
The xifthen package

Josselin Noirel

25th March 2006

Abstract

This package implements new commands to go within the first argument
of \ifthenelse to test whether a string is void or not, if a command is defined
or equivalent to another. It includes also the possibility to make use of the
complex expressions introduced by the package calc, together with the ability
of defining new commands to handle complex tests. This package requires the
ε-TEX features.

1 General syntax

The general syntax is inherited of that of the package ifthen:

\ifthenelse{〈test expression〉}{〈true code〉}{〈false code〉}

Evaluates the 〈test expression〉 and executes 〈true code〉 if the test turns out to be true
and 〈false code〉 otherwise. ifthen provides the following tests:

〈value 1〉 = 〈value 2〉

〈value 1〉 < 〈value 2〉

〈value 1〉 > 〈value 2〉 Simple tests on integer comparisons.

\isodd{〈number〉} Is 〈number〉 odd?

\isundefined〈command〉 Id 〈command〉 undefined?

\equal{〈string 1〉}{〈string 2〉} Are 〈string 1〉 and 〈string 2〉 equivalent (after expan-
sion)?

\boolean{〈boolean〉} Does the boolean 〈boolean〉 hold the value true or false?

\lengthtest{〈dimen 1〉 = 〈dimen 2〉}

\lengthtest{〈dimen 1〉 < 〈dimen 2〉}

\lengthtest{〈dimen 1〉 > 〈dimen 2〉} Simple dimension comparisons.

\(. . . \) Parenthesis.

\AND

\OR

\NOT Conjunction, disjunction, negation.

1



2 New tests

\isnamedefined{〈command name〉}

Returns true if the command \〈command name〉 is defined.

\isempty{〈content〉}

Returns true is 〈content〉 is empty (in the sense used by ifmtarg which is used inter-
nally). It is essentially equivalent to \equal{〈content〉}{} except that the argument
of \isempty isn’t expanded and therefore isn’t affected by fragile commands.

\isequivalentto{〈command 1〉}{〈command 2〉}

Corresponds to the \ifx test: it returns true when the two commands are exactly
equivalent (same definition, same number of arguments, etc., otherwise false is
returned.

\cnttest{〈counter expression 1〉}〈comparison〉{〈counter expression 2〉}

Compares the two counter expressions (having the usual syntax of the package
calc) and returns the value of the test. The comparison can be one of the following
characters <, >, and =.

\dimtest{〈dimen expression 1〉}〈comparison〉{〈dimen expression 2〉}

Compares the two dimension expressions (having the usual syntax of the package
calc) and returns the value of the test. The comparison can be one of the following
characters <, >, and =.

3 Defining new complex test commands

\newtest{〈command〉}[〈n〉]{〈test expression〉}

Defines a command named 〈command〉 taking n arguments (no optional argument
is allowed) consisting of the test as specified by 〈test expression〉 that can be used in
the argument of \ifthenelse. For instance, if we want to test whether a rectangle
having dimensions l and L meets the two following conditions: S = l × L > 100
and P = 2(l +L) < 60:

\newtest{\sillytest}[2]{%
\cnttest{(#1)*(#2)}>{100}%
\AND
\cnttest{((#1)+(#2))*2}<{60}%

}

Then \ifthenelse{\sillytest{14}{7}}{TRUE}{FALSE} returns FALSE because
14×7 = 98 and 2× (14+7) = 42, while \ifthenelse{\sillytest{11}{11}}{TRUE}
{FALSE} returns TRUE because 11×11 = 121 and 2× (11+11) = 44.

2


