
J. Synchrotron Rad. (2004). 11, 53±55 # 2004 International Union of Crystallography � Printed in Great Britain ± all rights reserved 53

research papers

Recent developments in the PHENIX
software for automated crystallographic
structure determination

Paul D. Adams, a* Kreshna Gopal, b Ralf W. Grosse-
Kunstleve, a Li-Wei Hung, c Thomas R. Ioerger, b Airlie
J. McCoy, d Nigel W. Moriarty, a Reetal K. Pai, b Randy
J. Read,d Tod D. Romo, e James C. Sacchettini, e
Nicholas K. Sauter, a Laurent C. Storoni d and
Thomas C. Terwilliger f

aLawrence Berkeley National Laboratory, One Cyclotron
Road, BLDG 4R0230, Berkeley, CA 94720, USA, bDepartment
of Computer Science, Texas A&M University, 301 H.R. Bright
Building, 3112 TAMU, College Station, TX 77843, USA,
cBiophysics Group, Mail Stop D454, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA, dDepartment of
Haematology, University of Cambridge, Cambridge Institute
for Medical Research, Wellcome Trust/MRC Building, Hills
Road, Cambridge, CB2 2XY, UK, eDepartment of Biochemistry
and Biophysics, Texas A&M University, 103
Biochemistry/Biophysics Building, 2128 TAMU, College
Station, TX 77843, USA, and fLos Alamos National
Laboratory, Mailstop M888, Los Alamos, NM 87545, USA.
E-mail: PDAdams@lbl.gov

A new software system called PHENIX (Python-based Hierarchical
ENvironment for Integrated Xtallography) is being developed for
the automation of crystallographic structure solution. This will
provide the necessary algorithms to proceed from reduced intensity
data to a refined molecular model, and facilitate structure solution
for both the novice and expert crystallographer. Here we review the
features of PHENIX and briefly describe the recent advances in
infrastructure and algorithms.

Keywords: PHENIX; Python; object-oriented programming;
strategies.

1. Introduction

For structural genomics (Burley et al., 1999; Sali, 1998) to be
possible, structures will need to be solved significantly faster than is
currently routinely achievable. This high-throughput structure
determination will require automation to reduce the obstacles related
to human intervention. Manual interpretation of complex numerical
data has a significant subjective component (Mowbray et al., 1999)
that can lead to delays in reaching the final structure. Thus, the
automation of structure solution is essential as it has the potential to
produce minimally biased models more efficiently. We are
developing the PHENIX software to address these needs (Adams et
al., 2002).

2. PHENIX design and implementation

2.1. Hybrid programming

PHENIX is based on a tight integration between reusable software
components written both in a compiled language and a flexible
scripting language. Prior experience implementing the
Crystallography & NMR System (Brunger et al., 1998) has shown

that this promotes highly efficient software development. High-level
algorithms such as complex refinement protocols or phasing
procedures are most rapidly developed in a scripting language. By
contrast, numerically intensive core algorithms such as the
computation of structure factors or discrete Fourier transforms must
be implemented in a compiled language for performance reasons.

PHENIX uses Python (http://python.org/) as the scripting
language and C++ as the compiled language, see Grosse-Kunstleve
et al., 2002 and Grosse-Kunstleve & Adams, 2003 for further details
about these choices. This relies on the Boost.Python Library
(Abrahams & Grosse-Kunstleve, 2003) for conveniently integrating
C++ and Python. It is used to directly connect C++ classes and
functions to Python without obscuring the C++ interface. The
PHENIX software is developed and tested on the commonly
available computing platforms: Redhat Linux, HP Tru64, SGI Irix
version 6.5 and Windows 2000. The Macintosh OS-X platform may
also be supported in the future as the necessary tools become
available.

2.2. Data objects and tools

In order to build a complex, integrated system like PHENIX, certain
basic data objects must be available. We have implemented many of
the important objects required for crystallographic computations:

ÿ Structure factor objects, which hold reciprocal space data. Data

containers have been implemented in C++ and are made
available in Python using the Boost.Python library. This design
permits the reuse of the “objects” by future developers within
either a compiled C++ program, or an interpreted Python script.

ÿ Map objects, which hold real space data such as electron
density maps. Data containers have been implemented in C++,
and are available from the Python level.

ÿ Molecular objects, which hold the coordinates and topology of
a structure. Data containers have been implemented in Python
for speed of testing and development. Coordinate files from the
Protein Data Bank can be read into PHENIX and the
appropriate connectivity between atoms determined using prior
topology information.

ÿ Space group symmetry objects, which comprehensively
describe crystallographic symmetry and provide methods for
manipulation of these symmetries.

Implementation of these objects makes extensive use of the

Computational Crystallography Toolbox (cctbx; Grosse-Kunstleve &
Adams, 2003; Grosse-Kunstleve et al., 2002). This is a library of
reusable core crystallographic software components for
macromolecular structure determination that have been designed for
integration into large, modular, layered software systems. The
PHENIX data objects are constructed using the cctbx array family,
which provides a generalized representation of vector data, of
arbitrary numbers of dimensions. The cctbx source code is freely
available under an Open Source license for both non-profit and
commercial use at http://cctbx.sourceforge.net/.

2.3. Algorithms

A number of algorithms for structure solution have been
implemented. A new substructure searching procedure, called HYSS
(HYbrid Substructure Search), makes use of Patterson and direct
methods to locate anomalously scattering or heavy atoms for
experimental phasing. This algorithm incorporates criteria that
automatically determine when a correct solution is likely to have
been found. Once the substructure has been determined there are

research papers

54 Adams et al. � Recent developments in PHENIX J. Synchrotron Rad. (2004). 11, 53±55

interfaces to the SOLVE program that enable rapid configuration of
jobs for experimental phasing using MAD/SAD and MIR/SIR
methods (Terwilliger & Berendzen, 1999). In the future, efficient
new algorithms for phasing that take account of correlations in the
errors between derivatives and wavelengths will be used (Terwilliger
& Berendzen, 1996, Terwilliger & Berendzen, 1997, Read 1991).
Initial phases can also be obtained using molecular replacement
incorporating maximum likelihood targets (Read, 2001). The use of
these new targets increases the success rate of this method using
search models of lower structural similarity. The phases obtained
from experimental phasing or molecular replacement are optimised
by the application of maximum likelihood density modification
algorithms, currently implemented in the RESOLVE program, to
produce minimally biased electron density maps (Terwilliger, 2002;
Terwilliger, 2001). Electron density maps are automatically
interpreted using template matching (Terwilliger, 2003a; Terwilliger
2003b; Terwilliger, 2001) as implemented in RESOLVE, and pattern
recognition methods as implemented in TEXTAL (Ioerger &
Sacchettini, 2002, Holton et al., 2000). In the near future algorithms
for structure refinement will be implemented. The automated map
interpretation algorithms will be iterated with maximum likelihood
refinement targets (Pannu & Read, 1996; Pannu et al., 1998) and
simulated annealing optimisation algorithms (Brunger, Kuriyan &
Karplus, 1987; Adams et al., 1997, Adams et al., 1999). We expect
that the combination of tools will permit automated structure
completion even when diffraction data are only available up to a
modest resolution limit (approximately 3Å).

Figure 1

The PHENIX graphical environment. A strategy for automated model
building using TEXTAL has been loaded and executed. The currently
executing task is shown in green, while tasks already executed are shown in
purple. The job control menu permits previous jobs to be revisited and
modified for rerunning. The PDS browser allows the user to see what data
objects were generated in the course of a strategy run. In the future this will
be expanded to allow visualisation of the data objects using the appropriate
tools.

2.4. Strategies and the graphical user interface

Many crystallographic software packages either provide the user
with a collection of tools for analysis of the data, or with a
monolithic "black box" application that performs all the relevant
tasks in an automated fashion. Neither situation is optimal for the
user. The first case is appropriate for the expert user who can use the
tools in the correct sequence and also make decisions based on the
results at each stage. The novice user can often make good use of a

"black box" system. However, when problems are encountered (i.e.
the automation fails), it is often very difficult to identify the problem
or implement a solution.

The strategy concept in PHENIX is used to avoid these
problems. This provides a way to construct complex networks of
tasks to perform a higher-level function. For example, the steps
required to go from initial data to a first electron density map in a
SAD experiment can be broken down into well-defined tasks, which
can be reused in other procedures. Instead of requiring the user to
run these tasks in the correct order they are connected together by
the software developer, and can thus be run in an automated way.
However, because the connection between tasks is dynamic they can
be reconfigured or modified, and new tasks introduced as necessary
if problems occur. This provides the flexibility of user input and
control, while still permitting complete automation when decision-
making algorithms are incorporated into the environment.

It should be emphasized that the tasks and their connection into
strategies rely on the use of plain text task files written using the
Python scripting language. This implementation was chosen so as to
not restrict the use of PHENIX to a graphical user interface. This
enables the algorithms to be used easily in a non-graphical
environment. The PHENIX GUI permits strategies to be visualized
and manipulated (Figure 1). These manipulations include loading a
strategy distributed with PHENIX, customizing and saving it for
future recall. Customisation of the task input parameters is achieved
via the graphical interface. Insertion of new tasks is performed by
choosing from the tree menu on the left of the main window. A job
control menu permits the status of user jobs to be monitored and
revisited. The GUI also provides a means for the user to view results
of calculations. PyMOL (DeLano, 2002), a molecular graphics
system written in C and Python, allows easy viewing of structures
and maps via close integration with PHENIX. Graphical data is
transferred from PHENIX to PyMOL through a socket connection.
Native PHENIX display windows can also represent simple results
such as x-y graphs.

2.5. The Project Data Storage (PDS)

One of the major problems facing the crystallographer is the
organization, tracking and archiving of data. These problems are
significantly compounded by the move to high-throughput
crystallography, which leaves no time for user control of data
management. Therefore, in PHENIX we have introduced the concept
of the Project Data Storage (PDS). This is a data management
system that oversees the information generated for each structure
determination (or "Project"), and contains a complete history of each
structure solution, along with all of the generated structural
information. A PDS browser has been implemented that allows users
to see which data objects have been generated during the course of
calculations on the data. In the future this browser will be extended
to allow direct visualization of the data objects.

In order to make full use of the computing resources typically
available to researchers we have developed and implemented a
distributed computing model for PHENIX. This permits the remote
execution of computationally intensive tasks (for example, a job can
be set up on a user’s desktop PC, but sent to a high-performance
computing platform for execution). An interface to the popular ssh
program is used to start remote jobs so as to maintain user password
security. Once a job has been started it can also be monitored and
controlled remotely by multiple instances of the graphical user
interface running on different machines. This distributed computing
model relies on a PHENIX PDS server that coordinates the
information flow for each user project.

J. Synchrotron Rad. (2004). 11, 53±55 Received 30 April 2003 � Accepted 15 October 2003 55

research papers

3. Conclusions

The development of PHENIX is a collaborative project whose
primary goal is the creation of a comprehensive, integrated system
for automated crystallographic structure determination. The
PHENIX infrastructure is also designed to be open and easily shared
with other researchers. Source code will be distributed to academic
groups, and the use of the Python scripting language will facilitate
interfacing with the system and its use in different contexts. Other
developers will be able to implement their algorithms to the
PHENIX environment thus providing easy access to a large number
of crystallographic and computational tools. The high-level graphical
programming environment in PHENIX is designed to let researchers
easily link crystallographic tasks together, thus creating complex
algorithms without having to resort to low-level programming. The
graphical interface and the underlying Python scripting language
also provide a framework suitable for implementing decision-
making algorithms that will be critical for robust and reliable
automation. User testing of the alpha release of version 1.0 of
PHENIX is underway. We anticipate a general release of the
software in the fall of 2003.

This work was funded by NIH/NIGMS under grant number
1P01GM063210, with initial funding to PDA from the Department
of Energy under contract No. DE-AC03-76SF00098.

References

Abrahams D. and Grosse-Kunstleve R. W. (2003). C/C++ Users Journal 21,
29-36.
Adams P. D., Grosse-Kunstleve R. W., Hung L.-W., Ioerger T. R., McCoy A.
J., Moriarty N. W., Read R. J., Sacchettini J. C., Sauter N. K. and Terwilliger
T. C. (2002). Acta Cryst. D58, 1948-1954.
Adams P. D., Pannu N. S., Read R. J. and Brunger A. T. (1997). Proc. Nat.
Acad. Sci. USA. 94, 5018-5023.

Adams P. D., Pannu N. S., Read R. J. and Brunger A. T. (1999). Acta Cryst.
D55, 181-190.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig,
H., Shindyalov, I. N., Bourne, P. E. (2000). Nucleic Acids Research, 28, 235-
242.
Brunger A. T., Kuriyan J. and Karplus M. (1987). Science 235, 458–460.
Brunger, A. T., Adams, P. D., Clore, G. M., Gros, P., Grosse-Kunstleve, R.
W., Jiang, J.-S., Kuszewski, J., Nilges, N., Pannu, N. S., Read, R. J., Rice, L.
M., Simonson, T. & Warren, G. L. (1998). Acta Cryst. D54, 905-921.
Burley S. K., Almo S. C., Bonanno J. B., Capel M., Chance M. R.,
Gaasterland T., Lin D., Sali A., Studier F. W. and Swaminathan S. (1999).
Nat. Genet. 23, 151-157.
DeLano, W. L. (2002). The PyMOL Molecular Graphics System
(http://www.pymol.org)
Grosse-Kunstleve R. W. and Adams P. D. (2003). IUCr Computing
Commission Newsletter 1.
Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams, P. D.
(2002). J. Appl. Cryst. 35, 126-136.
Holton T., Ioerger T. R., Christopher J. A. and Sacchettini J. C. (2000). Acta
Cryst. D56, 722-734.
Ioerger T. R. and Sacchettini J. C. (2002). Acta Cryst., D58, 2043-2054.
Mowbray S. L., Helgstrand C., Sigrell J. A., Cameron A. D. and Jones T. A.
(1999). Acta Cryst. D55, 1309-1319.
Pannu N. S. and Read R. J. (1996). Acta Cryst. A52, 659-668.
Pannu N. S., Murshudov G.M., Dodson E.J. and Read R.J. (1998). Acta
Cryst. D54, 1285-1294.
Read, R. J. In : Isomorphous Replacement and Anomalous Scattering:
Proceedings of the CCP4 Study Weekend, W. Wolf, P. R. Evans and A. G.
W. Leslie (eds.) Science and Engineering Research Council, Daresbury
Laboratory. pp. 69-79 (1991).
Read, R. J. (2001). Acta Cryst. D57, 1373-1382.
Sali A. (1998). Nature Struct. Biol. 5, 1029-1032.
Terwilliger, T. C. (2001). Acta Cryst. D57, 1755-1762.
Terwilliger T. C. (2002). Acta Cryst. D58, 2082-2086.
Terwilliger T. C. (2003a). Acta Cryst. D59, 38-44.
Terwilliger T. C. (2003b). Acta Cryst. D59, 45-49.
Terwilliger, T. C. and Berendzen, J. (1996). Acta Cryst. D52, 749-757.
Terwilliger, T. C. and Berendzen, J. (1997). Acta Cryst., D53, 571-579.
Terwilliger T.C. and Berendzen J. (1999). Acta Cryst. D55, 849-861.

	mk1

