10|11〉〈11|01〉

+
1

2
〈11|00〉〈00|11〉 +

1

2
〈11|11〉〈00|11〉 +

1

2
〈11|00〉〈11|11〉 +

1

2
〈11|11〉〈11|11〉

=
1

2
|0〉〈0|+ 1

2
|1〉〈1|

=

[

1
2

0

0 1
2

]

.

(2.17)

Tr((ρ0)2) = 1/2, indicating that our state is now a mixed state. Our pure state has

become mixed with the environment, and we can no longer writedown a definitive

description of the quantum register alone.

34 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

Interference

The state of a quantum system is a wave function that matches Schrödinger’s equation.

As with classical wave mechanics, two waves caninterfere, depending on the relative

phases of the waves. That interference can be positive, enhancing the amplitude (hence,

probability) of a particular state, or negative, decreasing the probability. Since the phase

of a state is actually complex, the addition of phases is alsocomplex.

As a simple example, consider the state created by application of a Hadamard gate

(which we will define below) to the|0〉 state,

|ψ〉 =
|0〉 + |1〉√

2
=

1√
2

[

1

1

]

. (2.18)

The state now consists of two terms, a superposition of two states. Applying a second

Hadamard gate will return the system to its original state byinterfering the two terms,

H|ψ〉 =
1

2

[

1 1

1 −1

][

1

1

]

=
1

2

[

1 + 1

1 − 1

]

=

[

1

0

]

= |0〉. (2.19)

The top element in the array exhibits positive interference(1 + 1), and the bottom

element shows negative interference (1 − 1).

2.2.4 Manipulating Qubits

Quantum computation proceeds by taking a set of qubits, modifying their state such

that a “computation” of some interest is performed, and reading out the result so that we

learn what happened. Feynman originally conceived of quantum computers as systems

designed to simulate the physical behavior of many-body systems, which are hard to

examine experimentally or in classical simulation, solving quantum mechanical prob-

lems directly in an analog fashion rather than via numericalcalculation of properties of

the wave function [114, 211, 7, 63]. This approach is similarto e.g. simulating a set

of mechanical resonators using a set of electrical resonators, as is done in analog com-

puting [189, 129, 224]. However, this is not the only way to use quantum phenomena

to solve problems. A quantum computation can be defined as a circuit, in which the

system is built and programmed and behaves roughly analogously to a classical digital

computer. Recent advances include adiabatic quantum computing [111, 313, 12] and

cluster-state computing [277, 246, 347]. All of these are equivalent in computational

2.2. INTRODUCTION TO QUANTUM COMPUTING 35

power, but are believed to be very different in how useful algorithms are found. In

this dissertation, we will deal almost exclusively in termsof the circuit model, which

is the basis for Shor’s factoring algorithm and most of the other important quantum

algorithms discovered to date.

What’s a Quantum Gate?

In the circuit model, quantum computations are decomposed into separate gates, and

can be organized more or less along the lines of classical circuits. These gates are

based on the concepts of reversible computing discussed in the last section, extended

to accommodate the Bloch sphere. In order for our computational capabilities to be

“universal”, we must be able to reach any point on the Bloch sphere for a single qubit,

and we must be able to entangle two qubits. First we discuss the individual gates that

compose a quantum computation, and in the next subsection wediscuss larger circuits

in more detail.

Single-Qubit Gates and the Bloch Sphere

Only one interesting single-bit operation, theNOT gate, exists in the classical world

(ignoring setting and resetting the bit). In the quantum world, a single-qubit operation

can be any rotation on the Bloch sphere. Rotations about the axes of the Bloch sphere

can be described in terms of thePauli matrices. The transforms for180◦ rotations are

X = σx =

[

0 1

1 0

]

(2.20)

Y = σy =

[

0 −i
i 0

]

(2.21)

Z = σz =

[

1 0

0 −1

]

. (2.22)

For rotation of an angleθ about each axis, the transforms (modulo a global phase factor

we will ignore) are (from Nielsen & Chuang [248]):

Rx(θ) = e−iθX/2 =

[

cos θ
2

−i sin θ
2

−i sin θ
2

cos θ
2

]

(2.23)

36 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

=

Z

Z
=

X H

[

0 1
1 0

]

1√
2

[

1 1
1 −1

]

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

T S

[

1 0
0 eiπ/4

] [

1 0
0 i

]

Figure 2.3: Basic one-qubitNOT (X), Hadamard (H),π/8 (T), and phase (S) gates (top
two rows), and two-qubitCNOTs, control-phase, and swap gates (bottom two rows).

Ry(θ) = e−iθY/2 =

[

cos θ
2

− sin θ
2

sin θ
2

cos θ
2

]

(2.24)

Rz(θ) = e−iθZ/2 =

[

e−iθ/2 0

0 eiθ/2

]

(2.25)

which we will need only for the quantum Fourier transform andfor our decomposition

of the Toffoli gate.

Universal quantum computation requires that we be able to reach any location on

the Bloch sphere starting from any other. Naturally, we do not need arbitrary rotations

about all three axes in order to achieve this; two will do. Moreover, arbitrary rotations

can be approximated using a small set of fixed rotations. Figure 2.3 shows one such set

of gates, with their graphic representations and unitary transform matrices. The particu-

lar set shown is technically redundant; the control-Z and swap gates can be constructed

from the others.

As a simple example, consider the state created by application of a Hadamard gate

to the|0〉 state,

|ψ〉 = H|0〉 → 1√
2

[

1 1

1 −1

][

1

0

]

=
1√
2

[

1

1

]

→ |0〉 + |1〉√
2

. (2.26)

2.2. INTRODUCTION TO QUANTUM COMPUTING 37

The state now consists of two terms, a superposition of two states. Likewise, applying

the Hadamard to the|1〉 state, we have

|ψ〉 = H|1〉 → 1√
2

[

1 1

1 −1

] [

0

1

]

=
1√
2

[

1

−1

]

→ |0〉 − |1〉√
2

. (2.27)

Geometrically, we visualize the Hadamard gate as a180◦ (π) rotation about the Z axis,

followed by a90◦ (π/2) rotation about the Y axis. The rotation about the Z axis does

not directly affect the probability of finding either a 0 or a 1if the state is measured

right away, but this two-step manipulation shows clearly the importance of the phase

(angle about the Z axis).

Unfortunately, visualizing the state of more than one qubitis more complicated than

a set of spheres, one per qubit. If it were that easy, there would be no exponential growth

in the complexity of our states, and quantum computation would be uninteresting. It

is possible to visualize the state of more than one qubit as asetof points on the Bloch

sphere, in what is called theMajorana representation. Its utility is limited to pure

states; there are not enough degrees of freedom to representmixed states [219].

Two-Qubit Gates

In Chapter 2, we discussed classical reversible computation using control-NOT (CNOT)

gates as our primary two-qubit gate. TheCNOT is an extremely useful gate in quantum

computation, as well, and will figure prominently in our quantum arithmetic. However,

theCNOT is not the only type of two-qubit quantum gate. As with the one-qubit gates,

we must consider the phase of the system, resulting in analoggates equivalent to the

rotations about the axes we saw for single-qubit gates. We can create a “control-U”

two-qubit gate, whereU is any single-qubit unitary gate.

First, let us look at the unitary transforms for single-qubit gates applied to two-

qubit systems, so we can see the form the matrices take. For operations on multi-qubit

registers, we will letUi be the single-qubit unitary operationU on theith qubit in

the register. We will number qubits from zero, with qubit zero being the “low order”

qubit in the system. Qubiti then corresponds to the value2i in the binary expansion

(note that this is in keeping with common computer architecture practice, but physicists

usual number from qubit 1, starting at the left, or high-order, bit). In circuit diagrams,

the low-order qubit will be the bottom qubit. The transform for a Hadamard gate on the

38 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

low-order qubit is

H0 ≡ I ⊗H =
1√
2

1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

(2.28)

and for one on the high-order qubit is

H1 ≡ H ⊗ I =
1√
2

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

(2.29)

whereIi is the identity operation on qubiti andHi is the Hadamard on qubiti. Because

the two gates operate on independent qubits, the order in which we compose the larger

unitary in does not matter,

H0H1 = H1H0 =
1

2

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

. (2.30)

The two-qubit swap gate has a very simple transform,

SWAP =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

. (2.31)

When we write aCNOT gate, occasionally it will be necessary to distinguish which

qubit is which. In that case, the first subscript will be the control qubit and the second

subscript the target qubit, e.g.,

CNOT1,0 =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

(2.32)

2.2. INTRODUCTION TO QUANTUM COMPUTING 39

and

CNOT0,1 =

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

. (2.33)

In some physical implementations, a control-phase gate is the natural Hamiltonian.

The control-phase or control-Z unitary is

CZ1,0 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

, (2.34)

or, more generally, for an arbitrary rotation by an angleθ about the Z axis,

CZ1,0(θ) =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθ

, (2.35)

which is not quite what we need for most logic. However, we canconstruct aCNOT

gate from CZ easily, by wrapping the CZ in a pair of Hadamards on the target qubit:

H0CZ1,0H0 = CNOT1,0. (2.36)

DiVincenzo described other related constructions in an early paper [99]. The control-

phase gate is actually symmetric; it does not matter which ofthe two qubits we treat

as the control and which we treat as the target. The change in the system state is the

same. This fact is illustrated in Figure 2.3 on page 36 with the control-Z gate both “right

side up” and “upside down”. This feature can result in unwanted error propagation, as

discussed in Section 2.3.

Three-Qubit Gates

We have already discussed the importance of the Toffoli and Fredkin gates in classical

reversible computation. They form the two most important three-qubit gates in the

quantum domain, as well. Most quantum algorithms are definedusing Toffoli gates.

40 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

The transform for the ToffoliCCNOT gate with the low-order qubit being the target is

CCNOT =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

, (2.37)

and the transform for the Fredkin control-SWAP gate with the high-order bit being the

control is

CSWAP =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

. (2.38)

TheCCNOT cannot be implemented directly on most quantum technologies, so we need

a breakdown into two-qubit gates. The breakdown we choose uses a two-qubit gate

which we will call the “square root ofX”,

√
X =

1

2

[

1 + i 1 − i

1 − i 1 + i

]

(2.39)

and its adjoint
√
X

†
=

1

2

[

1 − i 1 + i

1 + i 1 − i

]

. (2.40)

Our graphic representation is shown in Figure 2.4. We will use this construction and

an additional variant in Section 6.1, when we discuss the interaction of architecture and

gates in more detail.

2.2. INTRODUCTION TO QUANTUM COMPUTING 41

=

Figure 2.4: OurCCNOT construction. The box with the bar on the right represents the
square root ofX, and the box with the bar on the left its adjoint.

Quantum Circuits

A quantum computation, in the abstract, is a unitary transformation on the initial state

of the system, creating a desired output. The complete unitary transform onn qubits,

of course, is a2n×2n matrix, so direct construction of the unitary to implement acom-

plex function of more than a few qubits is difficult. The physical phenomena used for

quantum computation do not, in general, lend themselves well to direct implementation

of complex transforms. Moreover, human beings are not good at imagining such large

systems, but are very good at composing large systems from smaller components. Thus,

the abstraction of aquantum circuitis important. A quantum circuit effects the overall

transform via a series of smaller gates (generally, one- to three-qubit gates) applied in

a prescribed order on the appropriate qubits.

Researchers have found several methods for decomposing a specific unitary trans-

form into a series of small gates or operations that we know how to implement. Some

methods find optimal evolution paths (not necessarily composed of discrete gates) but

are highly theoretical, and it is not immediately clear how to compile a large program

by employing these methods [251, 66]. Using the most generalmethod, the number

of gates grows exponentially as the size of the problem increases, negating any advan-

tage in computational complexity that quantum computing appears to offer [290]. Most

of the work on quantum programming languages and tools for them essentially defers

the decomposition problem to the programmer [128, 254, 14, 316]. Fortunately, many

quantum algorithms depend on a few basic building blocks that have known efficient

decompositions (such as the quantum Fourier transform), oron ideas translated directly

from classical analogues (such as arithmetic).

2.2.5 DiVincenzo’s Criteria

DiVincenzo [97] enumerated five abilities which are necessary for real-world quantum

computing devices. A quantum computer must:

42 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

1. Be a scalable physical system with well-defined qubits;

2. Be initializable to a known state prior to computation;

3. Have adequately long decoherence times;

4. Have a universal set of quantum gates; and

5. Permit high efficiency quantum measurements.

Two additional criteria focus on moving quantum information between two different

quantum computers. A viable quantum communications technology must:

6. Be able to convert between physical realizations of qubits that are stationary and

moving; and

7. Be able to faithfully transmit a physical realization of aqubit between specified

locations.

The first criterion means there must be some physical entity,such as energy levels

of an ion, polarization of a photon, or spin of an electron, that is the actual carrier of the

qubit. It must meet basic criteria of quantum behavior and support two distinct states

which can be treated as zero and one. Item 1 also refers to “scalability”, which means

different things in different contexts; we will explore itssystem aspects beginning in

Chapter 7.2.

The second item may seem obvious, but some qubits, especially nuclear spins, are

difficult to “reset” to zero. Schulman and Vazirani developed a method for taking a

poorly-initialized machine and improving the state, “cooling” the system algorithmi-

cally [291].

The third item, decoherence, has important implications for quantum computer ar-

chitecture. In order to fault tolerantly compute on a quantum computer, the native

error rate must be below a certain threshold. Aharonov and Ben-Or initially calculated

the threshold (“errors per quantum gate”) to be10−6 [11]. However, this factor is ar-

chitecture dependent, with real architectures requiring substantially lower thresholds.

Furthermore, in order to not have undue overhead from error correction processes as

the size of the computation scales, quantum technologies really need to achieve error

rates well below this critical threshold [308].

The fourth criterion requires that a quantum computer be able to compute any quan-

tum function. It must be able to rotate a single qubit by any angle, and must be able

to entangle a pair of qubits. The single-qubit rotations maybe difficult to achieve, so a

2.2. INTRODUCTION TO QUANTUM COMPUTING 43

small number of “universal” gates that can be used to synthesize larger, more complex

gates serves as an alternative, at polynomial cost [30, 176,145, 118]. This is equivalent

to saying that a classical computing technology should be able to perform at least a

NOR or NAND operation. For quantum computers, one such set of universalgates isX,

H, T, andCNOT, the gates we have already introduced in Figure 2.3 on page 36. X , H

andCNOT are relatively simple to make fault tolerant, whileT requires a more complex

circuit; nearly one hundred gates in one construction [118].

Item 5 is the measurement we discussed above; there must be a reliable way to

read out the state of a qubit. However, as noted, measurementis far more important

than retrieving results at the end of a computation; it occurs almost continuously as

part of quantum error correction and the fault-tolerant execution of gates on encoded

bits [297, 64, 308, 132, 307].

Items 6 and 7 deal specifically with moving quantum information across long dis-

tances for purposes of computation. Criterion 6 only applies to systems that compute

complex quantum algorithms via shared state. It does not apply to other uses of quan-

tum effects, such as quantum cryptography [44, 108] and basic demonstrations of quan-

tum teleportation [45, 125] (though teleportation may be used in quantum computer

architectures [133, 136]).

These criteria have been used as a basis for evaluation of quantum computingtech-

nologies[248, 302, 20]. They are a necessary set of capabilities, butnot sufficient to

understand the difficulty of building a quantum computer or its speed and utility once

built. Ladd has suggested that DiVincenzo’s five criteria can be restated as three [195].

A complementary set of criteria for quantum computersystemsis discussed in Chap-

ter 4.

2.2.6 Quantum Algorithms

We observed in Section 2.2.3 that ann-qubit quantum register can be in a superposition

of all possible2n states|0〉 to |2n − 1〉 at the same time. Usually, quantum algorithms

begin by placing one input register in this superposition. This effect allows a quantum

computer to calculate a function on all possible inputs at the same time, in a single

pass. The hard part is getting a useful answer out. At the end of the calculation, the

result register is a superposition of all of the results, onefor each of the2n possible

inputs. However, we can’t directly read out all of those results. If we measure the

result register to get our answer, the superposition collapses into a single state with

44 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

a probability according to the weights discussed above. Then we have only a single

value; our end result is no better than if we had used a classical computer to compute

the function for one possible input chosen at random. How do we structure a quantum

algorithm so that useful results come out, taking advantageof these quantum effects to

accelerate computation? We must find a way to drive the systemtoward the state where

the weightsαi from Equation 2.8 of undesirable states are zero and desirable states (the

solutions to our problem) have large weights.

Deutsch discovered the key to a quantum algorithm [94]: use quantum interference

to increase the probability that a useful state is found whenthe quantum register is

measured. Deutsch’s algorithm, later refined in collaboration with Jozsa, classifies an

unknown function as one of two types. One type of function will create interference

so that the register cannot read 0; the other type of functioncreates interference so that

all of the non-zero values cancel, leaving only the state 0. This is perhaps the most

profound observation in all of quantum computing: we can take advantage of the wave

nature of particles to achieve computation.

What we colloquially call quantum algorithms are, in reality, hybrid algorithms

with both classical and quantum components. Moreover, the quantum portion of many

algorithms is probabilistic, often necessitating multiple runs to get the desired result

(even ignoring the physical issues of decoherence). The complete cycle of a “quantum”

computation is as follows:

1. Pre-calculate certain classical factors.

2. Repeat:

(a) Initialize quantum computer.

(b) Prepare input state.

(c) Execute quantum portion of the algorithm.

(d) Measure output register.

(e) Post-process output to determine if desired result achieved.

(f) Exit if desired result.

3. Finish post-processing.

We will see in Section 2.3 that this process is applied recursively in the implemen-

tation of quantum error correction. The quantum computer can be initialized starting

2.2. INTRODUCTION TO QUANTUM COMPUTING 45

from a partially-initialized state using quantum algorithms, as well, using this proce-

dure for step 2.a [291].

2.2.7 Distributed Quantum Computation

Distributed quantum computation (DQC) is the cooperative use of multiple, indepen-

dent quantum computers working to solve a single problem. The theoretical foun-

dations of DQC have been laid, but very little work on designing a machine to run

DQC has been done. Early suggestions of distributed quantumcomputation include

Grover [136], Cirac et al. [77], and Steane and Lucas [311]. Arecent paper has pro-

posed combining the cluster state model [277, 246] with distributed computation [207].

D’Hondt has done work on formal models of distributed quantum computation, draw-

ing on formal classical techniques [96]; D’Hondt and Tani etal. have worked on the

leader election problem, one of the few true distributed quantum algorithms [321]. A

distributed system generally requires the capability of transferring qubit state from one

physical representation to another, such as nuclear spin↔ electron spin↔ photon, as

in DiVincenzo’s seventh criterion [227, 159, 71].

Yepez distinguished between distributed computation using entanglement between

nodes, which he called type I, and without inter-node entanglement (i.e., classical com-

munication only), which he called type II [355]. Our quantummulticomputer is a type

I quantum computer. Jozsa and Linden showed that Shor’s algorithm requires entangle-

ment across the full set of qubits, concluding that a type II quantum computer cannot

achieve exponential speedup [162, 215]. Much of the work on our multicomputer in-

volves creation and management of that shared entanglement.

Yimsiriwattana and Lomonaco have discussed a distributed version of Shor’s algo-

rithm [356], based on one form of the Beckman-Chari-Devabhaktuni-Preskill modular

exponentiation algorithm [35]. The form they use depends oncomplex individual gates,

with many control variables, inducing a large performance penalty compared to using

only two- and three-qubit gates. Their approach is similar to our telegate (Sec. 5.2.2),

which we show to be slower than teledata (Sec. 5.2.1). They donot consider differ-

ences in network topology, and analyze only circuit complexity, not depth (time perfor-

mance).

46 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

2.3 Error Management in Quantum Computers

By failing to prepare, you are preparing to fail.

Benjamin Franklin

There are no mistakes, save one: the failure to learn from a

mistake.

Robert Fripp

O throw away the worser part of it,

And live the purer with the other half.

Shakespeare’s Hamlet, quoted by Lampson

A bewildering array of error processes bedevil quantum computing technologies.

There are normal, independent errors of decay (T1 andT2 memoryless processes) that

affect a single qubit only, correlated error processes caused by environmental defects

that affect more than one qubit, unwanted interactions between qubits, stochastic gate

errors, propagation of errors by gates, “hot” and “cold” gates, accidental measurement

of qubits, leakage of information into the environment creating mixed states, and finally,

loss of the qubits themselves (photons or, occasionally, ions).

Error management in quantum computers is accordingly a richand complex field.

In this section, we provide a general introduction to quantum error correction (QEC),

including a look at how QEC helps reinforce the digital nature of quantum computing,

and briefly present the notion of athreshold. We then skim over other error control

techniques such as decoherence-free subspaces and composite gate sequences, very

different from error-correcting codes and more tightly bound to the quantum nature of

the data we are protecting. Our goal in this section is not to cover the mathematics

of quantum errors or to provide complete coverage of the topic, but to give computer

architects a feel for the nature of the problems and the solutions. For a more thorough

understanding, see Chapter 10 of Nielsen & Chuang [248] (which runs seventy-five

pages) and the many papers referenced both there and in this chapter. Keyes’ paper

is a good introduction to some of the physical concerns associated with solid-state

systems [169]. In my opinion, the single most important paper for engineers to read

and understand, for the practicality of its results, is one by Steane [308]. This topic

alone would easily warrant development of a full book.

2.3. ERROR MANAGEMENT IN QUANTUM COMPUTERS 47

2.3.1 Error Models

As suggested above, there are many ways in which quantum datacan be damaged.

Error processes also operate at many time scales: errors mayoccur at fabrication time,

over the course of many gates, or over the course of a single gate. Atoms are identical,

but fabricated structures are not, and the resulting differences may alter e.g. oscillation

frequencies, affecting gate time and coupling of qubits. Temperatures drift over time,

influencing behavior. Atoms may vary their position relative to a laser beam or optical

cavity, altering the ideal gate time on a moment-by-moment basis. Stray magnetic fields

may influence large groups of qubits.

This plethora of problems suggests that we should look for similarities and simpli-

fying abstractions. The first models of errors in quantum computation assumed that

independent errors occurred before or after the execution of logical gates. If we assume

independent, random errors (an assumption we will gradually relax), it can be shown

that all errors can be reduced toX orZ gate errors on individual qubits.

Error Propagation

In classical circuits, whether analog or digital, we are accustomed to errors propagating

from source to target; an error in an AND gate creates an incorrect result, but does not

affect its inputs. In the quantum world, we have the same kindof errors, but additionally

have errors that propagate in counter-intuitive fashion.

In Figure 2.5, we show how errors propagate through quantum gates. AnX error

(a NOT error, drawn as⊕ in the figures) on the target qubit of aCNOT gate behaves the

same before or after the qubit. AnX error on the control bit before the gate execution,

in contrast, propagates the error to both the control and target qubits at the output; our

single error has become two errors. Worse, aZ error (drawn as a box with aZ in it

in the figure) on the target qubit of aCNOT prior to the gate propagates aZ back to

the control, as well; our intuition about the flow of errors inthe system fails us in this

case. This effect affects our ability to correctly execute quantum error correction itself,

which we will see below.

Steane’s Error Models

The basic model introduced above correctly models thelogic of errors as single-qubit

gates that occur before or after the execution of logic gates. For accurately assessing

the probability of errors, it is somewhat simplistic; we will see in Section 3.4 that,

48 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

= =

= =

Z Z

Z

Z

Z

Figure 2.5: Error propagation in two-qubit gates.

for many calculations, many of the qubits sit idle for long periods of time. A better

model will therefore take into account memory errors and gate-induced errors. Steane

introduced just such a model, which we will call theKQ model or thespace-time

model [308]. LettingK be the number of logical qubits in the computation andQ be

the number of time steps to complete the computation, then the accuracy of our logical

operations must be related to the inverse of the space-time product,∼ 1/KQ. In this

remarkable paper, Steane went further and discussed the difference between the gate

error probability, which he labeledγ, and memory error probability, which he labeled

ǫ, and produced numerical values for the size of computations(KQ) achievable for

various system characteristics.

2.3.2 Quantum Error Correction Codes

Until the advent of quantum error correction, many researchers believed that these

problems were insurmountable [169, 104, 328] or at least limited the range of prob-

lems to which quantum computing can be applied [75, 31]. However, in 1995, al-

most simultaneously, several researchers discovered and developed mechanisms for

applying classical error correction codes, such as Reed-Solomon codes, to quantum

data [297, 64, 304]. The most important class of quantum error correction (QEC) codes

is now called the Calderbank-Shor-Steane codes, after its inventors, and includes quan-

tum analogs of Hamming, Golay, and other types of classical error correcting codes.

In classical systems, we often use multiple levels of error correction. The same

principle can be applied in quantum systems, in a manner called concatenation. In a

concatenated system, physical qubits are grouped to encodea logical qubit, and a group

of logical qubits is further encoded (using the same or a different code) to provide

greater protection against errors. We discuss concatenation in Section 2.3.4.

First, let us examine how to correct bit-flip errors in a quantum state. The CSS

codes, like classical codes, redundantly encode information so that an error in one com-

ponent qubit can be detected by comparing to the other qubits, and the error corrected.

2.3. ERROR MANAGEMENT IN QUANTUM COMPUTERS 49

|0〉
|0〉

|ψ2〉
|ψ1〉
|ψ0〉

ψ0 ⊕ ψ1

ψ1 ⊕ ψ2

Figure 2.6: Parity measurement for quantum error correction.

In the simplest example, one qubit is encoded by making two fanout “copies”4 of the

qubit. Three ones will be our logical one, and three zeroes will be our logical zero, i.e.

|0〉 → |0L〉 ≡ |000〉 (2.41)

|1〉 → |1L〉 ≡ |111〉. (2.42)

Our canonical unknown single-bit state then becomes

|ψ〉 = α|0〉 + β|1〉 → |ψL〉 = α|0L〉 + β|1L〉 = α|000〉 + β|111〉. (2.43)

Now that we have our proposed logical states, how do we execute gates, and how do we

perform our actual error correction? Taking the second question first, error correction

is done by a series of parity calculations and measurements.Letting |ψj〉, j = 2, 1, 0 be

the three qubits in our logical state|ψL〉, we want to calculate the parity of the 0-1 pair

and the 1-2 pair. If the state is still unmarred, both calculations will return zero (even

parity). However, if we find, for example, that the 1-2 pair iseven but the 0-1 pair is

odd, we can infer that bit 0 is in error, and needs to be corrected. If both pairs are odd,

we can infer that bit 1 is in error. The basic circuit for theseparity measurements is

shown in Figure 2.6.

Although it is not immediately obvious, this parity measurement will not disrupt

our qubit state, causing the collapse of the wave function and ruining our computation.

We saw in Section 2.2.3 that measurement of a single qubit in asuperposition takes out

one qubit, shrinking the entangled state of the system. Intuitively, this is reasoned by

considering what welearn from the measurement. By doing a parity measurement, we

learn only whether the two qubits are the same, not whether they are one or zero. When

the states are correct, both bits will be one, or both bits will be zero, in accordance with

4Again, be careful that when we use the term “copy”, we are referring to a fanout, rather than an
independent, cloned copy of the state, which we know is impossible [352].

50 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

the usual behavior of entangled qubits.

The error case works the same. Our error model assumes a bitflip, not a qubit being

setto either one or zero. Thus, an error on bit 1, for example, would lead to the state

α|010〉+β|101〉. Parity measurement of the 0-1 pair produces a 1 (odd parity). Writing

out both the correct case and the case of an error on bit 1, adding a parity qubit whose

state is created using the circuit in Figure 2.6, we have

α|000〉+ β|111〉 → α|0000〉+ β|1110〉 = (α|000〉 + β|111〉)|0〉 (2.44)

α|010〉+ β|101〉 → α|0101〉+ β|1011〉 = (α|010〉 + β|101〉)|1〉 (2.45)

where the right-hand factoring makes it explicit that measuring the last qubit will not

affect the prior state, neither collapsing the superposition nor altering the values ofα

andβ.

Once the parity has been calculated and measured, we know whether or not an error

occurred, and if so, on which qubit. Assuming we found an error on qubit 1, we correct

by applying anX gate,

X1|ψL〉 = X1(α|010〉+ β|101〉) = α|000〉+ β|111〉 (2.46)

and our desired state is restored.

The second type of error we must correct is phase errors. Whena phase error occurs

on our three-bit encoded state,

α|0L〉 + β|1L〉 → α|0L〉 − β|1L〉 (2.47)

regardless of which qubit the phase error affected. Obviously, our three-bit code does

not detect such errors. However, if we apply a Hadamard to thethree-qubit state before

an error occurs, then we shift into a space where a phase errorwill show up as a bit error

when the parities are calculated. Combining a three-bit code for protecting against bit

flips and a three-bit code for protecting against phase flips,we have a nine-bit encoding

for a single logical qubit known as theShor nine-bit code[297].

QEC traditionally depends on interleaving measurement andlogic gates, and there

has been recent experimental progress on this front [281]. However, it is possible to

perform QEC without measurement, at a cost of a number of ancillae that grows with

the number of applications of error correction [248]; this approach is not supportable

in a large computation, but may be applied in short sequences.

2.3. ERROR MANAGEMENT IN QUANTUM COMPUTERS 51

QEC builds on concepts from classical error correcting codes. Stabilizer codes

represent an important advance in the mathematical representation of QEC, providing

a more compact representation of the code word states and simplifying construction of

fault-tolerant operations [131].

QEC demands to be taken into account when designing a quantumcomputer. In-

deed, Steane has referred to a quantum computer as a machine whose purpose is to ex-

ecute error correction; computation is a side effect [307].Currently, some researchers

are analyzing the behavior of QEC on proposed architecturesand attempting to design

machines that are well-adapted to performing QEC [317, 87, 120, 307, 83, 255, 62, 95,

230, 229], or exploring the interaction of QEC withcluster state computing[250]. Oth-

ers are demonstrating QEC and decoherence-free subspaces (DFS, described below)

experimentally, either partially or completely, on NMR [181], optical [268], Josephson

junction [164], or ion trap systems [140, 281, 70]. Knill et al. have even suggested

that the ability to run QEC be used as a reliability benchmarkfor quantum computing

technologies [181].

CSS Codes and Larger Blocks

Now that we understand the basics of the error correction processes, surely we will

want more efficient codes than the Shor nine-bit code. To discuss the efficiency of the

encoding of various schemes, we need a notation. We will describe a quantum error

correcting code using the notation [[n,k,d]], wheren is the number of physical bits,k

is the number of logical bits encoded, andd is the Hamming distance ((d− 1)/2 errors

can be corrected by the code). In this notation, the nine-bitShor code is [[9,1,3]]. Nine

physical qubits encode a single logical qubit, and can correct any single-qubit error,

whether bit flip or phase flip (or both).

More efficient encodings for a single qubit are known. The most commonly used

example is the [[7,1,3]] Steane code [304]. Thus, for the Steane 7-bit code, we encode

each logical qubit in seven physical qubits, and this state can correct a single error. In

this code, logical zero and logical one are [64]

|0L〉 =
1√
8
(|0000000〉 + |1101001〉 + |1011010〉 + |0110011〉

+ |0111100〉 + |1010101〉 + |1100110〉 + |0001111〉)
|1L〉 = X|0L〉.

(2.48)

52 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

H

H

H

|04〉
|05〉
|06〉

|03〉
|02〉
|01〉
|00〉

|0L〉

Figure 2.7: Circuit to create the|0L〉 state for the Steane [[7,1,3]] code.

In the equation, we have underlined the last three bits and ordered the terms in the

superposition to emphasize that all of the binary values 0 to7 appear there. Figure 2.7

shows a circuit that can create the logical zero state; the Hadamards on the bottom three

qubits give us our superposition of 0 to 7 from which the rest of the state is built. The

subscripts in the figure are the bit number in the QEC block, with qubit 6 being the

leftmost bit in the state as written in Equation 2.48. The quality of the state must be

verified after creation and before use.

This seven-bit code is still not the limit for a single qubit;within months of the

elucidation of the basic concepts of quantum error correction, two groups had discov-

ered a [[5,1,3]] code, which was demonstrated experimentally on an NMR system in

2001 [198, 46, 181]. However, this code is difficult to work with; executing many kinds

of logical gates on the logical states for this code requireslong sequences of physical

gates.

As with classical error correction, we can encode more than asingle qubit into a

block that is collectively protected. In classical systems, even with strong codes, in

practice the overhead is rarely more than 30%. Unfortunately, in the quantum world,

even with modest-sized blocks, the overhead runs to a factorof three or so. Steane

described codes as efficient as [[63,39,5]], with an overhead of only 1.6, but this one

can correct only two errors in the entire block, and the otherefficient codes likewise

trade protection for space. Steane recommends a [[23,1,7]]code based on a classical

Golay code as giving higher error tolerance (a larger possible application-levelKQ)

for a given overhead in storage, when multiple layers of QEC are concatenated. For a

concatenated code, he recommendsk = 1 for the lowest level(s) of the system, it being

much easier to construct higher-level codes in this case [308].

2.3. ERROR MANAGEMENT IN QUANTUM COMPUTERS 53

2.3.3 Fault Tolerance

Fault tolerance, as the term is usually applied in quantum computing, means that dy-

namic errors in our state do not propagate uncontrollably throughout the system. The

system can tolerate individual errors and still successfully compute. Thus, fault toler-

ance is primarily a set of techniques for controlling error propagation. Fault tolerance

does not mean, as the term is often used in classical systems,that the quantum computer

is prepared to deal with near-permanent failure of large hardware subsystems.

As we saw above, errors can propagate from one qubit to another as gates are ex-

ecuted. For this reason, errors are especially dangerous toQEC blocks that contain

more than one logical qubit. A code that can correct only a single error across multiple

qubits can never be robust against a logical gate error when the gate is applied between

two qubits in the same QEC code block. Therefore, to execute agate between qubits

in the same block, one logical qubit must first be swapped out.Next, we apply the gate

laterally between blocks and perform error correction separately in each block, after

which the qubit can be swapped back in to its original location, if desired.

Figure 2.6 on page 49 shows a simple, ideal circuit for calculating the error syn-

dromes. To prevent the kind of error propagation described in Section 2.3.1, we cannot

use this circuit directly; we must have a scheme which prevents phase error propaga-

tion. Steane described an algorithm for this, based on earlier work by himself, Shor,

Zalka, and others [308]. Figure 2.8 shows Steane’s algorithm, slightly reformulated.

In actual implementation, the creation of the logical|0L〉 state will be decoupled from

the syndrome measurement part of the subroutine. The syndrome measurement will

draw from a pool of logical zeroes that is refilled continuously, tuned to guarantee that

logical zeroes are available when necessary, and as fresh aspossible, while minimizing

the number of qubits required.

Many researchers have studied fault tolerance, including the composition of fault-

tolerant logical gates [310, 62, 118]. We will not delve further into this topic here.

2.3.4 Threshold Calculations and Concatenation

Error correction only improves the quality of the state of our system if, on average,

it repairs more errors than it introduces. If the resulting error rate is still inadequate,

we can concatenate multiple levels of QEC, pushing down the net error rate to the

necessary level.

In an h-level concatenated encoding, the effective error probability is (cp)2h
/c,

54 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

subroutine get_one_syndrome:
repeat

prepare n qubits in state |0>
apply circuit to create logical |0>
verify logical |0> state

until logical |0> state is good
couple |0> to data block
Hadamard transform |0>
measure
return result

endsubroutine

routine syndrome:
get_one_syndrome
if syndrome = 0 then

return 0
else

repeat r-1 times
get_one_syndrome

if more than chosen limit of r syndromes agree then
return syndrome

else
fail

endroutine

Figure 2.8: Fault-tolerant error syndrome measurement algorithm.

2.3. ERROR MANAGEMENT IN QUANTUM COMPUTERS 55

wherec is the thresholdvalue andp is the error probability (which is assumed to be

the same at each level, for the moment). The threshold, in this equation, is the number

of operations required to execute a single level of error correction. Ifcp < 1, then each

level of encoding we add to the system decreases our net probability of failure. If an

encoding level usesn qubits from the level below to encode a single qubit, our total cost

per logical qubit isnh physical qubits. In two-level concatenated QEC, with different

inner and outer codes, [[ni,1,di]] and [[no,k,do]], respectively, we usenino physical

qubits to representk logical qubits.

Aharonov and Ben-Or were among the first to calculate a numerical value for a

threshold [11]. They found a value of∼ 10−6 for a particular set of assumptions. That

is, if more than one gate out of a million fails (a levelwell beyond experimental capabil-

ities for all quantum technologies at the moment), using fault tolerant techniques actual

makes the state of the system worse rather than better. If less than one in a million gates

fails, fault tolerance makes the state of the system better,and via repeated application

of fault tolerance we can reach an arbitrary level of reliability. Aharonov and Ben-Or

also proved (without providing a numerical figure) that a threshold exists even when

the qubits are arranged in a linear nearest neighbor-only topology, which we will see in

Section 6.1. Thresholds have been calculated many times fordifferent sets of physical

assumptions and error correcting codes, with answers varying by several orders of mag-

nitude in both directions [185, 90, 120, 132, 183, 318, 131, 274]; Knill has suggested

that, under some conditions, error rates as high as 1% might be acceptable [180]. In

this dissertation, we will work with the Steane algorithm and memory/gate error as-

sumptions described above, working toward a finite computation of a particular size

and ignoring the issues around thresholds.

2.3.5 Why QEC Suppresses Over-Rotation Errors

One counter-intuitive aspect of operating on encoded states is the suppression of over-

rotating gates (gates running “hot”) or under-rotating gates (gates running “cold”) [233]5.

It is easy to see that QEC corrects a single gate error, but if all of the physical gates

comprising a logical gate over-rotate by similar amounts, can that be corrected?

Examining the three-bit encoding once again,

|ψL〉 = α|000〉+ β|111〉 (2.49)

5This is a key factor in the “quantum computation is not analogcomputation” argument.

56 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

anX gate that runs hot on a single qubit will actually perform thegate

Xǫ = RX((1 + ǫ)π) =

[

sin ǫ
2

cos ǫ
2

cos ǫ
2

sin ǫ
2

]

. (2.50)

The logicalX gate for this encoding isX = XXX (X gates on all three component

qubits), where the over-line indicates a logical operation. A mis-rotation at thelogical

level is

Xǫ|ψ〉 = (α sin
ǫ

2
+ β cos

ǫ

2
)|000〉 + (α cos

ǫ

2
+ β sin

ǫ

2
)|111〉 (2.51)

butXǫ 6= XǫXǫXǫ! It is easy to be confused about how the system distinguishesbe-

tween a deliberate attempt to rotate byπ and1.1π. The answer is that this construction

XǫXǫXǫ suppresses the (apparent) over-rotation andforcesXǫXǫXǫ ∼ X. This fact

can be seen by doing the vectors explicitly.

XǫXǫXǫ|ψ〉 =

α sin3 ǫ
2

+ β cos3 ǫ
2

α sin2 ǫ
2
cos ǫ

2
+ β cos2 ǫ

2
sin ǫ

2

α sin2 ǫ
2
cos ǫ

2
+ β cos2 ǫ

2
sin ǫ

2

α sin ǫ
2
cos2 ǫ

2
+ β cos ǫ

2
sin2 ǫ

2

α sin2 ǫ
2
cos ǫ

2
+ β cos2 ǫ

2
sin ǫ

2

α sin ǫ
2
cos2 ǫ

2
+ β cos ǫ

2
sin2 ǫ

2

α sin ǫ
2
cos2 ǫ

2
+ β cos ǫ

2
sin2 ǫ

2

α cos3 ǫ
2

+ β sin3 ǫ
2

(2.52)

beforeapplying the error correction. This encoding suppresses the angular error to

O(sin2 ǫ
2
) = O(ǫ2), even without going through the QEC correction step, but it’s easier

to see once we’ve applied the QEC. Assuming perfect QEC, the final result is

|ψ′
L〉 = (α sin3 ǫ

2
+ β cos3 ǫ

2

+3α sin2 ǫ

2
cos

ǫ

2
+ 3β cos2 ǫ

2
sin

ǫ

2
)|000〉

+(α cos3 ǫ

2
+ β sin3 ǫ

2

+3α cos2 ǫ

2
sin

ǫ

2
+ 3β sin2 ǫ

2
cos

ǫ

2
)|111〉 (2.53)

and we see that the angular rotation error is in thesin2 terms.

Mathematicians would say, of the deliberate attempt to rotate by1.1π, that “it’s not

2.3. ERROR MANAGEMENT IN QUANTUM COMPUTERS 57

in the Clifford group,” or “it’s not in the normalizer.” The importance of this mathe-

matical distinction is that there are only a few gates, such as theX gate, that are easily

constructed by applying the same gate in a transverse fashion to all elements of our

logical qubit. It is not possible to (easily) construct a deliberate rotation by1.1π on

the logical state. We will not delve further into these mathematical issues or terminol-

ogy, though they affect compilation of efficient programs and cluster-state computing

as well as quantum error correction, and are influenced by thenatural gate for a specific

technology [145, 118].

2.3.6 Other Error-Suppression Techniques

Other forms of error management techniques exist, some based on deep theoretical

insights. One particularly intriguing one, from a theoretical point of view, istopolog-

ical quantum memory, in which a 2-D array or torus of qubits is entangled in various

patterns to make a logical qubit [92]. The state is stable because it is the patterns of

the connections, rather than the value or phase of any singlequbit, that determines the

logical state. The resources required are large, and it is not immediately clear how to

implement this scheme on a physical system.

QEC works best on systems with uncorrelated errors on separate qubits. When

error processes are more likely to affect groups of nearby qubits, a technique known as

decoherence free subspaces(DFS) helps to mitigate these problems [206, 140, 205]. In

a DFS, the logical value is encoded in the relative, rather than absolute, state of a group

of qubits. A stray magnetic field that caused them all to flip, for example, would not

affect the logical state.

In optical systems, the principal source of error is loss of photons. In this case,

erasure codes(in contrast toerror correcting codes) work well [183]. Erasure codes

can be as simple as a parity check. Reconstruction of the state is straightforward when

the position of the missing qubit is known. Erasure codes areused in RAID arrays,

where the position of the disk spindle that has failed plus a simple parity check provide

enough information to reconstruct the original data [263].

As we noted above, individual gates can run hot or cold, over-or under-rotating

compared to the intended angle. Besides using (digital) quantum error correction, ana-

log techniques for improving the accuracy of gates have beendeveloped. Composite

pulses break down a rotation into a series of steps designed so that similar errors in each

step cancel [338, 81]. As a simple example, a rotation from the north pole to the south

58 CHAPTER 2. REVERSIBLE AND QUANTUM COMPUTATION

pole can be broken down into a90◦ rotation about theX axis, then a180◦ rotation about

theY axis, then another90◦ rotation aboutX. If theX rotations both under-rotate, the

Y rotation will compensate by mirroring the position about the equator betweenX ro-

tations. Realistic sequences for arbitrary (and unknown) starting positions and gates

are substantially more complex but valuable. Some sequences can reduce an error ofǫ

in each step of the process to an errorO(ǫ6) in the final outcome.

2.4 Summary

Reversible computation allows us to reverse the arrow of time and return to the starting

point of a computation, recovering all inputs to the system.This is possible because

information is conserved, rather than destroyed, as in common Boolean logic; each

gate has an inverse that undoes its operation. In reversibleclassical logic, the inverse

of a gate is the same gate, but in quantum that is not necessarily so, as we saw in

Section 2.2.4. In reversible classical logic, we need a three-bit gate in order to have

universal computation; we have also seen that in quantum computation we can construct

the three-bit gates from many types of two-bit gates.

When Bennett, Feynman, Fredkin, Toffoli and others originally developed the con-

cepts behind reversible computing in the 1970s, they were searching for the ultimate

limits to the energy consumption of a computation, as well asplaying with remark-

able intellectual facets of information. They probably hadno notion that beginning just

a few years later they would help to found the fields of quantumcomputation, quan-

tum information theory and quantum communication, and thattheir names would be

indelibly linked with those fields. Feynman, Benioff and Deutsch conceived of quan-

tum computing in the 1980s as utilizing quantum effects to, potentially, dramatically

accelerate computation of certain functions [39, 114, 94].

Quantum computing must be contrasted with classical computation performed us-

ing quantum phenomena. Of course, the behavior of semiconductors can be viewed as

an analog quantum phenomenon, but transistors currently use large numbers of charge

carriers, allowing us to treat transistors as classical digital devices. As device size con-

tinues to decrease according to Moore’s Law, we will soon move into the range where

individual electrons are used [236, 110]. Other approachesinvolve using quantum cel-

lular automata as logic gates, or more directly manipulating the spin of small numbers

of electrons for e.g. magnetic RAM and logic devices, in a field broadly calledspin-

tronics [153, 329, 351]. Although the physics of the devices and the technology for

2.4. SUMMARY 59

manipulating such states have much in common with the experimental techniques for

quantum computation, there is a key difference. In what we refer to as quantum com-

putation, we are attempting to take direct advantage of the key aspects of superposition

and entanglement, whereas in quantum-executed classical computation, the goal is to

suppress these effects as unwanted, and maintain a clear binary state.

A quantum bit, or qubit, can be in a superposition of states, rather than the definite

zero or one state of a classical bit. In this chapter, we have presented the basic concepts

of qubit state, starting with the relationship between the wave function and the proba-

bility of getting certain results. We discussed representing the state of a single qubit as

a point on the Bloch sphere; visualization of the state of multiple qubits is much harder,

and if the qubits are entangled they cannot be represented independently. We discussed

the basic principles of quantum superposition, entanglement, measurement, and deco-

herence. We can entangle multiple qubits and interfere the terms in the superposition,

driving the system toward our desired states. Measuring thesystem will produce values

that would be difficult to calculate using only classical computers, in some cases, expo-

nentially more difficult. Designing algorithms that generate superpositions with useful

speedups has proved to be a difficult problem.

We have outlined some of the coherence and computational accuracy problems in-

herent in quantum computing devices, and shown a variety of ways of mitigating these

problems. In particular, we focused on quantum error correction (QEC). Besides sim-

ple bit errors, QEC must be able to correct phase errors as well. This fact results in

substantially less efficient codes than in the classical case. The counter-intuitive prop-

agation of phase errors also forces complex fault-tolerance mechanisms. The state of a

qubit is something of an analog phenomenon, with a continuumof states for the phase

and probabilities of different states; fortunately, as we have seen, QEC helps to sup-

press analog errors, at the expense of requiring more complex processes to effect many

logical qubit rotations.

This chapter has described the building blocks of quantum computation. The mate-

rial presented so far gives only the vaguest notion how theseconcepts cooperate to give

us the power of quantum computation. We will gradually elaborate on these topics,

beginning in the next chapter with Shor’s algorithm for factoring large numbers.

Chapter 3

Shor’s Algorithm for Factoring Large

Numbers

“I am fairly familiar with all forms of secret writings, and am my-

self the author of a trifling monograph upon the subject, in which I

analyze one hundred and sixty separate ciphers, but I confess that

this is entirely new to me. The object of those who invented the

system has apparently been to conceal that these characters con-

vey a message, and to give the idea that they are the mere random

sketches of children.”

Sherlock Holmes in “The Adventure of the Dancing Men,” Sir

Arthur Conan Doyle, 1903.

Before we can design a computer, we have to understand how it will be used. Char-

acterizing the workload of a proposed system is the first important task in the design

process. For our quantum multicomputer design, we have chosen Shor’s algorithm as

our primary target application [296, 107]. Shor’s algorithm requires arithmetic and the

quantum Fourier transform (QFT), both of which are considered fundamental building

blocks of other algorithms. Moreover, Shor’s algorithm is afamous and important re-

sult in its own right. This chapter presents an informal overview of the algorithm. Our

discussion does not detail the theoretical mathematics of the algorithm, instead cover-

ing the importance and structure of the algorithm, and its relationship to the quantum

mathematical building blocks which are the primary focus ofthis thesis. The chapter

begins by discussing the factoring problem, then presents the QFT, followed by arith-

metic algorithms for reversible and quantum addition and modular exponentiation, then

60

3.1. THE IMPORTANCE OF FACTORING 61

combines the parts into Shor’s overall algorithm.

3.1 The Importance of Factoring

Authentication of identity is one of the key factors in computer security. To authen-

ticate yourself, you prove in some fashion that you are who you claim to be (or, at

least, have rights that you claim to have). Authentication is often said to depend on

something you have, something you are, or something you know(but that is not known

to other people). A door key, for example, is one way to authenticate that you are al-

lowed to pass through the corresponding door; it is something you have. Biometric

sensors, such as fingerprint or iris readers, are canonical examples of “something you

are” authentication. A computer password is something you know.

The RSA algorithm (Rivest-Shamir-Adelman, named for its developers) is the most

important authentication mechanism on the Internet today [280, 289]. RSA is a classic

example of apublic key, or asymmetric, encryption algorithm. RSA is used primarily

for authentication, rather than encryption of bulk data, because it is expensive to cal-

culate relative to other encryption algorithms. In RSA, a cryptographic key has two

parts, the public key and the private key. The public key can be disclosed to anyone,

and should be made available via some trustworthy means. This trustworthy publica-

tion of the public key is beyond the scope of our discussion, but can be recursive use

of the same authentication mechanism leading back to a trusted source such as a friend

or the RSA Corporation, or an out-of-band trust mechanism such as publication in the

New York Times. The private key is used to calculate a function whose result can be

disclosed publicly. Using the result and the previously-announced public key, any party

can then verify that the function result was calculated by the holder of the private key,

thereby authenticating the identity of the creator.

Factoring a large integer into its components would seem to be a rather esoteric

problem, but in fact, it is directly relevant to this issue ofauthentication. The difficulty

of cracking RSA is known to be related to the difficulty of factoring a large, compos-

ite number into its prime factors. LettingC be the ciphertext andM be the original

message, the function calculated in RSA is

C = Me mod n (3.1)

M = Cd mod n. (3.2)

62 CHAPTER 3. SHOR’S ALGORITHM FOR FACTORING LARGE NUMBERS

The encryption key, or public key, is(e, n), and thedecryption key, or private key, is

(d, n). n is chosen to be a simple composite number, the product of two primes,n = pq.

d is a large, random number which is relatively prime to(p− 1)(q− 1). e must then be

the multiplicative inverse ofd, modulo(p− 1)(q − 1), such that

ed = 1 mod (p− 1)(q − 1). (3.3)

From this, we can easily see that the ability to factorn into p andq would allow the

encryption scheme to be broken. Thus, the security of RSA is said to depend on the

computational difficulty of the factoring problem.

3.2 Historical Progress in Factoring

The factoring problem has never beenprovedto be impossible to solve classically in

polynomial time, though many researchers strongly believeit to be impossible. The

best known classical algorithm, the general Number Field Sieve (NFS), consumes total

resources that are superpolynomial in the length of the number [187]. Its asymptotic

computational complexity on large numbers is

O(e(nk log2 n)1/3

) (3.4)

wheren is the length of the number, in bits, andk = 64
9

log 2.

RSA, the company founded by the inventors of the RSA algorithm, which owns

the (now expired) patents on the RSA algorithm and much related software, issues an

ongoing series of public challenges to the factoring community, in the form of numbers

to be factored. These challenges carry with them cash prizesthat are currently modest

but grow into the hundreds of thousands dollars for longer numbers [283]. Figure 3.1

shows the progress of the RSA Challenge factoring records since 1991.

RSA places no restrictions on the amount or type of computingpower to be used

in the challenge. At a constant dollar value of computing power used, in the current

range of∼ 600 bits, Moore’s Law applied to CPU power alone (ignoring memory

and I/O, and software improvements) suggests that the longest number factorable us-

ing NFS should be growing at about 18 bits per year. In the datathrough 2003, we

see roughly this trend. The line on the plot is a least-squares fit to the records through

2003. The current world record for factoring is 663 bits; a German team (Bahr, Boehm,

3.2. HISTORICAL PROGRESS IN FACTORING 63

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 1990 1995 2000 2005 2010 2015

Le
ng

th
 (

bi
ts

)

Year

Factoring World Record

RSA Challenge factored

Figure 3.1: Length of RSA Challenge numbers successfully factored, in bits, plotted
versus date accomplished.

Franke, and Keinjung) announced the factoring of the RSA-200 challenge number in

May, 2005. This data point appears to be an anomalously largeleap; whether it rep-

resents a shift in the long-term trend remains to be seen. Cavallar et al. estimated in

2000 that a 768-bit RSA key will be factored by 2010, and a 1024-bit one by 2018 [67];

progress appears to be on track to meet those predictions. Lenstra et al. have also noted

that NFS scales well to large numbers of parallel processorsand is amenable to custom

hardware acceleration; they suggest that a machine that could factor a 1,024-bit number

in one year could be built for US$10M using 2003 technology [203]. It may be possible

to use an Internet-scale distributed system, such as the Berkeley Open Infrastructure for

Network Computing (BOINC), to attack this problem [150, 19]. BOINC, upon which

SETI@home is based, has the potential to manage 100,000 or more nodes simulta-

neously attacking the same problem, a 1,000-fold increase over the size of systems

deployed to date on factoring problems. We can infer that, atthis point, moderately

large jumps in factoring records are primarily a matter of commitment of resources.

The execution time to factor a number using NFS an a set of on classical computers

is shown in Figure 3.2. The left curve is extrapolated performance based on the previous

world record, factoring a 530-bit number in one month, established using 104 PCs and

workstations made in 2003 [283]. The right curve is speculative performance using

1,000 times as much computing power. This could be 100,000 PCs in 2003, or, based

64 CHAPTER 3. SHOR’S ALGORITHM FOR FACTORING LARGE NUMBERS

 100 1000 10000 100000

T
im

e
to

 F
ac

to
r

an
 L

-b
it

N
um

be
r

L (bits)

one second

100 seconds

one hour

one day

one month
one year

10 years

100 years

1 thousand years

1 million years

1 billion years

N
FS

, 1
04

 P
C

s,
 2

00
3

N
F

S
, 1

00
 P

C
s,

 2
01

8

Figure 3.2: Scaling of number field sieve (NFS) on classical computers. Both horizontal
and vertical axes are log scale. The horizontal axis is the size of the number being
factored, in bits.

on Moore’s law, 100 PCs in 2018. From these curves it is easy tosee that Moore’s law

has only a modest effect on our ability to factor large numbers. Factoring a 1,000-bit

number is only a matter of time, but a 2,000-bit number awaitseither some theoretical

advance or the advent of large-scale quantum computers.

3.3 The Quantum Fourier Transform

We have noted several times that quantum parallelism effectively calculates exponen-

tially many functions at the same time, but that the difficulty lies in extracting useful

information from the superposition of results. Shor’s remarkable insight showed the

path to creating a desirable superposition by interfering periodic elements. Some prob-

lems exhibit periodicity in their results, but with a changing offset from zero. Classi-

cally, one method for finding a period in such an environment is to Fourier transform

the data, which eliminates phase (the offset) and leaves thefrequency (or period) infor-

mation.

The quantum Fourier transform (QFT) transforms each individual basis state in the

3.3. THE QUANTUM FOURIER TRANSFORM 65

r inputαj outputβk L/r
j = 0 1 2 3 4 5 6 7 k = 0 1 2 3 4 5 6 7

8 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
4 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 2
2 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 4
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 8

Table 3.1: Transform values of the coefficients in the QFT.

following way:

|j〉 QFT−→ 1√
L

L−1
∑

j=0

e2πijk/L|k〉 (3.5)

whereL is 2l, andl is the length of our state in bits. Writing out the entire transform

for l = 3 and lettingω = e2πi/8 =
√
i, we have

1√
8

1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω

. (3.6)

Let us look at the input and output of the QFT in more detail1. In Table 3.1,

αj are the coefficients of the valuesj in the input superposition
∑

αj |j〉. βk are the

coefficients in the output superposition. The top left entry, for example, has a one in

the leftmostαj column, corresponding to the state|0〉. The next line includes|0〉 and

|4〉, corresponding to the two ones.r is the period of repetition, that is, how often ones

appear in the fully-written-out superposition. The table can be used, for example, to

see the following transformation:

1√
2
(|0〉 + |4〉) QFT−→ 1

2
(|0〉 + |2〉 + |4〉 + |6〉) (3.7)

What happens if the values in the superposition are period four, but not|0〉 and |4〉,
perhaps being|1〉 and|5〉 instead? Such an offset difference shows up in a difference in

1These examples are borrowed from Lieven Vandersypen’s thesis [339].

66 CHAPTER 3. SHOR’S ALGORITHM FOR FACTORING LARGE NUMBERS

inputαj outputβk

j = 0 1 2 3 4 5 6 7 k = 0 1 2 3 4 5 6 7
1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0
0 1 0 0 0 1 0 0 1 0 i 0 -1 0 −i 0
0 0 1 0 0 0 1 0 1 0 -1 0 1 0 -1 0
0 0 0 1 0 0 0 1 1 0 −i 0 -1 0 i 0

Table 3.2: Transform of different offsets into phase via theQFT.

thephaseof the output, as shown in Table 3.2, giving e.g.

1√
2
(|1〉 + |5〉) QFT−→ 1

2
(|0〉 + i|2〉 − |4〉 − i|6〉). (3.8)

After the transform,all of the period four superpositions will have an equal chance

of returning 0, 2, 4, or 6 when the register is measured, regardless of their original

input values (this discarding of offset or phase is a characteristic of the classical Fourier

transform, as well).

Thus, when we have an unknown superposition that we suspect consists of some

terms|j〉 where thejs have a periodic relationship, the quantum Fourier transform will

allow us to extract that period. Shor has used quantum interference to cause undesirable

terms to cancel when transformed. This remarkable result concentrates portions of our

total probability into superposition terms that tell us something useful about the entire

superposition when measured, holding out the tantalizing possibility of an exponential

increase in computational power.

Shor built on work by Simon to develop his algorithm [299]. Many researchers

have examined the QFT in more detail, including describing how to implement it, and

discussing the necessity of exponentially small rotationsin the low-order bits [31, 69,

80, 82, 141, 332, 121]. We will leave off discussing the QFT, and move on to arithmetic,

which we also need for Shor’s algorithm.

3.4 Prior Art in Quantum Adders

Shor’s factoring algorithm depends on the creation of a superposition consisting of the

modular integer exponentiation of a randomly-chosen number x raised to all powers 0

to 22n −1, for ann-bit number. Exponentiation, of course, depends on integermultipli-

cation, which in turn depends on addition. In this section wewill review several types

of quantum adders developed by other researchers, which will be used to construct the

3.4. PRIOR ART IN QUANTUM ADDERS 67

complete modular exponentiation in the following section.

Classically, engineers have found many ways of building adders and multipliers;

choosing the correct one is a technology-dependent exercise [109]. The performance

of an adder depends primarily on how quickly the informationabout the carry can

propagate from bit to bit. The most obvious methods result inlatency that is linear

in the number of bits to be added, but more complex techniquescan reduce that to

O(
√
n) or evenO(logn). Classical multipliers are usually built by deferring the carry

calculation, allowing then additions necessary for a multiplication to be completed

in much less thann times the latency of an individual adder; we will see below that

this is less attractive for quantum arithmetic. Only a few ofthese classical techniques

have been explored for quantum computation. We review thesecircuits in this chapter.

For our purposes, we need only unsigned integer arithmetic,so the standard unsigned

integer representation is used.

We begin by explaining our notation for performance, then analyze progressively

faster types of adders developed by other researchers, saving the presentation of my

new adder types for Section 6.3. Rather than the details of why these circuits work, we

are more interested in how to implement them and evaluate their performance.

3.4.1 Arithmetic Performance Notation

We express the circuit cost using the notation(CCNOTs; CNOTs;NOTs) or

(CNOTs; NOTs). The values may be total gates or circuit depth (latency), depending on

context. The notation is sometimes enhanced to show required concurrency and space,

(CCNOTs; CNOTs; NOTs)#(concurrency; space).

t is time, or latency to execute an algorithm, andS is space, subscripted with the

name of the algorithm or circuit subroutine. Whent or S is superscripted withAC or

NTC, the values are for the latency of the construct on that architecture, as described in

Section 6.1.2. Equations without superscripts are for an abstract machine assuming no

concurrency.R is the number of calls to a subroutine, subscripted with the name of the

routine.

3.4.2 Linear-Time Adders

The two most commonly cited modular exponentiation algorithms are those of Vedral,

Barenco, and Ekert [342], which we will refer to as VBE, and Beckman, Chari, Devab-

haktuni, and Preskill [35], which we will refer to as BCDP. Both the BCDP and VBE

68 CHAPTER 3. SHOR’S ALGORITHM FOR FACTORING LARGE NUMBERS

algorithms build multipliers from variants of carry-ripple adders, the simplest but slow-

est method. Draper designed an adder that acts in the Fouriertransform space whose

principal advantage is its smaller size [102]. Cuccaro, Draper, Kutin and Moulton have

more recently shown the design of a smaller, faster carry-ripple adder, which we call

(CDKM) [88], which appears to make the Fourier adder obsolete.

VBE Carry-Ripple

We use the VBE adder in several of our algorithmic variants described in Chapter 6. In

this algorithm, the values to be added in (the convolution partial products ofxa, in the

overall modular exponentiation) are programmed into a temporary register (combined

with a superposition of|0〉 as necessary) based on a control line and a data bit via

appropriateCCNOT gates. Here we examine just the adder itself.

The latency of ADDER2, assumingnoconcurrent gate execution, is

tADD = (4n− 4; 4n− 3; 0)#(1; 3n) (3.9)

that is,4n − 4 CCNOT times plus4n − 3 CNOT times and zero NOT times, executing

only one gate at a time and using3n qubits. Since we are assuming no concurrent

gate operations, this value is the same as the total number ofgates in the circuit. In

Figure 3.3, we have drawn the circuit with multiple gates being executed in some time

slots; the actual expression for the performance of the circuit as drawn is

tAC
ADD = (3n− 3; 2n− 3; 0)#(3; 3n) (3.10)

It requires that at least 3 gates can be executed concurrently in order to meet the perfor-

mance specified, and uses3n qubits during the calculation. These numbers are calcu-

lated assuming that gates on independent qubits can be executed concurrently, and that

CCNOTs take longer to execute thanCNOTs.

Figure 3.3 shows the circuit for an eight-bit VBE adder, adding theA andB regis-

ters, with theC register used as temporary variables that begin in the zero state and must

be returned to that state at the end. The graphical notation used for quantum circuits is

a superset of the classical reversible notation introducedin Figure 2.1 on page 23; we

will introduce new gates as necessary. The structure of the circuit is straightforward.

2When we write ADDER in all capital letters, we mean the complete VBE n-bit construction, with
the necessary undo; when we write adder in small letters, we are usually referring to a smaller or generic
circuit block.

3.4. PRIOR ART IN QUANTUM ADDERS 69

A0

B0

C0

A1

B1

C1

A2

B2

C2

A3

B3

C3

A4

B4

C4

A5

B5

C5

A6

B6

C6

A7

B7

C7

10 20 30

Figure 3.3: An eight-bit VBE adder.

Along the left-hand edge, all of the partial sums are computed concurrently (as drawn,

the concurrency used isn, but it is easy to see that doing the partial sums in a “just in

time” fashion would result in a concurrency of 3). Next, descending from the top edge,

we see a chain ofCCNOT gates; these propagate the carry from one bit to the next. The

entire latter two-thirds of the circuit cleans up the ancillae we have used, leaving the

A register in its original state and theB register containing the eight-bit valueA + B,

with C7 the output carry. The numbers across the top of the diagram are clock cycles.

These numbers are counted assuming that all gates require the same amount of time,

which is not the case in most systems, so the numbers should betreated as a guideline

rather than an actual performance figure.

Murali et al. experimentally demonstrated a half-adder subunit of the VBE carry-

ripple on an NMR system [239]. This experiment and the NMR implementation of

Shor’s algorithm to factor the number fifteen [340] are, to the best of my knowledge,

the only experimental demonstrations of quantum arithmetic circuits.

BCDP Carry-Ripple

The BCDP algorithm is also based on a carry-ripple adder. It differs from VBE in that it

more aggressively takes advantage of classical computation, adding a classical number

into the register conditional on a quantum enable bit. However, for our purposes, this

70 CHAPTER 3. SHOR’S ALGORITHM FOR FACTORING LARGE NUMBERS

makes it harder to use some of the optimization techniques presented in later chapters.

Beckman et al. present several optimizations and tradeoffsof space and time, slightly

complicating the analysis. The latency of their adder is

tOADDN = (6n− 2; 2n; 2) (3.11)

which, assumingCCNOT gates are slower thanCNOTs, is slower than the VBE adder.

Gossett Carry-Ripple

Shortly after the publication of the VBE and BCDP algorithms, Gossett realized that

it is possible to do much better than carry-ripple arithmetic, drawing on the important

classical Boolean techniques ofcarry-save arithmetic[130]. Gossett does not provide

a full modular exponentiation circuit, only adders, multipliers, and a modular adder.

Carry-save arithmetic is particularly well suited to incorporation into a larger multiplier

structure, but in this case a large penalty in the number of qubits required must be

paid. Unfortunately, the paper’s secondary contribution,Gossett’s carry-ripple adder,

as drawn in his figure 7, seems to be incorrect. Once fixed, his circuit optimizes to be

similar to VBE.

Draper QFT-based Adder

Draper developed a clever method for doing addition on Fourier-transformed represen-

tations of numbers [102]. It uses only2n qubits, but it requiresn concurrent gates.

Moreover, the comparison operations necessary for modulararithmetic are difficult in

the Fourier space, necessitating frequent transformationof the representation between

integer and Fourier forms. The accuracy required in the gaterotations is very high,

which may be difficult to achieve. Finally, although the latency isO(n), I believe the

constant factors to actually implementing this circuit on encoded logical states will be

large, making it ultimately an unattractive option for mostpurposes.

CDKM Carry-Ripple

Cuccaro et al. have recently introduced a carry-ripple circuit, which we will call

CDKM, which uses only a single ancilla qubit [88]. The authors do not present a

complete modular exponentiation circuit; we will use theiradder in our algorithmsF

3.4. PRIOR ART IN QUANTUM ADDERS 71

MAJ

=

UMA

Figure 3.4: Building blocks for the CDKM adder.

andG (Section 6.4). This adder, we will see in section 6.4.3, is the most efficient known

for some architectures.

Figure 3.4 shows the building blocks of the CDKM adder. MAJ isthe majority

function; the bottom qubit winds up holding zero if two or three of the bits are zero,

and one if two or three of the bits are one. It is the basis of thecarry calculation chain.

UMA is unmajority and add, undoing the MAJ calculation whileturning the middle bit

into the correct, carry-adjusted final sum. Two ways to construct the UMA function are

shown. A full adder circuit is illustrated in Figure 3.5, using the right-hand construct

for UMA, which is more gates than the left-hand construct butcan be pipelined more

effectively, overlapping the execution of multiple gates and reducing the total latency.

The latency of their adder is

tCDKM = (2n− 1; 5; 0)#(6; 2n+ 2). (3.12)

This circuit uses only2n + 2 qubits and runs perhaps one and a half times as fast

as the VBE adder (again, depending on implementation details), but requires higher

concurrency in gate operations. This factor affects the performance of the distributed

forms of our algorithms, presented in Section 7.5.

3.4.3 O(log n) Adders

Carry-save, carry-lookahead and conditional-sum (see Sec. 6.3.3) are all adder types

that reachO(logn) performance by deferring carry computation or by communicating

the carry to distant parts of the circuit more rapidly.

Gossett Carry-Save

Gossett’s arithmetic is pure quantum, as opposed to the mixed classical-quantum of

BCDP. Gossett’s carry-save adder [130], the primary contribution of the paper, can run

in O(logn) time. More importantly, carry-save adders are designed to combine well

72 CHAPTER 3. SHOR’S ALGORITHM FOR FACTORING LARGE NUMBERS

B0

A0

X

B1

A1

B2

A2

B3

A3

B4

A4

B5

A5

B6

A6

B7

A7

Z

10

Figure 3.5: An eight-bit CDKM adder. X is a temporary variable, and Z is the carry
out.

into fast multiplier circuits. However, such a circuit willremain impractical for the

foreseeable future due to the large number of qubits required; Gossett estimates8n2

qubits for a full multiplier, which would run inO(log2 n) time. It bears further analysis

because of its high speed and resemblance to standard fast classical multipliers.

Carry-Lookahead

Draper, Kutin, Rains, and Svore have recently designed a carry-lookahead adder, which

we call QCLA [103]. This method allows the latency of an adderto drop toO(logn).

The latency and storage of their adder is

tLA = (4 log2 n + 3; 4; 2)#(n; 4n− log n− 1). (3.13)

This circuit is illustrated in Figure 3.6. Although an eight-bit carry-lookahead adder is

not faster than a CDKM carry-ripple adder, the logarithmic advantage quickly becomes

apparent asn grows. When looking at this figure, it is immediately obviousthat the

circuit is denser than the carry-ripple adders. All quantumcarry-ripple adders exhibit

3.4. PRIOR ART IN QUANTUM ADDERS 73

A0

B0

X0

A1

B1

X1

A2

B2

P_a1

X2

A3

B3

X3

A4

P_b1

B4

P_a2

X4

A5

B5

X5

A6

B6

P_a3

X6

A7

B7

X7

10 20

Figure 3.6: An eight-bit carry-lookahead adder.

a “V” shape in which many of the qubits sit idle for long periods while the carry prop-

agates down and back the length of the register. In the carry-lookahead adder, various

carry signals leapfrog up and down the register, with the overall state gradually con-

verging on the correct value. In the figure, this leapfrogging is illustrated by gates that

stretch is much as half the height of the total circuit. We will see shortly that such

gates are not always practical, and that this issue will place limits on our achievable

performance.

3.4.4 Ultimate Limits on Performance of Addition

The performance of any circuit must be specified with respectto a particular architec-

ture. Architectural assumptions are implied in the numbersprovided throughout this

chapter; we will detail these more carefully in Section 6.4.

74 CHAPTER 3. SHOR’S ALGORITHM FOR FACTORING LARGE NUMBERS

Engineers tend to use theO(·) notation more loosely than theorists. The behavior

of an algorithm is generally understood to hold only for a particular range of problem

size, or as long as a certain set of assumptions holds. In particular, signal propagation

times are often approximated to be zero, an assumption whichclearly does not hold

indefinitely.All algorithms which require any signal to propagate to all parts of a com-

putation are ultimately limited toO(3
√
n) for any system in which bits occupy a finite

volume, as the signal propagation is constrained to the finite speed of light and bits can

only be packed in three dimensions. This constraint holds for addition; our assertion

above that certain adders can reachO(logn) performance holds only until signal prop-

agation effects come into play. We will present the system behavior for more realistic

conditions when we discuss both monolithic and distributedcomputation.

3.4.5 Summary

Recent focus on quantum arithmetic has provided a bounty of new reversible addition

algorithms. With the exception of Draper’s quantum Fouriertransform-based adder,

all of the adder circuits we have just presented will benefit classical reversible logic,

as well. In Boolean logic, the carry-ripple adder is so straightforward that there are

not many distinctions to be made. In the reversible and quantum arenas, we now have

the VBE, BCDP, and CDKM carry-ripple circuits, using different numbers of ancillae

qubits and having different performance characteristics.We also have various more

complex adder circuits that reach square-root or logarithmic depth instead of the linear

depth of carry-ripple. These faster circuits include the carry-save adder, the carry-

lookahead adder, and my two circuits, the conditional-sum and carry-select adders,

which we will see in Section 6.3. All of these adders except the carry-ripple ones

require qubits that are some distance apart to interact. Classically, the choice of adder

circuit in modern systems is made not based on actual gate count, but on the time

and space required for the wiring to connect the bits; this approach will inevitably be

necessary in quantum computing, as well.

Integer arithmetic, of course, is the foundation of all computer arithmetic, but has

been extended in many ways to make more complex functions, including integer mul-

tiplication and floating-point arithmetic. Research into these areas for reversible logic

remains very basic. The next section introduces two methodsfor composing the com-

plete quantum modular exponentiation, and several optimizations, but multiplication is

still created by serial execution of addition.

3.5. QUANTUM MODULAR EXPONENTIATION 75

3.5 Quantum Modular Exponentiation

We now come to the part of the algorithm most relevant to this thesis. The modular

exponentiation of a random integer is the most computationally intensive portion of

Shor’s algorithm, and is our benchmark for the behavior of our quantum multicomputer.

These algorithms are introduced here and improved throughout Chapter 6.

To factor the numberN using Shor’s algorithm [296], a quantum computing device

must evolve to hold the state

1

2n

22n−1
∑

a=0

|a〉|xa mod N〉. (3.14)

for a randomly chosen, fixedx, wheren is the bit length ofN . |a〉 is the register that

holds the superposition of all values0..22n − 1, created by applying a Hadamard gate

to each qubit in|a〉. Depending on the algorithm chosen for modular exponentiation,

x may appear explicitly in a register in the quantum computer,or may appear only

implicitly in the choice of instructions to be executed.

In general, quantum modular exponentiation algorithms arecreated from building

blocks that do modular multiplication,

|α〉|0〉 → |α〉|αβ mod N〉 (3.15)

whereβ andN may or may not appear explicitly in quantum registers. This modular

multiplication is built from blocks that perform modular addition,

|α〉|0〉 → |α〉|α+ β mod N〉 (3.16)

which, in turn, are usually built from blocks that perform addition and comparison.

In most modular exponentiation algorithms, the multiplication step is performed2n

times, once for each bit in the register|a〉 [342, 35]. The running product is multiplied

by a value held in a quantum register. That value is either 1, if the corresponding bit

of |a〉 is zero, orx2i
, if the corresponding bit is one. Letdi = x2i

, andan−1an−2..a0

be the binary expansion ofa. Thedi can be calculated classically, but|a〉 is a quantum

register. The valuexa mod N can be rewritten [191, 342] as

2n
∏

j=0

d
aj

j mod N. (3.17)

76 CHAPTER 3. SHOR’S ALGORITHM FOR FACTORING LARGE NUMBERS

Fundamentally, quantum modular exponentiation isO(n3); that is, the number of

quantum gates or operations scales with the cube of the length in bits of the number

to be factored [296, 342, 35]. It consists of2n modular multiplications, each of which

consists ofO(n) additions, each of which requiresO(n) operations. However,O(n3)

operationsdo not necessarily requireO(n3) time steps. On an abstract machine, it is

relatively straightforward to see how to reduce each of those three layers toO(logn)

time steps, in exchange for more space and moretotal gates, giving a total running

time ofO(log3 n) if O(n3) qubits are available and an arbitrary number of gates can

be executed concurrently on separate qubits. Such large numbers of qubits are not

expected to be practical for the foreseeable future, so muchinteresting engineering lies

in optimizing for a given set of constraints.

3.5.1 VBE, BCDP and Others

Both the VBE and BCDP algorithms construct modular multiplication from a straight-

forward series of modular additions. Each modular additionis performed by adding in

the chosen number, comparing toN to see if the result has overflowed, and subtracting

N if so. This method results in a large number of additions and subtractions, which can

easily be reduced, as will be demonstrated in Chapter 6.

The VBE algorithm [342] builds full modular exponentiationfrom smaller building

blocks. The bulk of the time is spent in20n2 − 5n calls to ADDER. The full circuit

requires7n + 1 qubits of storage:2n + 1 for a, n for the other multiplicand,n for a

running sum,n for the convolution products,n for a copy ofN , andn for carries.

In this algorithm, the values to be added in, the convolutionpartial products ofxa,

are programmed into a temporary register (combined with a superposition of|0〉 as

necessary) based on a control line and a data bit via appropriate CCNOT gates. The

latencytV of the complete VBE algorithm is

tV = (20n2 − 5n)tADD

= (80n3 − 100n2 + 20n; 96n3 − 84n2 + 15n;

8n2 − 2n + 1). (3.18)

The BCDP algorithm is similar in structure to VBE, but uses more complicated

gates and presents numerous engineering tradeoffs. Borrowing from their equation

3.5. QUANTUM MODULAR EXPONENTIATION 77

6.23, the latencytB of the complete BCDP algorithm is

tB = (54n3 − 127n2 + 108n− 29;

10n3 + 15n2 − 38n+ 14;

20n3 − 38n2 + 22n− 4). (3.19)

The exact sequence of gates to be applied is also dependent onthe input values ofN

andx, saving space but making it less suitable for hardware implementation with fixed

gates (e.g., in an optical system). In the form we analyze, itrequires5n + 3 qubits,

including2n+ 1 for |a〉.
Beauregard has designed a circuit for doing modular exponentiation in only2n+ 3

qubits of space [34], based on Draper’s clever method for doing addition on Fourier-

transformed representations of numbers [102]. The depth ofBeauregard’s circuit is

O(n3), the same as VBE and BCDP. However, we believe the constant factors on this

circuit are very large; every modulo addition consists of four Fourier transforms and

five Fourier additions. Moreover, its primary advantage, reduction of the scratch space

used in addition, has been partially nullified by the development of a carry-ripple adder

that likewise uses only2n+ 1 qubits [88].

Fowler, Devitt, and Hollenberg have simulated Shor’s algorithm using Beauregard’s

algorithm, for a class of machine they calllinear nearest neighbor(LNN) [119, 95].

LNN corresponds approximately to ourNTC. In their implementation of the algorithm,

they found no significant change in the computational complexity of the algorithm on

LNN or an AC-like abstract architecture, suggesting that the performance of Draper’s

adder, like a carry-ripple adder, is essentially architecture-independent.

3.5.2 Cleve-Watrous Parallel Multiplication

Modular exponentiation is often drawn as a string of modularmultiplications, but Cleve

and Watrous pointed out that these can easily be parallelized, at linear cost in space [80].

We always have to execute2n multiplications; the goal is to do them in as few time-

delays as possible.

To go (almost) twice as fast, use two multipliers. For four times, use four. Naturally,

this can be built up ton multipliers to multiply the necessary2n + 1 numbers, in

which case a tree recombining the partial results requireslog2 n quantum-quantum (Q-

Q) multiplier latency times, as shown in Figure 3.8. We will analyze this method in

78 CHAPTER 3. SHOR’S ALGORITHM FOR FACTORING LARGE NUMBERS

Q
S

E
T

Q
S

E
T

xa

a3
a2
a1
a0

a7
a6
a5
a4

C
Q

M
M

U
LT

C
Q

M
M

U
LT

C
Q

M
M

U
LT

C
Q

M
M

U
LT

C
Q

M
M

U
LT

Q
Q

M
M

U
LT

C
Q

M
M

U
LT

Figure 3.7: Concurrent modular multiplication in modular exponentiation using two
multipliers. QSET simply sets the sum register to the appropriate value.

tim
e

M M M M M
M

M
M

M
M

M

M
M

M
M

M

M
M

M
M

M
M

M

M
M

M
M

M M M M

Figure 3.8: Cleve-Watrous parallel multiplication (rotated ninety degrees relative to
other graphs, with time flowing bottom to top).

3.6. SHOR’S ALGORITHM 79

more detail in Section 6.4.2.

3.5.3 Scḧonhage-Strassen

The Schönhage-Strassen multiplication algorithm is often quoted in quantum com-

puting research as beingO(n logn log logn) in complexity for a single multiplica-

tion [362, 187]. However, simply citing Schönhage-Strassen without further qualifi-

cation is misleading for several reasons. Most importantly, the constant factors matter.

Shor noted this in his original paper, without explicitly specifying a bound. Quantum

modular exponentiation based on Schönhage-Strassen is only faster than basicO(n3)

algorithms for more than approximately 32kilobits3. In this thesis, we will concentrate

on smaller problem sizes, and exact, rather thanO(·), performance. Note also that this

bound is for a Turing machine; a random-access machine can reachO(n logn) using

Schönhage-Strassen.

3.6 Shor’s Algorithm

Finally, we come to Shor’s factoring algorithm itself. The algorithm consists of both

classical and quantum portions, with the quantum portion being a period-finding method

based on the QFT and arithmetic to calculate the modular exponentiation of two inte-

gers. The period-finding method operates on two quantum registers, the control register

and the function result register; in the end, we will actually measure thecontrolregister

to find the period of the function (this is perhaps the most counter-intuitive feature of

the algorithm).

To factor a numberN whose length isn bits, we begin by checking that the number

is not even and determining that it not an integer power,ab, for a ≥ 1 and b > 2.

Efficient classical methods are known for this calculation and for finding the greatest

common divisor (gcd), which we will not present. Next, choose an integer2 < x < N ,

and check thatgcd(x,N) = 1; if not, returngcd(x,N). The value ofx need not be

strictly random, but is not important except that repeatingthe algorithm after a failure

sometimes requires thatx be changed.

Next, use the quantum period-finding method to determine theorderr of x modulo

N . If r is even andxr/2 6= −1 mod N , calculategcd(xr/2−1, N) andgcd(xr/2−1, N).

3Zalka found that his approach would be faster for 8kilobits,using a slightly different set of assump-
tions.

80 CHAPTER 3. SHOR’S ALGORITHM FOR FACTORING LARGE NUMBERS

One of these should be a factor ofN . If not, or if r is odd, repeat the algorithm, choosing

a differentx.

The order ofx moduloN is found by noting that we can calculate the modular

exponentiationxa mod N for all a. We use two quantum registers, which will hold,

respectively,a andxa mod N . The register fora must be2n qubits long. Starting from

the state
1

2L

22L−1
∑

a=0

|a〉|1〉 (3.20)

in which all of the qubits are disentangled, the modular exponentiation then produces

the state
1

2L

22L−1
∑

a=0

|a〉|xa mod N〉. (3.21)

Once we have that entangled state [167], we apply the QFTto the first register, measure

both registers, and use the value in the first register (discarding the second) to find the

order ofx moduloN , and from there the factors ofN .

How the QFT creates a state that can tell us the order of the function is mysterious,

almost spooky, and certainly difficult to grasp. To make thismore concrete, let’s look

at an example. 15 is the smallest number upon which Shor’s algorithm works properly,

and we will choosex = 7 as a good example. For reasons we won’t go into here, we

really need at least one bit more in oura register than the length ofN itself, but we will

restrict ourselves to four bits fora to keep the size of the example manageable. This

gives us

1

4

15
∑

a=0

|a〉|xa mod N〉 =
1

4
(|0〉|1〉+ |1〉|7〉+ |2〉|4〉 + |3〉|13〉

+ |4〉|1〉 + |5〉|7〉 + |6〉|4〉+ |7〉|13〉
+ |8〉|1〉 + |9〉|7〉 + |10〉|4〉+ |11〉|13〉
+ |12〉|1〉 + |13〉|7〉+ |14〉|4〉+ |15〉|13〉)

=
1

4
((|0〉 + |4〉 + |8〉 + |12〉)|1〉

+ (|1〉 + |5〉 + |9〉 + |13〉)|7〉
+ (|2〉 + |6〉 + |10〉 + |14〉)|4〉
+ (|3〉 + |7〉 + |11〉 + |15〉)|13〉).

(3.22)

The second form makes it clear that what we have accomplishedso far is togroup the

3.7. SUMMARY 81

values ofa based onxa mod N . Each of these groups – 0-4-8-12, 1-5-9-13, etc. – has

elements that skip four values, but with an offset that differs from group to group. This

information – the length of that stride between elements of the superposition in each

group – is what will allow us to find the order. But how can we extract that piece of

information?

If we were to apply the QFT to our original rawa register1
4

∑15
a=0 |a〉, the result

would simply be|0〉. The grouping created by the modular exponentiation now creates

sets of elements that can effectively be Fourier transformed independently. The Fourier

transform, as noted, eliminates the offset, “hiding” it in the phase of the elements of the

superposition and leaving the frequency components in the numeric values. The QFT

of Equation 3.22 is

QFT(
1

4
((|0〉 + |4〉 + |8〉 + |12〉)|1〉

+ (|1〉 + |5〉 + |9〉 + |13〉)|7〉
+ (|2〉 + |6〉 + |10〉 + |14〉)|4〉
+ (|3〉 + |7〉 + |11〉 + |15〉)|13〉))

=(
1

4
((|0〉 + |4〉 + |8〉 + |12〉)|1〉

+ (|0〉 + i|4〉 − |8〉 − i|12〉)|7〉
+ (|0〉 − |4〉 + |8〉 − |12〉)|4〉
+ (|0〉 − i|4〉 − |8〉 + i|12〉)|13〉)).

(3.23)

Now, when we measure the two registers, we will always find oneof 0, 4, 8, or 12 in

the first register, with equal probability. If we find 0, the algorithm has failed and we

must repeat. Otherwise, we use the number found asr, and apply Euclid’s algorithm

for finding greatest common denominators to find the GCD ofN andxr/2 − 1, and of

N andxr/2 + 1, as described above.

3.7 Summary

In this chapter, we have introduced Shor’s algorithm for factoring large numbers, and

discussed its significance. The creation of a machine that executes Shor’s algorithm

would have implications for security on the Internet, breaking the widely-used RSA

public-key crypto system. Most of the tasks assigned to RSA can be accomplished

82 CHAPTER 3. SHOR’S ALGORITHM FOR FACTORING LARGE NUMBERS

via other mechanisms, including symmetric, private-key encryption, but such solutions

may be less efficient in using resources both locally and globally [289].

Shor’s algorithm rests on the breakthrough insight that certain functions produce

the same results for inputs that are separated by a specific period, and that the quantum

Fourier transform can extract that period efficiently. For factoring large composite inte-

gers, the function of interest is the exponentiation of a random number moduloN , the

number to be factored. The modular exponentiation is constructed in a straightforward

fashion from integer addition and comparison, and we saw various circuits for addi-

tion. We will see in later chapters how to implement these operations efficiently; we

turn next to a taxonomy of quantum computing technologies which might used to build

systems on which Shor’s algorithm can be run.

Chapter 4

A Taxonomy of Quantum Computing

Technologies

In this chapter we present a classification scheme for quantum computing technologies,

based on the characteristics most relevant to computer systems architecture, and apply

it to analyze several candidate technologies. This taxonomy is complementary to the

DiVincenzo criteria introduced in Section 2.2. Whereas theDiVincenzo criteria help

define whether or not it ispossibleto build a quantum computer based on the specified

technology, in our taxonomy we are concerned with whether ornot it is practical.

This taxonomy will be used in our definition of a scalable system (Section 7.2), and

the performance-relevant portions will affect our analysis of systems throughout the

remainder of this thesis. We will describe each criterion aswell as some of its high-level

architectural implications. In the last section, we will use this taxonomy to evaluate

several proposed computing technologies.

4.1 Taxonomy Framework

4.1.1 Basic Features

Stationary, flying and mobile: Quantum computing technologies can be divided

into two categories: those in which the qubits are represented by constantly moving

phenomena (photons) and those in which qubits are represented by static phenomena

(nuclear or electron spins). For phenomena that move, gatesare physical devices which

affect qubits as they flow through the gate. These are called “flying qubits”. Optical

implementations generally fall into this category, where photons are qubits and e.g.

83

84 CHAPTER 4. TAXONOMY OF QUANTUM COMPUTING TECHNOLOGIES

beam splitters serve as gates. For “stationary” phenomena,qubits occupy a physical

place and gate operations from an application are applied tothem. The “stationary”

notion appliesonly during gate operation. Some stationary technologies, suchas the

proposed scalable ion trap [170], permit the physical qubitcarrier to be moved prior to

application of a gate; we will call these “mobile” qubits.

The key reason to make the distinction between stationary and flying implemen-

tations is dynamic control. In a flying qubit device, the order and type of gates must

typically be fixed in advance, often at device construction time; different program ex-

ecution is achieved by classical control of switches that route qubits through different

portions of the circuit. A stationary qubit device has more flexibility to reconfigure

gates. In this sense, using stationary devices is like classical programming, while flying

qubit designs are more like classical circuit design [354].

Single system versus ensemble:A significant distinction in quantum computing

technologies is the choice ofensemblecomputing orsingletoncomputing. In ensemble

computing, generally implemented on stationary qubit systems, there are many identi-

cal quantum computers, all receiving the same operators andexecuting the same pro-

gram on the same data (except for noise). Singleton systems have the ability to directly

control a single physical entity that is used to represent the qubit.

From a technology perspective, ensemble systems are easierto experiment with, as

techniques for manipulating and measuring large numbers ofatoms or molecules are

well understood. Hence, the largest quantum computing system demonstrations to date

have all been on bulk-spin NMR [340, 52], which uses an ensemble of molecules to

compute.

Quantum I/O: There are a variety of reasons why we may want to move quantum

data from one place to another: we may simply be aggregating multiple devices into a

larger machine, or the far node may provide different computational capabilities (e.g.

long-term storage) or have access to different data. In somecases, we may wish to

move quantum data between devices of different technologies [222]. In our quantum

multicomputer, we will be aggregating homogeneous nodes into a larger system using

the qubus protocol described in Chapter 5.

Quantum I/O (QIO) is a very error-prone process. Therefore,it is done by first using

QIO on “empty” qubits, which we will call QIO sites or transceiver qubits, creating an

entangled state between a pair of devices. Once the existence of the entangled state is

4.1. TAXONOMY FRAMEWORK 85

confirmed through a process called purification [43, 77, 259], it can be used to transfer

any desired quantum state by using quantum teleportation (Chapter 5).

Question marks appear in the QIO entries in table 4.1 becauseexperimental demon-

stration in structures similar to those expected to be used in quantum computers has not

yet been done, or because adequate fidelity has not been shown. In some cases, ba-

sic experimental confirmation or proposals backed by relatively solid analysis exist; in

others, only a few sentences in a longer paper.

Measurement: In Section 2.2.3 we discussed measurement in the abstract, and in

Chapter 2.3 we saw its importance for quantum error correction. Four architectural fea-

tures characterize different measurement schemes: (1) Canmeasurements of multiple

quantum bits be performed in parallel or must they be serialized? (2) Does measure-

ment of a quantum bit require interaction with another “clean” qubit in order to produce

a result? (3) Is the speed of measurement about as fast (in thesame order of magnitude)

as performing an operation? (4) Can measurement be performed almost anywhere, or

must the physical entities that are used to represent the qubits be moved to specialized

measurement sites?

Reliably computing on a quantum system will mean that many ofthe total quantum

operations will be measurements, as we discussed in the lastchapter. From an archi-

tectural perspective, if measurements must be performed serially, or are inordinately

slow, then Amdahl’s Law [18] will apply and measurement willbe the bottleneck in

computation. Furthermore, if additional ancillae qubits are required for measurement

to take place, then we must plan for the initialization of those qubits to occur frequently.

Similarly, if technologies restrict where measurement canoccur, then those restrictions

will need to be designed into the architecture and algorithms.

4.1.2 Algorithmic Efficiency Features

Many features of the various quantum computing proposals will have profound impli-

cations for the execution of quantum algorithms on realistic architectures.

Concurrency (control parallelism): The most fundamental feature required to ac-

celerate quantum computation is concurrent execution of gates. This is useful at the

algorithmic (logical) level, but critical at the physical level, where concurrent operation

is required in order to execute quantum error correction frequently enough to prevent

86 CHAPTER 4. TAXONOMY OF QUANTUM COMPUTING TECHNOLOGIES

decoherence of large numbers of qubits.

Despite the advantages in computational complexity class that some quantum algo-

rithms promise, it is still important to extract parallelism from quantum algorithms.

If all operations had to be sequentialized, then on some proposals, such as silicon

NMR [300], it would still require significant time to factor large values. For example,

Kunihiro [193] has estimated the sequential running time ofShor’s algorithm factoring

a 530-bit number at 1.18 years for a 1kHz device (approximately NMR speeds), 10

hours for a 1MHz device, or 37 seconds for a 1GHz device.

Fortunately, there is significant parallelism available [235] in quantum software (er-

ror correction [308] and factoring [80, 334]). The ability to exploit this parallelism,

however, requires technologies with parallel control. This parallel control will require

significant classical support circuitry. If this circuitrycannot be located “on chip” near

the qubits then a high-bandwidth interface between a classical device generating control

pulses and a quantum device containing the actual qubits will be required. This may be

a control line per qubit, or may be multiplexed across the wire, reducing the need for

I/O pads at the cost of reduced concurrent operation (and longer times between QEC

cycles). Thaker et al. have designed a large-scale ion trap with separate storage and gate

action sites (see below), and investigated the use of the carry-lookahead adder on this

system, finding that performance grows only linearly due to limited application-level

concurrency [324].

Total available qubits: The feature with the single largest impact on the scalabil-

ity, usefulness, and reliability of the computer is the actual number of physical qubits

available. Clearly, too few qubits and the ability to execute on large data sizes will be

inhibited. Additional qubits can be utilized for increasedreliability via error correction,

as well as algorithmic parallelism.

All entries in table 4.2 are followed by question marks because of very high uncer-

tainty; in some cases, even which factors will prove to be thepractical limits are not yet

clear. As most researchers are still focusing on very small numbers of qubits, they have

not yet attempted to circumscribe this upper limit.

Wiring topologies: Optimization of the architecture to support the data movement

of a useful class of algorithms is one of the key areas where computer architects can

contribute. In many proposed technologies, only neighboring qubits are allowed to

perform two-qubit gates. Either the physical entities representing the qubits (using a

4.1. TAXONOMY FRAMEWORK 87

control process [170]) or just the state (using quantum wires [256]) must be moved

around the machine to support computation. In some cases, technological constraints

limit the interconnection topology to a one-dimensional line; in others, a loose two-

dimensional lattice, full 2-D mesh, or even 3-D structure have been proposed [210].

A few proposals support long-distance gates with various tradeoffs, such as limited

concurrency [359].

Addressability: In some systems, addressing specific qubits is difficult, because lo-

calization of the classical control required (e.g., microwave-frequency electromagnetic

field) to just the small region the qubit occupies is difficult. One solution, the original

Lloyd model, proposes forming small groups of qubits into cellular automata [210].

One suggested implementation is long molecular chains witha repeating pattern in

which each unit is a C.A. Each qubit position in the automatoncan be addressed via

a specific electromagnetic frequency. Each automaton follows the same program, ef-

fected by electromagnetic radiation blanketing the whole device, which is, in effect, a

fully concurrent SIMD machine. One technique for turning a cellular automata into a

more-easily-controlled serial machine is to include in thecellular automata a token that

is passed from automaton to automaton; only the automaton holding the token performs

the indicated action. We expect that designing architectures and software systems for

technologies without the ability to address and operate on specific qubits will be diffi-

cult.

Operations on all qubits: In most physical implementations, all qubits are identical;

any qubit can have any operation performed on it during any clock cycle. A few tech-

nologies, however, notably the scalable ion trap, separatestorage and action locations,

so that qubits (e.g., individual atoms) must be physically moved from a storage location

to an action location before a gate can be executed on the qubit.

4.1.3 Time and Gate Characteristics

Decoherence time: We discussed decoherence in Section 2.2.3. The upside to good

isolation from environmental effects is longcoherence time, or the time which a qubit

can be “kept”. As a broad generalization, those technologies relying upon electrons

to maintain quantum state have short coherence times because electrons are fairly mo-

bile and tend to interact with their surrounding environment. Technologies that utilize

88 CHAPTER 4. TAXONOMY OF QUANTUM COMPUTING TECHNOLOGIES

nuclear effects are more stable. However, the downside to good isolation from en-

vironment effects is relatively slow operation times for two-qubit gates. Across the

technologies we examine, the gate speed and decoherence time vary over eight orders

of magnitude or more [197]. Coherence time is an especially important research area

and will be subject to potentially large advances as QC technology progresses. Gate op-

eration time, however, is often tied directly to physical processes with limited flexibility

in engineering parameters.

Measurement time: How long does it take to accurately measure the state of a qubit?

For many technologies the measurement time is longer than a gate time, dominating the

time for a quantum error correction cycle and hence the logical clock speed.

Single-qubit and two-qubit gate clock speeds: In some cases, the time it takes to

perform a one-qubit gate can be vastly different from the time for a two-qubit gate, so

we must specify both.

Natural two-qubit gate: Various sets of gates have been shown to form elementary

basis sets [30, 98]. The standard set of universal gates presented in Section 2.2.5 (X ,

H, T, CNOT) is just one example, and all serious proposals for quantum computing

technologies include enough operations to provide this or an equivalent universal set.

Beyond universality, however, are three important characteristics. (1) Does the tech-

nology provide an arbitrary single qubit rotation, or must it be synthesized fromX ,

H and T; (2) How complex are the syntheses for aCNOT and three qubit controlled-

controlled-not (aTOFFOLI gate), which is commonly used in quantum algorithms [30];

(3) Do specific gates have unwanted effects on qubits that arenot the intended operands

(that is, are other qubits being implicitly manipulated)? We will discuss these in more

detail below.

Several of most common physical interactions result in a controllable exchange

(SWAP), theJ coupling [339], and a controlled phase shift, which, when applied for

the appropriate amounts of time, give us possible two-qubitnatural gates with these

4.1. TAXONOMY FRAMEWORK 89

unitary transforms:

√
SWAP=

1 0 0 0

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1

(4.1)

J =

−i 0 0 0

0 i 0 0

0 0 i 0

0 0 0 −i

(4.2)

CZ =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

. (4.3)

From these three possible entangling two-qubit gates, we can construct a CNOT with

only a few single-qubit rotations on the two qubits.

In stationary qubit devices such as ion traps or NMR systems,several electromag-

netic pulses are generally required to implement each gate.A typical number is five or

six, though the exact number and timing are dependent on the gate to be executed. One

side effect in NMR systems is that nearby qubits are affectedby these pulses and are

implicitly operated on by them. To overcome this, additional control sequences called

decoupling pulsesare required [35, 204].

4.1.4 Other Features

Logical Encoding: Quantum algorithms are written to manipulate abstract, logical

qubits. Logical qubits, however, are not always represented by a single physical phe-

nomenon such as a single ion or photon. We call the entities that software manipulates

“logical qubits” (or “encoded qubits” when quantum error correction is involved) and

the entities that technologies use to implement them “elementary qubits” or “physical

qubits”. This is not the same as the ensemble / singleton distinction outlined above.

90 CHAPTER 4. TAXONOMY OF QUANTUM COMPUTING TECHNOLOGIES

In some technologies, such as electron count (charge) in quantum dots, a “dual

rail” encoding is used. Similarly, a single photon may take either the left or right path

through a circuit, corresponding to logical different quantum states (i.e. 0 or 1). In

both of these technologies, it is possible to talk about a single quantum dot (or path)

as a single qubit, but we arrange computation and measurement to take place on the

encoded pair.

Gate-Level Timing Control: Because the state of an individual qubit is something

of an analog phenomenon, precise timing of gates is critical. What will limit our ability

to achieve the necessary precision? And, in the case of photons or other flying qubits,

how do we dynamically adjust their arrival times so that multiple qubits can be in the

right place at the same time? Most qubits oscillate; how do wekeep the relative phases

of multiple qubits right?

Scalability Limits: Scaling to large numbers of qubits is, for most architectures, a

function of all of the above factors and more. Other factors not yet described are tech-

nology specific. For example, in lithography-based systems, they include I/O pads on

the chip, the supporting infrastructure such as rack-mountmicrowave generators, and

the practical challenge of simply providing enough controlwires to such a small device.

Few of the proposals suggest that an actual numerical upper bound exists because of

any of these factors, yet they are critical to the success of building systems. In the next

section we will highlight what the primary scalability limit is perceived to be for each

technology.

4.1.5 Manufacturing and Operating Environment

At the moment, all scalable quantum computing technologiesare proposals and sig-

nificant advances in manufacturing will be required to bringthem to reality. Never-

theless, some proposals have less onerous technological hurdles in front of them than

others. Furthermore, certain proposed technologies integrate better with existing clas-

sical silicon-based computing.

Fabrication challenges: To what extent do the proposed technologies rely on difficult-

to-achieve advances in manufacturing? For example, the Kane silicon-based NMR

technology relies upon the ability to dope silicon with precisely placed individual phos-

phorus atoms, and to align those with overlaid structures created using standard VLSI

4.1. TAXONOMY FRAMEWORK 91

lithography [163]. All of the solid-state circuit techniques require classical control lines

(e.g., [124, 242]), which may benefit from expected improvement in VLSI feature sizes

following Moore’s Law [236, 110]. In our taxonomy we will highlight the major tech-

nological challenges facing each quantum computing proposal and discuss the latest

advances in overcoming them.

Operating temperature: In order to control noise, most proposals call for extremely

low temperatures achievable only with liquid helium. Others, such as superconducting

qubits and quantum dot qubits, require still coldermillikelvin temperatures achieved

through a dilution refrigerator. A dilution refrigerator,or dil fridge, uses the differ-

ent condensation characteristics of helium-3 and helium-4to cool things down to mil-

likelvin temperatures [86].

Although there are numerous models, the dil fridges made by Oxford Instruments

seem to be popular. The most commonly used ones are almost twometers tall and a

little under a meter in diameter. The researcher loads the test sample in from the top on

a long insert, so another two meters’ clearance above (plus asmall winch) are required.

The lowest temperature a dil fridge can reach is limited in theory to approximately 7

millikelvin, and in practice to higher values depending on model. A dil fridge can typ-

ically extract only a few hundred microwatts of heat from thedevice under test, which

is limited to a few cubic centimeters. This thermal limit will limit the number of de-

vices per chip and the operating speed of the devices, imposing an important constraint

on scalability. These low temperatures are not only operationally challenging, but also

affect the ability of classical circuits to operate, complicating the design of the control

process [256].

The atom chip [117] and ion trap [78] operate by cooling individual atoms to ex-

tremely low temperatures using lasers and electrical and magnetic control fields, but the

devices themselves are kept at room temperature and no elaborate cooling mechanisms

are required.

Supporting equipment: Some technologies require complex supporting equipment,

notably high-frequency microwave and voltage signal generators and high-precision

lasers. One or more of these per qubit may be needed; as systems scale, switching

or sharing of this equipment or direct integration into on-chip systems are likely to be

required.

92 CHAPTER 4. TAXONOMY OF QUANTUM COMPUTING TECHNOLOGIES

4.2 Quantum Technologies

In this section we survey a variety of proposed quantum computing technologies using

the taxonomy framework described in the last section. We have chosen to focus on eight

technologies: Si-NMR, P-NMR, solution NMR, quantum dot charge, scalable ion traps,

Josephson junction charge, linear optics, and optical lattice. This selection should by no

means be interpreted as exhaustive; several dozen viable proposals exist [117, 294, 265,

71]. These systems were chosen for their near and long term implementability, and/or

scalability and/or pedagogical interest. It is also worth noting that the fundamental

technology, in some case, can lead to several possible qubitrepresentations, such as

spin, energy level, or particle count. The information is summarized in Tables 4.1-4.5.

Below we will briefly discuss each technology and its architectural implications.

4.2.1 Solution NMR

Probably the most complete demonstrations of quantum computation to date are the

solution NMR experiments [340, 52, 182]. In an NMR system, the qubit is represented

by the spin of the nucleus of an atom. When placed in a magneticfield, that spin pre-

cesses, and the spin can be manipulated via microwave radiation. In solution NMR, a

carefully-designed molecule is used. Some of the atoms in the molecule have nuclear

spins, and the frequency of radiation to which they are susceptible varies depending

on their position in the molecule, so that different qubits are addressed by frequency.

In some cases, isotopic composition must be carefully controlled. Many copies of the

molecule are held in a liquid solution; each molecule is a separate quantum computer,

run independently, with the large numbers providing adequate signal strength for read-

out. This is the canonical ensemble system. Solution NMR hasbeen used to factor the

number 15 using Shor’s algorithm, which required 720 milliseconds [340]. The largest

demonstration to date is 12 qubits [243].

No special cooling apparatus is required for this ensemble system. However, its

scalability is believed to be quite limited due to falling signal/noise ratio as the number

of qubits increases.

• strengths: good decoherence time, room temperature operation, advanced ex-

perimental verification

• weaknesses:slow gates, poor scalability, difficult concurrent operations

4.2. QUANTUM TECHNOLOGIES 93

technology stationary/ single/ QIO? measurement references
flying/mobile ensemble

Si NMR stationary ensemble N mechanical vibra-
tion, concurrent,
frequency analysis

[196]

solution NMR stationary ensemble N concurrent, fre-
quency analysis

[340]

quantum dot
charge

stationary single Y? concurrent, on-
chip auxiliary
structures, similar
to quantum dots in
size and structure

[214]

scalable ion trap mobile single Y? limited concur-
rent, optically
induced fluores-
cence

[78, 170]

JJ charge stationary single Y? concurrent, on-
chip charge probe

[260, 360]

Kane model stationary single N? concurrent, single-
electron spin mea-
surement

[163]

LOQC flying single Y single qubit polar-
ization via single
photon number re-
solving optical de-
tectors

[184]

optical lattice stationary single N? fluorescence, but
resolution of indi-
vidual atoms diffi-
cult

[56, 157,
326]

Table 4.1: Qubit technology basic characteristics. Question marks under QIO indicate
that experimental verification has not yet been shown. JJ: Josephson junction, LOQC:
linear optics quantum computing

94 CHAPTER 4. TAXONOMY OF QUANTUM COMPUTING TECHNOLOGIES

technology concurrency max qubits wiring
topologies

addressability ops
on all
qubits?

Si NMR limited by abil-
ity to suppress
activity of unin-
volved qubits

hundreds? linear nearest
neighbor

by frequency, all
independent

Y

solution
NMR

limited by abil-
ity to suppress
activity of unin-
volved qubits

low tens? linear nearest
neighbor,
limited
non-neighbor

by frequency, all
independent

Y

quantum
dot charge

limited by con-
trol mechanism

large? linear nearest
neighbor

localized, inde-
pendent control
via on-chip
systems

Y

scalable
ion trap

limited by # of
action sites with
lasers

large? open, irregu-
lar, up to 2-
D?

individual ions
and chains moved
from addressable
storage to action
sites

N

JJ charge limited by
coupling mech-
anism

large? 1-D, 2-D?,
long-distance
possible?

localized, inde-
pendent control
via on-chip
systems

Y

Kane
model

limited by con-
trol mechanism

large? 1-D or 2-D? localized, inde-
pendent control
via on-chip
systems

Y

LOQC unlimited? large? physical
routing,
essentially
unlimited

physical position Y

optical lat-
tice

mandatory thousands? 1-, 2-, or 3-D
neighbors

none Y

Table 4.2: Features affecting algorithm efficiency on specific qubit technologies. The
maximum number of qubits in all technologies remains undetermined with any relia-
bility. Question marks in topologies indicate that the natural area for layout is 2-D, but
practical engineering constraints may limit full 2-D layout.

4.2. QUANTUM TECHNOLOGIES 95

technology decoherence
time

measurement
time

single-qubit
gate clock
speed

two-qubit
gate clock
speed

natural
two-qubit
gate

Si NMR 25s long 40kHz 400Hz J coupling
solution
NMR

seconds long 50kHz 50Hz J coupling

quantum
dot charge

a few ns 10-
100ns [124,
214]

10GHz 10GHz exchange
[214]

scalable
ion trap

1ms-20s 100µs [230]
to
10msec [288]

can trade off
speed for
gate fidelity
in the range
of 14kHz to
100kHz; also
limited by
ion move-
ment times to
∼ 20kHz

conditional
phase shift

JJ charge a few ns 10ns 10GHz 10GHz conditional
phase shift

Kane
model

long? long 75kHz 75kHz J coupling

LOQC limited by
scatter-
ing and
absorption

5-10ns < 1ns limited by
detector
time

several
possi-
bilities,
including
conditional
phase shift

optical lat-
tice

seconds? N/A 160kHz 5kHz conditional
phase shift

Table 4.3: Clock speed and gate characteristics

96 CHAPTER 4. TAXONOMY OF QUANTUM COMPUTING TECHNOLOGIES

technology logical: el-
ementary en-
coding

gate-level
timing control

scalability limit

Si NMR 1:1 slow gates make
precise timing
feasible

quality of initialization (no
more than1/n copies may be
mis-polarized for largen, to
achieve adequate SNR), pre-
cision of placement in static
magnetic field, area of high-
quality magnetic field

solution NMR 1:1 slow gates make
precise timing
feasible

SNR falls exponentially inn

quantum dot
charge

1:3 gates must be
precise, but jitter
is not a problem

external wiring/control

scalable ion
trap

1:1 recommends
use of
decoherence-
free subspace to
reduce jitter

probably ability to accurately
track large numbers of indi-
vidual ions, and their move-
ment times

JJ charge 1:1 active control of
phases

cross-qubit interference; in-
ductance of Josephson junc-
tions; large numbers of rack-
mount microwave generators
and getting wires into the di-
lution refrigerator

Kane model 1:1 manufacturing complexity
LOQC 1:1 but many

auxiliary
photons used

“stopped”
light [116]

skew and jitter in both input
generation and gates; single-
photon photodetector efficien-
cies of∼ 0.9 will scale poorly
when used for large numbers
of independent qubits; deep
circuits subject to loss

optical lattice 1:1 slow gates make
precise timing
feasible

region of high-quality lattice
tens of sites per side?

Table 4.4: Other Features

4.2. QUANTUM TECHNOLOGIES 97

technology fabrication operating environment supporting equipment

Si NMR Si micromachining 4 K, 7 T magnetic field r.f. signal generator
solution NMR chemical room temperature, 11

T magnetic field
r.f. signal generator

1-D quantum
dot charge

GaAs lithography 20 mK GHz voltage pulse gen-
erator (per qubit?)

scalable ion
trap

macroscopic elec-
tromechanical
assembly

supercooled ions in
room temperature vac-
uum

multiple lasers (gates
and measurement),
electronic signal gen-
erators (ion movement
control), CCD cameras
(state detection)

JJ charge Si lithography 30 mK GHz voltage pulse gen-
erator (per qubit?)

Kane model P implanted in Si
lithography

1.5 K, 2 T magnetic
field

LOQC macroscopic elec-
tromechanical
assembly

dependent on optical
detectors; liquid he-
lium to room tempera-
ture

high speed optical
switches, atomic clocks

optical lattice vacuum chamber,
lasers, macroscopic
electromechanical
assembly

ultracold atoms in
room temp. vacuum

multiple lasers

Table 4.5: Manufacturing and operating environment. K, degrees Kelvin; mK, mil-
likelvin.

98 CHAPTER 4. TAXONOMY OF QUANTUM COMPUTING TECHNOLOGIES

4.2.2 Josephson Junction

Josephson junction-based (JJ) quantum computing devices are superconducting sys-

tems [295]. They come in four flavors: those that represent qubits using charge (such

as the device shown in figure 4.1) [242, 260], those that use flux [234, 72, 271], those

that use phase [361, 221], and a recently-designed high-temperature form [32]; most

of the information in the tables applies to all but the latter. Fabrication is done using

conventional electron-beam lithography and shadow evaporation of Al onto an SiNx

insulating substrate. In the JJ charge qubit, a sub-micron size superconducting box

(essentially, a small capacitor) is coupled to a larger superconducting reservoir. In a

superconductor, electrons move in pairs known as Cooper pairs. The qubit representa-

tion is the number of Cooper pairs in the box, controlled to beeither zero or one, or a

superposition of both. Similarly, for the flux qubit, Cooperpairs are introduced into a

superconducting ring, where they circulate and induce a quantized magnetic flux. Be-

cause the flux qubit has slower gate times but a relatively even longer coherence time,

experimental efforts appear to be shifting toward the flux qubit approach.

Josephson junction technologies can couple qubits in a variety of ways [49, 216, 85,

252, 208, 209, 272]. In one proposed scalable form of the charge qubit, neighboring

qubits are linked in a one-dimensional structure that supports only nearest-neighbor

gates, but concurrent gates on independent qubits may be allowed [201]. In another

proposal, it is possible to address any two qubits and couplethem through a shared

inductance [359]. In this case, the restriction of operations involving only neighboring

qubits in a linear array is removed, but execution is limitedto one gate at a time. Rigetti

et al. have proposed a scheme that borrows ideas from NMR to couple neighboring

qubits of either flux or charge type [279]; their proposal hasthe benefit that slight

differences in fabrication between qubits are a help ratherthan a hindrance.

The high-temperature JJ device requires complex fabrication and careful alignment

to crystal lattice axes. “High temperature”, in this case, refers to the materials po-

tentially being superconductors at liquid nitrogen temperatures, but the experiments

described are conducted at 15mK to minimize other sources ofdecoherence.

• strengths: very fast gates, advanced experimental demonstration, straightfor-

ward fabrication (for all but the high-temperature device)

• weaknesses:low coherence time relative to measurement time, sensitivity to

background charge fluctuations and local magnetic fields

4.2. QUANTUM TECHNOLOGIES 99

Figure 4.1: A pair of coupled Josephson-junction charge qubits (labeled Box 1 and
Box 2). This device is designed to execute a two-qubit gate between the qubit labeled
“Control” and the one labeled “Target”. The coupling between the two qubits is fixed
in hardware in this device. Image courtesy of Y. Nakamura andT. Yamamoto, NEC.

100 CHAPTER 4. TAXONOMY OF QUANTUM COMPUTING TECHNOLOGIES

28
28

28
28

28
29

29
29

29 28
28

28
28

28

NiFe magnet

static magnetic field 7T

B=7T

nuclear spin−free 28Si substrate

B=9T
qubit #1

qubit #2
qubit #3

qubit #4

ω1

ω2

ω3

ω4

Figure 4.2: Schematic of the all-silicon NMR computer. Qubits are the spin of29Si
nuclei on a spin-free base of28Si. Distance from the micromagnet determines oscilla-
tion frequencyωi and provides individual qubit addressability. Image courtesy of K.
M. Itoh, Keio University.

4.2.3 All-Silicon NMR

Ladd et al. have proposed an all-silicon NMR-based quantum computer which stores

qubits in the nuclear spin of a chain of29Si (spin1/2 nucleus) in a substrate of spin 0

nuclei (28Si and30Si). In one form, the29Si atoms are laid down in a line across a mi-

cromechanical bridge [196]. Readout is done via magnetic resonance force microscopy

(MRFM), reading oscillations of the bridge. Other measurement schemes for the same

basic architecture are being pursued, as well [156]. This isan ensemble system;105

copies are required to get an adequate signal for measurement. One form of the system

is illustrated in Figure 4.2. Only one chain of29Si is shown. Initialization is done via

electrons whose spin is set with polarized light (optical pumping). Operations are done

via microwave radiation directed at the device. A micromagnet provides a high field

gradient, allowing individual atoms to be addressed by frequency. The device is fabri-

cated via near-atomically precise machining, then refined by passing electrical current

through it in a carefully controlled fashion [292, 358, 348].

• strengths: longest known decoherence time

• weaknesses:slow gates, no QIO, measurement still being designed, difficult

fabrication

4.2. QUANTUM TECHNOLOGIES 101

4.2.4 Scalable Ion Trap

One of the few systems which explicitly separates storage areas from interaction areas

is the scalable ion trap [170, 350, 173, 230, 309, 29, 324, 9, 147]. Initially designed and

built at NIST, this is a proposal to scale up an ion trap quantum computer [78, 305, 301,

288]. In ion trap systems, qubits are usually stored in the energy levels of individual

ions. In early ion trap experiments, small numbers of ions were held in a single trap

known as an RF Paul trap. In the scalable trap system, which isa large system of

interconnected, individually controllable traps, the ions are kept suspended in a vacuum

in a channel in the device and are literally moved around using magnetic fields until

they reach locations in the system designated for operations, as shown in Figure 4.3.

Small numbers of ions are brought together and formed into chains to execute multi-

qubit gates. Gates are effected by laser pulses; readout is also accomplished by laser

pulses creating fluorescence (interpreted as a 1) or not (0).Gate times are moderate,

but overall system performance will likely be driven by ion movement times (which

naturally depend on distance and topology), times for creating and splitting chains of

atoms, time to cool atoms heated by the movement process, andmultiplexing of gate

operations. For both gates and measurement in scalable ion trap systems, many laser

beams must excite many ions. Complex optics and photon detectors may be required

to read out the state of many qubits at once; CCD cameras involve a direct tradeoff of

speed versus noise, while avalanche photodiodes are difficult to integrate and photon

counters require cryogenic operation [173].

The Monroe group has recently shown the ability to move ions around corners,

a fundamental engineering advance in control of individualatoms [147]. As noted

above, the efficiency of algorithms implemented on ion trapswill depend on realizable

concurrency, and on the time to move and cool ions.

In Table 4.3, we list the decoherence time of ions as a range of1 millisecond to 20

seconds. The lifetime of individual ions has been shown to bein the millisecond range,

but Häffner et al., in the Blatt group in Austria, recently encoded a state on a pair of

ions using a decoherence free subspace and experimentally measured a lifetime of 20

seconds [140]. Other experiments from both the Blatt group and the Wineland group

at NIST have recently confirmed the existence of entangled groups of 6, 7, and 8 ions,

prompting the coining of the term “qubyte” [139, 202]. Whilethese accomplishments

do not yet surpass the size of the Cory group’s 12 qubit NMR system, researchers

are excited because ion trap technology is viewed as a strongcandidate for a scalable

102 CHAPTER 4. TAXONOMY OF QUANTUM COMPUTING TECHNOLOGIES

system. It will be interesting to see when it becomes possible to draw a “Moore’s Law”

parallel for the size of an entangled system, graphing the doubling time of the largest

entanglement demonstrated in ion traps.

• strengths: scalability of storage

• weaknesses:slow gates [306]; limitations on concurrent operations andmea-

surements

4.2.5 All-Optical

All-optical systems come in two flavors: those that depend onnon-linear effects to exe-

cute gates, and those in which the only necessary non-linearity is measurement, known

asLOQC (linear optics quantum computation) [184]. Research on all-optical systems

has focused on photon sources capable of generating precisenumbers of photons with

the necessary timing precision [286], gates based on measurement [184, 287, 179, 59,

357], and high-quality single-photon detectors [232, 345,158].

Measurement-based gates are inherently probabilistic in nature, though it has been

shown that these gates can be built into a scalable feed-forward network [184, 276].

Much of the current experimental work is focusing on this approach, and individual

gates have been shown to work [270, 253, 269, 127, 285].

Jitter and skew are likely to be managed by “stopped light”, created by electromag-

netically induced transparency [116, 144], which has also recently been shown to be

useful for creating and managing single photons both directly [105] and in combina-

tion with other techniques [68].

• strengths: well-understood physics and easy fabrication

• weaknesses:photon losses; for non-linear systems, weak non-linear effects give

poor gate quality; high resource requirements for probabilistic gates; large phys-

ical size of systems

4.2.6 Quantum Dot

A “quantum dot”, as used in quantum information processing,is a lithographically-

defined structure that confines electrons at the boundary layer between two materials,

creating a two-dimensional electron gas (2DEG). By varyingthe surrounding electrical

4.2. QUANTUM TECHNOLOGIES 103

200 microns

Figure 4.3: A six-zone ion trap capable of moving individualions. Ions are inserted in
the landing zone L, and manipulated in the zones A, S, and B. Image courtesy of D.
Wineland, NIST.

104 CHAPTER 4. TAXONOMY OF QUANTUM COMPUTING TECHNOLOGIES

potential, individual electrons can be confined to a small area, called the quantum dot.

A qubit can be defined based on the number of electrons in a quantum dot or the spin

or energy levels of a single electron held in a quantum dot.

Several quantum dot devices are under development; one experimentally advanced

approach uses a pair of quantum dots as a dual-rail encoded logical qubit, with a single

electron in the left dot representing a logical 0, and the electron in the right dot repre-

senting a logical 1 [124, 323]. Another approach uses a linear array of single-electron

quantum dots, and encodes the qubit in the spin of the excess electron [214].

In a third approach, DiVincenzo et al. proposed that the onlyoperation needed is

an exchange between two neighboring qubits, accomplished by lowering the electrical

potential and allowing the electrons to tunnel [100, 214, 240]. This is easier to accom-

plish than precise control of a magnetic field, which would berequired in order to effect

gates on specifically addressable bits. Perhaps the biggestdrawback of this approach is

that exchange-only computation requires encoding a singlelogical qubit onto multiple

physical qubits. A CNOT, for example, requires each logicalqubit to be encoded in

three physical qubits, and the exchange times must be controlled fairly precisely. The

CNOT on neighboring logical qubits requires 19 exchange operations [100], though

Myrgren and Whaley have found interesting optimizations that allow non-neighbor op-

erations to be effected in 28% fewer total operations than the obvious formulation of

repeated use of the 19-exchange CNOT [240]. Continued compiler work may reduce

the encoded execution time penalty further, though the important storage penalty re-

mains.

• strengths: advanced fabrication

• weaknesses:low coherence time

4.2.7 Kane Solid-State NMR

Kane has proposed a solid-state NMR system with excellent scalability, built on VLSI

techniques for control [163], and Clark et al. have made progress in fabrication [79].

In this system, individual phosphorus atoms are embedded ina silicon substrate, and

standard photolithography techniques are used to build control structures on the sur-

face. The qubit is held in the spin of the phosphorus nucleus,and interactions between

neighboring qubits are mediated by electrons coupled to thenuclei via hyperfine inter-

actions. The shape of the electron wave function is controlled via the control structures

built on the Si surface; the distance between neighboring P atoms and the accuracy of

4.2. QUANTUM TECHNOLOGIES 105

aligning the control gates to the P impurities will determine the quality of qubit inter-

actions. Some Si isotopes have a nuclear spin; the presence of atoms of these isotopes

could potentially disrupt the operation of the Kane structure. Abe et al. have studied

the behavior of such a system as the isotopic composition of the Si substrate is var-

ied [5, 4]. Oskin, Copsey et al. have performed engineering studies, suggesting that

teleportation may be required to move qubits long distanceseven for error correction,

and that matching the pitch of the necessary lithographically-created control structures

to the desirable atomic spacing is difficult [256, 84].

• strengths: long coherence time

• weaknesses:difficult fabrication, creating adequate overlap in electron wave

functions

4.2.8 Optical Lattice

In an optical lattice, qubits are the internal states of individual atoms [157, 56, 326].

The optical lattice itself is a set of standing waves of light, creating magnetic fields that

hold individual atoms in place in an array, suspended in a vacuum. Two-qubit gates are

executed by adjusting the positions of the peaks and troughsof the light waves so that

neighboring atoms collide. This basic approach is similar to trapping of ions, but since

the atoms are neutral rather than charged, they do not interact with the environment

as strongly, and hence have the potential to have much longerlifetimes. The lifetime

of a Bose-Einstein condensate (a coherent quantum state rather different from qubits)

has been measured in seconds in a lattice [134]. The lattice may work well in multiple

dimensions. The principal drawbacks to this approach are that individual addressing

and readout of atoms have not been shown. Each pair of atoms inthe lattice acts

exactly the same, and the spacing between the atoms is too small for optical resolution

for fluorescent readout. The “atom chip” approach uses similar physics for the qubits

and gates, but is a dramatically different engineering approach, using lithographically

created structures to move individual atoms at will, something like the scalable ion

trap [117, 326, 175].

• strengths: long coherence time, easy fabrication

• weaknesses:no individual addressability for gates or readout

106 CHAPTER 4. TAXONOMY OF QUANTUM COMPUTING TECHNOLOGIES

4.3 Summary

DiVincenzo laid down the defining characteristics of a viable quantum computing tech-

nology [97]. Many engineering factors extend beyond the DiVincenzo criteria to deter-

mine how practical it is to build a machine based on a given technology [337]. These

factors include such basic issues as possible measurement schemes, the difficulty of

building and operating large-capacity devices, and several issues affecting performance,

notably clock speed, the qubit-to-qubit layout topology and possible concurrent oper-

ation. For our purposes, some quantum I/O mechanism is necessary; without one,

we cannot build a quantum multicomputer, and the system’s scalability with respect

to number of qubits (and possibly concurrent operation) will be quite limited. In the

next chapter, we will develop thequbusmechanism and accompanyingteleportation

techniques that we will use to connect quantum computers together.

This chapter organizes information about quantum computers in a way that specifi-

cally focuses on scalability, implementability, and architectural implications. The eval-

uation criteria we have laid out should make it possible to compare technologies and

determine which will be useful in different roles of a system, and how application al-

gorithms can be mapped to and compiled for various architectures.

Each of the technologies discussed here has its own particular set of technologi-

cal hurdles to overcome before it can be considered practical. NMR-based systems

have slow gate times, but have good coherence times; if a QIO mechanism can be

designed [346], they will make excellent storage devices, but pure NMR systems are

unlikely to make adequate factoring machines. Josephson-junction devices and quan-

tum dots have extremely fast gate times, but have poor coherence times. Both of

these systems have yet to demonstrate scalability in implementation and addressing

of qubits, though both have been designed. Pure optical systems need more efficient

single-photon detectors. Ion traps have many desirable features that make them scalable

architecturally.

The complex tradeoffs in controlling a quantum computer include trading speed

for coherence time. The quantum wiring and classical control are under investigation

in both technology-dependent and -independent fashions, but many scaling questions

remain. Work on both programming language design to supportquantum computation

and back-end optimization for specific architectural characteristics has just begun [254,

14, 241, 165]. The mapping of algorithms to these architectures will determine the

performance and practicality of particular architectures.

Chapter 5

Networking

True and serious traveling is no pastime, but is as serious as the

grave.

Henry David Thoreau

Our quantum multicomputer will require a quantum network, as illustrated in Fig-

ure 1.2 on page 10. The physical layer of the network must be quantum, of course,

but the techniques for describing and understanding classical networks can be applied

easily to quantum networks. In this chapter, we take a quick look at the qubus phys-

ical layer for creating entangled pairs, and the classical ways of describing network

topologies and their performance.

5.1 Weak Nonlinearity and Qubus Entanglement

Protocols

EPR pairs, or Einstein-Podolsky-Rosen pairs, are pairs of particlesor qubits which

are entangled so that actions on one affect the state of the other, such as the state

(|00〉 + |11〉)/
√

2 (which can also be called a Bell pair). EPR pairs can be created in

a variety of ways, including reactions that simultaneouslyemit pairs of photons whose

characteristics are related and many quantum gates on two qubits. For an ion trap sys-

tem, for example, two ions can be moved together, an entangling operation performed,

and the ions separated. As long as the quantum state remains coherent, the ions can be

separated by any physical distance and their state will remain related. In the next sec-

tion, we will see how to use EPR pairs both to move data and to execute gates remotely,

107

108 CHAPTER 5. NETWORKING

laser

qubit 0 qubit 1 homodyne
detector

Figure 5.1: Physical configuration of a qubus.

via a process known as quantum teleportation. In this section, we present our mech-

anism for making the EPR pairs. Technically, an EPR pair is a maximally entangled

pair; that is, operations on one qubit have the strongest possible influence on the other.

In this thesis, we use the term somewhat more loosely, including pairs whose entangle-

ment has decayed somewhat from the maximum, or whose entangling operations failed

to produce a perfect pair.

Our approach to creating EPR pairs contains no direct qubit-qubit interactions and

does not require the use of single photons, as e.g. Kimble’s team has recently demon-

strated [73]. We use the invention of Munro, Nemoto and Spiller, which uses laser

or microwave pulses as aprobe beam[244, 237]. Two qubits are entangled indirectly

through the interaction of qubits with a common quantum fieldmode created by the

probe beam – a continuous quantum variable – which can be thought of as a commu-

nication bus, or “qubus” [303]. We call this process the qubus entanglement protocol

(QEP).

Physically, the qubus consists of a laser or microwave source, a pair of qubits and

some means of interacting them with the probe beam, and ahomodyne detector[21],

as shown in Figure 5.1. The distance between the qubits can bearbitrarily large, lim-

ited only by losses in the probe beam. The probe beam consistsof a large number of

photons, each of which interacts minutely with the qubits. If the qubits are single pho-

tons, this is accomplished using a type of crystal with a property known as across-Kerr

nonlinearity.

For some solid state qubit systems, we can put the qubits in a microwave resonant

cavity and use a microwave pulse to create the qubus effect. The interaction with a bus

mode takes the effective form of a cross-Kerr nonlinearity,analogous to that for optical

systems, described by an interaction Hamiltonian of the form

Hint = h̄χσza
†a. (5.1)

In this equation,a† and a are, respectively, the creation and annihilation operators,

5.1. QUBUS ENTANGLEMENT PROTOCOLS 109

O
θ
θ

θ
θ

x
x cos 2θ

Figure 5.2: Phase space diagram of the qubus entanglement protocol.

|B〉
|A〉

A⊕ B|0〉

Figure 5.3: Logical equivalent of the qubus entanglement protocol.

representing the raising or lowering of the number of photons present in the probe

beam. When acting for a timet on a qubit-bus system where the nonlinear interaction

is of strengthχ, this interaction causes a rotation in phase space by an angle±θ on a

bus coherent state, whereθ = χt and the sign depends on the qubit computational basis

amplitude. In a phase space diagram, the horizontal and vertical axes correspond to

the quadrature amplitudes of two variables. They are commonly referred to as position

(x) and momentum (p), respectively, due to mathematical similarities in theirbehavior,

but they do not physically represent these quantities. The diagram for this interaction

is shown in Figure 5.2. By interacting the probe beam with thequbit, the probe beam

picks up aθ phase shift if it is in one basis state (e.g.,|0〉) and a−θ phase shift if

it is in the other (e.g.,|1〉). If the same probe beam interacts with two qubits, it is

straightforward to see that the probe beam acting on the two-qubit states|0〉|1〉 and

|1〉|0〉 picks up no net phase shift because the opposite-sign shiftscancel, while the

probe beam acting on the states|0〉|0〉 and|1〉|1〉 picks up phase shift±2θ.

The homodyne measurement projects the point in phase space onto thex axis (po-

sition). This projection determines whether the probe beamhas been phase shifted (in

effect taking the absolute value of the angular shift), projecting the qubits into either

an even parity state or an odd parity state. The measurement shows only the parity

110 CHAPTER 5. NETWORKING

of the qubits, not the actual values, leaving them in an entangled state. If the homo-

dyne measurement returnsx cos 2θ, we know that the state is either|00〉 or |11〉. If

the measurement returnsx, we know that the state is either|01〉 or |10〉. In the latter

case, we can apply a NOT gate to either qubit, moving the stateinto |00〉 or |11〉. Fig-

ure 5.3 shows a circuit that is logically similar to QEP, differing only in its possible

error propagation characteristics, which we will not detail.

Although the qubus is physically asymmetric, with a probe beam source and homo-

dyne detector at opposite ends of the physical layout and a definite ordering of qubits

along the bus, this layout does not influence the logic of the qubus. The qubus is used

to create EPR pairs, which are symmetric. Each teleportation operation, as we will see

in the next section, consumes one EPR pair to send a qubit fromnode to node. We can

schedule use of the bus as if it is ahalf-duplexbus.

This procedure is general, and can be applied to any pair of qubits to determine

their parity. If all of the terms of the superposition have the same parity, the state of the

superposition is not affected by the parity measurement, beyond a small phase change

which can be corrected with single-qubit gates. If we start with both qubits in the state

(|0〉 + |1〉)/
√

2, we are left with the state(|00〉 + |11〉)/
√

2, which is a good state for

beginning the teleportation protocols described in the next section.

5.2 Teleportation

Teleportation, discovered by Bennett and his collaborators, transfers the state of one

quantum to another by using EPR pairs. Teleportation of quantum states has been

known for more than a decade [45]. It has been demonstrated experimentally [125, 54],

and has been suggested as being necessary for moving data long distances within a

single quantum computer [256, 229]. Teleportation can alsoform part of the process of

transferring quantum state from one physical representation to another.

For our quantum multicomputer, we propose using the qubus entanglement proto-

col (QEP), described in the last section. Entanglement is a continuous, not discrete,

phenomenon, and several weakly entangled pairs can be used to make one strongly

entangled pair using a process known aspurification [43, 77]. Purification starts with

EPR pairs in a known (but possibly degraded) state, then essentially performs an error

correction protocol that is specific to that state. This is more efficient than full-fledged

quantum error correction.

5.2. TELEPORTATION 111

X Z

H

Node A

Node B
QEP

time

|ψ〉

|ψ〉

Figure 5.4: Teleporting a single qubit.

5.2.1 Teleporting Data

Figure 5.4 shows the basic teleportation circuit to move a single qubit from one location

to another. The box labeled QEP is the qubus entanglement protocol; the output of the

box is the EPR pair. The near and far ends of the teleportationeach hold one member

of the entangled pair. To teleport the qubit|ψ〉 = α|0〉+β|1〉, the first step is to perform

a CNOT at the source between the qubit and the source-side EPRmember, causing the

change

|ψ〉 |00〉 + |11〉√
2

→ α√
2
|000〉 +

α√
2
|011〉 +

β√
2
|110〉 +

β√
2
|101〉 (5.2)

where the qubits in our written representation correspond top to bottom to the qubits in

the figure. That is, the left-most qubit in our notation is theoriginal qubit, the middle

one is the source-side EPR pair member, and the right-most qubit is the member of

the EPR pair at the destination. We then apply a Hadamard gateto the original qubit,

moving to the state

α

2
|000〉 +

α

2
|100〉 +

α

2
|011〉 +

α

2
|111〉 − β

2
|101〉 − β

2
|110〉 +

β

2
|001〉 +

β

2
|010〉

=
1

2
(|00〉(α|0〉+β|1〉)+|01〉(β|0〉+α|1〉)+|10〉(α|0〉−β|1〉)+|11〉(−β|0〉+α|1〉)).

(5.3)

The last representation makes it clear that the destinationqubit now has some relation-

ship to the state of the original qubit. In the first term, if the first two qubits are zero,

then the last qubit holds the state of our original qubit,α|0〉 + β|1〉. In the other three

terms, the state of the last qubit is a simple permutation of the original qubit, which can

be recovered via anX gate, aZ gate, or both. The four terms correspond to the states

00, 01, 10, and 11 in the first two qubits. Thus, if we force the state of the system into

112 CHAPTER 5. NETWORKING

one of those four states, we can determine which gates to apply to “fix” the destination

qubit, so that it ends in the starting state of the qubit we wanted to send,|ψ〉.
In the figure, this is shown by the measurements, followed by “control” X andZ

gates. Of course, the outcomes of the measurements are classical bits, so our control, in

this case, is a classical choice to apply anX gate or not, depending on the measured bit.

After the measurements but before the control gates, the original qubit and the source-

side EPR pair member have both been “destroyed” (the physical carriers of the qubits

likely still exist, but we no longer have a useful quantum state, as the superposition has

collapsed).

As an example, assume that the node A bits are measured, and produce the value 11.

This value is then transmitted via classical means to node B.At node B, we now know

that the state of the destination qubit is−β|0〉 + α|1〉. We apply bothX andZ gates,

and the state shifts toα|0〉 + β|1〉, recovering the original qubit|ψ〉 at the destination.

The “spooky action at a distance” of entangled pairs of particles was one of Ein-

stein’s concerns about quantum mechanics, especially because it appears to violate rel-

ativity. Part of the answer to his concern is thatinformationcannot travel faster than

the speed of light. Thus, although the state of the qubit at the destination may change

“instantaneously” as we perform the measurements at the source, the state of the qubit

remains in the indeterminate state until we receive the classical, relativity-limited in-

formation telling us which gates to apply to recover the purestate we are teleporting.

5.2.2 Teleporting Gates

So far, we have discussed the teleportation of data. It is also possible to teleport gates.

Gottesman and Chuang showed that teleportation can be used to construct a control-

NOT (CNOT) gate [133]. Their original teleported gate requires two EPR pairs. We

use an approach based on parity gates that consumes only one EPR pair, as shown in

figure 5.5 [237]. Locally, the parity gates can be implemented with two CNOT gates

and a measurement (outlined with dotted lines in the figure).Double lines are clas-

sical values that are the output of the measurements; when used as a control line, we

decide classically whether or not to execute the quantum gate, based on the measure-

ment value. The last gate involves classical communicationof the measurement result

between nodes. As shown, this construction is not fault tolerant; it must be built over

fault-tolerant gates. Alternatively, the qubus approach can be used as the node-internal

interconnect. Its natural gate is the parity gate, and is fault tolerant; this is the approach

5.3. MULTICOMPUTER NETWORKS 113

H

X Z

H H

H

H

Z

X X

Node A

Node B
QEP

time

|0〉
|A〉 |A〉

|A⊕ B〉

|t0〉

|t1〉
|B〉
|0〉

Figure 5.5: A teleported control-NOT (CNOT) gate.

we will use when we come to distributed computing in Chapter 7.

5.3 Multicomputer Networks

The theme of this dissertation is the design of a quantum multicomputer, a collection

of smaller quantum computers connected via a message-passing network so as to col-

laborate to solve a single problem [24]. A multicomputer is adistributed-memory mul-

tiprocessor, in which processing units run programs independently, and cannot directly

access the memory of other processing units. All shared computation is accomplished

by exchanging messages through an interconnection network. In this section, we take

a very brief, technology-independent look at the interconnection networks that turn a

group of individual computers into a multicomputer. In Chapter 7, we will apply these

principles to our quantum system, designing an interconnect network to create EPR

pairs.

Networks consist ofnodesand links. A node is a computational element, where

data is stored and manipulated. A link transfers messages from one node to another. A

link may be serial, with one data line, or parallel, with several. A serial link requires

only a singletransceiver, whereas a parallel link requires one per wire, or thebus

width. The current trend in local-area networks and peripheral buses (such as Fibre

Channel, USB, and serial ATA) is serial links, which allow tighter packaging, lower

power requirements, simpler cabling, etc. The savings in those areas offset the cost of a

single higher-speed transceiver, generally meaning that serial networks wind up being

roughly as fast as the parallel ones they replace.

For multicomputer networks [146, 151, 89], as with all networks, we have most of

114 CHAPTER 5. NETWORKING

Topology degree diameter avg. dist. bisection tot. BW (links)
Bus 1 1 1 1 1
Line 2 N − 1 N/2 1 N − 1

2D Mesh 4 2(
√
N − 1) 2

√
N/3

√
N 2N − 2

√
N

Hypercube(2-cube) log2N log2N (log2N)/2 N/2 (N log2N)/2
Fully Connected N − 1 1 1 N2/4 N(N − 1)/2

Table 5.1: Some common interconnect topologies.N , number of total nodes.

what we need to know about the topology when we know four characteristics:

• degreeThe number of links from each node.

• diameter The maximum distance across the network, measured in hops.

• average distanceThe average distance between any two nodes.

• bisection The minimum number of links you must cut to chop the machine in

half.

This assumes, generally, a regular network, though the sameprinciples apply for

arbitrary topologies. For a link, we also need to know the link latency, bandwidth, and

protocol and processing overhead; we will mostly ignore those issues and express our

results in units of a single transfer, or EPR pair creation. We also include aggregate

system bandwidth in our analysis.

These characteristics give us some guidelines and hint at the generality (or lack

thereof) of a particular network. What ultimately matters,of course, is how long it

takes to execute the application algorithm(s) that comprise our workload. In most cases,

this is a function of both the network topology and the message-passing pattern of the

algorithm. “Incast” problems (two nodes trying to send to the same destination at the

same time) inevitably cause contention (competition for access to resources); we will

see some of the effects of contention in Section 7.5.

Table 5.1 and Figure 5.6 show five topologies. Thebusis a single, shared medium

on which any node can send a message directly to any other node, but only one pair

can be communicating at a time; this configuration roughly corresponds to the original

Ethernet scheme and most computer buses. In aline configuration, each node has a

neighbor to the left and a neighbor to the right, and can exchange messages with both

of them simultaneously. In a2D mesh, each node has four neighbors, north, east, south

and west, and the nodes are laid out in a two-dimensional grid; the Intel Touchstone

5.3. MULTICOMPUTER NETWORKS 115

2−D mesh

hypercube

fully connected

shared bus

line

Figure 5.6: Five important interconnect network topologies.

Delta and other large-scale systems found this topology to be a good choice. The orig-

inal Caltech Cosmic Cube was a hypercube, with each of the 64 nodes connected to

log2 64 = 6 neighbors. Scaling this system up is difficult, as each doubling of the

number of nodes requires adding a link to each one of the existing nodes; packaging

constraints quickly become a problem. In a fully-connectednetwork, each node can

communicate directly with each other node. Given that this requiresO(N2) links, it is

clearly impractical, but serves as a theoretical upper bound.

All of these topologies aredirect network, also sometimes calleddistributed switch,

topologies, where the hardware to route messages from location to location resides with

the compute nodes. It is also possible to useindirect network, also calledcentralized

switchtopologies, such as crossbars and fat trees. In indirect networks, packets must

pass through switching nodes in the middle of the network whose sole purpose is rout-

ing packets. For reasons that will become clear in later chapters, we ignore indirect

network systems.

The performance of a system depends on several factors besides the topology. Al-

though a hypercube offers excellent theoretical properties, with no node more than

116 CHAPTER 5. NETWORKING

log2N hops away, if each hop is slow, the overall system suffers. The most straight-

forward implementation,store and forward, requires waiting for an entire message to

arrive at a node before beginning the retransmission along the next hop. Based on

this experience, 2D meshes such as the Intel Touchstone Delta were implemented with

wormhole routing, allowing the start of a message to begin transmitting whilethe tail is

still arriving, giving excellent overall performance withmore scalable hardware. These

issues matter less in our environment.

For most of the 1980s and 1990s, with fine-grained parallelism and many proces-

sors attempting to send messages at the same time, careful matching of applications to

network topologies and management of resources (principally, access to the network)

were required. In recent years, the availability of fast, cheap, general-purpose network-

ing hardware and improving software tools for larger-grained parallel systems, such as

Beowulf, MPI, and BOINC, have largely decoupled parallel applications from the need

for such hardware-specific tuning [314, 101, 19].

The field of interconnection networks for distributed, parallel computation is a vast

one; here we have hardly begun to even hint at the scope [89, 146]. Our current needs

for a quantum multicomputer are modest, so this level of analysis will suffice.

5.4 Summary

In this chapter, we have introduced the disparate concepts needed to build a quantum

multicomputer: the fundamental qubus technology we intendto use to create entangled

pairs of qubits (EPR pairs), the teleportation of both quantum data and quantum gates

that will use EPR pairs to effect distributed quantum computation, and the principles of

store-and-forward multicomputer networks that will determine how efficient the system

can be.

We now come to the end of not only the chapter on the qubus, but of the entire

first part of this thesis, covering the fundamentals of quantum computation. We have

studied the basic ideas of quantum computation, seen Shor’salgorithm for factoring

large numbers, which we will use as our target application, explained how to control

errors, and discussed many different quantum computing technologies. And finally, we

presented quantum teleportation and the qubus protocol upon which we will build our

quantum multicomputer.

We now set aside the distributed nature of our system for a while, and move into

5.4. SUMMARY 117

the detailed analysis of the performance and limitations ofa monolithic quantum com-

puter. Once that analysis is complete, we will return to the quantum multicomputer in

Chapter 7.

Chapter 6

Performance of Large-Scale Systems

[T]he period matters little until the acceleration itself is admit-

ted. The subject is even more amusing in the seventeenth than

in the eighteenth century, because Galileo and Kepler, Descartes,

Huygens, and Isaac Newton took vast pains to fix the laws of ac-

celeration for moving bodies, while Lord Bacon and William Harvey

were content with showing experimentally the fact of acceleration in

knowledge...

Henry Adams, “A Law of Acceleration,” 1905

We are now prepared to design the architecture of a quantum computer and evaluate

its performance. Up to this point, we have examined what it means to do quantum

computation, discussed what a quantum computer could be used for, and analyzed the

technologies available to build such a system. In Section 2.2.5, we saw DiVincenzo’s

five criteria which must be met by any useful quantum computing technology [97]. In

addition to these criteria, a useful quantum computing technology must also support a

quantum computersystem architecturewhich can run one or more quantum algorithms

in a usefully short time. This observation subsumes into onerequirement several issues

which, while not strictly necessary to build a quantum computer, will have a strong

impact on the possibility of engineering a practical, useful system; we presented our

analysis of those requirements in Chapter 4.

The process of adapting abstract algorithms to quantum computers naturally de-

pends on the architecture, but the application of classicalcomputer architecture prin-

ciples to quantum computers has only just begun, making it difficult to definitively

118

6.1. MANAGING PERFORMANCE 119

pronounce that a certain quantum computer will be “useful” in solving real-world prob-

lems. In this chapter, my aim is to advance our understandingof this design process, in-

cluding designing some specific algorithmic subroutines that are appropriate for certain

architectures. I analyze and optimize the performance of the modular exponentiation

that forms the largest part of Shor’s factoring algorithm, based on the Vedral-Barenco-

Ekert algorithm as discussed in Section 3.5. We have found ways to improve the scaling

of performance with respect to the length of the number beingfactored; the accelera-

tion is thousands of times for important problem sizes, reaching one million times when

factoring a 6,000-bit number. We show that this acceleration depends on the architec-

ture of the system, and how to optimize for certain constraints. We also show that the

faster modular exponentiation algorithms reduce the demands on the error management

subsystems and increase the fidelity of our calculation.

The first section of this chapter provides a brief overview ofthe techniques we use

to accelerate arithmetic, then discusses the impact of architecture on quantum error

correction, and presents our architectural models and notation. The next two sections

explain the tradeoff between classical and quantum computation and present our new

adder designs, the carry-select and conditional-sum adders. Section 6.4 closes this

chapter with our major analytical and numerical results forthe complete modular expo-

nentiation algorithm. The material presented here should help other researchers analyze

the performance of systems they design, both large and small; in the next part of this

dissertation, I use these techniques to analyze the behavior of a quantum multicomputer

based on an overall structure I propose.

6.1 Managing Performance

The realized performance of a system is a product of both the underlying technology

and the architecture imposed above it. In Sections 4.1.2, 4.1.3 and 4.1.5, we introduced

the technological factors that affect performance of the system: physical and logical

clock speed, concurrency or parallelism, the number of available qubits, the ability

of qubits to communicate with each other (the “wiring topology”), addressability of

individual qubits, and the decomposition of logical gates into physical ones. From this

point forward in the dissertation, we will ignore addressability and assume individual

control over qubits. For our purposes (primarily arithmetic circuits), the issue of direct

or polynomial approximation of arbitrary rotations only concerns us as described below,

in the breakdown ofCCNOT. The ability of a system to retire application instructionsas

120 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

quickly as possible derives from more than the clock speed; extracting parallelism and

moving data as efficiently as possible strongly impact behavior, and these issues drive

much of the rest of this dissertation.

Concurrent quantum computation is the execution of more than one quantum gate

on independent qubits at the same time. We generally use the termconcurrencyrather

than parallelism, to avoid confusion with the concept of quantum parallelism. Utilizing

concurrency, the latency, or circuit depth, to execute a number of gates can be smaller

than the number of gates. We discussed parallel multipliersin Section 3.5.2. Circuit

depth is also explicitly considered in Cleve and Watrous’ parallel implementation of the

quantum Fourier transform [80], various types of arithmetic [88, 103, 334, 130], and

Zalka’s Schönhage-Strassen-based implementation of modular exponentiation [362].

Moore and Nilsson define the computational complexity classQNC to describe certain

parallelizable circuits, and show which gates can be performed concurrently, proving

that any circuit composed exclusively of Control-NOTs (CNOTs) can be parallelized to

be of depthO(logn) usingO(n2) ancillae on an abstract machine [235]. In Chapter 4,

we discussed the capability of different technologies to perform concurrent gates; in

this part of the thesis, we combine the theoretical and practical concerns to analyze the

demands of the algorithms.

Here we summarize the techniques which are detailed in following sections. Our

fast modular exponentiation circuit is built using the following optimizations:

• Trade classical for quantum computation, to reduce the length of the expensive

and difficult quantum portions (Section 6.2).

• Move to better adders; our algorithms concentrate on the useof the conditional-

sum adder (Section 6.3.3), carry-lookahead adder (Section3.4.3), and CDKM

carry-ripple adder (Section 3.4.2).

• Look for concurrency within addition; our concurrent version of VBE forms our

baseline case, and the other adder circuits are defined with concurrency in mind.

• Do multiplications concurrently, using Cleve-Watrous (Sections 3.5 and 6.4.2).

• Reduce modulo comparisons, only subtractN on overflow; this incurs a small

space penalty and requires some cleanup at the end, in exchange for a nearly5×
reduction in the number of calls to the adder routine (Section 6.4.2).

6.1. MANAGING PERFORMANCE 121

• Select correct qubit layout and subsequences to implement gates, then hand opti-

mize [339, 14, 165, 192, 320, 354, 15].

6.1.1 Error Correction, Architecture, and Clock Speed

A basic understanding of the pressures that quantum error correction and fault tolerance

place on architecture is critical. As we saw in Chapter 2.3, QEC and FT demand the

continuous preparation and measurement of a set of ancillae(temporary work qubits),

and raise the overall cost of quantum computation by as much as four orders of magni-

tude foreachlevel of QEC built into the system – and it appears that two or more levels

may be necessary. The logical clock speed of the system will correspond roughly to the

QEC cycle time, and is correspondingly slower than the physical clock speed, though

the exact ratio will depend on both technology- and machine-dependent details.

QEC codes encode one or more qubits into a code word. The errorsyndromes

on this code word are continuously calculated and measured,and corrective actions

applied to the code word. The measurement of the syndrome actually effects a key

portion of the error control process; it forces (“projects”) the state either back into a

good state (with high probability) and returns a zero (no error) syndrome, or an error

state (with low probability) and returns a non-zero syndrome. When the syndrome is

non-zero, one or two corrective gates are indicated and applied. Unfortunately, this

syndrome calculation and measurement process may also introduce errors. Technolo-

gies that support nearest-neighbor-only interactions require swapping of qubits in order

to calculate the error syndrome, with the swap gates possibly introducing errors them-

selves, making the threshold requirements for effective error correction more stringent;

in some studies, as much as 175 times worse [317, 308, 11, 120,318]. The parity calcu-

lations necessary to retrieve the error syndrome cannot be carried out directly, but must

operate indirectly using a logical zero (|0L〉) state to defend against propagation of er-

rors. That state preparation requires as many qubits as the code word itself, and may be

the driver of the cycle time for QEC. Measurement of qubit state on some technologies

is slow compared to the gate time, so this also figures prominently into the cycle time.

As qubits are subject to error processes when idle, as well aswhile being used,

the total amount of error correction in the system is dependent on the size of the ma-

chine, as well as the number of logical gates being executed.If each qubit must be

“refreshed” at one-tenth the QEC cycle rate, for example, then we must build a system

in which one-tenth of the qubits can all be undergoing QEC at the same time. Longer

122 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

waits for correction increase the probability of error; this must be balanced against the

number of levels of QEC and the engineering difficulties of initialization and measure-

ment. Quantum dots and superconducting qubits require additional on-chip structures

to perform measurement [266], limiting layout flexibility and consuming die space. If

possible, it will be desirable to perform entire QEC sequences on-chip; however, in the

short run, it may be necessary to use off-chip signal generators and control circuitry,

requiring a wide, high-bandwidth I/O interface from the chip itself.

To manage errors effectively, then, we can say that a technology must support large

numbers of concurrent qubit state preparations, gates, andmeasurements. As the re-

quired operations are much more complex than a DRAM refresh cycle, and are close

to the universal gate set, a large-scale difference in structure akin to the CPU/RAM

dichotomy is unlikely. However, at the small scale, systemswhich store qubits in

nuclear spins while idle and shift to electron spins for active gates have been pro-

posed [311, 163, 227, 159, 71].

6.1.2 AC and NTC Architectural Models

This dissertation analyzes two separate architectures, still abstract but with some impor-

tant features that help us understand performance. For botharchitectures, we assume

any qubit can be the control or target for only one gate at a time. The first, theAC,

or Abstract Concurrent, architecture, is our more abstract model. It supportsCCNOT

(the three-qubit Toffoli gate, or Control-Control-NOT), arbitrary concurrency, and gate

operands any distance apart without penalty. It does not support arbitrary control strings

on control operations, onlyCCNOT with two ones as control.AC corresponds to the ma-

chine we have implicitly assumed to this point. The second, theNTC, orNeighbor-only,

Two-qubit-gate, Concurrentarchitecture, is similar but does not supportCCNOT, only

two-qubit gates, and assumes the qubits are laid out in a one-dimensional line, and only

neighboring qubits can interact. The 1D layout will have thehighest communications

costs among possible physical topologies.

The NTC model is a reasonable description of several important experimental ap-

proaches, including a one-dimensional chain of quantum dots [214], the original Kane

proposal [163], and the all-silicon NMR device [196]. Superconducting qubits [260,

359] may map toNTC, depending on the details of the qubit interconnection.

For NTC, which does not supportCCNOT directly, we composeCCNOT from a set

of five two-qubit gates [30], as shown in figure 6.1. The box with the bar on the right

6.1. MANAGING PERFORMANCE 123

AC

= =

NTC

Figure 6.1:CCNOT constructions for our architecturesAC andNTC. The box with the
bar on the right represents the square root ofX, and the box with the bar on the left its
adjoint.

represents the square root ofX,
√
X = 1

2

[

1 + i 1 − i

1 − i 1 + i

]

and the box with the bar

on the left its adjoint. We assume that this gate requires thesame execution time as a

CNOT.

The difference betweenAC andNTC is critical; beyond the important constant fac-

tors as nearby qubits shuffle, we will see in Section 6.4 thatAC can achieveO(logn)

performance on addition whereNTC is limited toO(n). Most real, scalable architec-

tures will have constraints with this flavor, if different details, soAC andNTC can be

viewed as bounds within which many real architectures will fall. The layout of vari-

ables on this structure has a large impact on performance; what is presented here is the

best we have discovered to date, but we do not claim it is optimal.

6.1.3 Notation

In the rest of this dissertation, as in Chapter 3, where we introduced Shor’s factoring

algorithm, we will useN as the number to be factored, andn to represent its length in

bits. For convenience, we will assume thatn is a power of two, and that the high bit of

N is one. x is the random value, smaller thanN , to be exponentiated, and|a〉 is our

superposition of exponents, witha < 2N2 so that the length ofa is 2n+ 1 bits.

As described in Section 3.4.1, when discussing circuit cost, the notation we use is

(CCNOTs; CNOTs; NOTs) or (CNOTs; NOTs). The values will usually be circuit depth

(latency), but may be total gate count, depending on context. The notation is sometimes

enhanced to show required concurrency and space,

(CCNOTs; CNOTs; NOTs)#(concurrency; space).

t is time, or latency to execute an algorithm, andS is space, subscripted with the

name of the algorithm or circuit subroutine. Whent is superscripted withAC or NTC,

the values are for the latency of the construct on that architecture. Equations without

superscripts are for an abstract machine assuming no concurrency, equivalent to a total

124 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

gate count for theAC architecture.R is the number of calls to a subroutine, subscripted

with the name of the routine.

m, g, f , p, b, ands are parameters that determine the behavior of portions of our

modular exponentiation algorithm.m, g, andf are part of our carry-select/conditional-

sum adder (Section 6.3).p and b are used in our indirection scheme (Section 6.2).

s is the number of multiplier blocks we can fit into a chosen amount of space (Sec-

tion 6.4.2).

6.2 Trading Classical for Quantum Computation

Any software problem can be solved by adding another layer of

indirection.

David Wheeler

This section discusses balancing the overallsystemperformance. With a classical

computer as much as1015 times as fast as quantum computer1, we can afford to trade

many classical operations for a single quantum one [333]. The same principle applies

if the metric of interest is economic cost, rather than time performance; quantum gates

will remain many orders of magnitude more expensive than classical ones for the fore-

seeable future.

As we saw in earlier chapters, modular exponentiation is themost expensive portion

of Shor’s algorithm, consisting of2n multiplication operations to exponentiate ann-bit

number. Here, I show that it is possible to reduce the number of quantum modular

multiplications necessary by a factor ofw, at a cost of performing2w times as many

classical modular multiplications and adding temporary storage space and associated

machinery for a table of2w entries. The storage space may be quantum-addressable

classical memory, pure quantum memory, or pure classical memory. Values ofw from

2 to 30 seem attractive; physically feasible values depend on the implementation of the

memory.

1Very, very roughly, a modern microprocessor has10
9 transistors, of which perhaps 10% are involved

in a “gate” in a clock cycle, of which there are10
9 per second, yielding some10

17 gates/second. In
contrast, the slowest quantum devices (liquid NMR) may run at only a few tens of gates per second,
beforeapplying quantum error correction. Note that this ignores both parallel classical computation and
faster quantum devices, but the point is still valid.

6.2. TRADING CLASSICAL FOR QUANTUM COMPUTATION 125

6.2.1 Introduction

To factor the numberN using Shor’s algorithm [296], a quantum computing device

must evolve to hold the state

1

2n

22n−1
∑

a=0

|a〉|xa mod N〉. (6.1)

This is themodular exponentiationstep discussed in Section 3.5, the first major quan-

tum step in the order-finding process. We also saw that the value xa mod N can be

rewritten [191, 342] as
n−1
∏

j=0

d
aj

j mod N (6.2)

wheredi = x2i
, andan−1an−2..a0 is the binary expansion ofa. Thedi can be calculated

classically, but|a〉 must be a quantum register.

This approach treats|a〉 as a sequence ofbits; my approach to reducing the number

of multiplications is to treat|a〉 as a series of shortwords. Dividing |a〉 up intol words

of lengthw, let |tk(a)〉, thekth word in|a〉, be|tk(a)〉 = |aw(k+1)−1aw(k+1)−2..awk+1awk〉
for 0 ≤ k < l, l = ⌈n/w⌉. |tk(a)〉, as part of|a〉, will hold a superposition of all values

0 to 2w − 1.

We can reduce the2n quantum multiplications tol by iterating over the words in

|a〉, using the superposition|tk(a)〉 as a quantum index into a memory array holding the

2w n-bit entries with valuesbm,k = xm2wk
mod N , wherem is the index into the array

andk is the iteration number, 0 tol− 1. The superposition of values retrieved from the

memory is multiplied with the current value, giving

1

2n

22n−1
∑

a=0

|xa mod N〉 =
1

2n

22n−1
∑

a=0

|
l−1
∏

j=0

btj(a),j mod N〉. (6.3)

A total of lw2w = n2w+1 classical andl quantum modular multiplications must be

performed, compared with2n classical and2n quantum modular multiplications using

Vedral’s formulation [342].

126 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

6.2.2 Indirection

In a computer, arguments to an instruction (or function) canbe passedby valueor by

reference. By value arguments appear directly in the bits of the instruction. When ac-

cessing arguments by reference, the address of the argumentis held in the instruction;

the actual value must be retrieved from memory before the function can be evaluated.

The address is called apointeror anindex. Indirection is a generalization of by refer-

ence, in which the value retrieved from memory may itself be apointer which must in

turn be dereferenced.

In the straightforward, bit-based implementation of quantum modular exponentia-

tion, thedi values are classical values programmed into a register witha superposition

of 0, based on the matching bit in the superposition|a〉. In the word-oriented approach,

thebm,k values are held in a table. Logically, a portion of the|a〉 superposition is used

as an index into that table, fetching one of the values to use as the multiplicand (more

correctly, fetching a superposition of thebm,k values to use as the multiplicand). That

is, we are accessing the arguments for our multiplication through a single level of indi-

rection.

6.2.3 Theb Array

Theb array is our bridge from classical computation to quantum. Each entry isn bits.

We must compute2w values for the table, requiringw classical modular multiplications

each, before each of thel quantum multiplications. Then, we must figure out how to

get bm,k values into the multiplicand register, in superposition. We can use quantum

memory, classical memory, or a type of mixed device to hold the data.

Quantum-Addressable Classical Memory

The array can be held using a quantum addressable classical memory (QACM) [249].

In such a device, memory cells (the modular exponentiation values) are classical, but a

quantum superposition is used as an address, and the read outvalue is a superposition

of each classical value in proportion to the “amount” of its address present in the ad-

dress superposition. One such possible device is an opticalplate, with photons steered

through the various cells according to the value of specific address bits. Figure 6.2

shows a 3-bit example. At the top, the input (generally|0〉) is steered left or right ac-

cording to the high-order bit of the address superposition (carried on a control line not

6.2. TRADING CLASSICAL FOR QUANTUM COMPUTATION 127

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

b7,k b6,k b5,k b4,k b3,k b2,k b1,k b0,k

Classical

memory cells

Output

superposition

t1,k t1,k

t2,k

address superposition

Input |0〉 steered by

t0,k t0,k t0,k t0,k

Figure 6.2: Quantum-Addressable Classical Memory (QACM)

shown in the figure). Subsequent circles steer left or right according to their address

bits, to reach the appropriate classical data memory cells.The values retrieved from the

memory are combined to give the full output superposition, in weights according to the

address superposition.

Pure Quantum Memory

An equivalent array of qubits can be used in place of the QACM.However, in that case,

the cost of filling the table must be accounted for, and our limitation will be the number

of available qubits. Figure 6.3 shows a 3-bit select circuitcomposed of Fredkin gates

which will choose from among the 8 possible arguments for themodular multiplier.

The desired valueck = btk ,k occupies the location as shown on the right of the figure;

it is then used as the argument to the modular multiplier. This select circuit can be

reversed following the multiplication to restore the original locations of thebj,k values.

128 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

tk

b0,k

b1,k

b2,k

b3,k

b4,k

b5,k

b6,k

b7,k

ck

tk,2

tk,1

tk,0

Figure 6.3: 3-bit Quantum Select Circuit (Q-SEL)

Classically-Driven Setting of Multiplicand Register

In the VBE algorithm, the multiplicand register is filled using CNOTs, with the ap-

propriate bit of|a〉 as the control. For our word-oriented approach, we can implicitly

perform the lookup by choosing which gates to apply while setting the argument. In

Figure 6.4, we show the setting and resetting of the argumentfor w = 2, where the

arrows indicateCCNOTs to set the appropriate bits of the 0 register to 1. Thexi values

are classically calculated and stored; we are setting the|0〉 register to a superposition

of theb values. The actual implementation can use a calculated enable bit to reduce the

CCNOTs to CNOTs. Only one of the valuesx0, x1, x2, or x3 will be enabled, based on

the value of|a1a0〉.
The setting of this input register may require propagating|a〉 or the enable bit across

the entire register. Use of a few extra qubits (2w−1) will allow the several setting oper-

ations to propagate in a tree. The cost of setting the argument is

tARG =

2w(1; 0; 1) = (4; 0; 4)w = 2

2w(3; 0; 1)w = 3, 4
. (6.4)

Forw = 2 andw = 3, we calculate that setting the argument adds(4; 0; 4)#(4, 5)

and (24; 0; 8)#(8, 9), respectively, to the latency, concurrency and storage of each

adder. We create separate enable signals for each of the2w possible arguments and

pipeline flowing them across the register to set the addend bits. We consider this cost

only when using indirection. Figure 6.5 shows circuits forw = 2, 3, 4.

6.2. TRADING CLASSICAL FOR QUANTUM COMPUTATION 129

ad
de

r

b3,k b1,kb2,k b0,k b3,k b1,kb2,k b0,k

|0〉

|overflow〉
|sum〉

|a0〉
|a1〉

Figure 6.4: Implicit indirection using a classical memory.The arrows pointing to blocks
indicate the setting of the multiplicand register to the value above, based on the control
lines.

x
| a1>

| a0>

x x

| a1>

| a0>

| a2>| a1>

| a0>

| a2> |a3>

w=2
|enable>

w=3
|enable>

|tmp=0>

|enable>

|tmp=0>

w=4

|tmp2=0>

Figure 6.5: Argument setting for indirection for differentvalues ofw. For thew = 4
case, the twoCCNOTs on the left can be executed concurrently, as can the two on the
right, for a total latency of 3.

130 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

6.2.4 The Algorithm

In essence, the algorithm involves moving from a bit-oriented breakdown of the mul-

tiplications to a word-oriented breakdown. The algorithm consists of two main parts:

classically calculating theb array values, and calculating their products in the quantum

domain. We pay the classical cost in step 1b in the algorithm below, and the quantum

cost in step 3c.

The cost of setting up to use thekth iteration of theb array is technology dependent;

only one of steps 1c and 3a is necessary.O(n2w) gates may be required to set a quantum

memory, or only the change of a single pointer or position if aQACM is large enough

to hold the entireb array at once.

1. Calculate theb array elements:

(a) Classically calculatebj,0 = xj for all j, 0 ≤ j < 2w

(b) Fork from 1 to l − 1, classically square (moduloN) all 2w elementsbj,k−1

w times to createbj,k

(c) (Store allbj,k into QACM)

2. Initialize |p〉 to 1

3. Fork from 0 to l − 1, do

(a) (Set up to usebj,k values: store into QACM or quantum memory)

(b) In quantum domain, use|tk(a)〉 as index intob, |ck〉 = |btk(a),k〉

(c) |p〉 = |ckp mod N〉

Figure 6.6 shows a portion of a modified form of Vedral’s circuit using indirection.

The dashed box indicates where update of theb array takes place, if necessary; only

one-qubit gates are required. Note also that Q-SEL and its reverse are used, but, unlike

Vedral’s circuit, we do not need the reverse of multiplication to free up our argument.

The degenerate case ofw = 1 is therefore faster than Vedral’s circuit.

6.2.5 Evaluating Cost and Selecting Word Length

The goal of this work is to minimize the cost of executing Shor’s algorithm, for some

metric of cost important to the user. In Figure 6.7 we show thetotal cost of calculating

the modular exponentiation, as a function of word lengthw. “Cost” in this graph is an

6.2. TRADING CLASSICAL FOR QUANTUM COMPUTATION 131

Q
-S

E
L

M
U

LT
-M

O
D

Q
-S

E
L

Q
-S

E
L

M
U

LT
-M

O
D

Q
-S

E
L

b
u

p
d

at
e

b
u

p
d

at
e

tl−1

t1

t0

|b0,0〉

|b2w−1,0〉

|c0〉
|b1,0〉

|a〉

b array

|c0p mod N〉|p〉 = |1〉

Figure 6.6: Multiplication Using Indirection, Based on Vedral’s Circuit

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 5 10 15 20 25 30 35 40

T
ot

al
 c

os
t

Word length (w)

q:c cost 1e12:1
q:c cost 1e9:1

q:c cost 1,000,000:1
q:c cost 1,000:1

q:c cost 1:1

Figure 6.7: Total Cost

132 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

arbitrary metric; it may be wall clock time, total time on parallel machines, price tag,

or some other economic cost of quantum and classical machines. Perhaps the easiest

cost to consider is simply time to perform a modular multiplication. The five curves

represent total cost at different ratios of quantum:classical cost, ranging from 1:1 to

1012:1. The ’x’ marks on each curve are the nearest integer value of w to the minimum.

This recommended word length increases by approximately eight bits for each factor

of one thousand the relative quantum cost increases.

This graph is somewhat simplified, in that the cost ratio is treated as fixed. In reality,

the QACM cost will almost certainly depend on the word length.

Commodity microprocessors may be as much as1015 times as fast as quantum

computing devices, even before accounting for quantum error correction. Faster tech-

nologies, ranging up to gigahertz clock rates, still leave several orders of magnitude

difference between classical and quantum aggregate gate rates. Combined with the

success probability, it is clear that the limitation onw will be the practical size of theb

array rather than computational cost.

This section has shown that the standard computer science technique of indirection

can be used in the quantum domain to accelerate the modular exponentiation that is the

primary cost of Shor’s algorithm. This technique reduces the number of multiplications

necessary, and is independent of the multiplication algorithm chosen. The price we pay

for this is a large classical/quantum tradeoff; we perform2w more multiplications in the

classical domain in exchange for reducing the quantum multiplications by a factor of

w. This basic technique will likely apply to other algorithms, as well.

6.3 New Adder Types

“I only took the regular course...Reeling and Writhing, of course,

to begin with, and then the different branches of Arithmetic – Ambi-

tion, Distraction, Uglification and Derision.”

the Mock Turtle, in Lewis Carroll’s Alice’s Adventures in Wonder-

land, 1865

Quantum versions of the classical carry-select and conditional-sum adders deepen

the toolbox of arithmetic routines available for matching software to hardware [109,

334]. The basic carry-select adder concurrently calculates two possible results without

knowing the value of the carry in, one assuming that the carryin will be zero, one

6.3. NEW ADDER TYPES 133

assuming that the carry in will be one. Once the carry in becomes available, the correct

output value is selected using a multiplexer (MUX). The typeof MUX determines

whether the latency of the circuit isO(
√
n) (called a carry-select adder) orO(logn)

(called a conditional-sum adder).

Zalka has proposed a carry-select adder, without calling itby name [362]. He did

not present a full circuit, making it difficult to reproduce his results, and my circuit

produces slightly different numbers than his.

6.3.1 Basic Carry-Select Adder

First, we present the basic carry-select adder, then show the MUX structure that com-

pletes the circuit. To add twon-bit numbers, we will divide the numbers into groups

and run an adder for each group. The bits are divided intog groups ofm bits each,

n = gm. The first group may have a different size,f , thanm, since it will be faster, but

for the moment we assume they are the same. The carry-select adder for a single group

we will call CSLA.

VBE-Based Adder

Figure 6.8 shows a three-bit carry-select adder, CSLA, plusan example MUX. This

generates two possible results, assuming that the carry in will be zero or one. All

of the outputs without labels are ancillae to be garbage collected. The circuit shown

here is based on the Vedral-Barenco-Ekert (VBE) carry-ripple adder described in Sec-

tion 3.4.2. As drawn, a full carry-select circuit requires5m− 1 qubits to speculatively

add twom-bit numbers. The MUX can be implementing using the optimization of the

Fredkin gate shown in Figure 2.3 on page 36.

A largerm-bit carry-select adder can be constructed so that its internal delay, as

in a normal carry-ripple adder, is one additionalCCNOT for each bit, although the total

number of gates increases (because we are essentially running two additions at the same

time) and the distance between gate operands increases. Thelatency for the CSLA

block is

tCS = (m; 2; 0). (6.5)

Note that this is not a “clean” adder; we still have ancillae to return to the initial state.

134 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

cin= 1 {

cin= 1 {

cin= 0 {

cin= 0 {

cin= 0

cin= 1

b1

a1

b0

a0

a2

b2

s0

s1

cout

s2

cin

k0

k’0

s1

k1

s’1
k’1

s2

k2

s’2
k’2

a0

a1

a2

MUX

0

0

0

0

0

0

0

0

CSLA

Figure 6.8: Three-bit carry-select adder (CSLA) with multiplexer (MUX).ai andbi are
addends. The control-SWAP gates in the MUX select either thequbits markedcin = 1
or cin = 0 depending on the state of the carry in qubitcin. si qubits are the output sum
andki are internal carries.

CDKM-Based Adder

It is possible that a design optimized for space could reducethe number of qubits re-

quired, perhaps by utilizing the Cuccaro-Draper-Kutin-Moulton (CDKM) carry-ripple

adder (Section 3.4.2), which is more space-efficient. The CDKM adder uses only2n+2

bits to add twon-bit numbers (including the carry out). By simply fanning out a “copy”

of both theA andB input registers and running separate adders in parallel, itis easy

to reduce the5m − 1 qubits required above to4m, a noticeable savings in space. Fig-

ure 6.9 outlines one approach to performing the demultiplexing in place; this approach

results invery fast availability of the result, but the ancillae garbage collection is slow.

The circuit in the figure is general; applying it to carry-select addition,A andB are

almost identical, but disentangling the carry in signals slows down the total circuit. I

am still in the process of designing this adder, and expect toreport on its performance

at a later date.

6.3. NEW ADDER TYPES 135

B

A

|S〉
|0〉
|0〉

|0〉
|S〉

|R〉
B† A†

Figure 6.9: In-place circuit and MUX to post-select eitherR = A|0〉 or R = B|0〉,
based on the select signalS.

A
D

D
C

S
LA

C
S

LA
C

S
LA

m

m

M
U

Xm+1

m+1

m+1

m+1

m+1

m+1

M
U

X

M
U

X

m

m

am −a2m−1

bm −b2m−1

b0−bm−1

a0−am−1

a2m −a3m−1

b2m −b3m−1

a3m −a4m−1

b3m −b4m−1

s0−sm−1

sm−s2m−1

s2m−s3m−1

s3m−s4m−1

cout

Figure 6.10: Block-level diagram of four-group carry-select adder.ai andbi are ad-
dends andsi is the sum. Additional ancillae not shown.

6.3.2 O(
√
n) Carry-Select Adder

The right-hand portion of Figure 6.8 is the MUX which selectsthe output to use; it is

constructed from Fredkin gates using the carry in as the control bit. Notice that the carry

in is not used until after all of the adder blocks have completed. This feature allows the

parallelism that makes the carry-select adder structure fast. One CSLA for each of the

g groups is used; all of the CSLAs are executed concurrently, then the output MUXes

are cascaded, as shown in Figure 6.10.

The most difficult implementation problem will be creating an efficient MUX. Fig-

ure 6.10 makes it clear that the total carry-select adder is only faster than the carry-ripple

adder if the latency of MUX is substantially less than the latency of the full carry-ripple

adder. The delay of the initial part of the VBE adder for a group ofm qubits would be

(m; 0; 0). If the carry out from the MUX requires less thanm CCNOT times, it may be

faster. The carry out can be generated in a constant number oftime steps by prioritizing

the last bit in the addition as the first to be MUXed out. The latency of the carry ripple

from MUX to MUX (not qubit to qubit) can be arranged to give a total MUX cost of

(4g + 2m− 6; 0; 2g − 2).

136 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

Within the block, it is certainly easy to see how the MUX can use a fanout tree

consisting of more ancillae andCNOT gates to distribute the carry in signal, as suggested

by Moore [235], allowing all MUX Fredkin gates to be executedconcurrently. A full

fanout requires an extram qubits in each adder. For intermediate values ofm, we will

use a fanout of 4, reducing the MUX latency to(4g +m/2 − 6; 2; 2g − 2) in exchange

for 3 extra qubits in each group. The space used for the full, clean, VBE-based adder is

(6m− 1)(g − 1) + 3f + 4g when using a fanout of 4.

The total latency of the CSLA, MUX, and the CSLA undo is

tSEM = 2tCS + tMUX

= (4g + 5m/2 − 6; 6; 2g − 2). (6.6)

Optimizing, based on equation 6.6, the delay will be the minimum whenm ∼
√

8n/5,

giving asymptotic performanceO(
√
n).

6.3.3 O(logn) Conditional Sum Adder

To reachO(logn) performance, we must add a multi-level MUX to our carry-select

adder. This structure is called a conditional sum adder, which we will label CSUM.

Rather than repeatedly choosing bits at each level of the MUX, we will create a multi-

level distribution of MUX select signals, then apply them once at the end. Figure 6.11

shows only the carry signals for eight CSLA groups. Thee signals in the figure are

our effective swap control signals. They are combined with acarry in signal to control

the actual swap of variables. In a full circuit, a ninth group, the first group, will be a

carry-ripple adder and will create the carry in to the rest ofour tree; that carry in will

be distributed concurrently in a separate tree.

The total adder latency will be

tCSUM = 2tCS +

(2⌈log2(g − 1)⌉ − 1) × (2; 0; 2)

+(4; 0; 4)

= (2m+ 4⌈log2(g − 1)⌉ + 2; 4;

4⌈log2(g − 1)⌉ + 2) (6.7)

where⌈x⌉ indicates the smallest integer not smaller thanx.

6.3. NEW ADDER TYPES 137

c0,0

c0,1

c1,0

c1,1

e1,0

e1,1

c2,0

c2,1

c3,0

c3,1

e3,0

c5,0

c4,1

c4,0

e3,1

c5,1

c7,1

c6,1

c6,0

e5,1

e5,0

c7,0

e7,0

e7,1

Figure 6.11:O(logn) MUX for conditional-sum adder, forg = 9 (the first group is not
shown). Only theci,j carry out lines from eachm-qubit block are shown, wherei is the
block number andj is the carry in value. At each stage, the span of correct effective
swap control linesei,j doubles. After using the swap control lines, all but the lastmust
be cleaned by reversing the circuit. Unlabeled lines are ancillae to be cleaned.

138 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

For largen, this generally reaches a minimum for smallm, which gives asymptotic

behavior∼ 4 log2 n, the same as the carry-lookahead adder from Section 3.4.3. CSUM

is noticeably faster for smalln, but requires more space. The MUX uses⌈3(g−1)/2⌉−2

qubits in addition to the internal carries and the tree for dispersing the carry in. Our

space used for the full, clean adder is(6m− 1)(g− 1) + 3f + ⌈3(g − 1)/2− 2 + (n−
f)/2⌉ ≈ 6n. Section 6.4 details the tradeoffs in overall system designcaused by the

extra space required.

Maslov et al. have recently improved on the performance of this MUX by reducing

the pair ofCCNOTs to oneCCNOT and twoCNOTs, using the breakdown of the Fredkin

gate from Figure 2.1.

6.3.4 Summary

Carry-select addition speculatively executes two additions in parallel, one assuming a

carry in of zero, and one assuming a carry in of one. After completion of the addition,

when the input carry becomes available, one result is chosenand the other discarded,

in direct analog to the speculative execution of instructions in modern microprocessors.

The basic concept of a carry-select addition process is a flexible framework allowing

different choices of group size, inner adder type, and multiplexer structure. This struc-

ture can even, in theory, be applied to other operations besides addition, by using the

general circuit in Figure 6.9. The adders I have designed have latency ofO(logn) or

O(
√
n) to add twon-bit numbers, when evaluated for the abstractACarchitecture. We

turn next to the mapping of these and other algorithms to specific sets of hardware con-

straints, primarily restrictions on the distance of gate operands on theNTC architecture.

6.4 Performance of Shor’s Algorithm on a Monolithic

Quantum Computer

In Chapter 3, particularly Figure 3.2 and Section 3.5.1, we introduced the performance

of factoring on classical machines and quantum computers, but left that analysis in-

complete. We know that Shor’s algorithm is polynomial in thelength of the number

being factored, which will be a straight line on a log-log plot, but where should it

fall on the graph? We were missing a key piece of information,namely, the logical

clock speed of the quantum system, as discussed in Section 6.1. A comparison of the

execution time to factor a number on classical and quantum computers is shown in

6.4. MONOLITHIC SHOR PERFORMANCE 139

 100 1000 10000 100000

T
im

e
to

 F
ac

to
r

an
 n

-b
it

N
um

be
r

n (bits)

one second

100 seconds

one hour

one day

one month
one year

10 years

100 years

1 thousand years

1 million years

1 billion years

Shor, 1Hz, BCDP

Shor, 1kHz, BCDP

Shor, 1MHz, BCDP

Shor, 1GHz, BCDP

N
FS

, 1
04

 P
C

s,
 2

00
3

N
F

S
, 1

00
 P

C
s,

 2
01

8

Figure 6.12: Scaling of number field sieve (NFS) on classicalcomputers and Shor’s
algorithm for factoring on a quantum computer, using BCDP modular exponentiation
with various clock rates. Both horizontal and vertical axesare log scale. The horizontal
axis is the size of the number being factored, in bits.

Figure 6.12. It compares the performance of Shor’s algorithm on a quantum computer

using the Beckman-Chari-Devabhaktuni-Preskill (BCDP) modular exponentiation al-

gorithm [35] to classical computers running the general Number Field Sieve. The steep

curves are for NFS on a set of classical computers. The shallower curves on the figure

are predictions of the performance of a quantum computer running Shor’s algorithm,

using the BCDP modular exponentiation routine, which uses5n qubits to factor ann-

bit number, requiring∼ 54n3 gate times to run the algorithm on large numbers. The

four curves are for different logical clock rates from 1 Hz to1 GHz. The performance

scales linearly with clock speed. Factoring a 576-bit number in one month of calendar

time requires a clock rate of 4 kHz. A 1 MHz clock will solve theproblem in about

three hours. If the clock rate is only 1 Hz, the same factoringproblem will take more

than three hundred years.

The execution time shown in Figure 6.12 can be improved by understanding that

relationship of architecture and algorithm. The performance of the VBE and BCDP

carry-ripple adders, and by extension their entire modularexponentiation algorithms, is

almost independent of architecture. Carry-ripple adders,which use only nearby qubits

140 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

during their execution, do not take advantage of long-distance gates even when the ar-

chitecture supports them, so any architectural analysis based solely on these algorithms

is likely to conclude that long-distance gates are not useful. However, the performance

of most polynomial-time algorithms, including other typesof adder, varies noticeably

depending on the system architecture.

6.4.1 Mapping Adders to Architectures

Figures 3.3 and 3.6 on pages 69 and 73 showed two types of quantum adder circuits,

the Vedral-Barenco-Ekert (VBE) carry-ripple adder [342] and the Draper-Kutin-Rains-

Svore carry-lookahead adder [103]. The first, most obvious difference between the

two is how “busy” the diagrams appear. The carry-ripple adder shows that most of the

qubits sit idle during most of the computation, waiting for the carry to ripple across the

circuit (and back, as a cleanup operation). The carry-lookahead adder is much denser,

accomplishing its work in fewer time steps by executing moregates in parallel.

The second most prominent visual difference is the span of the gates (vertical line

segments). Carry-ripple adders operate only on qubits thatare nearby, while the carry-

lookahead adder leapfrogs long distances. This gives the carry-ripple adderO(n) la-

tency, compared toO(logn) for the carry-lookahead — if long-distance gates are sup-

ported.

Figure 6.13 shows a fully optimized, concurrent, but otherwise unmodified version

of the VBE ADDER for three bits on a neighbor-only machine (NTC architecture). The

latency is

tNTC
ADD = (20n− 15; 0)#(2; 3n+ 1) (6.8)

or 45 gate times for the three-bit adder. A 128-bit adder willhave a latency of(2545; 0).

The diagram shows a concurrency level of three, but simple adjustment of execution

time slots can limit that to two for anyn, with no latency penalty.

Table 6.1 lists recommendations for adders that match various technologies. For

example, the Fourier adder [102] uses only2n space, compared to the3n of standard

carry-ripple adders [342, 35]. Unfortunately, it requiresn concurrent gates to achieve

theO(n) time bound when performing the quantum Fourier transform (QFT) required

to move numbers into and out of the Fourier representation, compared to concurrency

of 2 for carry-ripple. The Fourier adder also requires precise rotations similar to those

in the QFT, which may be hard to implement accurately. The newly designed CDKM

carry-ripple adder (Section 3.4.2) uses only2n space and small concurrency, making it

6.4. MONOLITHIC SHOR PERFORMANCE 141

a0

b0

c0

a1

b1

c1

a2

b2

cout

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Figure 6.13: Optimized, concurrent three bit VBE ADDER for the NTC architecture.
Numbers across the bottom are time steps.

technology adder conc. latency
Si NMR carry-ripple 2 O(n)
solution NMR carry-ripple 2 O(n)
1-D quantum dot carry-ripple,

Fourier
2 orn O(n)

1-D JJ charge carry-ripple,
Fourier

2 orn O(n)

1-D Kane model carry-ripple,
Fourier

2 orn O(n)

scalable ion trap carry-
lookahead,
conditional-
sum

n or 2n O(logn)

Oskin lattice carry-
lookahead,
conditional-
sum

n or 2n O(
√
n)

all-optical carry-
lookahead,
conditional-
sum

n or 2n O(logn)

Table 6.1: Qubit technologies and recommended choice of adder. conc., required
application-level concurrency

142 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

now the preferred choice in many cases [88].

Likewise, some entries recommend both the conditional-sumand carry-lookahead

adders, which have almost identicalO(logn) latencies. A conditional-sum adder re-

quires more space and concurrency than carry-lookahead. However, it has different

locality characteristics which might make it map better to an irregular architecture.

Irregular architectures, or those with regular but more complex layouts, complicate

the analysis. In particular, the scalable ion trap has limited concurrency, but the dis-

tance an ion must move may have a factor of two or more performance impact, making

locality desirable. Although the design of such a system is not yet advanced enough

to definitively choose between the two proposed types of adders, Thaker et al. have

begun analyzing the performance of the carry-lookahead adder on one proposed sys-

tem [324]. In their analysis, the carry-lookahead adder is limited in performance by

available application-level concurrency, leading us to suggest that the CDKM carry-

ripple adder may provide similar performance while using fewer qubits. For the two-

dimensional layout of the Kane lattice, an idealO(logn) adder can reach latency of

onlyO(
√
n) due to the communications cost of moving qubits.

For the Josephson-junction qubits, we recommend using long-distance inductive or

capacitive transfer structures only if concurrent operations can be preserved for at least

some qubits. Alternating cycles of a single long-distance interaction and many nearest-

neighbor interactions would be adequate. Designs in which only some of the qubits

can transfer long distances while others execute concurrent nearest-neighbor operations

seem physically plausible, and would result in intermediate performance, possibly us-

ing a carry-select or conditional-sum adder. Concrete performance analysis will depend

on the details of such a heterogeneous architecture. Vartiainen has done some analysis

on such a structure [341].

The common format of circuit diagram abstracts away the physical layout of qubits,

and for any layout other than linear nearest neighbor, givesthe wrong impression of

“nearby”. Therefore, we have begun animating the action of some circuits for more

complex topologies [331].

6.4.2 Acceleration

This section presents an engineering tradeoff analysis of parallelizing the multiplication

steps, an improved modulo arithmetic method, and a brief analysis of the indirection

method of Section 6.2, in the context of Shor’s algorithm.

6.4. MONOLITHIC SHOR PERFORMANCE 143

Concurrent Exponentiation

In Section 3.5, we discussed Cleve and Watrous’ method for parallelizing multiplica-

tion, as shown in Figure 3.7 on page 78. Fors multipliers,s ≤ n, each multiplier must

combiner = ⌊(2n + 1)/s⌋ or r + 1 numbers, usingr − 1 or r multiplications (the

first number being simply set into the running product register), where⌊x⌋ indicates

the largest integer not larger thanx. The intermediate results from the multipliers are

combined using⌈log2 s⌉ quantum-quantum multiplication steps.

For a parallel version of VBE, the exact latency, including cases wherers 6= 2n+1,

is

RV = 2r + 1 + ⌈log2(⌈(s− 2n− 1 + rs)/4⌉
+2n+ 1 − rs)⌉ (6.9)

times the latency of our multiplier. For smalls, this isO(n); for largers,

lim
s→n

O(n/s+ log s) = O(logn) (6.10)

Reducing the Cost of Modulo Operations

The VBE algorithm does a trial subtraction ofN in each modulo addition block; if that

underflows,N is added back in to the total. This accounts for two of the five ADDER

blocks and much of the extra logic to compose a modulo adder. The last two of the five

blocks are required to undo the overflow bit.

Figure 6.14 shows a more efficient modulo adder than VBE, based partly on ideas

from BCDP and Gossett. It requires only three adder blocks, compared to five for VBE,

to do one modulo addition. The first adder addsxj to our running sum. The second

conditionally adds2n − xj − N or 2n − xj, depending on the value of the overflow

bit, withoutaffecting the overflow bit, arranging it so that the third addition of xj will

overflow and clear the overflow bit if necessary. The blocks pointed to by arrows are

the addend register, whose value is set depending on the control lines. Figure 6.14 uses

n fewer bits than VBE’s modulo arithmetic, as it does not require a register to holdN .

In a slightly different fashion, we can improve the performance of VBE by adding

a number of qubits,p, to our result register, and postponing the modulo operation until

later. This works as long as we don’t allow the result register to overflow; we have a

redundant representation of moduloN values, but that is not a problem at this stage of

144 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

ad
de

r

ad
de

r

ad
de

r|0>

|overflow>
|sum>

|x>

Figure 6.14: More efficient modulo adder. The blocks with arrows set the register
contents based on the value of the control line. The positionof the black block indicates
the running sum in our output.

the computation.

The largest number that doesn’t overflow forp extra qubits is2n+p − 1; the largest

number that doesn’t result in subtraction is2n+p−1 − 1. We want to guarantee that we

always clear that high-order bit, so if we subtractbN , the most iterations we can go be-

fore the next subtraction isb. The largest multiple ofN we can subtract is⌊2n+p−1/N⌋.
Since2n−1 < N < 2n, the largestb we can allow is, in general,2p−1. To performb

modular additions requires2b + 1 ADDER calls. For example, adding three qubits,

p = 3, allowsb = 4, reducing the 20 ADDER calls VBE uses for four additions to 9

ADDER calls, a 55% performance improvement.

We must use3p adder calls at the end of the calculation to perform our final modulo

operation. Asp grows larger, the cost of the adjustment at the end of the calculation

also grows and the additional gains are small. Calculationssuggest thatp of up to 10

or 11 continues to improve in speed.

This approach almost eliminates the penalty for doing modulo arithmetic instead of

ordinary integer arithmetic. The number of calls to our adder block necessary to make

ann-bit modulo multiplier is reduced from the5n in VBE to 3n using Figure 6.14 to

RM = n(2b+ 1)/b (6.11)

for the overflow approach described in these last few paragraphs; this last expression is

only slightly above two adder calls per modulo addition for reasonable values ofb.

Indirection

Adapting equation 6.9 to both indirection and concurrent multiplication, we have a total

latency for our circuit, in multiplier calls, of

RI = 2r + 1 + ⌈log2(⌈(s− 2n− 1 + rs)/4⌉ + 2n+ 1 − rs)⌉ (6.12)

6.4. MONOLITHIC SHOR PERFORMANCE 145

algo. adder modulo indirect s space concurrency
cVBE VBE VBE N/A 1 897 2
D CSUM(m = 4) p = 11, b = 1024 w = 2 12 11969 126 × 12 = 1512
E QCLA p = 10, b = 512 w = 2 16 12657 128 × 16 = 2048
F CDKM p = 10, b = 512 w = 4 20 11077 20 × 2 = 40
G CDKM fig. 6.14 w = 4 1 660 2

Table 6.2: Parameters for our algorithms, chosen for 128 bits. s, number of independent
multiplier units.

wherer = ⌊⌈(2n + 1)/w⌉/s⌋.

6.4.3 Example: Exponentiating a 128-bit Number

In this section, we combine these techniques into complete algorithms and examine the

performance of modular exponentiation of a 128-bit number.We assume the primary

engineering constraint is the available number of qubits. In Section 6.4.2 we showed

that using twice as much space can almost double our speed, essentially linearly until

the log term begins to kick in. Thus, in managing space tradeoffs, this will be our

standard: any technique that raises performance by more than a factor ofc in exchange

for c times as much space will be used preferentially to parallel multiplication. Carry-

select adders (Sec. 6.3.1) easily meet this criterion, being perhaps six times faster for

less than twice the space.

Because we are interested in systems with some realistic limitations, in this section

we have chosen to limit the space available to100n qubits. This is a large enough

number to see the effects of parallelism, but small enough toconstrain the behavior of

the algorithm somewhat. In later sections, we will relax this space restriction to2n2

qubits, the maximum number we have found to be useful.

Algorithm D uses100n space and our conditional-sum adderCSUM . Algorithm

E uses100n space and the carry-lookahead adderQCLA. AlgorithmsF andG use

the Cuccaro adder and100n and minimal space, respectively. Parameters for these al-

gorithms are shown in Table 6.2. We have included detailed equations for concurrent

VBE andD below, and numeric results for all of the algorithms in Table6.3; the de-

tailed equations for the other algorithms are easily derived in a similar fashion. The

performance ratios are based only on theCCNOT gate count forAC, and only on the

CNOT gate count forNTC.

146 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

algo. AC NTC

gates perf. gates perf.
cVBE (1.25 × 108; 8.27 × 107; 0.00 × 100) 1.0 (8.32 × 108; 0.00 × 100) 1.0
D (2.19 × 105; 2.57 × 104; 1.67 × 105) 570 N/A N/A
E (1.71 × 105; 1.96 × 104; 2.93 × 104) 727 N/A N/A
F (7.84 × 105; 1.30 × 104; 4.10 × 104) 159 (4.11 × 106; 4.10 × 104) 203
G (1.50 × 107; 2.48 × 105; 7.93 × 105) 8.3 (7.87 × 107; 7.93 × 105) 10.6

Table 6.3: Latency to factor a 128-bit number for various architectures and choices of
algorithm. AC, abstract concurrent architecture.NTC neighbor-only, two-qubit gate,
concurrent architecture. perf, performance relative to VBE algorithm for that architec-
ture, based onCCNOTs for ACandCNOTs for NTC.

Concurrent VBE

On AC, the concurrent VBE ADDER is(3n−3; 2n−3; 0) = (381; 253; 0) for 128 bits.

This is the value we use in the concurrent VBE line in Table 6.3. This will serve as our

best baseline time for comparing the effectiveness of more drastic algorithmic surgery.

The unmodified full VBE modular exponentiation algorithm, consists of20n2 −
5n = 327040 ADDER calls plus minor additional logic. A 128-bit VBE adder, from

Equation 6.8, will have a latency of(2545; 0). This gives a total latency of

tNTC
V = (20n2 − 5n)tNTC

ADD

= (400n3 − 400n2 + 75n; 0) (6.13)

for VBE.

Algorithm D

The overall structure of algorithmD is similar to VBE, with our conditional-sum adders

instead of the VBE carry-ripple, and our improvements in indirection and modulo. As

we do not consider CSUM to be a good candidate for an algorithmfor NTC, we evaluate

only for AC. Algorithm D is the fastest algorithm forn = 8 andn = 16. The total

latency is

tD = RIRM

×(tCSUM + tARG)

+3ptCSUM . (6.14)

6.4. MONOLITHIC SHOR PERFORMANCE 147

Expanding the terms in this equation and lettingr = ⌊⌈(2n + 1)/w⌉/s⌋, the latency

and space requirements for algorithmD are

tAC
D = 2r + 1 + ⌈log2(⌈(s− 2n− 1 + rs)/4⌉

+2n+ 1 − rs)⌉n(2b+ 1)/b

×((2m+ 4⌈log2(g − 1)⌉ + 2; 4;

4⌈log2(g − 1)⌉ + 2) + (4; 0; 4))

+3p(2m+ 4⌈log2(g − 1)⌉ + 2; 4;

4⌈log2(g − 1)⌉ + 2) (6.15)

and

SD = s(SCSUM

+2w + 1 + p+ n) + 2n+ 1

= s(7n− 3m− g + 2w + p

+⌈3(g − 1)/2 − 2 + (n−m)/2⌉)
+2n+ 1. (6.16)

Algorithm E

Algorithm E uses the carry-lookahead adder QCLA in place of the conditional-sum

adder CSUM. Although CSUM is slightly faster than QCLA, its significantly larger

space consumption means that in our100n fixed-space analysis, we can fit in 16 mul-

tipliers using QCLA, compared to only 12 using CSUM, as listed in Table 6.2. This

allows the overall algorithmE to be 28% faster thanD for 128 bits.

Algorithms F and G

The CDKM carry-rippler adder has a latency of(10n+ 5; 0) for NTC. This is twice as

fast as the VBE adder. We use this in our algorithmsF andG. Algorithm F uses100n

space, whileG is our attempt to produce the fastest algorithm possible in the minimum

amount of space.

148 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

103

104

105

106

 8 16 32 64 128

La
te

nc
y

(C
C

N
O

T
 G

at
e

C
ou

nt
)

Length (bits)

algo D
algo E
algo F

Figure 6.15: Execution time for our algorithms for space100n on theAC architecture,
for varying value ofn.

Smaller n and Different Space

Figure 6.15 shows the execution times of our three fastest algorithms forn from eight

to 128 bits. AlgorithmD, using CSUM, is the fastest for eight and 16 bits, whileE,

using QCLA, is fastest for larger values. The latency of 1072for n = 8 bits is 32 times

faster than concurrent VBE, achieved with60n = 480 qubits of space.

Figure 6.16 shows the execution times forn = 128 bits for various amounts of

available space. All of our algorithms have reached a minimum by240n space (roughly

1.9n2).

6.4.4 Asymptotic Behavior

The focus of this dissertation is the constant factors in modular exponentiation for im-

portant problem sizes (up to a thousand bits or so) and architectural characteristics.

However, let us look briefly at the asymptotic behavior of ourcircuit depth, which

will tell us about the behavior of systems on very large problems. As we have men-

tioned before, the arbitrary-distanceAC model is not physically realistic for very large

systems; likewise, no one would propose carryingNTC to its extreme and building a

one-dimensional line of a million or more qubits. Therefore, these expressions should

be treated as “not to exceed” upper and lower bounds.

6.4. MONOLITHIC SHOR PERFORMANCE 149

105

106

107

 0 50 100 150 200 250 300

La
te

nc
y

(C
C

N
O

T
 G

at
e

C
ou

nt
)

Space (multiple of n)

algo D
algo E
algo F

Figure 6.16: Execution time for our algorithms for 128 bits on theAC architecture, for
varying multiples ofn space available.

In Section 6.4.2, we showed that the latency of our complete algorithm is

O(n/s+ log s) × (latency of multiplication) (6.17)

as we parallelize the multiplication usings multiplier blocks. Our multiplication algo-

rithm is still

O(n) × (latency of addition). (6.18)

AlgorithmsD andE both use anO(logn)-depth adder. Combining equations 6.17

and 6.18 with the adder cost, we have asymptotic circuit depth of

tAC
D = tAC

E = O((n logn)(n/s+ log s)) (6.19)

for algorithmsD andE. As s → n, these approachO(n log2 n) and space consumed

approachesO(n2).

Algorithm F uses anO(n) adder, whose asymptotic behavior is the same on both

AC andNTC, giving

tAC
F = tNTC

F = O((n2)(n/s+ log s)) (6.20)

150 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

approachingO(n2 logn) as space consumed approachesO(n2).

These results compare favorably to the asymptotic behaviorof O(n3) for VBE,

BCDP, and algorithmG, each of which usesO(n) space. The asymptotic behavior of

these three algorithms is independent of whether the architecture isAC or NTC.

The ultimate limit of performance forAC will be achieved using a Gossett carry-

save multiplier and larges. The carry-save multiplier consumesO(n2) space. Gossett

has shown that the latency of a carry-save multiplier will beO(logn), using a tree

structure to combine partial results, and the latency of theentire modular exponentiation

algorithm will beO(n logn). Parallelizing the multiplication raises the space consumed

to O(n3) and reduces the latency toO(log3 n). The requirement forn3 qubits quickly

moves into the billions asn nears one thousand, and into the trillions asn nears ten

thousand; none of the proposed technologies we know of are likely to reach such levels

of scalability, though it is possible that nanotechnology will eventually reach levels in

which large numbers of individual atoms in bulk materials are controllable.

For physically realizable systems, as we noted in Section 3.4.4, an adder will ulti-

mately be limited toO(3
√
n) whenO(n) qubits are packed in three-dimensional space,

because all signal propagation methods are limited to be linear in distance, and are

subject to the final limit of the speed of light. The complete modular exponentiation al-

gorithm, usingO(n2) adders calls, is therefore limited toO(n2 3
√
n) = O(n7/3) latency

when usingO(n) qubits and a nominallyO(logn) adder. When usingO(n2) qubits,

the performance limit isO(n5/3). When usingO(n3) qubits, the distance across the

entire ensemble isO(n), and this turns out to be the limit of our performance, too.

Thus, we can say that modular exponentiation is ultimately limited toO(n) perfor-

mance, wheren is limited only by the size (and age) of the Universe and the availability

of matter (or energy) to implement the qubits.

6.4.5 Results

In this section, we extend our results by expanding the qubitspace available, and, at

last, bringing clock speed into the picture. On theAC architecture, our algorithms have

shown a speed-up factor ranging from 4,000 times for factoring a 576-bit number to

nearly one million for a 100,000-bit number, when using100n space. This is about

fifteen times the space consumption of the original VBE algorithm, at7n, and twenty

times the space of BCDP, at5n. Using BCDP as our baseline, we compare theD and

F algorithms, withD being the fastest algorithm onAC andF being the fastest onNTC.

6.4. MONOLITHIC SHOR PERFORMANCE 151

 100 1000 10000 100000

T
im

e
to

 F
ac

to
r

an
 n

-b
it

N
um

be
r

n (bits)

one second

100 seconds

one hour

one day

one month
one year

10 years
100 years
1 thousand years

1 million years

1 billion years

Shor, 1Hz, BCDP

Shor, 1MHz, BCDP

Shor, 1Hz, alg. F, NTC arch.

Shor, 1MHz, alg. F, NTC arch.
Shor, 1Hz, alg. D, AC arch.

Shor, 1MHz, alg. D, AC arch.

N
FS

, 1
04

 P
C

s,
 2

00
3

Figure 6.17: Scaling of number field sieve (NFS) and Shor’s algorithms for factoring,
using faster modular exponentiation algorithms and2n2 space.

The values reported here for both algorithms are calculatedusing2n2 qubits of storage

to exponentiate ann-bit number, the largest number of qubits our algorithms canef-

fectively use. AlgorithmD with 2n2 qubits onAC is 13,000 times faster than BCDP at

factoring a 576-bit number, and one million times faster fora 6,000 bit number. Algo-

rithm F on NTC, by contrast, is only about 1,000 times faster than BCDP at factoring a

6,000-bit number. For very largen, the latency ofD is ∼ 9n log2
2(n). The latency ofF

is∼ 20n2 log2(n).

Figure 6.17 updates the performance shown in Figure 6.12 on page 139, adding

our fastest algorithms. We have kept the 1 Hz and 1 MHz lines for BCDP, and added

matching lines for our fastest algorithms on theAC andNTC architectures at the same

clock speeds. These speeds are, of course, logical clock speeds, after accounting for the

overhead of fault tolerance and QEC. The clock speed is for Toffoli gates for BCDP and

D, and for two-qubit gates forF. For AC, our algorithmD requires a clock rate of only

about 0.3 Hz to factor a 576-bit number in one month. ForNTC, using our algorithmF,

a clock rate of around 27 Hz is necessary.

152 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

adder K Q KQ
VBE carry-ripple 3n 3n 9n2

CDKM carry-ripple 2n 2n 4n2

conditional-sum 6n 4 log2 n 24n log2 n
carry-lookahead 4n 4 log2 n 16n log2 n

Table 6.4: ApproximateKQ to add twon-qubit numbers using some different adder
circuits, in units of qubit-Toffoli times.

6.4.6 Error Correction Needs

We saw in Section 2.3.1 that we can estimate the required strength of error correction,

roughly, by calculatingKQ, whereK is the number of qubits andQ is the number of

time steps.KQ represents the number of QEC cycles that must be performed through-

out the entire system during the course of the complete computation. This approach is

predicated on the observation that QEC consumes such a largepercentage of the total

operations in the system that the effects of the logical gates are unimportant for this

analysis. Steane’s analysis treatsKQ somewhat abstractly; here we show thatK varies

over the course of the execution of an algorithm [308].

A carry-ripple adder to add twon-qubit numbers, whether VBE or CDKM, uses

O(n) qubits and takesO(n) time steps, giving aKQ = O(n2). The carry-lookahead

and conditional-sum adders likewise useO(n) qubits, but run inO(logn) time steps,

for KQ = O(n logn). Table 6.4 shows approximate values ofKQ for the different

adders. Forn = 1, 024, KQ is about four million for the CDKM adder, but only

160,000 for the conditional-sum adder, a factor of twenty five better. Of course, this

analysis assumes theAC architecture’s support for long-distance gates. Thus, we see

that not only doesAC have a better error threshold, but the demands of the application

are lower. This factor will result in higher-fidelity calculations, or possibly even a

reduction in the necessary strength of QEC, saving space andtime.

In all of our proposed algorithms, modular multiplication consists ofO(n) calls to

the adder routine, givingKQ = O(n3) for a multiplication when using carry-ripple

adders andKQ = O(n2 logn) when using log-depth adders. We have also proposed

parallelizing multiplication using the Cleve-Watrous method. In its broadest form, as

in Figure 6.18, it usesn multiplier units and requireslog2 n steps. This may appear

to result inKQ beingn log2 n times theKQ of a multiplication, which would be an

increase of a factorlog2 n over a simple linear string of multiplications. However, the

6.4. MONOLITHIC SHOR PERFORMANCE 153

tim
e

|a
>

M
M

M
M

M
M

M

M
M

M
M

M M M MM M M M M
M

M
M

M
M

M

M
M

M
M

M

Figure 6.18: Cleve-Watrous parallel multiplication (rotated ninety degrees relative to
other graphs, with time flowing bottom to top). Gray areas represent disentangled,
unused qubits.

gray areas in the figure aredisentangled from the running computation. They do not af-

fect the results, and should not be counted in theKQ for the overall computation. (The

unused resources ideally shouldn’t go to waste, but that’s adifferent problem.) Thus,

regardless of the arrangement of the multipliers, the totalKQ for modular exponentia-

tion is2n times the cost of a multiplier, or, when using the indirection of Sections 6.4.2

and 6.2,2l = 2⌈n/w⌉ times the cost of a multiplier. The one minor complication is

that our parallel multiplications keep only a single copy of|a〉, rather than one for each

multiplier unit. For algorithmsD, E, F, andG, we ignore the cost of the|a〉 register

in the table, it being small compared to the overall size of the system; for small values

of s this approximation is not good, but the result is still within 40% or so at worst.

Recognizing from Equation 6.11 that even for modest values of b, the number of adder

callsRM to make a modulo multiplier is∼ 2n, we can simplify our expressions for

KQ and arrive at the values in Table 6.5. The terms in the expressions in the table are,

in order, number of modulo multiplier calls; number of modulo adder calls per modulo

multiplier; adder calls per modulo adder; adder depth; and first-order term in number

of qubits. Our algorithmG is an order of magnitude better than VBE, andF is almost

two orders of magnitude better, on theNTC architecture. ForAC, we can useD and

E for further gains. The asymptotic growth is substantially slower; numerically, for

n = 1, 024, for VBE KQ ≈ 2 × 1014, andE is ≈ 2.4 × 1011, almost three orders of

magnitude better. All of these values are for indirection (Section 6.2) usingw = 2 to

w = 4, as shown in Table 6.2; an additional factor of 4 or more seemsquite plausi-

ble, as shown in Figure 6.7 on page 131, when error correctionbecomes an overriding

concern.

Steane calculated that, for a physical gate error rate of∼ 10−5 and a memory error

154 CHAPTER 6. PERFORMANCE OF LARGE-SCALE SYSTEMS

algorithm KQ
cVBE 2n× n× 5 × 3n× 7n = 210n4

algo.D 2l × n× 2 × 4 log2 n× 5n ≈ 40n3 log2 n
algo.E 2l × n× 2 × 4 log2 n× 3n ≈ 24n3 log2 n
algo.F 2l × n× 2 × 2n× 3n ≈ 6n4

algo.G 2l × n× 3 × 2n× 6n ≈ 18n4

Table 6.5: ApproximateKQ for our complete modular exponentiation circuits, in units
of qubit-Toffoli times.

rate of∼ 10−6 on anAC-like architecture,KQ of 1015 can be achieved using only about

a factor of twelve increase in storage, via the BCH [[127,43,13]] code [308]2.

6.5 Summary

This chapter opened with a discussion of the performance of Shor’s algorithm on a

quantum computer, showing in Figure 6.12 that logical clockspeed has an important

impact on the utility of a quantum computer, despite the apparent gains in computa-

tional class compared to classical computers. This fact is often under-appreciated by

physicists, who tend to assume that the gain in class will prove decisive.

It is possible to significantly accelerate quantum modular exponentiation using a

stable of techniques, culminating in the much-improved performance shown in Fig-

ure 6.17. I have provided exact gate counts, rather than asymptotic behavior, for the

n = 128 case, showing algorithms that are faster by a factor of 200 to700, depending

on architectural features, when100n qubits of storage are available. Forn = 1024,

this advantage grows to more than a factor of 5,000 for non-neighbor machines (AC).

Neighbor-only (NTC) machines can run algorithms such as addition inO(n) time at

best, when non-neighbor machines (AC) can achieveO(logn) performance.

Our contribution has focused on parallelizing execution ofthe arithmetic through

improved adders, concurrent gate execution, and overall algorithmic structure. We have

also made improvements that resulted in the reduction of modulo operations, and traded

some classical for quantum computation to reduce the numberof quantum operations.

It seems likely that further improvements can be found in theoverall structure and by

more closely examining the construction of multipliers from adders [109]. We also

intend to pursue multipliers built from hybrid carry-save adders.

2Steane uses extra ancillae for measurement and fault tolerance, resulting in a total consumption of
∼ 4n physical qubits to storek logical qubits in an [[n,k,d]] code.

6.5. SUMMARY 155

The three factors which most heavily influence performance of modular exponen-

tiation are, in order, concurrency, the availability of large numbers of application-level

qubits, and the topology of the interconnection between qubits. Without concurrency,

it is of course impossible to parallelize the execution of any algorithm. Our algorithms

can use up to∼ 2n2 application-level qubits to execute the multiplications in paral-

lel, executingO(n) multiplications inO(logn) time steps. Finally, if any two qubits

can be operands to a quantum gate, regardless of location, the propagation of informa-

tion about the carry allows an addition to be completed inO(logn) time steps instead

of O(n). We expect that these three factors will influence the performance of other

algorithms in similar fashion.

As we alluded to in Section 6.4.1, not all physically realizable architectures map

cleanly to one of our models. A full two-dimensional mesh, such as neutral atoms in

an optical lattice [56], and a loose trellis topology [256] probably fall betweenAC and

NTC. The behavior of the scalable ion trap [170] is not immediately clear, but will be

controlled by ion movement times and realizable concurrency.

In this chapter, we have analyzed the performance of the modular exponentiation

step of Shor’s factoring algorithm for some abstract architectural models, and shown

how to dramatically improve that performance. Depending onthe post-quantum error

correction, application-level effective clock rate for a specific technology, choice of

exponentiation algorithm may be the difference between hours of computation time

and weeks, or between seconds and hours. This difference, inturn, feeds back into the

system requirements for the necessary strength of error correction and coherence time.

The next chapter will develop a design for a machine we call aquantum multicomputer,

designed to run Shor’s algorithm in a distributed fashion, and show optimized forms of

arithmetic to run on it.

Chapter 7

The Quantum Multicomputer

7.1 System Overview

The scientist describes what is; the engineer creates what never

was.

Theodore Von K ármán

Music is your own experience, your own thoughts, your wisdom.

If you don’t live it, it won’t come out of your horn. They teach you

there’s a boundary line to music. But, man, there’s no boundary line

to art.

Charlie Parker

Plan to throw one away. You will do that, anyway. Your only

choice is whether to try to sell the throwaway to customers.

Frederick P. Brooks

At long last, we reach the objective of our pilgrimage: the design and analysis of a

distributed quantum computer, orquantum multicomputer. A multicomputer is a con-

strained form of distributed system [24]. It is composed of nodes, each of which is

an independent quantum computer, and an interconnect network of links connecting

the nodes. As we noted in Section 2.2.7, distributed quantumcomputation requires

shared entanglement; in Yepez’s terminology, our quantum multicomputer is a type I

system [355]. The network is used to create EPR pairs shared between pairs of nodes,

156

7.2. AN ENGINEER’S DEFINITION OF SCALABILITY 157

and those EPR pairs are then used to teleport qubits (teledata) or quantum gates (tele-

gate). Our goal with such a system is to increase both thestorageandperformanceof

the total system well beyond what a single, monolithic quantum computer is capable

of; we want our multicomputer to bescalable. This chapter provides an overview of

the entire system, including the node and network hardware and software. The first

section will justify our decision to explore distributed quantum computer architectures.

Succeeding sections will go into more detail on the impact ofquantum error correction

and finally a performance analysis of adder circuits run on our system.

7.2 An Engineer’s Definition of Scalability

What will constrain our ability to build a quantum computingsystem as large as we care

to attempt? In this section, we discuss the practical aspects of scaling up the size (in

qubits) of a quantum computer. We also reason that technological limitations on most

proposed technologies make it necessary to plan to use multiple machines to solve large

problems, laying the foundation for our quantum multicomputer work.

Chuang has defined scalability to mean that the combination of fault tolerant meth-

ods and a particular technology, including its base error rate, meet the threshold cri-

terion. Combinations that meet this criterion are scalable; those that do not, are not.

However, the term “scalable” has different meanings in different contexts. I am in-

terested in building a complete, practical quantum computing system. In this context,

Chuang’s definition is a necessary, but not sufficient, condition. Instead, I offer the

following, broader but less formal, definition.

Above all, it must be possible, physically and economically, to grow

the systemthrough the region of interest. Addition of physical resources

must raise the performance of the system by a useful amount (for all impor-

tant metrics of performance, such as calculation speed or storage capacity),

without excessive increases in negative features (e.g., failure probability).

This definition refers to several important criteria, summarizing our taxonomy from

Chapter 4. It also points out that scalability is never indefinite in the real world; there

are always limits, and we must begin by deciding what those limits are. No one would

say that a system that costs a hundred thousand dollars per qubit or that covers an

optical lab bench for each gate is scalable in any practical sense. Thus, good engineers

say, “This scales to...” and name a level, metric, and what part of the system constrains

158 CHAPTER 7. THE QUANTUM MULTICOMPUTER

the scalability. (Better engineers tell you why, and great engineers find a way around

the limitations.) In this section, we provide a qualitativelook at some of these issues.

7.2.1 Economics

My estimate of the price at which the first production quantumcomputer will be sold

is four hundred U.S. dollars per qubit. The definition of “production” in this case is a

machine that is bought and installed for the purpose of solving real problems. That is,

it has to solve a problem for which there is not a comparable classical solution.

To arrive at this estimate, I assume that the machine will be built to run Shor’s

factoring algorithm on a 1,024-bit number. That takes aboutfive kilobits of application-

level qubit space; we will multiply by fifty to support two levels of QEC. This gives a

total requirement of a quarter of a million physical qubits.

One hundred million U.S. dollars is a reasonable price for a machine with unique

capabilities. The U.S. government clearly spends that muchon cluster supercomputers

today. BlueGene, for example, built by IBM, has 131,072 processors (65,536 dual-core

chips). Counting packaging, power, cooling, memory, storage, and networking, the

price of such a system undoubtedly exceeds a thousand dollars per processor (all of

these prices are ignoring physical plant, including the building).

Our price point, then, is$100M/250K qubits= $400/qubit. This estimate might

easily be one or two orders of magnitude high or low; other applications, such as phys-

ical simulations, may require fewer qubits for a productionmachine (indeed, one esti-

mate is that as few as 30 qubits might be enough to be useful [23]), or a high error rate

may demand more error correction and more physical qubits.

The dollar cost is a real-world constraint that must be satisfied; a large system will

not get built until it justifies itself economically.

7.2.2 Infrastructure Needs

Each technology has its own physical infrastructure requirements. Packaging, cool-

ing, and housing a semiconductor-based quantum computer may be non-trivial. Even

though a quantum computer manipulates individual quanta, the space, power, thermal,

and helium budgets for such a system are large. In Section 4.1.5, we discussed the size

and cooling capacity of dilution refrigerators; this will be one limit on the number of

qubits we can support in each such dil fridge. For our quantummulticomputer, we plan

to connect many dil fridges together into a complete system.We will call a setup of

7.2. AN ENGINEER’S DEFINITION OF SCALABILITY 159

a dil fridge and the electronics to support the qubits insidea “pod”. We will examine

what constitutes a “node” in our multicomputer in Section 7.1.

Thermal engineering and packaging are serious problems. InSection 7.3.2, we will

discuss this issue; here we assert that this issue will limitus to only a few logical qubits

per pod, which in turn requires us to have a large number of pods. For the moment, we

assume one node per pod, and again set our target at a machine for factoring a 1,024-bit

number. We must have clearance around the dil fridge for operators and rack-mount

equipment to move equipment down the aisles. Quite a bit of space, power, and money

are required for each such setup. If each pod requires an areathree meters square, we

need an area approximately 100 meters by 100 meters for our total machine, a large but

certainly achievable amount of floor space. However, growing an order of magnitude

beyond this size seems impractical.

With dilution refrigerator prices of about $100,000 per pod, one thousand dil fridges

would consume our entire budget, leaving no money for support electronics or the

qubits themselves. This clearly shows that thermal engineering and packaging will

be key issues in building large-scale production systems based on quantum dot or

Josephson-junction devices; we need to fit more than one nodeinto each pod, or more

qubits into each node.

This linear extrapolation from the current state of research is unlikely to be the

way production systems will really be built1. However, this brief discussion should

illustrate the problems that must be solved. Without solutions, we do not have a system

that scales to reach our desired performance target.

7.2.3 Performance

We introduced performance as an issue in quantum computing back in Chapter 3. A

system running anO(n3) algorithm that requires a year to solve a problem of sizen

is unlikely to be considered a viable choice to solve a problem of size10n, even if the

hardware can be scaled to an appropriate level, as there are few solutions for which

funders and researchers are willing to wait 1,000 years.

1It’s also worth noting that NMR, ion trap, optical lattice, and atom chip systems would require a
completely different analysis.

160 CHAPTER 7. THE QUANTUM MULTICOMPUTER

7.2.4 Single-Device Physical Limitations

Before accepting the need to build a quantum multicomputer,we should look at the

scalability of a single, large, monolithic machine. Thakeret al. estimated the size of an

ion trap system to factor a 1,024-bit number to be about a tenth of a square meter of ion

traps [324]; a single device of this scale is difficult to construct and operate, suggesting

that smaller devices interconnected via teleportation channels will be required.

We are most interested in VLSI-based qubits. In particular,let us look at the super-

conducting Josephson-junction flux qubit from Dr. Semba’s group at NTT [194]. Their

qubit is a loop about 10µm square. This area is determined by the desired physics of the

device, not limited by achievable VLSI feature size; the size of the loop determines the

size of the flux quantum, which in turn determines control frequencies and gate speed.

Dr. Semba’s group is working on connecting qubits via an LC oscillator which includes

an on-chip capacitor [160].

Once they have demonstrated interconnection among multiple qubits connected to

the bus, will that meet DiVincenzo’s criterion for a scalable set of qubits? In this case,

we are looking for up to a quarter of a million physical qubits. At first glance, it

would seem easy to fit that many qubits on a chip. Even a small 10mm square chip

would fit a million 10-micron square structures. However, that estimate ignores the

need for I/O pads. Equally important, the capacitor in the LCcircuit is huge compared

to a qubit (though only one of those is required per bus that connects a modest-sized

group of qubits, and it may be possible to build the capacitorin some more space-

efficient manner, or maybe even put it off-chip). Still more important, these qubits

are magnetic, not charge; place them too close together, andthey’ll interfere. The

strength of the interaction could be a problem if the qubits are only a micron apart, but

at 10µm spacing, the interaction drops to order of kHz, low enough not to worry about

much [293]. Control is achieved with a microwave line run past the qubit; obviously,

this line cannot run that too close to other qubits. Thus, there is a lot of physics to be

done even before the mundane engineering of floor-planning.Above, we discussed the

need for control lines to move into/out of the dil fridge, crossing the thermal boundary.

The I/O requirement applies directly to the chip, as well; now we need roughly a pin per

qubit. Without major advances in integration or some form ofmultiplexing of control,

we are probably limited to about a thousand qubits per chip, simply because of the

required pin count, and each pin will conduct heat into the chip, affecting our overall

thermal budget.

7.3. SYSTEM OVERVIEW 161

With an estimated limit to the number of qubits of two orders of magnitude or more

below our total system requirements, we see the need to connect multiple nodes to-

gether into a quantum multicomputer. We need to create an entangled state that crosses

node boundaries. The quantum I/O mechanisms discussed in Chapter 4 therefore be-

come critical. Having a quantum I/O mechanism allows us to circumvent one entire set

of scalability constraints. The governing constraints arelikely to be overall ability to

suppress errors, performance, or cost.

7.3 System Overview

7.3.1 Hardware Overview

We constrain all parts of the system to be geographically collocated. Short travel dis-

tances (up to a few tens of meters) between nodes reduce latency, simplify coordinated

control of the system, and increase signal fidelity and reduce losses, freeing us from

the need to consider placing quantum repeaters [57] in the network. We may wish,

however, to use hardware proposed for quantum repeaters as our local node and inter-

connect technologies [71].

Figure 1.2 on page 10 showed the quantum multicomputer architecture at a high

level. Here we deal only with the quantum network and the nodes’ interaction with

it. We choose a regular network topology, assume a dedicatednetwork environment,

and set a goal of scalability to thousands of nodes. The dedicated network assumption

allows us to ignore security and contention for resources beyond the instructions we

schedule, and to assume in-order delivery of data. The linksmay be directly connected

between a pair of nodes, connected to a shared network medium, or switched at some

lower physical level. Although the QEP protocol in theory supports EPR pair creation

over many kilometers, our design goal is a scalable quantum computer in one location

(such as a single lab). We consider a 10 nanosecond classicalcommunication latency,

corresponding roughly to 2 meters’ distance between nodes.The performance figures

found are insensitive to this number. The links in the multicomputer are serial; Sec-

tion 7.4 shows that parallel links would have only a modest impact on performance and

reliability, so we choose to avoid the additional complexity.

We concentrate on a homogeneous node technology based on solid-state qubits,

with a qubus interconnect, though our results apply to essentially any choice of node

and interconnect technologies, such as ion-trap nodes and single photon-based qubit

162 CHAPTER 7. THE QUANTUM MULTICOMPUTER

transfer interconnects [311, 346, 222]. Each node has many qubits which are private

to the node, and a few transceiver qubits that can communicate with the outside world.

Node size is limited by the number of elements that can practically be built into a

single device, considering control structures, external signaling, packaging, cooling,

and shielding constraints.

One or more nodes will be placed inside a dilution refrigerator, or dil fridge. Var-

ious rack-mount signal generators and measurement devices, classical computing and

control equipment, etc. must accompany each node. We will call such a setup a “pod”.

For the moment, we assume one node per pod. The exact number ofnodes and qubits

that can be placed in a pod will depend on volume, heat extraction, and the cabling

that must cross temperature boundaries. This is perhapstheprimary driver of system

economics. A dil fridge includes multiple temperature stages, and different parts of the

system will be held at different levels. The innermost, millikelvin fridge can dissipate

only a few hundred microwatts. Unless the extraction rate ofthe dil fridge is raised

substantially, each transmission line crossing the inner temperature boundary is limited

to about a microwatt of thermal load, even if the device itself dissipates no energy.

Finally, economics must be considered. To be able to scale the system to 1,024

nodes, we cannot exceed about US$100,000 per node, almost all of which will be con-

sumed by the dil fridge if we have only one node per pod. Both cost and floor space can

be reduced if more than one node can be fit into a pod, but doubling or quadrupling the

number of coaxes and the heat budget is a daunting proposition on an already extremely

aggressive engineering challenge. However, some researchers have begun working on

these problems and expect to make dramatic improvements. Wewill see in this and

succeeding sections that such progress is necessary to makethe system viable.

These assumptions of a regular network topology and homogeneous nodes will cer-

tainly hold for the first, small-scale systems that will be built. However, as the size of

systems and our experience with them grow, it is quite likelythat a multi-stage network

composed of heterogeneous nodes will come to be the commonly-accepted architec-

ture.

7.3.2 Node Architecture

The basic architectural principles described in this dissertation are largely independent

of the technology on which the nodes are built. A node built ona semiconducting or

superconducting base technology serves as a useful model for evaluating performance.

7.3. SYSTEM OVERVIEW 163

Technology-Independent Characteristics

First, let us examine the roles each node must fulfill, regardless of the implementation:

• Each node must include enough physical qubits to represent several logical qubits,

once error correction is taken into account (we will vary ourexpectation of the

exact number in later section). The qubits must meet DiVincenzo’s criteria, in-

cluding adequately fast and accurate gates and measurements.

• Each node must support one or moretransceiver qubitsthat can connect to the

qubus. Because links are serial, only one transceiver qubitper link is required.

• Qubus operations must be fast enough, relative to memory andgate times, and

high enough fidelity that state transfer of logical qubits ispossible, and basic

performance constraints are met.

• The technology and node implementation, including supporting equipment, must

meet the physical, economic and operational constraints identified in Section 7.2.

Expanding on the first criterion, if we assume, for the moment, that each node

contains three application-level qubits per node, and we use one level of Steane [[7,1,3]]

code and one level of [[23,1,7]] code, then each node must contain about 500 physical

qubits2.

Hardware Constraints

Solid-state qubits, including both semiconducting quantum dot and superconducting

Josephson junction-based devices, are operationally challenging due to the millikelvin

temperatures required and the large number of sources of decoherence. However, they

are very attractive for two reasons: among experimentally advanced technologies, they

are the fastest, with gate times in the low nanoseconds, and several decades’ collective

experience with semiconductor design and fabrication makes it possible that physi-

cal scalability will come more easily to these technologiesthan some others, once the

fundamental hurdles of coherence and manipulation are cleared. Josephson junction-

based devices may also support node-internal interconnects, using various forms of

2This estimate ignores Steane’s multiplier for multiple, concurrent QEC syndrome extraction, which
would raise the number by a factor of four or so. This factor depends on the cycle time of a measurement
device, which will be different for solid-state systems than ion traps.

164 CHAPTER 7. THE QUANTUM MULTICOMPUTER

resonators, that will transfer qubits long distances and make them algorithmically more

efficient.

In general, a node will be a single chip, with off-chip quantum communication per-

formed using the qubus protocol and teleportation. More precisely, a node consists of

the set of qubits that are under unified control and clocking,and that can interact di-

rectly either as neighbors or using resonator-based interconnects. If the communication

between two qubits must be mediated by an EPR pair created using the qubus protocol,

those two qubits will be said to be in different nodes. Some hardware implementations

may make the boundary of a node fuzzier, using teleportationinternally [324, 256] or

other methods externally, but we will use these simplifyingassumptions.

Each qubit requires certain control structures and lines; generally, two to five signals

each, including bias voltage, gate signals, measurement devices, and qubit-qubit or

qubit-resonator coupling control. Some of these signals can be shared among a small

group of qubits, potentially allowing an average of one to two signals per qubit. If

the control structures remain off-chip, as is common today,each signal requires an

I/O pad and a line to the outside. For the chip package, ball grid array packages of

more than 2,000 pins exist, and the maximum number of packagepins is predicted

to reach 7,000 by the year 2016 [110]. At 250 qubits per chip, then, we may not be

pin-limited, though the I/O pads will still demand substantial die space. For a thousand

qubits or more, once system demands such as ground plane pinsare met, it seems likely

that packaging constraints will come into play. The engineering challenges of a bus

consisting of several thousand microcoaxial cables suitable to reach external equipment

are also large. These pedestrian engineering issues suggest that low-level qubit control

must reside inside the dil fridge. A node may consist of several dice in a multi-chip

module, or the control structures may be integrated directly into the chip. On-chip

demultiplexers may reduce the width of the bus to the outsideworld, at the price of

leaving qubits to fend for themselves for long periods of time as control is multiplexed

among a group of qubits.

This linear extrapolation from the current state of research prototypes should be

viewed as a strawman proposal demonstrating the range of prosaic implementation

problems that must be solved to build production systems, rather than an actual pro-

posal to implement. It is clear that, in addition to electrical and VLSI engineers for the

chip itself, packaging, thermal, and cabling engineers areneeded to create a production

system.

7.3. SYSTEM OVERVIEW 165

7.3.3 Network Topologies

For our proposed multicomputer, we have analyzed five network topologies, as shown

in Figure 7.1 and described in Table 7.1, where the “label” column corresponds to the

label in the figure. The bus, line, and fully connected topologies were shown in Sec-

tion 5.3. To these we have added the 2bus and 2fully topologies. In the 2bus and 2fully

topologies, each node is connected to two separate networks. This set of topologies

explores whether the bottleneck in performance is the network itself, or the ability to

move data into and out of the nodes. The network switching elements are integrated di-

rectly into the computational nodes, except for the possibility of physical-layer switch-

ing in the fully-connected networks. There are no store-and-forward routers or other

intelligent elements in the network.

For the shared bus, all nodes are connected to a single bus. Any two nodes may use

the bus to communicate, but it supports only a single transaction at a time. In the line

topology, each node uses two transceiver qubits, one to connect to its left-hand neighbor

and one to connect to its right-hand neighbor. Each link operates independently, and

all links can be utilized at the same time, depending on the algorithm. For the fully-

connected network, a full set of links creating a true fully-connected network would

requiren− 1 transceiver qubits at each node; obviously this number is impractical. We

assume that each node has only a single transceiver qubit, and that it can connect to any

other node without penalty via some form of classical, switched network such as a mi-

cromirror device [16]. Each transceiver qubit can be involved in only one transaction at

a time. 2bus and 2fully utilize two transceiver qubits per node for concurrent transfers.

The effective topology may be different from the physical topology, depending on

the details of a bus transaction. For example, even if the physical topology is a bus,

the system may behave as if it is fully connected if the actions internal to a node to

complete a bus transaction are much longer than the activities on the bus itself, allowing

the bus to be reallocated quickly to another transaction. Some technologies may support

frequency division multiplexing on the bus, allowing multiple concurrent transactions.

7.3.4 Software

Previous chapters have discussed the entire quantum modular exponentiation that forms

the most computationally intensive portion of Shor’s factoring algorithm, but here we

will concentrate on the adder algorithms that are the core arithmetic routines. Sec-

tion 7.5 evaluates the VBE (Sec. 3.4.2) [342] and CDKM carry-ripple adders (Sec. 3.4.2)

166 CHAPTER 7. THE QUANTUM MULTICOMPUTER

Figure 7.1: The five physical topologies analyzed in this thesis.

label name degree diameter avg. dist. bisection total
a bus 1 1 1 1 1
b 2bus 2 1 1 2 2
c line 2 n− 1 (n+ 1)/3 1 n− 1
d fully 1 1 1 n− 1 n(n− 1)/2
e 2fully 2 1 1 2(n− 1) n(n− 1)

Table 7.1: Characteristics of our five network topologies.

7.3. SYSTEM OVERVIEW 167

Node hardware: ∼ 500 physical qubits
2 transceiver qubits

QEC: [[23,1,7]]i+[[7,1,3]]o

logical capacity: 3 qubits
Network: Linear

serial links
adder algorithm: CDKM carry-ripple

Table 7.2: Summary of the strawman system proposal.

[88], and the carry-lookahead adder (Sec. 3.4.3) [103].

As in general-purpose classical multicomputers, distribution of software functional-

ity and synchronization primitives are important for both correctness and performance.

In the quantum multicomputer, the distribution of functionality is at the level of a few

gates, simplifying the synchronization problem; we need not concern ourselves with

interrupt handlers and packet headers and the like. Although each node executes in-

structions (gates) independently on its qubits, overall coordination requires that the

nodes are in sync to within a fraction of a gate, or on the orderof a few nanoseconds.

This level of synchronization can only be achieved through the real-time classical net-

work. Small amounts of asynchrony must be tolerated as propagation delays between

nodes are significant compared to the clock cycle time for individual gates.

Finally, although only application algorithms are presented here, it is interesting to

note that Magniez et al. have already discussed a boot-time quantum self-test [217].

7.3.5 Summary

We have already tipped our hand on one critical architectureissue: the choice of serial

links. This decision will be justified in the next section, along with analysis showing

that the [[23,1,7]] Steane code is the preferred bottom-level quantum error correction

code. The following chapter will show that CDKM is the preferred adder circuit, and

that two-transceiver nodes with about 500 physical qubits and a linear network will be

adequate to scale systems up to hundreds of nodes. Table 7.2 summarizes our strawman

system proposal. Details of clock speed and the node-internal interconnect are not

specified because they are subject to technological development.

The theme of the next two sections is the optimization of algorithms that require

qubits stored in separate nodes to interact. The engineering choice of performing gates

via teleportation, as discussed in Sec. 5.2.2, or teleporting data first, then executing the

168 CHAPTER 7. THE QUANTUM MULTICOMPUTER

desired gates locally (Sec. 5.2.1), is examined. We will seethat teledata generally out-

performs telegate for both QEC (in Section 7.4) and adder algorithms (in Section 7.5).

7.4 Distributed QEC and Bus Design

We now take up the question of how to perform quantum error correction (QEC) in

our quantum multicomputer. We show that it is possible to execute QEC on a logical

state where the physical qubits that make up a QEC code block are distributed across

multiple nodes. We must also determine how to utilize QEC to best protect logical

states as they are teleported from one node to another, and weshow that the simplest

approach is best.

The performance of error correction influences an importanthardware design de-

cision: should our network links be serial or parallel? We argue that the difference

in both reliability and performance is likely to be small, assuming that the reliability

of teleportation is less than that of quantum memory and thatteleportation times are

reasonable compared to the cycle time of locally-executed QEC.

Teleportation, as we saw in Chapter 5, is composed of EPR paircreation, local

gates, measurements, and classical communication, and of course requires high-fidelity

memory. Until we take up the issue of link design in Section 7.4.3, we will assume that

local gates, memory, and measurements are perfect, or at least much better than EPR

pair creation. Therefore, when we talk about limits on the failure rate of teleportation,

we are really referring to the quality of the EPR pair. The quality can be improved via

purification, which has a cost logarithmic in the starting fidelity; in this dissertation, we

will not pursue further the best way to achieve EPR pairs of the necessary quality. We

denote the failure probability of a single teleportation aspt.

First, let us briefly consider the failure probability assuming no error correction on

our qubits. The probability of success of the entire computation, then, rests on the

success ofall of the individual teleportation operations. Ift is the total number of

teleportations we must execute for the complete computation, our success probability

is

ps = (1 − pt)
t = 1 −

(

t

1

)

pt +

(

t

2

)

(−pt)
2 · · · ≈ 1 − tpt (7.1)

for smallpt. Our failure probability grows linearly with the number of teleportations

we must execute, requiringpt ≪ 1/t. Obviously, we need to do better than that,

so we quickly conclude that error correction on the logical states being transferred is

7.4. DISTRIBUTED QEC AND BUS DESIGN 169

length teleportations (t)
16 14000–125000

128 8 × 106–108

1024 4 × 109–6 × 1010

Table 7.3: Number of teleportations necessary to execute the full modular exponentia-
tion for different problem sizes.

necessary.

The argument here falls much along the lines of the thresholdargument for quan-

tum computation in general, as discussed in Section 2.3.4. Because we are dealing

with a small number of levels of concatenation and a finite computation, we are less

interested in the threshold itself than a specific calculation of the success probability

for a chosen arrangement. A detailed estimate would differ slightly because we have

three separate error sources in memory, local gates, and teleportation, along the lines

of Steane’s simulations [308]; here we restrict ourselves to a simple analysis. Table 7.3

shows rough teleportation counts for the complete modular exponentiation for Shor’s

factoring algorithm, based on Table 6.2 (page 145) and the teledata entries of Table 7.6

(page 185). The number of multiplier blocks has no significant impact on the number

of teleportations we must execute. The choice of node size and adder are important;

the carry-lookahead adder requires ten to fifteen times as many teleportations (for 16 to

1,024 bits), but may be faster under some circumstances, as we will show in Section 7.5;

this accounts for the range of values in Table 7.3.

7.4.1 Distributed Logical Zeroes

In Equation 2.48 (p. 51) and Figure 2.7 (p. 52), we showed the logical zero state (|0L〉)
for the Steane [[7,1,3]] quantum error correcting code and acircuit to create the state.

This state is used in the fault-tolerant construction of quantum error correction. In the

multicomputer, we may need to perform QEC on states that spantwo (or more) nodes,

when moving data between nodes in a quantum multicomputer, or simply trying to

maintain the integrity of a static state that spans multiplenodes. Thus, we must find a

way to either

1. create a distributed|0L〉 state;

2. do four-qubit parity (error syndrome) measurement usingonly weak nonlinearity

on four qubits; or

170 CHAPTER 7. THE QUANTUM MULTICOMPUTER

3. find some other way to do syndrome measurement without the full, distributed

|0L〉 state.

Of these three options, we have chosen the first. We have also invested some effort

in looking for a way to calculate the parity ofn qubits using the weak nonlinearity,

but all of the schemes we have found so far for more than three qubits scale poorly in

terms of noise; Yamaguchi et al. have designed a method that works for three qubits

but not more [353]. Bacon has developed a new method for creating self-correcting

memories, using the original Shor [[9,1,3]] code, that may not require the creation of

logical zeroes; its implications for actual implementation are exciting but still poorly

understood [28, 324]. Thus,|0L〉 states must be created, and this chapter discusses the

performance and error characteristics of the creation process.

The logical|0L〉 can be created using the same two methods as any other distributed

quantum computation: we can directly create the state in a distributed fashion, using

teleported gates (telegate), or we can create the state within a single node and teleport

several of the qubits to the remote node before using the state in our QEC (teledata).

First, consider the use of teleported gates to create the|0L〉 state. Figure 7.2 shows that

splitting the|0L〉 state across two nodes, as at the line labeled “c”, forces theexecution

of four teleported CNOTs, consuming four EPR pairs; breaking at “d” would require

only three. In the figure, the subscripts again represent thebit number in the QEC

block; the qubits have been reordered compared to Figure 2.7for efficiency. Our second

alternative is to teleport portions of a locally-created|0L〉 state. If enough qubits and

computational resources are available at both nodes, we arefree to create the state in

either location and teleport some of the qubits; thus, the maximum number of qubits that

must be teleported is⌊n/2⌋, or 3 for the 7-bit Steane code. Table 7.4 shows the number

of gate or data teleportations necessary, depending on the breakdown of qubits to nodes,

showing that teledata requires the same or fewer EPR pairs, and so is preferred.

7.4.2 Distributed Data

Static Distributed States

If a logical data qubit|ψL〉 is split between nodes A and B in the same fashion as Fig-

ure 7.2, we will use the|0L〉 states to calculate the syndromes for the error correction.

Each syndrome calculation consumes one|0L〉 state, first executing some gates to en-

tangle it with the logical data qubit, then measuring the zero state. The [[7,1,3]] code

7.4. DISTRIBUTED QEC AND BUS DESIGN 171

a

Node A b

c

d

e

f

Node B

H

H

H

|03〉
|01〉
|02〉

|05〉

|06〉

|04〉

|00〉

|0L〉

Figure 7.2: Distributed circuit to create the|0L〉 state for the Steane [[7,1,3]] code.

breakpoint telegate teledata
a 2 1 (B → A)
b 3 2 (B → A)
c 4 3 (B → A)
d 3 3 (A→ B)
e 3 2 (A→ B)
f 2 1 (A→ B)

Table 7.4: Breakpoints (corresponding to Figure 7.2) and the cost of telegate v. teledata
to create a logical zero state for the Steane [[7,1,3]] code,in EPR pairs consumed. Also
shown is the direction qubits must be teleported.

requires six syndrome measurements (three value and three phase), and Steane recom-

mends measuring each syndrome at least twice, so each QEC cycle consumes at least

a dozen logical zero states. With|ψL〉 divided at the “d” point, each|0L〉 requires three

teleportations, for a total of3 × 12 = 36 EPR pairs destroyed to execute a single, full

cycle of QEC.

The split described here allows a single logical qubit plus its QEC ancillae, a total

of fourteen physical qubits, to be split between two nodes. The same principles apply to

states split among a larger number of nodes, potentially allowing significantly smaller

nodes to be useful, or allowing larger logical encoding blocks to used, spread out among

small, fixed-size nodes. More importantly for our immediatepurposes, this analysis

serves as a basis for considering the movement of logical states from node to node.

States in Motion

When considering the teleportation of logical qubits and their error correction needs,

two general approaches are possible:

1. Transfer the entire QEC block, then perform QEC locally atthe destination; or

172 CHAPTER 7. THE QUANTUM MULTICOMPUTER

LQ
E

C

local logical operations

LQ
E

C

T

T

T

T

T

T

T

a b

LQ
E

C

local logical operations

LQ
E

C

time

|ψL〉 |ψL〉

Figure 7.3: Teleporting logical state using local QEC only,no intermediate QEC. The
box holding a “T” is the teleportation circuit. Each line represents a qubit variable,
independent of its location, so that the teleportation operation does not explicitly show
the movement of the qubit from one node to another.

2. use one of the methods described above for distributed QECbetweenthe telepor-

tations of the component qubits.

The first approach is conceptually simpler; does the second offer any advantages in

either performance or failure probability?

We will examine one-level QEC and two-level concatenated QEC. Steane prefers

the [[23,1,7]] code as the lowest layer of a multi-layer code[308]. This code can defend

against three errors, so we are interested in the probability of four errors. All of the one-

and two-layer combinations of [[7,1,3]] and [[23,1,7]] areexamined.

The first approach, illustrated in Figure 7.3, obviously consumes seven EPR pairs

to transfer the seven-qubit code word from one node to the other. Assume, for the

moment, that local gates and quantum memory are perfect, so that our only source of

errors is teleportation. As we saw in Chapter 2.3, for an [[n,k,d]]-qubit error correction

code, we usen physical qubits to holdk logical qubits, and can correct up to(d− 1)/2

errors. Ifpt is the probability of an error occurring during the teleportation of a single

qubit, then the probability ofm errors occurring is

pe(n,m) =

(

n

m

)

(1 − pt)
n−mpm

t ≈
(

n

m

)

pm
t (7.2)

for smallpt. For pt ≪ 1, most failures will occur in the lowest failure mode,((d −
1)/2) + 1 = (d + 1)/2 errors. We will approximate our total failure probability as the

7.4. DISTRIBUTED QEC AND BUS DESIGN 173

probability of(d+ 1)/2 errors occurring.

If pa is the failure probability of our total algorithm andt is the total number of

logical qubit teleportations we use in the computation, then

pa = 1 − (1 − pe)
t ≈

(

t

1

)

pe ≈ tpe. (7.3)

For the [[7,1,3]] code,

pe(7, 2) =

(

7

2

)

(1 − pt)
5p2

t ≈ 21p2
t (7.4)

is the probability of two errors occurring in our block of seven qubits. Two qubit errors,

of course, is more than the [[7,1,3]] code can correct. Our probability of algorithm

failure becomes

pa ≈ tpe = 21tp2
t . (7.5)

Thus, we can say that, to have a reasonable probability of success, we should have

pt ≪ 1/
√

21t. This is a significant improvement over the case with no errorcorrection

seen at the beginning of this chapter.

Using a two-level concatenated code, the picture is less grim. For two levels of the

[[7,1,3]] code, our total encoding will consist of seven blocks of seven qubits each, and

the computation will fail only iftwo or more of those blocks fail.

Of course, the two codes need not be the same. Adapting Steane’s terminology and

notation, will refer to the physical-level code as the “inner” code, and the code built

on top of that as the “outer” code [308]. [[ni,ki,di]] or [[n,k,d]] i is the inner code,

and [[no,ko,do]] or [[n,k,d]] o is the outer code. Approximating the error probability

according to Equations 7.2 and 7.3, we have

pa ≈ t

(

no

mo

)((

ni

mi

)

pmi

t

)mo

(7.6)

wheremi = (di + 1)/2 and likewise formo.

Table 7.5 shows the estimates for the teleportation failureprobability pt that will

give us a total algorithm failure probability ofpa < 0.1. Although [[23,1,7]]i+[[7,1,3]]o

and [[7,1,3]]i+[[23,1,7]]o are different, by coincidence, their failure probabilities are

almost identical, so they are listed together. Note that [[23,1,7]] offers essentially the

same error protection as [[7,1,3]]+[[7,1,3]], despite using half the number of qubits and

being conceptually simpler.

174 CHAPTER 7. THE QUANTUM MULTICOMPUTER

error-correcting code scale-up teleportations pt for pa < 0.1
(none) 1 105 0.1/t = 10−6

108 0.1/t = 10−9

1011 0.1/t = 10−12

[[7,1,3]] 7 105 1/
√

21t = 7 × 10−4

108 1/
√

21t = 2 × 10−5

1011 1/
√

21t = 7 × 10−7

[[23,1,7]] 23 105 1/(17t1/4) ≈ 3 × 10−3

108 1/(17t1/4) ≈ 6 × 10−4

1011 1/(17t1/4) ≈ 1 × 10−4

[[7,1,3]]i+[[7,1,3]]o 49 105 1/(17t1/4) ≈ 3 × 10−3

108 1/(17t1/4) ≈ 6 × 10−4

1011 1/(17t1/4) ≈ 1 × 10−4

[[23,1,7]]i+[[7,1,3]]o 161 105 1/(19t1/8) ≈ 0.012
and [[7,1,3]]i+[[23,1,7]]o 108 1/(19t1/8) ≈ 5 × 10−3

1011 1(19t1/8) ≈ 2 × 10−3

[[23,1,7]]i+[[23,1,7]]o 529 105 1/(20t1/16) ≈ 0.025
108 1/(20t1/16) ≈ 0.016
1011 1/(20t1/16) ≈ 0.010

Table 7.5: An estimate of the necessary error rate of teleportation (pt) to achieve a
specific number of logical teleportations with 90% probability of success, for different
error-correction schemes.

7.4. DISTRIBUTED QEC AND BUS DESIGN 175

LQ
E

C

DQEC

12x T

12x

DQEC

T

DQEC

12x T

DQEC

12x
T

DQEC

12x

T

DQEC

12x

T

LQ
E

C

time

syndrom
e m

eas.

local correction

local correction

syndrom
e

local correction

syndrom
e

local correction

syndrom
e

local correction

syndrom
e

local correction

syndrom
e

T T T

T

T

T

T

T

T

T

T

T

T

|ψL〉 |ψL〉

Figure 7.4: Teleporting logical state using intermediate,teledata distributed QEC.

The second approach described above, doing error correction after serially send-

ing each qubit, is shown in Figure 7.4. Using this approach, we attempt to reduce

the overall error probability by incrementally correctingthe logical state as it is tele-

ported; to teleport the seven-bit state we perform local QECbefore beginning, then

do distributed QEC after each of the first six teleportations, then local QEC again af-

ter the seventh teleportation. Each distributed QEC (DQEC)block performs twelve

distributed syndrome measurements. We can again choose telegate or teledata for the

|0L〉 state creation; the figure illustrates teledata. Using telegate, we would need the

sum of the telegate column in Table 7.4, or2 + 3 + 4 + 3 + 3 + 2 = 17, inter-node

gates, for each syndrome that must be measured. To perform twelve measurements

we consume a total of12 × 17 = 204 EPR pairs. Using teledata, we would need only

1+2+3+3+2+1 = 12 per syndrome, or 144 EPR pairs for the full twelve syndromes

in a cycle. The worst-case DQEC block is3 × 12 = 36 teleportations. Obviously,

the probability of error is higher for 36 teleportations than for seven. Therefore, un-

less someone develops a means of measuring syndromes without using the|0L〉 states,

this second approach does not achieve its goal of reducing the total error probability.

Performance-wise, the penalty for doing step-wise QEC is also stiff; we conclude that

this approach is not useful.

7.4.3 Implications for Link Design

Figure 7.3 shows a [[7,1,3]] state being transferred in parallel and Figure 7.5 shows

the serial equivalent. In these diagrams, each line represents a qubit that is a member

of a code block, essentially following the variable rather than the storage locations; at

a T block, representing teleportation, of course the qubit moves from one node to the

other. If the transfer is done serially, the wait tostart the QEC sequence is seven times

176 CHAPTER 7. THE QUANTUM MULTICOMPUTER

T

LQ
E

C

T

T

T

T

T

T
LQ

E
C

local logical operations

LQ
E

C

a b

time

|ψL〉

|ψL〉

Figure 7.5: Local QEC only, no intermediate QEC, serial interface.

as long, but thetotal time for transfer plus QEC (that is, time from the start of one

QEC cycle to the next, from the first|ψL〉 to the point marked “b” in the figures) won’t

grow by nearly as large a factor if local QEC requires significant time compared to a

teleportation. Thus, we need to determine if the increase inwait time caused by the

lengthening of the interval the point marked “a” to the pointmarked “b” in Figures 7.3

and 7.5 has an unacceptably large impact on our overall failure rate.

The gray areas in the serial figure indicate increased wait time for the qubits. Each

qubit spends one cycle teleporting, and six waiting for the other teleportations. Ifpm

is the probability of error for a single qubit during the timeto execute a single tele-

portation, then the probability of no error on one bit duringthat time is(1 − pm)6 for

a [[7,1,3]] code. For an [[n,k,d]] code, the failure probability of that qubit during the

serial transfer waiting time isp′m = 1 − (1 − pm)n−1. The probability ofm memory

errors is

pM(n,m) =

(

n

m

)

p′m
m

(1 − p′m)n−m ≈
(

n

m

)

p′m
m ≈

(

n

m

)

(n− 1)pm
m. (7.7)

Combining Equations 7.7 and 7.2, we need the two error sources together to gener-

ate less thanm = (d + 1)/2 errors. We will constrain the final combined memory and

teleportation error ratepf for the serial link to be similar to the teleportation errorsfor

7.4. DISTRIBUTED QEC AND BUS DESIGN 177

the parallel link,

pf(n,m) =

m
∑

i=0

pM(n, i)pe(n,m− i) ∼ pe(n,m). (7.8)

For the error codes we are considering, [[7,1,3]] and [[23,1,7]], numeric evaluation

for pm = pt/10(n − 1) gives 25% and 50% increase in failure probability compared

to thepm = 0 (perfect memory) case. Thus, we can say, very roughly, that amem-

ory failure probability two orders of magnitude less than the failure probability of the

teleportation operation will mean that the choice of serialor parallel buses has minimal

impact on the overall system error rate.

Although this section has focused on reliability rather than performance, the choice

of serial or parallel links also affects performance. It is easy to see that choosing a serial

link does not result in a factor ofn degradation in system performance when QEC is

taken into account. Lettt be our teleportation time, andtLQEC be the time to perform

local error correction.tt is related to the qubus detector time andtLQEC is related to

the local qubit measurement time.

If ntt ≪ tLQEC , then in accordance with Amdahl’s Law the choice also has min-

imal impact on our overall performance [18]. Of course, if the resources available at

each node are large enough, teleportation and error correction can be pipelined, but the

growth in resources is significant iftLQEC is large and the performance gains are small

if tLQEC is small. In addition, as we will see in the next section, arithmetic algorithms

rarely have enough data waiting for teleportation that pipelining will be effective, so

pipelining here would be a second-order effect on overall system performance. There-

fore, we recommend using serial links without pipelining, if the qubus detector time is

reasonable.

7.4.4 Summary

I originally believed that the issues of serial v. parallel and intermediate QEC v. block

transfer were tied together. However, it is now clear that the two are separate issues, and

that, unless a better method for creating logical zeroes is found or Bacon’s method of

calculating syndromes without using logical zeroes provesto be practical, intermediate

QEC offers no benefit. I therefore recommend block-wise error correction, shipping

the entire QEC block from source to destination before performing QEC.

178 CHAPTER 7. THE QUANTUM MULTICOMPUTER

The results in Table 7.5 show that a teleportation error rate(really, EPR pair infi-

delity) of∼ 1% will allow computations as large as the factoring of a 1,024-bit number

to proceed with a high probability of success. This estimateis for a data encoding of

[[23,1,7]]i+[[23,1,7]]o on the link and a memory error rate in the time it takes to perform

a teleportation at least two orders of magnitude better thanthe teleportation failure rate.

Our analysis, though somewhat simpler than Steane’s, supports his recommendation of

the [[23,1,7]] code. Replacing one level with the [[7,1,3]]code still allows an error rate

of one part in a thousand or better, with a noticeable savingsin storage requirements.

Of course, we do not have to compute or store data using the same encoded states that

we use during data transport [324]. In this dissertation, for simplicity, we have assumed

that the system uses only a single choice of encoding.

This section has argued that the difference in both performance and reliability be-

tween serial and parallel network links will be small for a reasonable set of assumptions.

Serial links will dramatically simplify our hardware design by reducing the number of

required transceiver qubits in each node, and eliminating concerns such as jitter and

skew between pairs of conductors or wave guides. Moreover, if we do choose to have

multiple transceiver qubits in each node, system performance on some workloads may

be boosted more by creating a richer node-to-node interconnect topology than by cre-

ating parallel channels between pairs of nodes in a simpler topology, as we will see in

the next section.

7.5 Distributed Form of Shor’s Algorithm

This section evaluates the performance of quantum arithmetic algorithms run on a quan-

tum multicomputer. We vary the node capacity and I/O capabilities, and the network

topology. The tradeoff of choosing between telegate and teledata is examined. We

show that the teledata approach performs better, and that carry-ripple adders perform

well when the teleportation block is decomposed so that the key quantum operations

can be parallelized. A node size of only a few logical qubits performs adequately, pro-

vided that the nodes have two transceiver qubits. A linear network topology performs

acceptably for a broad range of system sizes and performanceparameters. We there-

fore recommend pursuing small, high-I/O bandwidth nodes and a simple network, as

described at the end of Section 7.1.

7.5. DISTRIBUTED FORM OF SHOR’S ALGORITHM 179

The first question in considering a multicomputer is whetherthe system perfor-

mance will be acceptableif the implementation problems can be solved. Chapter 6 pro-

vided the tools and algorithms for this analysis; here they are applied. Our evaluation

criterion is the latency to complete one addition. The goal is to achieve “reasonable”

performance for Shor’s factoring algorithm for numbers up to a thousand bits. This

analysis is done attempting to minimize the required numberof qubits in a node while

retaining reasonable performance; we investigate node sizes of one to five logical qubits

per node.

This section shows that:

• teleportation of data is better than teleportation of gates;

• decomposition of teleportation into a series of smaller operations brings big ben-

efits in performance, making a carry-ripple adder effectiveeven for large prob-

lems;

• a linear topology is an adequate network for the foreseeablefuture; and

• small nodes (only a few logical qubits) perform acceptably,but I/O bandwidth is

critical.

A multicomputer built around these principles and based on solid-state qubit technology

will perform well on Shor’s algorithm. These results collectively represent a large step

in the design and performance analysis of distributed quantum computation.

Next, we discuss the mapping of arithmetic algorithms to oursystem. The bulk

of this section progressively refines performance estimates, including decomposing the

teleportation operation to make the performance of carry-ripple adders competitive with

the carry-lookahead adder, with a simpler network and smaller nodes.

7.5.1 Algorithm

We evaluate three different addition algorithms: the Vedral-Barenco-Ekert (VBE) style

of carry-ripple adder (Sec. 3.4.2) [342], the faster, smaller Cuccaro-Draper-Kutin-

Moulton (CDKM) carry-ripple adder (Sec. 3.4.2) [88], and the carry-lookahead adder

(Sec. 3.4.3) [103]. In this section, we discuss the adders without regard to the network

topology; the following section presents numeric values for different topologies and

gate timings.

180 CHAPTER 7. THE QUANTUM MULTICOMPUTER

X Z

ZX

H

H

|a0>

|b0>

|c0>

|t0>

|c1>

|b1>

|a1>

|c0copy>

Node A

Node B
|t1>

|a0>

|b0>

|c0>

|a1>

|b1>

|c1>

time

QEP QEP

Figure 7.6: Details of a distributed 2-qubit VBE adder. The top circuit is the distributed
form using the teledata method; the bottom circuit is the monolithic equivalent. The
solid box (QEP) is the qubus EPR pair generator; the circuitsin dashed boxes are
standard quantum teleportation circuits. Graphical notation as in Fig. 2.3 on page 36.

Carry-Ripple Adders

Figure 7.6 shows a two-qubit VBE carry-ripple adder in its monolithic (bottom) and

distributed (top) forms. The QEP block creates an EPR pair using the qubus entan-

glement protocol described in Sec. 5.1. The dashed boxes delineate the teleportation

circuit (which is assumed to be perfect) that moves the qubitc0 from node A to node

B. c0 is used in computation at node B, then moved back to node A via asimilar tele-

portation to complete the computation. The two qubitst0 andt1 are used as transceiver

qubits, and are reinitialized as part of the QEP sub-circuit.

Figure 7.7 shows a larger VBE adder circuit and illustrates avisual method for com-

paring telegate and teledata. For telegate, we can draw a line across the circuit, with the

number of gates (vertical line segments) crossed showing our cost. For teledata, the line

mustnot cross gates, instead crossing the qubit lines. The number ofsuch crossings is

the number of teleportations required. This approach workswell for analyzing the VBE

and CDKM adders, but care must be taken with the carry-lookahead adder, because it

uses long-distance gates that may be between e.g. nodes 1 and3.

The VBE adder latency to add twon-qubit numbers on anm-node machine using

the teledata method is2m − 2 teleportations plus the circuit cost. For the telegate

7.5. DISTRIBUTED FORM OF SHOR’S ALGORITHM 181

A0

B0

C0

A1

B1

C1

A2

B2

C2

A3

B3

C3

A4

B4

C4

A5

B5

K

10 20

Node B

Node C

Node A

Figure 7.7: Visual approach to determining relative cost ofteleporting data versus tele-
porting gates for a VBE adder. The upper, dashed (red) line shows the division between
two nodes (A and B) using data teleportation. The circles show where the algorithm
will need to teleport data. The lower, dotted line (blue) shows the division using gate
teleportation (nodes B and C). The circles show where teleported gates must occur.
Note that two of these three are CCNOT gates, which may entailmultiple two-qubit
gates in actual implementation. The numbers at the top are clock cycles.

approach, using the five-gate breakdown for CCNOT built from
√
X gates and CNOTs,

as in Figure 6.1 on page 123, would require three teleported two-qubit gates to form a

CCNOT. Therefore, implementing telegate, the latency is7m − 7 gate teleportations,

or 3.5x the cost.

For the CDKM carry-ripple adder, which more aggressively reuses data space, tele-

data requires a minimum of six movements, whereas telegate requires two CCNOTs and

three CNOTs, or a total of nine two-qubit gates, as shown in figure 7.8. The CDKM

adder pipelines extremely well, so the actual latency penalty for more than two nodes is

only 2m+ 2 data teleportations, or6m gate teleportations, when there is no contention

for the inter-node links, as in our line and fully-connectedtopologies. The bus topology

performance is limited by contention for access to the interconnect.

Carry Lookahead

Analyzing the carry-lookahead adder is more complex, as itsstructure is not regular,

but grows more intertwined toward the middle bits. Gate scheduling is also variable,

and the required concurrency level is high. The latency isO(logn), making it one of

182 CHAPTER 7. THE QUANTUM MULTICOMPUTER

B0

A0

T

B1

A1

B2

A2

B3

A3

B4

A4

B5

A5

COUT

10

Figure 7.8: Visual approach to determining relative cost ofteleporting data versus tele-
porting gates for a CDKM adder. The upper, dashed (red) line shows the division
between two nodes using data teleportation. The circles show where the algorithm will
need to teleport data. The lower, dotted line (blue) shows the division using gate tele-
portation. The circles show where teleported gates must occur. Note that two of these
five are CCNOT gates, which may entail multiple two-qubit gates in actual implemen-
tation.

the fastest forms of adder for large numbers [103, 334, 109].

Let us look at the performance in a monolithic quantum computer, forn a power of

two. Based on table 1 from Draper et al. [103], forn = 2k, the circuit depth of4k + 3

Toffoli gates is 19, 31, and 43 Toffoli gates, for 16, 128, and1,024 bits, respectively. We

assume a straightforward mapping of the circuit to the distributed architecture. Most

nodes are assigned four logical qubits (Ai,Bi,Ci, and one temporary qubit used as part

of the carry propagation). In the next subsection, we see that the transceiver qubits are

the bottleneck; we cannot actually achieve this4k + 3 latency.

7.5.2 Performance

The modular exponentiation to run Shor’s factoring algorithm on a 1,024-bit number

requires approximately 2.1 million calls to the integer adder [334]. With a 100µsec

adder, one run of the algorithm will require less than five minutes; with a 1 msec adder,

it will take just over half an hour, allowing about twelve hundred “runs” per month.

Even a system two to three orders of magnitude slower than this will have attractive per-

formance, provided that error correction can sustain the system state for that long, and

7.5. DISTRIBUTED FORM OF SHOR’S ALGORITHM 183

that the system can be built and operated economically. Thissection presents numeri-

cal estimates of performance which show that this criterionis easily met by a quantum

multicomputer under a variety of assumptions about logicaloperation times, providing

plenty of headroom for quantum error correction.

Initial Estimate

Our initial results are shown in table 7.6. Units are in number of complete teleporta-

tions, treating teleportation and EPR pair generation as a single block, and assuming

zero cost for local gates. In the following subsections these assumptions are revisited.

We show three approaches (baseline, telegate, and teledata) and three adder algorithms

(VBE, CDKM, carry-lookahead) for five networks (bus, 2bus, line, fully, 2fully) and

three problem sizes (16, 128, and 1024 bits). In the baselinecase, each node contains

only a single logical qubit; gates are therefore executed using the telegate approach.

For the telegate and teledata columns, we chose node sizes tosuit the algorithms: two,

three, and four qubits per node for the CDKM, VBE, and carry-lookahead adders, re-

spectively, when using telegate, and three, four and five qubits when using teledata.

The VBE adder, although larger than CDKM and slower on a monolithic com-

puter, is faster in a distributed environment. The VBE adderexhibits a large (3.5x)

performance gain by using the teledata method instead of telegate. For teledata, the

performance is independent of the network topology, because only a single operation

is required at a time, moving a qubit to a neighboring node. The CDKM adder also

communicates only with nearest neighbors, but performs more transfers. The single

bus configuration is almost 3x slower than the line topology.On a line, in most time

slots, three concurrent transfers are conducted (e.g., between nodes1 → 2, 3 → 2, and

3 → 4).

An unanticipated but intuitive result is that the performance of the carry-lookahead

adder is better in the baseline case than the telegate case, for the fully-connected net-

work. This is due to the limitation of having a single transceiver qubit per node. Putting

more qubits in a node increases contention for the transceiver qubit, and reduces perfor-

mance even though the absolute number of gates that must be executed via teleportation

has been reduced. Our numbers also show that the carry-lookahead adder is not a good

match for a bus architecture, despite the favorable long-distance transport, again be-

cause of excessive contention for the bus.

184 CHAPTER 7. THE QUANTUM MULTICOMPUTER

The carry-lookahead adder is easily seen to be inappropriate for the line architec-

ture, since the carry-lookahead requires long-distance gates to propagate carry infor-

mation quickly. Using the linear network naturally degenerates to linear cost to share

data over a long distance. Using nested purification techniques, as with quantum re-

peaters [71, 57], it might be possible to reduce the linear time toO(logn) time, but

even the factor of ten introduced for a 1,024-bit number willmake the carry-lookahead

adder slower than the carry-ripple adders. If the required resources on the line are

spatially overlapping, the penalty might actually exceed ten times, exacerbating the

problem. Therefore, we have ruled out using the carry-lookahead adder on a linear

network, and do not analyze it further.

For telegate, performing some adjustments to eliminate intra-node gates, we find

8n − 9k − 8 total Toffoli gates that need arguments that are originallystored on three

separate nodes, plusn − 2 two-node CNOTs. For the bus case, which allows no con-

currency, this is our final cost. For the fully-connected network, we find a depth of

8k−10 three-node CCNOTs, 8 two-node CCNOTs, and 1 CNOT. These numbers must

be multiplied by the appropriate CCNOT breakdown. For the teledata fully-connected

case, each three-node Toffoli gate requires four teleportations (in and out for each of

two variables). For the 2fully network, the latency of the three-node Toffolis is halved,

but the two-node Toffolis do not benefit, giving us a final costof slightly over half the

fully network cost.

7.5.
D

IS
T

R
IB

U
T

E
D

F
O

R
M

O
F

S
H

O
R

’S
A

LG
O

R
IT

H
M

1
8

5

algo. size Baseline Telegate Teledata
bus line fully bus 2bus line fully 2fully bus 2bus line fully 2fully

VBE 16 360 305 182 105 105 105 105 105 30 30 30 30 30
128 3048 2545 1526 889 889 889 889 889 254 254 254 254 254

1024 24552 20465 12278 7161 7161 7161 7161 7161 2046 2046 2046 2046 2046
CDKM 16 232 160 160 138 96 96 97 96 90 60 34 90 34

128 1912 1280 1280 1146 768 768 768 768 762 508 258 762 258
1024 15352 10240 10240 9210 6144 6144 6145 6144 6138 4092 2050 6138 2050

Carry- 16 644 N/A 99 444 222 N/A 136 135 260 178 N/A 96 56
look- 128 6557 N/A 159 4901 2451 N/A 256 255 3176 2028 N/A 192 104
ahead 1024 54806 N/A 219 41502 20751 N/A 376 375 27260 17206 N/A 288 152

Table 7.6: Estimate of latency necessary to execute variousadder circuits on different topologies of quantum multicomputer, assuming
monolithic teleportation blocks (Sec. 7.5.2). Units are innumber of teleportation blocks, including EPR pair creation (bus transaction),
local gates and classical communication. Size, length of the numbers to be added, in bits. Lower numbers are faster (better).

186 CHAPTER 7. THE QUANTUM MULTICOMPUTER

Improved Performance

The analysis in Section 7.5.2 assumed that a teleportation operation is a monolithic

unit. However, Figure 7.6 makes it clear that a teleportation actually consists of several

phases. The first portion is the creation of the entangled EPRpair via the qubus. The

second portion is local computation and measurement at the sending node, followed by

classical communication between nodes, then local operations at the receiving node.

The EPR pair creation is not data-dependent; it can be done inadvance, as resources

(bus time slots, qubits) become available, for both telegate and teledata. With these

assumptions, we are free to reduce the entire performance problem to making all needed

EPR pairs as quickly as possible.

Our initial execution time model treats local gates and classical communication

as zero cost, assuming that EPR pair creation is the most expensive portion of the

computation. For example, for the teledata VBE adder on a linear topology, all of the

EPR pairs needed can be created in two time steps at the beginning of the computation.

The execution time would therefore be 2, constant for alln andm. Table 7.7 shows

the performance under this assumption. The performance of the carry-lookahead adder

does not change compared to the initial estimate, as the bottleneck link is busy full-time

creating EPR pairs.

This model gives a misleading picture of performance once EPR pair creation is

decoupled from the teleportation sequence. When the cost ofthe teleportation itself

or of local gates exceeds∼ 1/n of the cost of the EPR pair generation, the simplistic

model breaks down; in the next subsection, we examine the performance with a more

realistic model.

7.5.
D

IS
T

R
IB

U
T

E
D

F
O

R
M

O
F

S
H

O
R

’S
A

LG
O

R
IT

H
M

1
8

7

algo. size Baseline Telegate Teledata
bus line fully bus 2bus line fully 2fully bus 2bus line fully 2fully

VBE 16 360 16 16 105 53 7 14 7 30 15 2 4 2
128 3048 16 16 889 445 7 14 7 254 127 2 4 2

1024 24552 16 16 7161 3581 7 14 7 2046 1023 2 4 2
CDKM 16 232 21 19 135 68 11 18 9 90 60 6 12 6

128 1912 21 19 1146 573 11 18 9 762 508 6 12 6
1024 15352 21 19 9210 4605 11 18 9 6138 4092 6 12 6

Carry- 16 644 N/A 99 444 222 N/A 89 45 260 178 N/A 96 56
look- 128 6557 N/A 159 4901 2451 N/A 149 75 3176 2028 N/A 192 104
ahead 1024 54806 N/A 219 41502 20751 N/A 209 105 27260 17206 N/A 288 152

Table 7.7: Estimated latency to execute various adders on different topologies, for decomposed teleportation blocks (sec. 7.5.2), assuming
classical communication and local gates have zero cost. Units are in EPR pair creation times. Size, length of the numbersto be added, in
bits. Lower numbers are faster (better).

188 CHAPTER 7. THE QUANTUM MULTICOMPUTER

Detailed Estimate

To create Figures 7.9-7.11, we make assumptions about the execution time of various

operations. Classical communication between nodes is 10nsec. A CCNOT (Toffoli)

gate on encoded qubits takes 50nsec, CNOT 10nsec, and NOT 1nsec. These numbers

can be considered realistic but optimistic for a technologywith physical gate times

in the low nanoseconds. For quantum error correction-encoded solid-state systems,

the bottleneck is likely to be the time for qubit initialization or reliable single-shot

measurement, which is still being designed, so actual performance may be one to two

orders of magnitude slower.

We vary the EPR pair creation time from 10nsec to 1280nsec. This creation process

is influenced by the choice of parallel or serial bus and the cycle time of an optical

homodyne detector, as discussed in the last section. Photodetectors may be inherently

fast, but their performance is limited by surrounding electronics [21, 315]. Final per-

formance may be faster or slower than our model, but the rangeof values we have

analyzed is broad enough to demonstrate clearly the important trends.

Figures 7.9 and 7.10 show, top to bottom, the fully, 2fully, and line networks for the

telegate and teledata methods. The graphs plot adder time against EPR pair creation

time and the length of the numbers to be added. The left hand plot shows the shape

of the surfaces, with thez axis being latency to complete the addition. The right hand

plot, with the samex andy axes, shows the region in which each type of adder is the

fastest.

These figures show that the teledata method is faster than telegate. They also show

that the carry-lookahead adder is very dependent on EPR paircreation time, while

neither type of carry-ripple adder is. In Figure 7.11 we showthis in more detail. For

fast (10nsec) EPR pair creation, the carry-lookahead adderis faster for all problem

sizes. For slow (1280nsec) EPR pair creation time, carry-lookahead is not faster until

we reach 512 bits.

Although I have not includes graphs, we have also varied the time for classical

communication and the other types of gates. The performanceof an adder is fairly

insensitive to these changes; it is dominated by the relationship between CCNOT and

EPR pair creation times.

7.5. DISTRIBUTED FORM OF SHOR’S ALGORITHM 189

 1024 512 256 128 64 32 16 10

 100

 1000

 0
 100000
 200000
 300000
 400000
 500000
 600000

adder latency (ns)

Fully Connected Network

carry-lookahead
CDKM carry-ripple

VBE carry-ripple

Length of numbers to be added (bits)

EPR pair creation time (ns)

adder latency (ns)

 10

 100

 1000

1024512256128643216

E
P

R
 p

ai
r

cr
ea

tio
n

tim
e

(n
s)

Length of numbers to be added (bits)

Fully Connected Network

 1024 512 256 128 64 32 16 10

 100

 1000

 0
 100000
 200000
 300000
 400000
 500000
 600000

adder latency (ns)

2Fully Connected Network

carry-lookahead
CDKM carry-ripple

VBE carry-ripple

Length of numbers to be added (bits)

EPR pair creation time (ns)

adder latency (ns)

 10

 100

 1000

1024512256128643216

E
P

R
 p

ai
r

cr
ea

tio
n

tim
e

(n
s)

Length of numbers to be added (bits)

2Fully Connected Network

 1024 512 256 128 64 32 16 10

 100

 1000

 0
 100000
 200000
 300000
 400000
 500000
 600000

adder latency (ns)

Line Network

CDKM carry-ripple
VBE carry-ripple

Length of numbers to be added (bits)

EPR pair creation time (ns)

adder latency (ns)

 10

 100

 1000

1024512256128643216

E
P

R
 p

ai
r

cr
ea

tio
n

tim
e

(n
s)

Length of numbers to be added (bits)

Line Network

Figure 7.9: (Telegate) Performance of different adders on three different networks, one
fully-connected with a single link and one with two links pernode (2fully), and one line
configuration. In this graph, we vary the latency to create a high-quality EPR pair and
the length of the numbers we are adding. Classical communication time is assumed to
be 10nsec, Toffoli gate time 50nsec, CNOT gate time 10nsec. The left hand graph of
each pair plots adder execution time (vertical axis) against EPR pair creation time and
number length. In the right hand graph of each pair, the hatched red area indicates areas
where carry-lookahead is the fastest, the diagonally linedgreen area indicates CDKM
carry-ripple, and solid blue indicates VBE carry-ripple. The performance of the carry-
lookahead adder is very sensitive to the EPR pair creation time. If EPR pair creation
time is low, the carry-lookahead adder is very fast; if creation time is high, the adder is
very slow.

190 CHAPTER 7. THE QUANTUM MULTICOMPUTER

 1024 512 256 128 64 32 16 10

 100

 1000

 0
 100000
 200000
 300000
 400000
 500000
 600000

adder latency (ns)

Fully Connected Network

carry-lookahead
CDKM carry-ripple

VBE carry-ripple

Length of numbers to be added (bits)

EPR pair creation time (ns)

adder latency (ns)

 10

 100

 1000

1024512256128643216

E
P

R
 p

ai
r

cr
ea

tio
n

tim
e

(n
s)

Length of numbers to be added (bits)

Fully Connected Network

 1024 512 256 128 64 32 16 10

 100

 1000

 0
 100000
 200000
 300000
 400000
 500000
 600000

adder latency (ns)

2Fully Connected Network

carry-lookahead
CDKM carry-ripple

VBE carry-ripple

Length of numbers to be added (bits)

EPR pair creation time (ns)

adder latency (ns)

 10

 100

 1000

1024512256128643216

E
P

R
 p

ai
r

cr
ea

tio
n

tim
e

(n
s)

Length of numbers to be added (bits)

2Fully Connected Network

 1024 512 256 128 64 32 16 10

 100

 1000

 0
 100000
 200000
 300000
 400000
 500000
 600000

adder latency (ns)

Line Network

CDKM carry-ripple
VBE carry-ripple

Length of numbers to be added (bits)

EPR pair creation time (ns)

adder latency (ns)

 10

 100

 1000

1024512256128643216

E
P

R
 p

ai
r

cr
ea

tio
n

tim
e

(n
s)

Length of numbers to be added (bits)

Line Network

Figure 7.10: (Teledata) Performance of different adders onthree different networks, one
fully-connected with a single link and one with two links pernode (2fully), and one line
configuration. In this graph, we vary the latency to create a high-quality EPR pair and
the length of the numbers we are adding. Classical communication time is assumed to
be 10nsec, Toffoli gate time 50nsec, CNOT gate time 10nsec. In the right hand graph
of each pair, the hatched red area indicates areas where carry-lookahead is the fastest,
the diagonally lined green indicates CDKM carry-ripple, and solid blue indicates VBE
carry-ripple. The performance of the carry-lookahead adder is very sensitive to the EPR
pair creation time. If EPR pair creation time is low, the carry-lookahead adder is very
fast; if creation time is high, the adder is very slow.

7.6. SUMMARY 191

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1024 512 256 128 64 32 16

ad
de

r
la

te
nc

y
(n

s)

Length of numbers to be added (bits)

EPR Pair Creation Time = 10 nsec

2Fully look
Line CDKM

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1024 512 256 128 64 32 16

ad
de

r
la

te
nc

y
(n

s)

Length of numbers to be added (bits)

EPR Pair Creation Time = 1280 nsec

2Fully look
Line CDKM

Figure 7.11: (Teledata) Comparison of CDKM on a line networkwith carry-lookahead
on a 2fully network. These are the “front” and “back” cross-sections of figure 7.10.

7.6 Summary

This chapter has covered the overall quantum multicomputerarchitecture, including

justifying the need for distributed quantum computation, investigating distributed quan-

tum error correction and network link design, and ended by evaluating the performance

of arithmetic circuits on a quantum multicomputer for different problem sizes, inter-

connect topologies, and gate timings. Although we have assumed that the interconnect

is based on the qubus entanglement protocol creation of EPR pairs, our analysis, espe-

cially Table 7.6, applies equally well to any two-level structure with low-latency local

operations and high-latency long-distance operations. The details of the cost depend on

the interconnect topology, number of transceiver qubits, and the chosen breakdown for

CCNOT. Gate time ratios are more important than actual gate times for this analysis.

The time values presented here are reasonable for solid-state qubits under optimistic as-

sumptions about advances in the underlying technology. Applying our results to slower

technologies (or the same technology using more layers of quantum error correction) is

a simple matter of scaling by the appropriate clock speed andstorage requirements.

We found that the teledata method is faster than the telegatemethod, that separating

the actual data teleportation from the necessary EPR pair creation allows a carry-ripple

adder to be efficient for large problems, and that a linear network topology is adequate

for up to a hundred nodes or more, depending on the cost ratio of EPR pair creation to

local gates. For very large systems, switching interconnects, which are well understood

in the optical domain [172, 218, 319], may become necessary,though we recommend

deferring adding switching due to the complexity and the inherent signal loss; switching

time in such systems also must be considered.

192 CHAPTER 7. THE QUANTUM MULTICOMPUTER

These results show that node size, interconnect topology, distributed gate approach

(teledata v. telegate), and choice of adder affect overall performance in sometimes un-

expected ways. Increasing the number of logical qubits per node, for example, reduces

the total number of interconnect transfers but concentrates them in fewer places, caus-

ing contention for access. Therefore, increasing node sizeis not favorableunless node

I/O bandwidth increases proportionally; we recommend keeping the node size small

and fixed for the foreseeable future.

This data presents a clear path forward. I recommend pursuing a node architec-

ture consisting of only a few logical qubits and initially two transceiver (quantum I/O)

qubits. This will allow construction of a linear network, which will perform adequately

with a carry-ripple adder up to moderately large systems. Engineering emphasis should

be placed on supporting more transceiver qubits in each node, which can be used to

parallelize transfers, decrease the network diameter, andprovide fault tolerance. Sig-

nificant effort is warranted on minimizing the key parameterof EPR pair creation time.

Only once these avenues have been exhausted should the node size be increased and

a switched optical network introduced. This approach should lead to the design of a

viable quantum multicomputer.

Chapter 8

Conclusion

Now this is not the end. It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.

Winston Churchill, November 1942

This dissertation has described the architecture of a quantum multicomputer and

the structure of the algorithms to run on it. Shor’s factoring algorithm has served as a

convenient, concrete benchmark, but the overall architecture, building blocks and anal-

ysis methods are general. Although small-scale quantum computers exist, prospects

for large-scale ones remain uncertain. The physicists havemany problems to solve,

of course, including decoherence time and gate quality, both of which are affected by

many physical sources. The engineers, as well, have many problems to solve. At the

highest levels, the process of balancing performance, reliability, physical feasibility and

system cost has just begun. Utilization of heterogeneous structures, continued progress

in error management, and further optimization of application algorithms for particular

architectures continue to be promising areas of research. At lower levels, integration

of system components, thermal engineering, and packaging remain issues. Once these

problems are solved, a quantum multicomputer built on many nodes based on solid-

state qubits is a viable, highly scalable, high-performance architecture.

The creation of the quantum multicomputer began with the optimization of quan-

tum modular exponentiation for Shor’s factoring algorithm, first in an architecture-

independent fashion, then considering two specific architectural models,AC andNTC.

The primary difference is thatAC allows two qubits anywhere in the system to interact

without penalty, whileNTC allows only nearest neighbors in a line topology to inter-

act. Both models are somewhat simplistic, but serve as useful upper and lower bounds.

193

194 CHAPTER 8. CONCLUSION

Classical computation can be traded for quantum; increasing the classical computation

by a factor of2w allows a factor ofw decrease in quantum, a good trade for small values

of w. Two new adder algorithms, the carry-select and conditional-sum adders, were de-

veloped. The carry-select adder runs inO(
√
n) time to add twon-bit numbers, and the

conditional-sum adder, which is similar but uses a more complex demultiplexer, runs in

O(logn) time. These techniques, as well as the fast, efficient CDKM carry-ripple adder,

theO(logn)-depth carry-lookahead adder, Cleve-Watrous parallel multiplication, and

some original optimizations, are used to create complete modular exponentiation algo-

rithms. The algorithms presented here will reduce wall-clock time by a factor of one

million for a six-thousand bit number on theAC architecture, or a factor of 13,000 on

NTC. These circuits areO(nlog2n) andO(n2 log n) in circuit depth, respectively, and

demonstrate the paramount importance of architecture whenplanning for performance.

The primary architectural features of interest are the ability to execute multiple gates

concurrently, the number of application-level qubits available, and the interconnection

network of qubits.

The quantum multicomputer transcends the physical limitations of an individual

quantum computer by combining the power of multiple quantumcomputers, in direct

analogy to classical, distributed-memory multicomputers. It is obvious that a multi-

computer can store more data than any individual quantum computer; what was less

certain before this research was done was the performance ofsuch a system. Extract-

ing performance improvements, as in classical distributedsystems, depends on finding

parallelism in the algorithms and on minimizing the costs ofcommunication. This

research has shown that application-level parallelism is plentiful, and that the commu-

nication costs are reasonable. A linear network of nodes, each containing just a few

logical qubits and two transceiver qubits for the quantum links, performs well up to

several hundred nodes. Subdividing quantum teleportationof the data into the EPR

pair creation and the later teleportation act allows high levels of parallelism in the EPR

pair creation to be used, and a simple carry-ripple adder performs well. As the prob-

lem size approaches a thousand bits, the linear costs of the carry-ripple adder begin to

dominate, and the logarithmic depth carry-lookahead adderbecomes attractive. Effi-

cient implementation of distributed carry-lookahead requires a more complex network.

Increasing the size of individual nodes risks turning I/O into the system bottleneck,

making it necessary to increase the number of transceiver qubits as node size grows.

With this summary, the detailed technical work of this thesis draws to a close. The

remainder of this final chapter of the dissertation is more speculative: first, some rough

8.1. COMPLETE PERFORMANCE ESTIMATES 195

length adder calls tot. teleportations (t)
16 481 14000–125000

128 32544 8 × 106–108

1024 2.1 × 106 4 × 109–6 × 1010

Table 8.1: Number of teleportations and adder calls necessary to execute the full mod-
ular exponentiation for different problem sizes.

estimates of the wall clock time that will actually be required to execute modular ex-

ponentiation on the quantum multicomputer are presented, then future work and some

thoughts on the prospects for quantum computation, and the dissertation ends with

some final, personal comments.

8.1 Complete Performance Estimates

Table 8.1 shows the number of adder calls for the complete modular exponentiation.

These values assume thatw = 4 and thatp is large enough for the modulo arithmetic

to have no impact, giving a required2n2 calls to the adder routine. These numbers are

combined with the data presented in the previous chapter to create total teleportation

counts; the range of numbers is due to the difference betweencarry-ripple and carry-

lookahead adders, with the carry-lookahead adder being more expensive. These total

numbers were used in Section 7.4 to derive the necessary reliability of teleportation

operations.

Because of the manner in which EPR pair creation and the actual gates are com-

posed, it is now no longer possible to talk about performancestrictly in units of “gate

times”; we must now talk in terms of clock time for certain operations. Table 8.2 shows

performance estimates derived from the figures and extrapolated for the complete algo-

rithm.

These EPR pair creation times are for enough high-quality EPR pairs to transfer

an entire logical qubit. Using the [[23,1,7]]i+[[7,1,3]]o error correction code, we must

transfer 161 physical qubits for a single logical qubit. Using a serial link, perform-

ing 161 transfers in 1280nsec (the upper end of the graphs shown) requires a physical

EPR pair creation time of about 8nsec. Although this time is faster than what has

been achieved experimentally, much of the time in adaptive homodyne measurements

is spent on (classical digital) calculations, usually carried out on FPGAs [315, 21].

The qubus measurement time therefore seems amenable to significant improvement as

technology advances.

196 CHAPTER 8. CONCLUSION

length CDKM, linear Lookahead, 2fully
10nsec 160nsec 1280nsec 10nsec 160nsec 1280nsec

16 960µsec 1.4msec 4.6msec 1.0msec 2.5msec 14msec
128 500msec 530msec 750msec 125msec 290msec 1.5sec

1024 260sec 260sec 270sec 12sec 26sec 130sec

Table 8.2: Estimated time to complete a single run of distributed modular exponenti-
ation. The data are for the CDKM adder on a linear network and acarry-lookahead
adder on a 2fully network, each for three differentlogical EPR pair creation times, 10,
160, and 1280nsec. Other gate times as described in text.

Likewise, the gate times we have chosen, such as 50nsec for a Toffoli gate, must

be seen in the light of fault tolerance and error correcting techniques; the [[23,1,7]]

code requires about three dozen time steps to measure and correct, while using signifi-

cant concurrent gate execution [308]. The exact performance when combined with the

upper-layer [[7,1,3]] code is unclear, and the implementation of both codes is very dif-

ferent forAC andNTC, but the total performance penalty is likely around two orders of

magnitude. A 50nsec logical Toffoli gate would therefore require physical gates well

under a nanosecond, significantly faster than current physical implementations.

Thus, it is likely that the absolute performance numbers forthe adder circuits pre-

sented in Section 7.5 are one to two orders of magnitude too optimistic. However, the

basic analysis depends primarily on the ratio of gate times to teleportation and commu-

nication times, so the qualitative results are valid and thenumbers need only scaling by

the appropriate factors, which remain unclear.

Moreover, the numbers presented here are for asinglerun of the algorithm. For a

perfect quantum computer, it is known that the probability of success with Shor’s al-

gorithm is≥ 40%, independent ofn, meaning that a very small number of runs will

produce a good answer [298, 178]. However, for an imperfect quantum computer, de-

coherence and the precision required in the gates for the QFT(O(2−k) for bit k) present

problems. The approximate QFT (AQFT) is a reduced-precision form of the QFT [82],

which has been investigated by various researchers who haveproduced differing es-

timates of the success probability, based on differing setsof assumptions [31, 121].

Resolving this discrepancy for real-world conditions is a very high priority issue.

One final factor throws a large uncertainty into the wall-clock time estimates: the

number of concurrent multiplications (s) we implement. We saw in Section 6.4.2 that

s = n units will allow us to complete the full modular exponentiation in log2 n times

the latency for one multiplication. With the fulls = 1024 multiplier units, the modular

8.2. FUTURE WORK 197

exponentiation for a 1,024-bit number would run one hundredtimes as fast as fors = 1.

For this approach to be economically and physically viable,integration must increase

one hundred fold over that proposed in Chapter 7.1, to about 50,000 physical qubits

per pod, whether in one node or multiple nodes, or the cost andfloor space per dilution

refrigerator must decline by a similar amount.

8.2 Future Work

The pursuit of performance in computing systems is never-ending. In classical comput-

ing systems, we have half a century of experience; in quantumcomputing, the race has

just begun. It could be said that, at the moment, answering many questions about quan-

tum computer architecture requires a great deal of insight and only moderate amounts

of sweat. In the classical world, deep insight is also required, beginning with an un-

derstanding of where the bottlenecks in existing systems lie; however, in a mature field

such as classical architecture, acting on that insight, first demonstrating that your insight

is useful in limited circumstances, then achieving wide-spread adoption, often requires

an enormousamount of effort1. Over the next decade or so, as quantum computer

architecture matures, this will no doubt become true in thisfield as well.

The future work presented here blends smoothly from specific, low-level continu-

ations of the research in this dissertation to a research agenda for the larger quantum

computer architecture community. Further refinement of thequantum multicomputer

design requires the selection of a node technology and improvement in the detail of

hardware design. Specifically, we must determine with some precision the number of

qubits that can fit on a single chip, investigate on-chip demultiplexers for external con-

trol signals, and move as much control as possible into the device. Heterogeneous node

types and heterogeneous qubit types within a node need to be investigated, as well

as multi-level interconnect architectures. QEC optimizedfor ion trap is progressing

rapidly; similar optimizations for solid state are desirable. And, of course, supporting

experimental implementation of qubus and multi-qubit nodes will advance the archi-

tecture also.

Improving the accuracy of estimates for the number of runs ofShor’s algorithm on

QEC-encoded states on machines with limited physical accuracy, and the detailed cost

1For example, the TRIPS microprocessor team is over twenty-five faculty, staff and students, and in
turn is only a small fraction of the size of a microprocessor team in a major semiconductor manufac-
turer [61].

198 CHAPTER 8. CONCLUSION

of high-precision operations on the encoded states, tops the list of follow-on work on

algorithms. Continued algorithmic improvements in arithmetic, such as the completion

of the smaller, faster conditional-sum adder mentioned in Section 6.3.1, is necessary.

Optimizations forNTC and more complex topologies and more work to balance quan-

tum and classical computation will also contribute to reduced run times for quantum

algorithms, with consequent improvements in reliability and economic benefits.

Can technologies with disparate characteristics be combined into a hybrid, hetero-

geneous quantum computer, much as CPU, cache, RAM, and magnetic disks are com-

bined into a classical computer? This will depend on development of the ability to

transfer qubits from one technology to another and back, e.g. nuclear spin↔ electron

spin↔ photon [227, 159, 71]. It will also require development of algorithms capable

of taking advantage of such an architectural feature, presumably based on the classical

techniques of caching, virtual memory, and out-of-core algorithms [171, 186].

For all quantum computing technologies, we are entering theera where automatic

and semi-automatic design tools are needed [327, 316, 87]. Aprimary theme of ar-

chitecture research going forward will no doubt be creatingand utilizing heterogeneity

in structures. Optimizing the choice of hardware structures, their layout and intercon-

nections, and the algorithms to be run on them is a complex problem that will require

powerful tools. Even for algorithms as simple and regular asarithmetic, many map-

pings of qubits to nodes (and gates to bus time slots) are possible; I do not claim the

arrangements presented here are optimal. We are investigating further layouts using

evolutionary algorithms, and expect to report those results at a future date. Other re-

searchers have been doing excellent work on tools for automatic generation of QEC

algorithms and structures, especially for ion traps; continued improvement in these

tools holds the key to fast, accurate research into quantum computer architectures.

In the early 1980s, although chip layout was doneon a computer, it was mostly

doneby a human being — including much of the verification (at Caltech, it was com-

mon to post a plot of a chip layout on the wall for visual inspection and correction

by passers-by). A decade later, engineers often mused that it had become impossible

to design a computer without using one; the layout and especially validation of the de-

sign, including design rule checking and simulation at bothlogical and electrical levels,

could only be done by computer, and designs were far too complex to get right without

the validation. Obviously, detailed simulation of a large quantum computer requires a

quantum computer; the first large-scale quantum computers must be built without data

from the most desirable simulations. When will a quantum computer first be used to

8.3. PROSPECTS 199

design its successor, and when will it become indispensableto do so?

8.3 Prospects

Few of the researchers working on implementations of quantum computing will commit

to a timetable for delivering a machine large enough, reliable enough, and fast enough

to solve classically intractable problems. Off the record,some are optimistic that “step

functions” in total capabilities are on the horizon; othersare pessimistic enough to say,

“I’m not sure we will have a useful quantum computer in my lifetime.”

Personally, I am optimistic. I believe we are on the verge of stepping onto a Moore’s

Law-like growth curve, with the number of qubits entangled in a single state growing

exponentially over a sustained period. Ion trap systems aregenerating enormous ex-

citement, and the technical problems surrounding them seemto be well on their way to

being solved; a Moore’s Law-like curve seems very plausiblefor this technology. Sys-

tem architects have already begun making serious contributions in this area. Solid-state

technologies such as quantum dot and Josephson junction still have hurdles to clear for

individual qubits, including coherence time, gate qualityand fast, reliable single-shot

measurement. Once those problems are solved, it seems possible that the number of

qubits on a chip can grow quite rapidly; when this step function happens, the need for

system-level architects will be immediate. All technologies, as integration levels grow,

will need improved control systems. The existing rack-mount equipment will quickly

become prohibitive in both space and money.

Once any of these technologies becomes “turn-key” ready, sothat system design,

fabrication and experimentation are available to lay systems folk rather than the initiates

of physics, interest in quantum computation will explode and systems will develop

rapidly. When the physical technology reaches the point that individual researchers

can create quantum computer designs and fabricate them without dedicated facilities,

as the MOSIS project did more than two decades ago for VLSI, the base of capable

researchers will broaden dramatically [325, 267]. Puttingthese systems in the hands of

hackers may also result in useful algorithms. We are, in effect, in the time of Babbage

asking what Knuth, Lampson and Torvalds will do with the machines we build.

The most prominent proposed use of quantum computers today is Shor’s algorithm

for factoring large numbers, which has the potential to makethe widely used RSA

public-key cryptosystem and Diffie-Hellman key exchange protocol insecure. The en-

crypting operations and the execution of Shor’s algorithm are, not coincidentally, both

200 CHAPTER 8. CONCLUSION

O(n3) for n-bit keys. The number of qubits we can build in a quantum system is much

smaller than the number of classical bits we build in a system, and both manufacturing

and operating costs for qubits and quantum gates will remainmany orders of magni-

tude more expensive than classical bits and gates for the foreseeable future. Classical

systems can therefore afford to go to larger key lengths far more easily than a quan-

tum system, staying ahead in the cryptographic arms race (although this cost must be

borne by all users, not those breaking the codes). However, the known existence (or

even imminent delivery) of even a single large quantum computer may prompt a shift

away from cryptosystems perceived to be vulnerable2. Thus, Shor’s algorithm alone is

unlikely to be adequate economic incentive for the development and purchase of more

than a handful of large quantum computers.

Whether or not a specific quantum computing technology is useful depends on the

availability of important algorithms (e.g., Shor’s algorithm) and supporting algorithms

or subroutines (e.g., the modular exponentiation necessary to run Shor’s algorithm) that

map efficiently to a system built on the technology. Future developments in algorithms,

therefore, can make an architecture useful which had earlier been dismissed due to lack

of interesting, practical applications.

The need for hardware/software co-design is very much in evidence here. Because

quantum computation in general, and architecture in particular, is immature as a field,

we start adrift on Lampson’s Sea. This thesis charts a coursetoward a particular goal,

and maps out some of the major shoals. Course corrections, some major, are inevitable,

but our sails are full and we have a guide star to follow. To be acomplete system, many

subsystems must be developed. Indeed, not just the subsystems themselves, but the

developmenttoolsmust be built. Chip layout tools must integrate smoothly with one or

more of the commercial successors to early VLSI tools such asthe Magic toolkit [257].

We need to develop the quantum equivalent of classical design rules [225], and may ul-

timately wish to use direct silicon compilation to physicalcircuits from programs [26].

Compilers that optimize a circuit are already being developed; new back ends to cre-

ate both hardware and software will allow better optimization, at the expense of tool

complexity.

2We wish to point out here that quantum key distribution does not solve the problems that Shor’s
algorithm creates [261].

8.4. FINAL WORDS 201

8.4 Final Words

When I began working on quantum computing three years ago, I was naive about a

great many of the technical aspects. I wanted to focus on software for quantum com-

puters, and I was especially curious about how our classicalmechanisms for resource

management (such as semaphores) and naming — two of the key functions of an oper-

ating system — would translate into the quantum world. I quickly discovered that the

structure of the machines themselves was not yet advanced enough to work seriously on

such topics. Surveying the state of hardware proposals, it became clear that there was

much room for jacks-of-all-system-trades like me to contribute. Each time I opened

one door, I found another. Sometimes I found that someone hadunlocked the door be-

fore me, and I was happy to walk through on their work. Sometimes, I found the door

locked, and faced the task of picking the lock myself. I am pleased with what I have

accomplished, but not satisfied; I imagine many, many productive years yet pushing

beyond what we currently know, though it is not always obvious exactly what itis that

we don’t know.

I wish to close with two of my favorite quotes. “Life is eithera daring adventure or

nothing,” Heller Keller said. Even when things don’t work out according to the original

plan, you accomplish something along the way, if you are flexible and work hard. You

must let the path teach you, as much as you choose the path.

Butter tea and wind pictures, the crystal mountain, and blue

sheep dancing on the snow — it’s quite enough! Did you see the

snow leopard? No! Isn’t that wonderful?

Peter Matthiessen, The Snow Leopard

Appendix A

Glossary

In such an interdisciplinary thesis, a glossary would seem to be essential. The math-

ematical terms are defined hereextremelyinformally, for the benefit of newcomers to

the field.

ancilla (plural ancillae) Bits holding temporary variables used during a reversible

computation that must be returned to their initial state at the end of the com-

putation.

bisection In a network, the number of links that must be cut to divide thenetwork in

half.

bra Dirac notation for a complex-conjugate row vector:〈ψ|. See alsoket.

cluster state computing

Also calledone-way computingormeasurement-based computing[277, 250].

Has nothing to do with classical computing clusters; the cluster state is a very

large entangled state which serves as a computing substrate.

decoherence

The degradation of the state of a quantum system as it interacts with its envi-

ronment in ways that are impossible to adequately characterize; causes errors

in qubits.

decoherence free subspace (DFS)

A form of error management in which logical states are encoded in therela-

tivestate of multiple qubits [206, 140, 205].

degree The number of links, or connections to the network, at each node.

202

203

density matrix

Describes the statistical state of a quantum system. For ann-qubit system, a

2n × 2n matrix. Also called thedensity operator, and usually writtenρ. A

valid density matrix has traceTr(ρ) = 1, and the diagonal elements are the

probability of finding the system in the corresponding statewhen measured.

diameter The largest number of hops through the network to get from anynode to any

other.

entanglement

The property of two or more qubits in which operations on one affect the

state of the other. For pure states, corresponds roughly to the qubits having

dependent probabilities for their states.Karami-tsukiin Japanese.

full-duplex

A type of link in which data can be transferred in both directions at the same

time. Telephones are generally full-duplex.

half-duplex

A type of link in which data can be transferred in either direction, but only in

one direction at a time. Many computer buses are half-duplex; push-to-talk

walkie-talkies are half-duplex.

ket Dirac notation for a column vector:|ψ〉. For ann-qubit system, consists of

2n entries. See alsobra.

link A physical connection in a network between two nodes, or a node and a

piece of dedicated networking equipment such as a router. May be serial or

parallel.

mixed state

A state which has partially decohered due to interaction with its environment;

must be represented by a density matrixρ which does not haveTr(ρ2) = 1

mux Multiplexer.

network In this dissertation, a collection of links that connect quantum computer

nodes together. Often used in the quantum computing literature to mean

circuit or program.

node A computational element attached to a network.

204 APPENDIX A. GLOSSARY

probe beam

For the qubus, the high-intensity beam that interacts with the qubits.

pure state

A quantum state about which we have maximal knowledge; it is not entan-

gled with the environment. A pure state hasρ = ρ2 andTr(ρ2) = 1. A pure

state can be written in state-vector form as|ψ〉.

qubit A two-level quantum system that obeys DiVincenzo’s criteria; the basic unit

of quantum information. A qubit may be in a superposition of its two states.

Qubits may be physical or logical.

qubus A system that uses a strong probe beam and weak nonlinearities to entangle

two or more qubits over a distance.

qubyte Eight qubits.

separable

Two quantum systems that are not entangled are separable.

simplex A unidirectional link.

superposition

Two or more solutions to Schrödinger’s equation added together to form a

single state, with their weights adjusted so that the total weight is still one.

Kasane-awasein Japanese.

trace The sum of the diagonal of a matrix.

transceiver qubit

A physical qubit that connects to a qubus.

unitary transform

The most common mathematical representation of a quantum gate; for ann-

qubit gate, a2n × 2n unitary matrix that effects a rotation in the appropriate

space. A unitary transformU satisfies the condition thatU †U = UU † = I.

Appendix B

List of Papers and Presentations

Peer-Reviewed Journals

1. R. Van Meter and M. Oskin. Architectural implications of quantum computing

technologies.ACM J. Emerging Tech. in Comp. Sys., 2(1), Jan. 2006.

2. R. Van Meter and K. M. Itoh. Fast quantum modular exponentiation. Physical

Review A, 71(5):052320, May 2005.

International Conferences

1. R. Van Meter, W. J. Munro, K. Nemoto, and K. M. Itoh. Distributed arithmetic

on a quantum multicomputer. InProc. Int. Symp. on Computer Architecture

(ISCA33), Jun. 2006.

2. R. Van Meter, K. M. Itoh, and T. D. Ladd. Architecture-dependent execution

time of Shor’s algorithm, InProc. Int. Symp. on Mesoscopic Superconductivity

and Spintronics (MS+S2006), Feb. 2006.

3. R. Van Meter. Trading classical for quantum computation using indirection. In

Realizing Controllable Quantum States: Proc. Int. Symp. onMesoscopic Super-

conductivity and Spintronics (MS+S2004), Mar. 2004.

National Conferences and Workshops

1. R. Van Meter. Communications topology and distribution of the quantum Fourier

transform. InProc. Tenth Symposium on Quantum Information Technology

(QIT10), pages 19–24, May 2004.

205

206 APPENDIX B. LIST OF PAPERS AND PRESENTATIONS

Teaching

1. Jun. 2005: WIDE Project School of Internet, “Introduction to Quantum Comput-

ing”, a 3-day intensive short course on quantum computing offered via satellite

and Internet. Attended by approximately fifty students fromNepal, Indonesia,

Laos, Thailand, Japan, Malaysia, and Bangladesh.

2. Sept. 2004: U. Aizu, “Introduction to Quantum Computing”, a 3-day intensive

short course on quantum computing offered to U. Aizu students for credit.

Other Presentations

1. “Fast Quantum Modular Exponentiation,” Caltech Workshop on Classical and

Quantum Information Security (CQIS), Dec. 2005.

2. “The Design of a Quantum Multicomputer,” USC/ISI, Dec. 2005.

3. “Fast Quantum Modular Exponentiation,” BBN, Aug. 2005.

4. “Quantum ComputingSystems: State of the Art, Summer 2005,” Carnegie Mel-

lon University, Aug. 2005.

5. “Fast Quantum Modular Exponentiation,” HP Labs, Bristol, Jan. 2005.

6. “Fast Quantum Modular Exponentiation,” Oxford University, Jan. 2005.

7. “Fast Quantum Modular Exponentiation,” MIT, Nov. 2004.

8. “Accelerating Shor’s Algorithm Using Fast Quantum Modular Exponentiation,”

2004 Workshop on Information Security Research (invited),Fukuoka, Japan,

Oct. 2, 2004.

9. “Introduction to Quantum Computing,” Keio Shonan Fujisawa Campus, June 3,

2004 (in Japanese).

10. “Trading Classical for Quantum Computation Using Indirection,” ERATO Kyoto,

April 15, 2004 (in Japanese).

11. “A Computer Systems Research Agenda for Quantum Computing,” Nara Institute

of Science and Technology, April 16, 2004 (in Japanese).

207

12. “Communications Topology and Distribution of the Quantum Fourier Transform,”

National Institute of Informatics, April 22, 2004.

13. “A Computer Systems Research Agenda for Quantum Computing,” NTT Basic

Research Laboratory, October 7, 2003.

Bibliography

[1] Proc. ERATO Conference on Quantum Information Science (EQIS2003), Sept.

2003.

[2] S. Aaronson. Complexity zoo. http://qwiki.caltech.edu/wiki/ComplexityZoo.

[3] S. J. Aaronson.Limits on Efficient Computation in the Physical World. PhD

thesis, U.C. Berkeley, 2004.

[4] E. Abe. Pulsed Electron Sping Resonance in Phosphorus Doped Isotopically

Controlled Silicon. PhD thesis, Keio University, 2006.

[5] E. Abe, K. M. Itoh, J. Isoya, and S. Yamasaki. Electron-spin phase relax-

ation of phosphorus donors in nuclear-spin-enriched silicon. Physical Review

B, 70:033204, 2004.

[6] H. Abelson, D. Allen, D. Coore, C. Hanson, E. Rauch, G. Homsy, T. F. K. Jr.,

R. Nagpal, G. J. Sussman, and R. Weiss. Amorphous computing.Commun.

ACM, 43(5):74–82, May 2000.

[7] D. S. Abrams and S. Lloyd. Simulation of many-body Fermi systems on a uni-

versal quantum computer.Physical Review Letters, 79:2586–2589, 1997.

[8] ACM. Computer Architecture News, Proc. 33rd Annual International Sympo-

sium on Computer Architecture, June 2006.

[9] M. Acton, K.-A. Brickman, P. Haljan, P. Lee, L. Deslauriers, and

C. Monroe. Near-perfect simultaneous measurement of a qubit register.

http://arXiv.org/quant-ph/0511257, Nov.

[10] L. M. Adleman. Molecular computation of solutions to combinatorial problems.

Science, 266:1021–1024, 1994.

208

BIBLIOGRAPHY 209

[11] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant

error rate. http://arXiv.org/quant-ph/9906129, June 1999. extended version of

STOC 1997 paper.

[12] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev.

Adiabatic quantum computation is equivalent to standard quantum computation.

In Proc. 45th Annual Symposium on Foundations of Computer Science. ACM,

2004.

[13] Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks.Physical

Review A, 48(2):1687–1690, 1993.

[14] A. V. Aho and K. M. Svore. Compiling quantum circuits using the palindrome

transform. http://arXiv.org/quant-ph/0311008, Nov. 2003.

[15] G. Ahokas, R. Cleve, and L. Hales. The complexity of quantum fourier trans-

forms and integer multiplication. InProc. ERATO Conference on Quantum In-

formation Science (EQIS2003)[1].

[16] V. A. Aksyuk et al. 238x238 micromechanical optical cross connect. IEEE

Photonics Technology Letters, 15(4):587–589, 2003.

[17] O. Alter and Y. Yamamoto.Quantum Measurement of a Single System. Wiley,

2001.

[18] G. Amdahl. Validity of the single processor approach toachieving large-scale

computing capabilities. InAFIPS Conference Proceedings, pages 483–485,

1967.

[19] D. P. Anderson and G. Fedak. The computational and storage potential of vol-

unteer computing. available at http://boinc.berkeley.edu/papers.php, Dec. 2005.

[20] ARDA. A quantum information science and technology roadmap, v2.0 edition,

Apr. 2004.

[21] M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, and H.Mabuchi. Adaptive

homodyne measurement of optical phase.Physical Review Letters, 89:133602,

2002.

[22] I. Asimov. I, Robot. Gnome Press, 1950.

210 BIBLIOGRAPHY

[23] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon. Simulated

quantum computation of molecular energies.Science, 309:1704–1707, 2005.

[24] W. C. Athas and C. L. Seitz. Multicomputers: message-passing concurrent com-

puters.IEEE Computer, 21:9–24, Aug. 1988.

[25] W. C. Athas and L. J. Svensson. Reversible logic issues in adiabatic CMOS. In

Proc. IEEE 1994 Workshop on Physics and Computing. IEEE, 1994.

[26] R. F. Ayres. Silicon Compilation and the Art of Automatic Microchip Design.

Prentice-Hall, Englewood Cliffs, NJ, 1983.

[27] D. Bacon. Quantum computational complexity in the presence of closed timelike

curves.Physical Review A, 70:032309, 2004.

[28] D. Bacon. Operator quantum error correcting subsystems for self-correcting

quantum memories. http://arxiv.org/quant-ph/0506023, June 2005.

[29] S. Balensiefer, L. Kregor-Stickles, and M. Oskin. An evaluation framework and

instruction set architecture for ion-trap based quantum micro-architectures. In

Proc. 32nd Annual International Symposium on Computer Architecture, June

2005.

[30] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N.Margolus, P. Shor,

T. Sleator, J. Smolin, and H. Weinfurter. Elementary gates for quantum compu-

tation. Phys. Rev. A, 52:3457, 1995.

[31] A. Barenco, A. Ekert, K.-A. Suominen, and P. Törmä. Approximate quantum

fourier transform and decoherence.Physical Review A, 54:139–146, 1996.

[32] T. Bauch, T. Lindström, F. Tafuri, G. Rotoli, P. Delsing, T. Claeson, and F. Lom-

bardi. Quantum dynamics of a d-wave josephson junction.Science, 311:57–60,

2006.

[33] J. Baugh, O. Moussa, C. A. Ryan, A. Nayak, and R. Laflamme.Experimental

implementation of heat-bath algorithmic cooling using solid-state nuclear mag-

netic resonance.Nature, 438:470–473, 2005.

[34] S. Beauregard. Circuit for Shor’s algorithm using2n + 3 qubits. Quan-

tum Information and Computation, 3(2):175–185, 2003. http://arXiv.org/quant-

ph/0205095.

BIBLIOGRAPHY 211

[35] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill. Efficient

networks for quantum factoring. Phys. Rev. A, 54:1034–1063, 1996.

http://arXiv.org/quant-ph/9602016.

[36] R. Beckman, E. Johnston-Halperin, Y. Luo, J. E. Green, and J. R. Heath. Bridg-

ing dimensions: Demultiplexing ultrahigh-density nanowire circuits. Science,

310:465–468, 2005.

[37] M. Beeler, R. W. Gosper, and R. Schroeppel. HAKMEM. Technical Report

AIM-239, MIT, 1972.

[38] C. G. Bell, A. Kotok, T. N. Hastings, and R. Hill. The evolution of the

DECsystem-10. In C. G. Bell, J. C. Mudge, and J. E. McNamara, editors,Com-

puter Engineering: A DEC View of Hardware Systems Design. Digital, 1978.

[39] P. Benioff. Quantum mechanical models of Turing Machines that dissipate no

energy.Physical Review Letters, 48:1581–1585, 1982.

[40] C. H. Bennett. Logical reversibility of computation.IBM J. Res. Develop.,

17:525–532, 1973.

[41] C. H. Bennett. Notes on the history of reversible computation. IBM J. of Re-

search and Development, 32(1), 1988. reprinted in IBM J. R.&D. Vol. 44 No.

1/2, Jan./Mar. 2000, pp. 270–277.

[42] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and

weaknesses of quantum computing.SIAM J. Comput., 26(5):1510–1523, 1997.

http://arXiv.org/quant-ph/9701001.

[43] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher. Concentrating

partial entanglement by local operations.Physical Review A, 53:2046, 1996.

[44] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribu-

tion and coin tossing. InProc. IEEE International Conference on Computers,

Systems, and Signal Processing, pages 175–179. IEEE, Dec. 1984.

[45] C. H. Bennett, G. Brassard, C. Crépeau, R. Josza, A. Peres, and W. Wootters.

Teleporting an unknown quantum state via dual classical andEPR channels.

Physical Review Letters, 70:1895–1899, 1993.

212 BIBLIOGRAPHY

[46] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters. Mixed-state

entanglement and quantum error correction.Physical Review A, 54:3824–3851,

1996.

[47] C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle opera-

tors on Einstein-Podolsky-Rosen states.Physical Review Letters, 69:2881–2884,

1992.

[48] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Computing,

26(5):1411–1473, 1997.

[49] P. Bertet, C. J. P. M. Harmans, and J. E. Mooij. Parametric coupling for super-

conducting qubits.Physical Review B, 73:064512, 2006.

[50] B. M. Boghosian and W. Taylor IV. Simulating quantum mechanics on a quan-

tum computer.Physica D, 120:30–42, Sept. 1998.

[51] M. Bohr. Silicon trends and limits for advanced microprocessors.Commun.

ACM, 41(3):80–87, Mar. 1998.

[52] N. Boulant, K. Edmonds, J. Yang, M. A. Pravia, and D. G. Cory. Experimental

demonstration of an entanglement swapping operation and improved control in

NMR quantum-information processing.Physical Review A, 68:032305, 2003.

[53] G. Bourianoff. The future of nanocomputing.IEEE Computer, pages 44–53,

Aug. 2003.

[54] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger.

Experimental quantum teleportation.Nature, 390:575–579, Dec. 1997.

[55] G. Brassard, P. Høyer, and A. Tapp. Quantum counting. InProc. 25th Int. Collo-

quium on Automata, Languages and Programming (ICALP’98), pages 820–831.

Springer, July 1998.

[56] G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch. Quantum logic

gates in optical lattices.Physical Review Letters, 82(5):1060–1063, Feb. 1999.

[57] H.-J. Briegel, W. Dür, J. Cirac, and P. Zoller. Quantumrepeaters: the role of

imperfect local operations in quantum communication.Physical Review Letters,

81:5932–5935, 1998.

BIBLIOGRAPHY 213

[58] K. R. Brown, R. J. Clark, and I. L. Chuang. Limitations ofquantum simula-

tion examined by simulating a pairing Hamiltonian using nuclear magnetic res-

onance. quant-ph/0601021, Jan. 2006.

[59] D. E. Browne and T. Rudolph. Resource-efficient linear optical quantum com-

putation.Physical Review Letters, 95:010501, 2005.

[60] J. W. Bruce, M. A. Thornton, L. Shivakumaraiah, P. S. Kokate, and X. Li. Effi-

cient adder circuits based on a conservative reversible logic gate. InProc. IEEE

Computer Society Annual Symposium on VLSI. IEEE Computer Society, Apr.

2002.

[61] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K.John, C. Lin, C. R.

Moore, J. Burrill, R. G. McDonald, and W. Yode. Scaling to theend of silicon

with EDGE architectures.IEEE Computer, 37(7):44–55, 2004.

[62] G. Burkard, D. Loss, D. P. DiVincenzo, and J. A. Smolin. Physical optimization

of quantum error correction circuits.Physical Review B, 60(16):11404–11416,

1999.

[63] T. Byrnes and Y. Yamamoto. Simulating lattice gauge theories on a quantum

computer.Physical Review A, 73:022328, 2006.

[64] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist.

Physical Review A, 54:1098–1105, 1996.

[65] K. Čapek.R.U.R.: Rossum’s Universal Robots. 1920.

[66] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira. Time-optimal quantum evo-

lution. Physical Review Letters, 96:060503, 2006.

[67] S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Mur-

phy, H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand,

F. Morain, A. Muffett, C. Putnam, C. Putnam, and P. Zimmermann. Factoriza-

tion of a 512-bit RSA modulus. InAdvances in Cryptology - EUROCRYPT 2000:

International Conference on the Theory and Application of Cryptographic Tech-

niques, volume 1807 ofLecture Notes in Computer Science, page 1, Jan. 2000.

[68] T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y.Lan, T. A. B. Kennedy,

and A. Kuzmich. Storage and retrieval of single photons transmitted between

remote quantum memories.Nature, 438:833–836, 2005.

214 BIBLIOGRAPHY

[69] J. Chiaverini, J. Britton, D. Leibfried, E. Knill, M. D.Barrett, R. B. Blakestad,

W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, T. Schaetz, and D.J. Wineland.

Implementation of the semiclassical quantum fourier transform in a scalable sys-

tem. Science, 308:997–1000, 2005.

[70] J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett,R. B. Blakestad, J. Brit-

ton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, andD. J. Wineland.

Realization of quantum error correction.Nature, 432:602–605, 2004.

[71] L. Childress, J. M. Taylor, A. S. Sørensen, and M. Lukin.Fault-tolerant quantum

repeaters with minimal physical resources, and implementations based on single-

photon emitters. http://arXiv.org/quant-ph/0502112, Feb. 2005.

[72] I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E.

Mooij. Coherent dynamics of a flux qubit coupled to a harmonicoscillator.

Nature, 431:159–162, Sept. 2004.

[73] C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov,S. J. van Enk, and

H. J. Kimble. Measurement-induced entanglement for excitation stored in re-

mote atomic ensembles.Nature, 438:828–832, 2005.

[74] I. L. Chuang, N. Gershenfeld, and M. Kubinec. Experimental implementation of

fast quantum searching.Physical Review Letters, 80:2408–3411, 1998.

[75] I. L. Chuang, R. Laflamme, P. Shor, and W. H. Zurek. Quantum computers,

factoring and decoherence.Science, 270(5242):1633–1635, 1995.

[76] I. L. Chuang, L. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd.

Experimental realization of a quantum algorithm.Nature, 393:143–146, 1998.

[77] J. Cirac, A. Ekert, S. Huelga, and C. Macchiavello. Distributed quantum com-

putation over noisy channels.Physical Review A, 59:4249, 1999.

[78] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions.Phys.

Rev. Lett., 74:4091–4094, 1995.

[79] R. G. Clark et al. Progress in silicon-based quantum computing. Phil. Trans. R.

Soc. London A, 361:1451–1471, 2003.

BIBLIOGRAPHY 215

[80] R. Cleve and J. Watrous. Fast parallel circuits for the quantum Fourier transform.

In Proc. 41st Annual Symposium on Foundations of Computer Science, pages

526–536. ACM, 2000.

[81] E. Collin, G. Ithier, A. Aassime, P. Joyez, D. Vion, and D. Esteve. NMR-

like control of a quantum bit superconducting circuit.Physical Review Letters,

93:157005, Oct. 2004.

[82] D. Coppersmith. An approximate Fourier transform using quantum factor-

ing. Technical Report 19642, IBM Research, 1994. http://arXiv.org/quant-

ph/0201067.

[83] D. Copsey, M. Oskin, F. T. Chong, I. Chuang, and K. Abdel-Gaffar. Memory

hierarchies for quantum data. In1st Workshop on Non-Silicon Computing, 2002.

[84] D. Copsey, M. Oskin, T. Metodiev, F. T. Chong, I. Chuang,and J. Kubiatow-

icz. The effect of communication costs in solid-state quantum computing ar-

chitectures. InProceedings of the fifteenth annual ACM Symposium on Parallel

Algorithms and Architectures, pages 65–74, 2003.

[85] C. Cosmelli, M. G. Castellano, F. Chiarello, R. Leoni, D. Simeone, G. Torrioli,

and P. Carelli. Controllable flux coupling for the integration of flux qubits. cond-

mat/0403690, Mar. 2004.

[86] N. Craig and T. Lester. The hitchhiker’s guide to the dilution refrigerator.

http://marcuslab.harvard.edu/howto/Fridge.pdf, Aug. 2004.

[87] A. W. Cross. Synthesis and evaluation of fault-tolerant quantum computer archi-

tectures. Master’s thesis, MIT, 2005.

[88] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton. A new quantum

ripple-carry addition circuit. http://arXiv.org/quant-ph/0410184, Oct. 2004.

[89] W. J. Dally and B. Towles.Principles and Practices of Interconnection Net-

works. Elsevier, 2004.

[90] C. M. Dawson, H. L. Haselgrove, and M. A. Nielsen. Noise thresholds for optical

quantum computers, 2005. http://arXiv.org/quant-ph/0509060.

[91] E. P. DeBenedictis. Reversible logic for supercomputing. In Proc. 2nd confer-

ence on Computing Frontiers, pages 391–402. ACM, 2005.

216 BIBLIOGRAPHY

[92] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. Topological quantum memory.

J. Math. Phys., 43:4452–4505, 2002.

[93] D. Deutsch. Quantum theory, the Church-Turing principle, and the universal

quantum computer.Proc. Royal Soc. London A, 400:97–117, 1985.

[94] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation.

Proc. R. Soc. London, Ser. A, 439:553, 1992.

[95] S. J. Devitt, A. G. Fowler, and L. C. Hollenberg. Simulations of

Shor’s algorithm with implications to scaling and quantum error correction.

http://arXiv.org/quant-ph/0408081, Aug. 2004.

[96] E. D’Hondt. Distributed quantum computation: A measurement-based ap-

proach. PhD thesis, Vrije Universiteit Brussel, July 2005.

[97] D. P. DiVincenzo. Quantum Computation.Science, 270(5234):255–261, 1995.

[98] D. P. DiVincenzo. Two-bit gates are universal for quantum computation.Physi-

cal Review A, 51:1015–1022, 1995.

[99] D. P. DiVincenzo. Quantum gates and circuits.Proc. Royal Soc. London A,

1998.

[100] D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K.B. Whaley. Univer-

sal quantum computation with the exchange interaction.Nature, 408:339–342,

2000.

[101] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. An introduction to the MPI

standard.Commun. ACM, Jan. 1995.

[102] T. G. Draper. Addition on a quantum computer. http://arXiv.org/quant-

ph/0008033, Aug. 2000. first draft dated Sept. 1998.

[103] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore. A logarithmic-depth

quantum carry-lookahead adder. http://arXiv.org/quant-ph/0406142, June 2004.

[104] M. I. Dyakonov. Quantum computing: a view from the enemy camp. In S. Luryi,

J. Xu, and A. Zaslavsky, editors,Future Trends in Microelectronics: The Nano

Millenium, pages 307–318. Wiley, 2002.

BIBLIOGRAPHY 217

[105] M. D. Eisaman, A. Andr, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D.

Lukin. Electromagnetically induced transparency with tunable single-photon

pulses.Nature, 438:837–841, 2005.

[106] J. Eisert, M. Wilkens, and M. Lewenstein. Quantum games and quantum strate-

gies.Physical Review Letters, 83(15):3077–3080, Oct. 1999.

[107] A. Ekert and R. Jozsa. Quantum computation and Shor’s factoring algorithm.

Review of Modern Physics, 68(3):733–753, 1996.

[108] C. Elliott, D. Pearson, and G. Troxel. Quantum cryptography in practice. InProc.

SIGCOMM 2003. ACM, ACM, Aug. 2003. http://arXiv.org/quant-ph/0307049.

[109] M. D. Ercegovac and T. Lang.Digital Arithmetic. Morgan Kaufmann, San

Francisco, CA, 2004.

[110] ESIA, JEITIA, KSIA, TSIA, and SIA. International technology roadmap for

semiconductors. Technical report, ESIA and JEITIA and KSIAand TSIA and

SIA, 2005. http://public.itrs.net/.

[111] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. A

quantum adiabatic evolution algorithm applied to random instances of an NP-

complete problem.Science, 292:472–476, 2001.

[112] R. P. Feynman.Feynman Lectures on Computation. Addison Wesley, 1996.

[113] R. P. Feynman. Computing machines in the future. In Hey[148].

[114] R. P. Feynman. Simulating physics with computers. In Hey [148].

[115] R. P. Feynman, R. B. Leighton, and M. Sands.The Feynman Lectures on Physics.

Addison-Wesley, Reading, Massachusetts, 1963.

[116] M. Fleischhauer and M. D. Lukin. Dark-state polaritons in electromagnetically

induced transparency.Physical Review Letters, 84:5094–5097, May 2000.

[117] R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer.

Controlling cold atoms using nanofabricated surfaces: Atom chips. Physical

Review Letters, 84:4749–4752, 2000.

[118] A. G. Fowler. Constructing arbitrary single-qubit fault-tolerant gates. quant-

ph/0411206, Dec. 2005.

218 BIBLIOGRAPHY

[119] A. G. Fowler, S. J. Devitt, and L. C. Hollenberg. Implementation of Shor’s

algorithm on a linear nearest neighbor qubit array.Quantum Information and

Computation, 4(4):237, 2004. http://arXiv.org/quant-ph/0402196.

[120] A. G. Fowler, C. D. Hill, and L. C. L. Hollenberg. Quantum error correction on

linear nearest neighbor qubit arrays.Physical Review A, 69:042314, 2004.

[121] A. G. Fowler and L. C. L. Hollenberg. Scalability of Shor’s algorithm with a

limited set of rotation gates.Physical Review A, 70:032329, 2004.

[122] M. P. Frank.Reversibility for Efficient Computing. PhD thesis, MIT, 1999.

[123] E. Fredkin and T. Toffoli. Conservative logic.Int. J. Theoretical Physics,

21:219–253, 1982.

[124] T. Fujisawa, T. H. Oosterkamp, W. G. van der Wiel, B. W. Broer, R. Aguado,

S. Tarucha, and L. P. Kouwenhoven. Spontaneous emission spectrum in double

quantum dot devices.Science, 282:932–935, 1998.

[125] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and

E. S. Polzik. Unconditional Quantum Teleportation.Science, 282(5389):706–

709, 1998.

[126] A. Galindo and M. A. Martin-Delgado. Information and computation: classical

and quantum aspects.Review of Modern Physics, 74:347–423, Apr. 2002.

[127] S. Gasparoni, J. Pan, P. Walther, T. Rudolph, and A. Zeilinger. Realization of

a photonic controlled-NOT gate sufficient for quantum computation. Physical

Review Letters, 93:020504, 2004.

[128] S. Gay. Quantum programming languages: Survey and bibliography.Bulletin of

the European Association for Theoretical Computer Science, June 2005.

[129] C. Gilbert. The Design and Use of Electronic Analogue Computers. Chapman

and Hall, Ltd., 1964.

[130] P. Gossett. Quantum carry-save arithmetic. http://arXiv.org/quant-ph/9808061,

Aug. 1998.

[131] D. Gottesman.Stabilizer Codes and Quantum Error Correction. PhD thesis,

California Institute of Technology, May 1997.

BIBLIOGRAPHY 219

[132] D. Gottesman. Fault tolerant quantum computation with local gates.

http://arXiv.org/quant-ph/9903099, Mar. 1999.

[133] D. Gottesman and I. L. Chuang. Demonstrating the viability of universal

quantum computation using teleportation and single-qubitoperations.Nature,

402:390–393, 1999.

[134] M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, and T. Esslinger. Exploring

phase coherence in a 2D lattice of bose-einstein condensates. Physical Review

Letters, 87:160405, 2001.

[135] L. Grover. A fast quantum-mechanical algorithm for database search. InProc.

28th Annual ACM Symposium on the Theory of Computation, pages 212–219,

1996. http://arXiv.org/quant-ph/9605043.

[136] L. K. Grover. Quantum telecomputation. http://arXiv.org/quant-ph/9704012,

Apr. 1997.

[137] L. K. Grover. Fixed-point quantum search.Physical Review Letters, 95:150501,

2005.

[138] S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Haffner,

F. Schmidt-Kaler, I. L. Chuang, and R. Blatt. Implementation of the Deutsch-

Jozsa algorithm on an ion-trap quantum computer.Nature, 421:48–50, 2003.

[139] H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. C. alkar, M. Chwalla,

T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O.Gühne, W. Dür,

and R. Blatt. Scalable multiparticle entanglement of trapped ions. Nature,

438:643–646, 2005.

[140] H. Häffner, F. Schmidt-Kaler, W. Haensel, C. F. Roos,T. Koerber, M. Chwalla,

M. Riebe, J. Benhelm, U. D. Rapol, C. Becher, and R. Blatt. Robust entangle-

ment.Appl. Phys. B, 81:151, 2005.

[141] L. Hales and S. Hallgren. An improved quantum Fourier transform algorithm

and applications. InProc. 41st Annual Symposium on Foundations of Computer

Science. ACM, ACM, Nov. 2000.

[142] J. Hall. A reversible instruction set architecture and algorithms. Physics and

Computation, pages 128–134, 1994.

220 BIBLIOGRAPHY

[143] S. Hallgren. Polynomial-time quantum algorithms forPell’s equation and the

principal ideal problem. InProc. Symposium on Theory of Computing. ACM,

2002.

[144] S. E. Harris. Electromagnetically induced transparency. Physics Today,

50(7):36–42, July 1997.

[145] A. W. Harrow, B. Recht, and I. L. Chuang. Efficient discrete approximations of

quantum gates.Journal of Mathematical Physics, 43(9):4445–4451, 2002.

[146] J. L. Hennessy and D. A. Patterson.Computer Architecture: A Quantitative

Approach. Morgan Kaufman, 3rd edition, 2003.

[147] W. K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton,

L. Deslauriers, and C. Monroe. T-junction ion trap array fortwo-dimensional

ion shuttling, storage, and manipulation.Applied Physics Letters, 88:034101,

2006.

[148] A. J. G. Hey, editor.Feynman and Computation. Westview Press, 2002.

[149] M. Hillery, V. Buz̆ek, and M. Ziman. Probabilistic implementation of universal

quantum processors.Physical Review A, 65:022301, 2002.

[150] J. Hughes. private communication, Jan. 2006.

[151] K. Hwang and F. A. Briggs.Computer Architecture and Parallel Processing.

McGraw Hill, 1984.

[152] M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang. Silicon device scaling

to the sub-10-nm regime.Science, 306:2057–2060, Dec. 2004.

[153] A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod. Majority

logic gate for magnetic quantum-dot cellular automata.Science, 311:205–208,

2006.

[154] N. Isailovic, Y. Patel, M. Whitney, and J. Kubiatowicz. Interconnection networks

for scalable quantum computers. InComputer Architecture News, Proc. 33rd

Annual International Symposium on Computer Architecture[8].

BIBLIOGRAPHY 221

[155] N. Isailovic, M. Whitney, Y. Patel, J. Kubiatowicz, D.Copsey, F. T. Chong,

I. L. Chuang, and M. Oskin. Datapath and control for quantum wires. ACM

Transactions on Architecture and Code Optimization, 1(1), Mar. 2004.

[156] K. M. Itoh. An all-silicon linear chain NMR quantum computer. Solid State

Communications, 133:747–752, 2005.

[157] D. Jaksch, H.-J. Briegel, J. Cirac, C. W. Gardiner, andP. Zoller. Entanglement of

atoms via cold controlled collisions.Physical Review Letters, 82(9):1975–1978,

1999.

[158] D. F. V. James and P. G. Kwiat. Atomic-vapor-based highefficiency optical

detectors with photon number resolution.Physical Review Letters, 89:183601,

2002.

[159] F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wratchtrup. Ob-

servation of coherence oscillation of a single nuclear spinand realization of a

two-qubit conditional quantum gate.Physical Review Letters, 93:130501, Sept.

2004.

[160] J. Johansson et al. Vacuum Rabi oscillations in a macroscopic superconducting

qubit LC oscillator system. http://arXiv.org/cond-mat/0510457, 2005.

[161] J. A. Jones, M. Mosca, and R. H. Hansen. Implementationof a quantum search

algorithm on a quantum computer.Nature, 393:344–346, 1998.

[162] R. Jozsa and N. Linden. On the role of entanglement in quantum com-

putational speedup. Proc. Royal Soc. London A, 459:2011–2032, 2003.

http://arXiv.org/quant-ph/0201143.

[163] B. E. Kane. A silicon-based nuclear spin quantum computer. Nature, 393:133–

137, May 1998.

[164] N. Katz, M. Ansmann, R. C. Bialczak, E. Lucero, R. McDermott, M. Neeley,

M. Steffen, E. M. Weig, A. N. Cleland, J. M. Martinis, and A. N.Korotkov.

Coherent state evolution in a superconducting qubit from partial-collapse mea-

surement.Science, 312:1498–1500, June 2006.

[165] Y. Kawano, S. Yamashita, and M. Kitagawa. Explicit implementation of

quantum circuits on a unidirectional periodic structure.Physical Review A,

72:012301, 2005.

222 BIBLIOGRAPHY

[166] J. Kempe. Quantum random walks: an introductory overview. Contemporary

Physics, 44(4):307–327, 2003.

[167] V. M. Kendon and W. J. Munro. Entanglement and its role in Shor’s algorithm.

http://arXiv.org/quant-ph/0412140, Dec. 2004.

[168] P. Kerntopf. Synthesis of multipurpose reversible logic gates. InProc. Euromicro

Symposium on Digital System Design. IEEE, IEEE, 2002.

[169] R. Keyes. Is quantum computing with solid state devices possible? Applied

Physics A: Materials Science & Processing, 76(5):737–741, Mar. 2003.

[170] D. Kielpinski, C. Monroe, and D. J. Wineland. Architecture for a large-scale

ion-trap quantum computer.Nature, 417:709–711, 2002.

[171] T. Kilburn, D. Edwards, M. Lanigan, and F. Sumner. One-level storage system.

IRE Transactions, EC-11(2):223–235, 1962.

[172] J. Kim et al. 1100x1100 port MEMS-based optical crossconnect with 4-dB max-

imum loss.IEEE Photonics Technology Letters, 15(11):1537–1539, 2003.

[173] J. Kim et al. System design for large-scale ion trap quantum information proces-

sor. Quantum Information and Computation, 5(7):515–537, 2005.

[174] J. Kim, J.-S. Lee, , S. Lee, and C. Cheong. Implementation of the refined

Deutsch-Jozsa algorithm on a three-bit NMR quantum computer. Physical Re-

view A, 62:022312, 2000.

[175] T. Kishimoto, H. Hachisu, J. Fujiki, K. Nagato, M. Yasuda, and H. Ka-

tori. Electrodynamic trapping of spinless neutral atoms with an atom chip.

http://arxiv.org/physics/0603157, Mar. 2006.

[176] A. Y. Kitaev. Quantum computations: algorithms and error correction.Russian

Math. Surveys, 52(6):1191–1249, 1997.

[177] A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi.Classical and Quantum Computa-

tion. American Mathematical Society, 2002.

[178] E. Knill. On Shor’s factor finding algorithm: Increasing the probability of suc-

cess and tradeoffs involving the Fourier transform modulus. Available online but

apparently unpublished., Aug. 1995.

BIBLIOGRAPHY 223

[179] E. Knill. Bounds on the probability of success of postselected nonlinear sign

shifts implemented with linear optics.Physical Review A, 68:064303, 2003.

[180] E. Knill. Quantum computing with very noisy devices. http://arXiv.org/quant-

ph/0410199, Nov. 2004.

[181] E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne.Benchmarking quan-

tum computers: the five-qubit error correcting code.Physical Review Letters,

86(25):5811–5814, June 2001.

[182] E. Knill, R. Laflamme, R. Martinez, and C.-H. Tseng. An algorithmic benchmark

for quantum information processing.Nature, 404:368–370, 2000.

[183] E. Knill, R. Laflamme, and G. J. Milburn. Thresholds forlinear optics quantum

computation, 2000. http://arXiv.org/quant-ph/0006120.

[184] E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum com-

putation with linear optics.Nature, 409:46–52, 2001.

[185] E. Knill, R. Laflamme, and W. H. Zurek. Resilient quantum computation.Sci-

ence, 279:342–345, Jan. 1998.

[186] D. E. Knuth.The Art of Computer Programming, volume 3 / Sorting and Search-

ing. Addison-Wesley, Reading, MA, 1973.

[187] D. E. Knuth. The Art of Computer Programming, volume 2 / Seminumerical

Algorithms. Addison-Wesley, Reading, MA, 3rd edition, 1998.

[188] J. G. Koller and W. C. Athas. Adiabatic switching, low energy computing, and

the physics of storing and erasing information. InProc. IEEE 1992 Workshop

on Physics and Computing. IEEE, 1992.

[189] G. A. Korn and T. M. Korn.Electronic Analog Computers. McGraw-Hill, 2nd

edition, 1956.

[190] C. E. Kozyrakis, S. Perissakis, D. A. Patterson, T. E. Anderson, K. Asanovic,

N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas,

N. Treuhaft, and K. A. Yelick. Scalable processors in the billion-transistor era:

Iram. IEEE Computer, 30(9):75–78, 1997.

224 BIBLIOGRAPHY

[191] N. Kunihiro. Practical running time of factoring by quantum circuits. InProc.

ERATO Conference on Quantum Information Science (EQIS2003) [1].

[192] N. Kunihiro. A new requirement for implementation of quantum computers.

private communication, Jan. 2004.

[193] N. Kunihiro. Exact analyses of computational time forfactoring in quantum

computers.IEICE Trans. Fundamentals, E88-A(1):105–111, 2005.

[194] T. Kutsuzawa et al. Coherent control of a flux qubit by phase-shifted resonant

microwave pulses. http://arXiv.org/cond-mat/0501592, 2005.

[195] T. D. Ladd. Quantum Computing With Nuclear Spins in Semiconductors. PhD

thesis, Stanford University, 2005.

[196] T. D. Ladd, J. R. Goldman, F. Yamaguchi, Y. Yamamoto, E.Abe, and K. M. Itoh.

All-silicon quantum computer.Physical Review Letters, 89(1):17901, July 2002.

[197] T. D. Ladd, D. Maryenko, Y. Yamamoto, E. Abe, and K. M. Itoh. Coherence

time of a solid-state nuclear qubit, 2005. http://arXiv.org/quant-ph/0309164.

[198] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek. Perfect quantum error

correcting code.Physical Review Letters, 77:198–201, 1996.

[199] B. W. Lampson. Hints for computer system design. InProc. 9th ACM Sympo-

sium on Operating Systems Principles, pages 33–48, 1983.

[200] R. Landauer. Irreversibility and heat generation in the computing process.IBM

J. of Research and Development, 5(3):183–191, 1961. reprinted in IBM J. R.&D.

Vol. 44 No. 1/2, Jan./Mar. 2000, pp. 261–269.

[201] J. Lantz, M. Wallquist, V. S. Shumeiko, and G. Wendin. Josephson junction qubit

network with current-controlled interaction.Physical Review B, 70:140507,

2004.

[202] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini,

D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J.

Wineland. Creation of a six-atom ’schrödinger cat’ state.Nature, 438:639–642,

2005.

BIBLIOGRAPHY 225

[203] A. Lenstra, E. Tromer, A. Shamir, W. Kortsmit, B. Dodson, J. Hughes, and

P. Leyland. Factoring estimates for a 1024-bit RSA modulus.In AsiaCrypt

2003, Lecture Notes in Computer Science, New York, 2003. Springer-Verlag.

[204] D. W. Leung, I. L. Chuang, F. Yamaguchi, and Y. Yamamoto. Efficient imple-

mentation of selective recoupling in heteronuclear spin systems using Hadamard

matrices.Phys. Rev. A, 61, 2000. http://arXiv.org/quant-ph/9904100.

[205] D. A. Lidar, I. L. Chuang, and K. B. Whaley. Decoherence-free subspaces for

quantum computation.Physical Review Letters, 81(12):2594–2597, Sept. 1998.

[206] D. A. Lidar and K. B. Whaley.Irreversible Quantum Dynamics, volume 622 of

Lecture Notes in Physics, chapter Decoherence-Free Subspaces and Subsystems.

Springer, 2003.

[207] Y. L. Lim, S. D. Barrett, A. Beige, P. Kok, and L. C. Kwek.Repeat-Until-Success

quantum computing using stationary and flying qubits. http://arXiv.org/quant-

ph/0508218, Aug. 2005.

[208] Y. Liu, L. F. Wei, J. S. Tsai, and F. Nori. Controllable coupling between flux

qubits. cond-mat/0507496, July 2005.

[209] Y. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori. Optical selection rules and

phase-dependent adiabatic state control in a superconducting quantum circuit.

Physical Review Letters, 95:087001, 2005.

[210] S. Lloyd. A potentially realizable quantum computer.Science, 261:1569–1571,

1993.

[211] S. Lloyd. Universal quantum simulators.Science, 273:1073–1078, 1996.

[212] S. Lloyd. Ultimate limits to computation.Nature, 406:1047–1054, 2000.

[213] S. Lloyd. Computational capacity of the universe.Physical Review Letters,

88:237901, 2002.

[214] D. Loss and D. P. DiVincenzo. Quantum computation withquantum dots.Phys.

Rev. A, 57:120, 1998.

[215] P. J. Love and B. M. Boghosian. Type-II quantum algorithms.Physica A, 2005,

to appear.

226 BIBLIOGRAPHY

[216] A. Maassen van den Brink, A. Berkley, and M. Yalowsky. Mediated tunable

coupling of flux qubits.New Journal of Physics, 7:230, 2005.

[217] F. Magniez, D. Mayers, M. Mosca, and H. Ollivier. Self-testing of quantum

circuits. http://arXiv.org/quant-ph/0512111, Dec. 2005.

[218] P. J. Marchand, A. V. Krishnamoorthy, G. I. Yayla, S. C.Esener, and U. Efron.

Optically augmented 3-d computer: System technology and architecture.J. Par-

allel and Distributed Computing, 41(1):20–35, Feb. 1997.

[219] D. J. H. Markham.Local Distinguishability, Entanglement and Mixedness of

Quantum States. PhD thesis, Imperial College, University of London, 2004.

[220] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris. Single- and

multi-wall carbon nanotube field-effect transistors.Applied Physics Letters,

73(17):2447–2449, 1998.

[221] J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina. Rabi oscillations in a

large Josephson-junction qubit.Physical Review Letters, 89:117901, 2002.

[222] D. N. Matsukevich and A. Kuzmich. Quantum State Transfer Between Matter

and Light.Science, 306(5696):663–666, 2004.

[223] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger. Dense coding in ex-

perimental quantum communication.Physical Review Letters, 76:4656–4659,

1996.

[224] C. Mead.Analog VLSI and Neural Systems. Addison Wesley, 1989.

[225] C. Mead and L. Conway.Introduction to VLSI Systems. Addison-Wesley Long-

man Publishing Co., Boston, MA, 1979.

[226] C. A. Mead. Scaling of MOS technology to submicrometerfeature sizes. In Hey

[148].

[227] M. Mehring, J. Mende, and W. Scherer. Entanglement between and electron and

a nuclear spin 1/2.Physical Review Letters, 90:153001, Apr. 2003.

[228] J. D. Meindl, Q. Chen, and J. A. Davis. Limits on siliconnanoelectronics for

terascale integration.Science, 293:2044–2049, 2001.

BIBLIOGRAPHY 227

[229] T. S. Metodi, D. D. Thaker, A. W. Cross, F. T. Chong, and I. L. Chuang. A

quantum logic array microarchitecture: Scalable quantum data movement and

computation. InProceedings of the 2005 International Symposium on Microar-

chitecture (MICRO-38), 2005.

[230] T. Metodiev, A. Cross, D. Thaker, K. Brown, D. Copsey, F. T. Chong, and I. L.

Chuang. Preliminary results on simulating a scalable faulttolerant ion-trap sys-

tem for quantum computation. InProceedings of the 3rd Workshop on Non-

Silicon Computation [NSC-3], 2003.

[231] D. A. Meyer. Quantum games and quantum algorithms. http://arXiv.org/quant-

ph/0004092, 2000.

[232] A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko. Demonstration

of a low-noise near-infrared photon counter with multiphoton discrimination.

Applied Physics Letters, 83:791–793, 2003.

[233] C. Miquel, J. P. Paz, and W. H. Zurek. Quantum computation with phase drift

errors.Physical Review Letters, 78:3971–3974, 1997.

[234] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. vander Wal, and S. Lloyd.

Josephson persistent-current qubit.Science, 285:1036–1039, Aug. 1999.

[235] C. Moore and M. Nilsson. Parallel quantum computationand quantum

codes. SIAM J. Computing, 31(3):799–815, 2001. http://arxiv.org/abs/quant-

ph/9808027.

[236] G. E. Moore. Cramming more components onto integratedcircuits.Electronics,

38(8), Apr. 1965.

[237] W. Munro, K. Nemoto, and T. Spiller. Weak nonlinearities: a new route to optical

quantum computation.New Journal of Physics, 7:137, May 2005.

[238] W. Munro, K. Nemoto, and A. White. The Bell inequality:a measure of entan-

glement?J. Modern Optics, 48(7):1239–1246, June 2001.

[239] K. V. R. M. Murali, N. Sinha, T. S. Mahesh, M. H. Levitt, K. V. Ramanathan,

and A. Kumar. Quantum information processing by nuclear magnetic resonance:

Experimental implementation of half-adder and subtractoroperations using an

oriented spin-7/2 system.Physical Review A, 66(022313), 2002.

228 BIBLIOGRAPHY

[240] E. S. Myrgren and K. B. Whaley. Implementing a quantum algorithm with

exchange-coupled quantum dots: a feasibility study.Quantum Information Pro-

cessing, 2003. to appear; http://arXiv.org/quant-ph/0309051.

[241] Y. Nakajima, Y. Kawano, and H. Sekigawa. A new algorithm for produc-

ing quantum circuits using KAK decompositions, 2005. http://arXiv.org/quant-

ph/0509196.

[242] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai. Coherent control of macroscopic

quantum states in a single-Cooper-pair box.Nature, 398:786–788, Apr. 1999.

[243] C. Negrevergne, T. Mahesh, C. Ryan, M. Ditty, F. Cyr-Racine, W. Power,

N. Boulant, T. Havel, D. Cory, and R. Laflamme. Benchmarking quantum con-

trol methods on a 12-qubit system.Physical Review Letters, 96:170501, 2006.

[244] K. Nemoto and W. J. Munro. Nearly deterministic linearoptical controlled-NOT

gate.Physical Review Letters, 93:250502, 2004.

[245] M. A. Nielsen. Simple rules for a complex quantum world. In The Edge of

Physics. Scientific American, 2003.

[246] M. A. Nielsen. Cluster-state quantum computation. http://arxiv.org/abs/quant-

ph/0504097, Apr. 2005.

[247] M. A. Nielsen and I. L. Chuang. Programmable quantum gate arrays.Physical

Review Letters, 79:321–324, 1997.

[248] M. A. Nielsen and I. L. Chuang.Quantum Computation and Quantum Informa-

tion. Cambridge University Press, 2000.

[249] M. A. Nielsen and I. L. Chuang.Quantum Computation and Quantum Informa-

tion, pages 266–268. Cambridge University Press, 2000.

[250] M. A. Nielsen and C. M. Dawson. Fault-tolerant quantumcomputation with

cluster states, 2004. http://arXiv.org/quant-ph/0405134.

[251] M. A. Nielsen, M. R. Dowling, M. Gu, and A. C. Doherty. Quantum computation

as geometry.Science, 311:1133–1135, 2006.

[252] A. O. Niskanen, Y. Nakamura, and J.-S. Tsai. Tunable coupling scheme for flux

qubits at the optimal point. cond-mat/0512238, Dec. 2005.

BIBLIOGRAPHY 229

[253] J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning. Demon-

stration of an all-optical quantum controlled-NOT gate.Nature, 426:264–267,

Nov. 2003.

[254] B. Ömer. Classical concepts in quantum programming. InProc. Quantum Struc-

tures, 2002.

[255] M. Oskin, F. T. Chong, and I. Chuang. A practical architecture for reliable quan-

tum computers.IEEE Computer, Jan. 2002.

[256] M. Oskin, F. T. Chong, I. L. Chuang, and J. Kubiatowicz.Building quantum

wires: The long and short of it. InComputer Architecture News, Proc. 30th

Annual International Symposium on Computer Architecture. ACM, June 2003.

[257] J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott,and G. S. Taylor.

Magic: A VLSI layout system. InProc. 21st Design Automation Conference,

pages 152–159. IEEE, 1984.

[258] E. Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimen-

sions.Science, 311:189–193, 2006.

[259] J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger. Experimental

entanglement purification of arbitrary unknown states.Nature, 423:417–422,

May 2003.

[260] Y. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D.V. Averin, and J. S.

Tsai. Quantum oscillations in two coupled charge qubits.Nature, 421:823–826,

Feb. 2003.

[261] K. G. Paterson, F. Piper, and R. Schack. Why quantum cryptography?

http://arxiv.org/quant-ph/0406147, June 2004.

[262] Y. N. Patt, S. J. Patel, M. Evers, D. H. Friendly, and J. Stark. One billion transis-

tors, one uniprocessor, one chip.IEEE Computer, 30(9):51–57, 1997.

[263] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays of

inexpensive disks (RAID). InProc. ACM SIGMOD Conference, pages 109–116,

June 1988.

[264] J. P. Paz and A. Roncaglia. Quantum gate arrays can be programmed to evaluate

the expectation value of any operator.Physical Review A, 68:052316, 2003.

230 BIBLIOGRAPHY

[265] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller. Decoherence, continuous

observation, and quantum computing: A cavity QED model.Physical Review

Letters, 75:3788–3791, 1995.

[266] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin,

C. M. Marcus, M. P. Hanson, and A. C. Gossard. Coherent manipulation of

coupled electron spins in semiconductor quantum dots.Science, 309:2180–2184,

2005.

[267] C. A. Piña. MOSIS: IC prototyping and low volume production service. In

Proc. 2001 International Conference on Microelectronic Systems Education

(MSE’01). IEEE, 2001.

[268] T. Pittman, B. Jacobs, and J. Franson. Demonstration of quantum error correction

using linear optics.Physical Review A, page 052332, May 2005.

[269] T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson. Experimental

controlled-NOT logic gate for single photons in the coincidence basis.Physi-

cal Review A, 68:032316, 2003.

[270] T. B. Pittman, B. C. Jacobs, and J. D. Franson. Demonstration of nondetermin-

istic quantum logic operations using linear optical elements. Physical Review

Letters, 88:257902, 2002.

[271] B. L. T. Plourde, T. L. Robertson, P. A. Reichardt, T. Hime, S. Linzen, C.-E. Wu,

and J. Clarke. Flux qubits and readout device with two independent flux lines.

Physical Review B, 72:060506(R), 2005.

[272] B. L. T. Plourde, J. Zhang, K. B. Whaley, F. K. Wilhelm, T. L. Robertson,

T. Hime, S. Linzen, P. A. Reichardt, C.-E. Wu, and J. Clarke. Entangling flux

qubits with a bipolar dynamic inductance.Physical Review B, 70:140501(R),

2004.

[273] J. Preskill. Lectures notes on quantum computation.

http://www.theory.caltech.edu/p̃reskill/ph219/index.html, Oct. 1998.

[274] J. Preskill. Reliable quantum computers.Proc. Roy. Soc. Lond. A, 454:385–410,

1998.

BIBLIOGRAPHY 231

[275] T. C. Ralph. Time displaced entanglement and non-linear quantum evolution.

http://arXiv.org/quant-ph/0510038, Oct. 2005.

[276] T. C. Ralph, A. J. F. Hayes, and A. Gilchrist. Loss-tolerant optical qubits.Phys-

ical Review Letters, 95:100501, Sept. 2005.

[277] R. Raussendorf, D. E. Browne, and H. J. Briegel. Measurement-based quantum

computation on cluster states.Physical Review A, 68(022312), 2003.

[278] H. Rheingold.Smart Mobs: The Next Social Revolution. Perseus Books Group,

2002.

[279] C. Rigetti, A. Blais, and M. Devoret. Protocol for universal gates in optimally

biased superconducting qubits.Physical Review Letters, 94:240502, 2005.

[280] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems.Commun. ACM, 21(2):120–126, 1978.

[281] C. F. Roos, M. Riebe, H. Häffner, W. Hänsel, J. Benhelm, G. P. Lancaster,

C. Becher, F. Schmidt-Kaler, and R. Blatt. Control and measurement of three-

qubit entangled states.Science, 304:1478–1480, June 2004.

[282] M. Roško, V. Buz̆ek, P. R. Chouha, and M. Hillery. Generalized measurements

via a programmable quantum processor.Physical Review A, 68:062302, 2003.

[283] RSA Security Inc. web page, May 2004.

http://www.rsasecurity.com/rsalabs/node.asp?id=2096.

[284] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C. M. Lieber.

Carbon nanotube-based nonvolatile random access memory for molecular com-

puting. Science, 289:94–97, 2000.

[285] K. Sanaka, T. Jennewein, J. Pan, K. Resch, and A. Zeilinger. Experimental

nonlinear sign shift for linear optics quantum computation. Physical Review

Letters, 92:017902, 2004.

[286] C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto. Indistin-

guishable photons from a single-photon device.Nature, 419:594–597, 2002.

[287] S. Scheel, K. Nemoto, W. J. Munro, and P. L. Knight. Measurement-induced

nonlinearity in linear optics.Physical Review A, 68:032310, 2003.

232 BIBLIOGRAPHY

[288] F. Schmidt-Kaler, H. Haffner, M. Riebe, S. Gulde, G. P.T. Lancaster,

T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt. Realization of

the Cirac-Zoller controlled-NOT quantum gate.Nature, 422:408, 2003.

[289] B. Schneier.Applied Cryptography. J. Wiley, 2nd edition, 1996.

[290] N. Schuch and J. Siewert. Programmable networks for quantum algorithms.

Physical Review Letters, 91:027902, 2003.

[291] L. J. Schulman and U. V. Vazirani. Molecular scale heatengines and scalable

quantum computers. InProc. 31st ACM Symposium on the Theory of Computing,

page p. 322, 1999.

[292] T. Sekiguchi, S. Yoshida, and K. M. Itoh. Self-assembly of parallel atomic wires

and periodic clusters of silicon on a vicinal Si(111) surface. Physical Review

Letters, 95:106101, 2005.

[293] K. Semba. private communication, Nov. 2005.

[294] M. S. Shahriar, P. R. Hemmer, S. Lloyd, P. S. Bhatia, andA. E. Craig. Solid-state

quantum computing using spectral holes.Physical Review A, 66:032301, 2002.

[295] A. Shnirman, G. Schön, and Z. Hermon. Quantum manipulations of small

josephson junctions.Physical Review Letters, 79:2371–2374, 1997.

[296] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and fac-

toring. In Proc. 35th Symposium on Foundations of Computer Science, pages

124–134, Los Alamitos, CA, 1994. IEEE Computer Society Press.

[297] P. W. Shor. Fault-tolerant quantum computation. InProc. 37th Symposium on

Foundations of Computer Science, pages 56–65, Los Alamitos, CA, 1996. IEEE

Computer Society Press.

[298] P. W. Shor. Polynomial time algorithms for prime factorization and discrete

logarithms on a quantum computer.SIAM J. Comp., 26(5):1484–1509, 1997.

http://arXiv.org/quant-ph/9508027.

[299] D. R. Simon. On the power of quantum computation. InProc. 35th Annual

Symposium on Foundations of Computer Science, pages 116–124. ACM, 1994.

BIBLIOGRAPHY 233

[300] A. J. Skinner, M. E. Davenport, and B. E. Kane. Hydrogenic spin quantum

computing in silicon: A digital approach.Physical Review Letters, 90:087901,

2003. http://arXiv.org/quant-ph/0206159.

[301] A. Sørensen and K. Mølmer. Entanglement and quantum computation with ions

in thermal motion.Phys. Rev. A, 62, 2000.

[302] T. P. Spiller, W. J. Munro, S. D. Barrett, and P. Kok. An introduction to quantum

information processing: applications and realisations. Technical Report HPL-

2005-192, Oct. 2005.

[303] T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro,P. van Loock, and G. J.

Milburn. Quantum computation by communication.New Journal of Physics,

8:30, Feb. 2006.

[304] A. Steane. Error correcting codes in quantum theory.Physical Review Letters,

77:793–797, 1996.

[305] A. Steane. The ion trap quantum information processor. Appl.Phys. B, 64:623–

642, 1997.

[306] A. Steane et al. Speed of ion trap quantum information processors.Phys. Rev.

A, 62, 2000. http://arXiv.org/quant-ph/0003087.

[307] A. M. Steane. Quantum computer architecture for fast entropy extraction.Quan-

tum Information and Computation, 2(4):297–306, 2002. http://arxiv.org/quant-

ph/0203047.

[308] A. M. Steane. Overhead and noise threshold of fault-tolerant quantum error

correction.Physical Review A, 68:042322, 2003.

[309] A. M. Steane. How to build a 300 bit, 1 Gop quantum computer.

http://arxiv.org/abs/quant-ph/0412165, Dec. 2004.

[310] A. M. Steane and B. Ibinson. Fault-tolerant logical gate networks for CSS codes.

http://arXiv.org/quant-ph/0311014, Nov. 2003.

[311] A. M. Steane and D. M. Lucas. Quantum computing with trapped ions, atoms,

and light.Fortschritte der Physik, Apr. 2000. http://arXiv.org/quant-ph/0004053.

234 BIBLIOGRAPHY

[312] G. L. Steele Jr. and W. D. Hillis. Connection Machine Lisp: Fine-grained parallel

symbolic processing. InProceedings of the 1986 ACM conference on LISP and

functional programming, pages 279–297. ACM, 1986.

[313] M. Steffen, W. van Dam, T. Hogg, G. Breyta, and I. Chuang. Experimental im-

plementation of an adiabatic quantum optimization algorithm. Physical Review

Letters, 90:067903, 2003.

[314] T. L. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and

C. V. Packer. BEOWULF: A parallel workstation for scientificcomputation. In

Proc. Int. Conf. on Parallel Processing, Volume I: Architecture, pages 11–14,

1995.

[315] J. Stockton, M. Armen, and H. Mabuchi. Programmable logic devices in exper-

imental quantum optics.J. Opt. Soc. Am. B, 19:3019, 2002.

[316] K. M. Svore, A. V. Aho, A. W. Cross, I. Chuang, and I. L. Markov. A lay-

ered software architecture for quantum computing design tools. IEEE Computer,

pages 74–83, Jan. 2006.

[317] K. M. Svore, B. M. Terhal, and D. P. DiVincenzo. Local fault-tolerant quantum

computation.Physical Review A, 72:022317, 2005.

[318] T. Szkopek, P. Boykin, H. Fan, V. Roychowdhury, E. Yablonovitch, G. Simms,

M. Gyure, and B. Fong. Threshold error penalty for fault tolerant computation

with nearest neighbour communication. http://arxiv.org/abs/quant-ph/0411111,

2004.

[319] T. Szymanski and H. Hinton. Design of a terabit free-space photonic backplane

for parallel computing. InProc. Second Workshop on Massively Parallel Pro-

cessing Using Optical Interconnections. IEEE, 1995.

[320] Y. Takahashi, Y. Kawano, and M. Kitagawa. Constant-depth quantum circuits

with gates for addition. InProc. ERATO Conference on Quantum Information

Science (EQIS2003)[1].

[321] S. Tani, H. Kobayashi, and K. Matsumoto. Exact quantumalgorithms for the

leader election problem. InProc. STACS 2005: 22nd Annual Symposium on

Theoretical Aspects of Computer Science, volume 3404 ofLecture Notes in Com-

puter Science, pages 581–592. Springer-Verlag, 2005.

BIBLIOGRAPHY 235

[322] S. J. Tans, A. R. M. Verschueren, and C. Dekker. Room-temperature transistor

based on a single carbon nanotube.Nature, 393:49–52, 1998.

[323] J. Taylor, H.-A. Engel, W. Dür, A. Yacoby, C. Marcus, P. Zoller, and M. Lukin.

Fault-tolerant architecture for quantum computation using electrically controlled

semiconductor spins.Nature Physics, 1:177–183, Dec. 2005.

[324] D. D. Thaker, T. Metodi, A. Cross, I. Chuang, and F. T. Chong. CQLA: Matching

density to exploitable parallelism in quantum computing. In Computer Architec-

ture News, Proc. 33rd Annual International Symposium on Computer Architec-

ture [8].

[325] C. Tomovich. MOSIS – a gateway to silicon.IEEE Circuits and Devices Maga-

zine, 4(2):22–23, 1988.

[326] P. Treutlein, T. Steinmetz, Y. Colombe, P. Hommelhoff, J. Reichel, M. Greiner,

O. Mandel, A. Widera, T. Rom, I. Bloch, and T. W. Hënsch. Quan-

tum information processing in optical lattices and magnetic microtraps.

http://arXiv.org/quant-ph/060513, May 2006.

[327] M. Udrescu, L. Prodan, and M. Vlădţiu. Using HDLs fordescribing quantum

circuits: A framework for efficient quantum algorithm simulation. InProc. Con-

ference on Computing Frontiers, pages 96–110. ACM, 2004.

[328] W. Unruh. Maintaining coherence in quantum computers. Physical Review A,

51:992–997, 1995.

[329] I. Z̆utić, J. Fabian, and S. D. Darma. Spintronics: Fundamentals and applications.

Review of Modern Physics, 76:323, 2004.

[330] J. Vala, Z. Amitay, B. Zhang, S. R. Leone, and R. Kosloff. Experimental imple-

mentation of the Deutsch-Jozsa algorithm for three-qubit functions using pure

coherent molecular superpositions.Physical Review A, 66:062316, 2002.

[331] R. Van Meter. http://www.tera.ics.keio.ac.jp/person/rdv/quantum/arithmetic.html.

[332] R. Van Meter. Communications topology and distribution of the quantum Fourier

transform. InProc. Tenth Symposium on Quantum Information Technology

(QIT10), pages 19–24, May 2004.

236 BIBLIOGRAPHY

[333] R. Van Meter. Trading classical for quantum computation using indirection. In

Realizing Controllable Quantum States: Proc. Int. Symp. onMesoscopic Super-

conductivity and Spintronics (MS+S2004), Mar. 2004.

[334] R. Van Meter and K. M. Itoh. Fast quantum modular exponentiation. Physical

Review A, 71(5):052320, May 2005.

[335] R. Van Meter, K. M. Itoh, and T. D. Ladd. Architecture-dependent execution

time of Shor’s algorithm. InProc. Int. Symp. on Mesoscopic Superconductivity

and Spintronics (MS+S2006), Feb. 2006.

[336] R. Van Meter, W. J. Munro, K. Nemoto, and K. M. Itoh. Distributed arithmetic on

a quantum multicomputer. InComputer Architecture News, Proc. 33rd Annual

International Symposium on Computer Architecture[8], pages 354–365.

[337] R. Van Meter and M. Oskin. Architectural implicationsof quantum computing

technologies.Journal of Emerging Technologies in Computing Systems, 2(1),

Jan. 2006.

[338] L. M. Vandersypen and I. Chuang. NMR techniques for quantum computation

and control.Rev. Modern Phys., 76:1037, 2004.

[339] L. M. K. Vandersypen.Experimental Quantum Computation with Nuclear Spins

in Liquid Solution. PhD thesis, Stanford University, 2001. http://arXiv.org/quant-

ph/0205193.

[340] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood,

and I. L. Chuang. Experimental realization of Shor’s quantum factoring algo-

rithm using nuclear magnetic resonance.Nature, 414:883–887, Dec. 2001.

[341] J. J. Vartiainen, A. O. Niskanen, M. Nakahara, and M. M.Salomaa. Implement-

ing Shor’s algorithm on Josephson charge qubits.Physical Review A, 70:012319,

2004.

[342] V. Vedral, A. Barenco, and A. Ekert. Quantum networks for elementary arith-

metic operations. Phys. Rev. A, 54:147–153, 1996. http://arXiv.org/quant-

ph/9511018.

[343] C. Vieri, M. J. Ammer, M. Frank, N. Margolus, and T. Knight. A fully reversible

asymptotically zero energy microprocessor.

BIBLIOGRAPHY 237

[344] C. J. Vieri. Reversible Computer Engineering and Architecture. PhD thesis,

MIT, 1999.

[345] E. Waks, K. Inoue, W. Oliver, E. Diamanti, and Y. Yamamoto. High-efficiency

photon-number detection for quantum information processing. IEEE Journal of

Selected Topics in Quantum Electronics, 9:1502–1511, 2003.

[346] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar,

S. M. Girvin, and R. J. Schoelkopf. Strong coupling of a single photon to a

superconducting qubit using circuit quantum electrodynamics.Nature, 431:162–

167, Sept. 2004.

[347] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. As-

pelmeyer, and A. Zeilinger. Experimental one-way quantum computing.Nature,

434:169–176, 2005.

[348] D. F. Wang, A. Takahashi, Y. Matsumoto, K. M. Itoh, Y. Yamamoto, T. Ono,

and M. Esashi. Magnetic mesa structures fabricated by reactive ion etching with

CO/NH3/Xe plasma chemistry for an all-silicon quantum computer. Nanotech-

nology, pages 990–994, 2005.

[349] C. P. Williams and S. H. Clearwater.Ultimate Zero and One: Computing at the

Quantum Frontier. Copernicus Books, 1999.

[350] D. J. Wineland et al. Quantum control, quantum information process-

ing, and quantum-limited metrology with trapped ions. InProceedings of

the International Conference on Laser Spectroscopy (ICOLS), Aug. 2005.

http://arxiv.org/quant-ph/0508025.

[351] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár,

M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger. Spintronics: A spin-based

electronics vision for the future.Science, 294:1488–1495, 2005.

[352] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned.Nature,

299:802, Oct. 1982.

[353] F. Yamaguchi, K. Nemoto, and W. J. Munro. Quantum errorcorrection via robust

probe modes.Physical Review A, 73:060302, June 2006.

238 BIBLIOGRAPHY

[354] A. Yao. Quantum circuit complexity. InProceedings of the 34th Annual Sympo-

sium on Foundations of Computer Science, pages 352–361, Los Alamitos, CA,

1993. Institute of Electrical and Electronic Engineers Computer Society Press.

[355] J. Yepez. Type-II quantum computers.International Journal of Modern Physics

C, 12(9):1273–1284, 2001.

[356] A. Yimsiriwattana and S. J. Lomonaco Jr. Distributed quantum computing: A

distributed Shor algorithm. http://arxiv.org/quant-ph/0403146, Mar. 2004.

[357] N. Yoran and B. Reznik. Deterministic linear optics quantum computation with

single photon qubits.Physical Review Letters, 91:037903, 2003.

[358] S. Yoshida, T. Sekiguchi, and K. M. Itoh. Atomically straight steps on vici-

nal Si(111) surfaces prepared by step-parallel current in the kink-up direction.

Applied Physics Letters, 87:031903, 2005.

[359] J. Q. You, J. S. Tsai, and F. Nori. Scalable quantum computing with Joseph-

son charge qubits.Phys. Rev. Lett., 89, Nov. 2002. http://arXiv.org/cond-

mat/0306209.

[360] J. Q. You, J. S. Tsai, and F. Nori. Quantum computing with many superconduct-

ing qubits, June 2003. http://arXiv.org/cond-mat/0306208.

[361] Y. Yu, S. Han, X. Chu, S.-I. Chu, and Z. Wang. Coherent temporal oscillations of

macroscopic quantum states in a Josephson junction.Science, 296(5569):889–

892, 2002.

[362] C. Zalka. Fast versions of Shor’s quantum factoring algorithm.

http://arXiv.org/quant-ph/9806084, June 1998. http://arXiv.org/quant-

ph/9806084.

[363] Z. Zhong, D. Wang, Y. Cui, M. W. Bocrath, and C. M. Lieber. Nanowire crossbar

arrays as address decoders for integrated nanosystems.Science, 302:1377–1379,

2003.

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Computing Frontiers: Why Study Quantum?
	Defining Quantum Computer Architecture
	The Quantum Multicomputer
	This Dissertation
	Contributions
	Contents and Structure
	How to Read This Dissertation

	What We're Not Going to Talk About
	Summary

	Reversible and Quantum Computation
	Reversible Classical Computation
	History and Importance
	Two-Bit Gates
	Three-Bit Gates: Toffoli and Fredkin
	Ancilla Management

	Introduction to Quantum Computing
	Notation and a Few Linear Algebra Notes
	Schrödinger's Equation
	Qubits
	Manipulating Qubits
	DiVincenzo's Criteria
	Quantum Algorithms
	Distributed Quantum Computation

	Error Management in Quantum Computers
	Error Models
	Quantum Error Correction Codes
	Fault Tolerance
	Threshold Calculations and Concatenation
	Why QEC Suppresses Over-Rotation Errors
	Other Error-Suppression Techniques

	Summary

	Shor's Algorithm for Factoring Large Numbers
	The Importance of Factoring
	Historical Progress in Factoring
	The Quantum Fourier Transform
	Prior Art in Quantum Adders
	Arithmetic Performance Notation
	Linear-Time Adders
	O(logn) Adders
	Ultimate Limits on Performance of Addition
	Summary

	Quantum Modular Exponentiation
	VBE, BCDP and Others
	Cleve-Watrous Parallel Multiplication
	Schönhage-Strassen

	Shor's Algorithm
	Summary

	Taxonomy of Quantum Computing Technologies
	Taxonomy Framework
	Basic Features
	Algorithmic Efficiency Features
	Time and Gate Characteristics
	Other Features
	Manufacturing and Operating Environment

	Quantum Technologies
	Solution NMR
	Josephson Junction
	All-Silicon NMR
	Scalable Ion Trap
	All-Optical
	Quantum Dot
	Kane Solid-State NMR
	Optical Lattice

	Summary

	Networking
	Qubus Entanglement Protocols
	Teleportation
	Teleporting Data
	Teleporting Gates

	Multicomputer Networks
	Summary

	Performance of Large-Scale Systems
	Managing Performance
	Error Correction, Architecture, and Clock Speed
	ac and ntc Architectural Models
	Notation

	Trading Classical for Quantum Computation
	Introduction
	Indirection
	The b Array
	The Algorithm
	Evaluating Cost and Selecting Word Length

	New Adder Types
	Basic Carry-Select Adder
	O(n) Carry-Select Adder
	O(logn) Conditional Sum Adder
	Summary

	Monolithic Shor Performance
	Mapping Adders to Architectures
	Acceleration
	Example: Exponentiating a 128-bit Number
	Asymptotic Behavior
	Results
	Error Correction Needs

	Summary

	The Quantum Multicomputer
	System Overview
	An Engineer's Definition of Scalability
	Economics
	Infrastructure Needs
	Performance
	Single-Device Physical Limitations

	System Overview
	Hardware Overview
	Node Architecture
	Network Topologies
	Software
	Summary

	Distributed QEC and Bus Design
	Distributed Logical Zeroes
	Distributed Data
	Implications for Link Design
	Summary

	Distributed Form of Shor's Algorithm
	Algorithm
	Performance

	Summary

	Conclusion
	Complete Performance Estimates
	Future Work
	Prospects
	Final Words

	Glossary
	List of Papers and Presentations
	Bibliography

