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Abstract

I give a short explanation of how to use multigrid to solve the Poisson

equation in cylindrical coordinates for a solid conducting pipe. I also

explain how to use a non-uniform grid to optimize the problem.

1 Introduction

The Fermi National Accelerator Laboratory is the home of a circular accelerator
known as the Booster. While working at the lab, my colleagues and I became
interested in modeling the interactions between particles while they are being
accelerated in the Booster. In other words we wanted to find potential as a
function of space. The relevant equations is as follows where ρ(r, φ, z) is the
charge density function

∇2ψ(r, φ, z) = −4πρ(r, φ, z). (1)

We decided to do the problem in terms of cylindrical coordinates since our
model of the Booster is a cylindrical conducting pipe (we also developed code for
the Cartesian case, but the cylindrical case is more interesting, so that is what
we will discuss in this text). We also decided that the best way to approach the
solving of Equation 1 was to use multigrid computing methods. In other words,
we wanted to reduce Equation 1 to something of the form A~x=~b and then let
the computer do the work. In order to begin this process, we must first examine
finite differences.

2 Finite Differences

Consider the following one-dimensional equation:

u(x) = f(x) + f ′(x) (2)

In a finite difference scheme, we simply substitute f’(x) with an approxima-
tion, yielding
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ui = fi +
fi+1 − fi−1

2h
. (3)

Higher order derivatives are treated the same way. For example, the approx-
imation of the second derivative would be

d2f

dx2
≈
fi+1 − 2fi + fi−1

h2
. (4)

Once we obtain an equation in terms of fi and ui, we can create the ma-
trix equation that we desire. Since matrix equations are easily solved using
multigrid, our work is done.
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3 Solving the Poisson equation

Now that we understand the finite difference method, we can use or new tech-
nique to solve the Poisson equation. First we must express our equation in terms
or derivatives. Keep in mind that we are using cylindrical coordinates.

−4πρ = ∇2ψ (6)

=
1

r

∂

∂r
(r
∂ψ
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) +
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(7)
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Now we can use our finite difference methods. Note that hr, hφ, and hz
represent the step sizes in the r, φ, and z directions respectively.

=
ψ(ri+1, φj , zk)− ψ(ri−1, φj , zk)

2rhr
+
ψ(ri+1, φj , zk)− 2ψ(ri, φj , zk) + ψ(ri−1, φj , zk)

h2
r

+

ψ(ri, φj+1, zk)− 2ψ(ri, φj , zk) + ψ(ri, φj−1, zk)

r2h2
φ

+
ψ(ri, φj , zk+1)− 2ψ(ri, φj , zk) + ψ(ri, φj , zk−1)

h2
z

(9)

Simplifying leads to our final result.

=
(hr + 2r)ψ(ri+1, φj , zk)

2rh2
r

+
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)ψ(ri, φj , zk) (10)
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4 Boundary Conditions

Now that we have a formula that can easily be translated into a matrix, we need
to consider boundary conditions. Obviously at r=0, there is a problem with the
ψ(ri−1,φj ,zk) term. Should we simply ignore the ψ(ri−1,φj ,zk) term or should
we replace it with something else? In our case, we must examine each direction
separately.
First we will consider the r̂ direction. In order to evaluate our equation, we

will first need to divide the range of r into n different cells. Since r appears
in the formula, we must find a way to calculate a value of r for each cell.
We obviously cannot use the left side of each cell because we would have to
evaluate our equation at r=0 which would result in dividing by zero. Instead,
we will evaluate r at the middle of each cell. Now that we have a method for
evaluating r, we can consider what should happen at the boundaries. At the
inside boundary of r=0, we have no initial condition. Therefore ψ(ri−1,φj ,zk)
will have no significance, and we can ignore the term. Now let us consider the
outside boundary. In our model, the Booster is a conducting pipe, so we assume
that the charge density is zero at the outside boundary. Hence, we can replace
ψ(ri+1,φj ,zk) with zero as well when r reaches its maximum value.

Now we will consider the φ̂ direction. We do not have any boundary condi-
tions for φ = 0 or φ = 2π, but we do know that φ should be periodic. In other
words, ψ(ri,φj−1,zk) evaluated in the leftmost cell should have the same value
as ψ(ri,φj ,zk) evaluated in the rightmost cell. This condition allows us to easily
calculate terms that fall outside of the range of φ.
The ẑ direction is similar to the φ̂ direction. There are no set boundary

conditions, but our model dictates that z should be periodic. This condition
takes care of all of the terms that fall outside the range of z.
Now that we have considered boundary conditions, we can create our matrix

and solve the Poisson equation.

5 Example

Consider a beam of particles with uniform charge density of radius 0.2 in a beam
pipe of radius 1. Since the charge distribution is uniform within the beam and
the φ̂ and ẑ direction have periodic boundary conditions, we can assume that
the solution is independent of φ and z and can be treated as a one-dimensional
problem. Now we have the equation

−4πρ(r) = ∇2f(r) =
1

r

d

dr
(r
df

dr
). (11)

This equation is simple enough that we can integrate it to obtain an exact
solution.

f(r) = −πρ(r)r2 + a0ln(r) + a1 for 0 ≤ r ≤ .2

f(r) = a2ln(r) + a3 for 0.2 < r ≤ 1
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a0 = 0

a1 = 0.04πρ(r)(−2ln(0.2) + 1)

a2 = −0.08πρ(r)

a3 = 0

Now that we have an exact solution to our example, we can compare it to
the multigrid solution. Figure 1 shows both curves. In this case, we used a grid
size of 33 in each direction to generate the multigrid solution.
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Figure 1: The exact solution and the multigrid solution to the Poisson Equation
in which the charge density is a solid cylinder of radius 0.2

6 Non-Uniform Grid

In the previous example, we saw that our multigrid approach to solving the
Poisson equation in cylindrical coordinates provides a close approximation to
the exact solution given a fairly modest grid size. Is there any way we can
optimize this method? In our case, there is. The beam inside of the Booster
occupies the center of the beam pipe but not the entire space. Therefore, if we
make our grid very fine on the part of the beam pipe where the beam is and
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coarser in the other part, we can achieve a closer approximation to the solution
since we can eliminate many zeros from our matrix.
The first step to implementing a non-uniform grid is to decide where the the

grid should change from fine to coarse. In our case, the full width at half max
seems to be optimal. After deciding the value of r where we want to switch, we
must also find the cell number where we want to switch. In my experiments, I
usually devoted 75 percent of my cells to the fine grid and the other 25 percent
to the coarse grid. After making these two decisions, we load the particles into
our ρ(r, φ, z) vector. To illustrate this process, let rb be the cutoff value of r,
rmax be the radius of the beam pipe, gb be the cutoff cell of the grid, and gmax
be the number of grid cells. To put a particle into the ρ(r, φ, z) vector, we first
check to see if its r coordinate is less than rb. If it is, we treat the problem
as if there are only gb cells that represent r’s ranging from 0 to rb and we put
our new particles in the proper place. If our r coordinate is greater than rb, we
pretend there are only gmax - gc cells that range from rb to rmax. We find the
proper cell number for our new particle and add gb to that number.
Now that we have our new ρ(r, φ, z) vector, we need to adjust our matrix.

As in the case of the ρ(r, φ, z) vector, cells 1 through gb will represent the fine
grid and cells gb+1 through gmax will represent the coarse grid. Calculating the
coefficients of the matrix is easy. We simply need to replace the variable h with
the h value from either the fine grid or the coarse grid depending on which cell
we are in. The only complication arises at the cells directly to the left and right
of rb. Let hf be the step size for the fine grid and hc be the step size for the
coarse grid. Since we calculate r at the center of each cell, the value to the left
of rb will be hf/2 away from rb, and the value to the right of rb will be hc/2
away from rb. Therefor, the step size between these two cells will be neither hf
nor hc, and these cases will have to be treated separately from the rest of the
cells.

6.1 Calculations for the Cell to the Left of rb

First let us consider the cell to the left of rb. The ψ(ri, φj+1, zk), ψ(ri, φj−1, zk),
ψ(ri, φj , zk+1), and ψ(ri, φj , zk−1) terms will all remain the same. We do need
to recalculate all of the other terms, though. We can do this by recalculating the
first and second partial derivatives in terms of r. Below are the recalculations
of the derivatives and the new coefficients.

1

r

∂ψ

∂r
=
ψ(ri+1, φj , zk)− ψ(ri−1, φj , zk)

r(hf +
hf +hc

2 )
=
2ψ(ri+1, φj , zk)− 2ψ(ri−1, φj , zk)

r(3hf + hc)

∂2ψ

∂r2
=

∂ψ(ri+.5,φj ,zk)
∂r

−
∂ψ(ri−.5,φj ,zk)

∂r

3hf + hc

=
8hfψ(ri+1, φj , zk)− 8hfψ(ri, φj , zk)− 4(hf + hc)ψ(ri, φj , zk) + 4(hf + hc)ψ(ri−1, φj , zk)

hf (hf + hc)(3hf + hc)

ψ(ri+1, φj , zk) coefficient =
8rhf + 2hf (hf + hc)

rhf (hf + hc)(3hf + hc)
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ψ(ri−1, φj , zk) coefficient =
4rhf + 4rhc − 2hf (hf + hc)

rhf (hf + hc)(3hf + hc)

ψ(ri, φj , zk) coefficient =
−12hf − 4hc

hf (hf + hc)(3hf + hc)
+

1

r2h2
φ

+
1

h2
z

6.2 Calculations for the Cell to the Right of rb

The calculations for the cell to the right of rb are very similar to those of the
cell to the left of rb.

ψ(ri+1, φj , zk) coefficient =
4rhf + 4rhc + 2hc(hf + hc)

rhc(hf + hc)(hf + 3hc)

ψ(ri−1, φj , zk) coefficient =
8rhc − 2hc(hf + hc)

rhc(hf + hc)(hf + 3hc)

ψ(ri, φj , zk) coefficient =
−4hf − 12hc

hc(hf + hc)(hf + 3hc)
+

1

r2h2
φ

+
1

h2
z

7 Example of a Non-Uniform Grid

The first step towards implementing a non-uniform grid is deciding where the
grid will change from fine to coarse. In our case, we determined the cutoff point
experimentally. We ran the program with several different cutoff points and
compared the solution to a uniform solution on a much larger grid (the solution
on the uniform grid was treated as the exact solution). We determined the error
by the following formula:

error =

√

∑

i

(xi − xexacti )2

(xexacti )2

Table 1 shows the data we collected. We decided to measure the cutoff
in terms of r/σ in order to be better able to gage the cutoff point for future
problems. Figure 2 shows a graph of that data as well as a line representing
the error calculated from a uniform grid of the same size. Our hope was that
the non-uniform grid would improve the accuracy of our solution, and Figure 2
clearly shows that we accomplished this goal.
Figure 3 shows a plot of a non-uniform case compared to the very fine (exact)

uniform solution. In this case, the cutoff point is r = .008, which is just under
one standard deviation above the mean. The non-uniform solution lies almost
on top of the uniform solution, even though it was calculated on a much coarser
grid. Again we find that a non-uniform grid can improve accuracy.
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Cutoff Point (r/σ) Error Time to Run (seconds)

2.364066194 0.00055121 6.868
2.955082742 0.00018577 6.022
3.546099291 0.00013550 6.284
4.137115839 0.00011496 6.156
4.432624113 0.00011026 6.226
4.728132388 0.00010888 6.201
5.023640662 0.00011093 6.033
5.082742317 0.00011183 6.116
5.141843972 0.00011289 5.957
5.200945626 0.00011409 6.069
5.260047281 0.00011548 6.103
5.319148936 0.00011697 6.092
5.378250591 0.00011867 6.067
5.437352246 0.00012055 6.087
5.496453901 0.00012254 6.036
5.555555556 0.00012468 6.128
5.61465721 0.00012696 6.037
5.910165485 0.00014099 6.174
6.205673759 0.00015910 5.990
6.501182033 0.00018157 6.040
7.092198582 0.00023944 5.912
7.68321513 0.00031596 5.962
8.274231678 0.00041242 5.866
8.865248227 0.00053004 6.138

Table 1: The error calculated as described in Section 7 for several different
cutoffs between the fine section and coarse section in a non-uniform grid.

8 A Few Words about PETSc

In order to implement our finite difference scheme to solve the Poisson Equa-
tion, we needed data structures that implemented multigrid. We chose to use
the Portable, Extensible Toolkit for Scientific Computing (PETSc) created by
Argonne National Laboratory. PETSc is a set of data structures that allow for
parallel processing of solutions to partial differential equations. More informa-
tion can be found at http://www-unix.mcs.anl.gov/petsc/petsc-as/index.html.

9 Conclusion

One effective way of solving the Poisson equation in cylindrical coordinates is
to convert the differential equation into a matrix equation and solve it using
multigrid. As the grid size increases, the multigrid solution will approach the
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exact solution very quickly. One way to optimize the multigrid approach is to
create a non-uniform grid in which the important parts of the problem are solved
on a fine grid while the less important parts are solved on a coarser grid. This
optimization often results in closer approximations without sacrificing time.
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APPENDIX A

The following is a summary of all of the files that were used in this project. All
files are located at /home/cepa01/msmeding/strawman/. There are also addi-
tional copies of many of these files located on lqcdib at /home/msmeding/strawman/.
Many of the lqcdib files have been modified slightly to run on the cluster. A
copy of this paper is located at /home/cepa01/msmeding/latex/.

C++ Files
• strawman1.cc - strawman1.cc is designed to solve the Poisson Equation us-
ing PETSc libraries. To solve the Poisson Equation, you need a right hand
side and a Jacobian. strawman1.cc has several options for the right hand side
and the Jacobian. The two options for the Jacobian are a Cartesian version
and a cylindrical version depending on which coordinates system you are using.
There are several different options for the right hand side. The options for a
Cartesian coordinate system are a solid sphere of randomly generated particles,
a solid cylinder of randomly generated particles, and a solid Gaussian cylinder
of randomly generated particles. The three options for a cylindrical coordinate
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system are a solid cylinder, a cylinder with a Gaussian in the r direction, and a
right hand side generated from the particles in a .h5 file.
The program is called as follows:
strawman1< sphere|cylinder|gaussian|cylinder c|gaussian c|h5file >. There
are several other optional arguments that I’ve found useful. They include -
dmmg nlevels n which lets you set the number of levels of refinement in the
multigrid process. Some others are -pc mg type kaskade, -pc mg galerkin, -
pc type mg, and -ksp converged reason. One other variable that you might
want to set is the grid size. This variable must be set manually by editing the
main function of the program.
strawman1.cc automatically produces files called rho.dat and soln.dat which are
Octave representations of the right hand side and solution respectively. In ad-
dition, there is a function called VecView vtk which produces structuredPoints
vtk files that can be plotted using plotVtk.py. There is another function called
getField which produces a vtk file containing the electric field. There are also
cylindrical versions of both of these routines.
• num.cc - num.cc is very similar to strawman1.cc, the main difference being
that num.cc solves the Poisson Equation on a non-uniform grid. In other words,
the important part of the equation is solved on a fine grid while the less im-
portant part is solved on a coarser grid. The cutoff between the fine grid and
the coarse grid must be set manually in the main function. Note also that the
routines that produce vtk files have not been tested for num.cc and probably
don’t work correctly.

Data Files
• field.dat - A file generated by strawman1.cc and num.cc. This file contains the
electric field of the solution to the Poisson Equation. There is code to generate
field.dat in both Cartesian and cylindrical coordinates, but the cylindrical code
is untested. This file is intended to be plotted by plotField.py to produce a 3d
VTK plot.
• rho.dat - A file generated by strawman1.cc and num.cc. This file contains the
right hand side of the Poisson Equation. rho.dat is generated for both Cartesian
and cylindrical coordinates and has been thoroughly tested in both coordinate
systems. This file is intended to be plotted in Octave.
• rho.vtk - A file generated by strawman1.cc and num.cc. This file also contains
the right hand side of the Poisson Equation. rho.vtk is a structuredPoints vtk
file and is intended to be used with plotVtk.py to create a 3d volume rendering
of the right hand side of the Poisson Equation. Note that the cylindrical version
of this file produces lower quality plots that the Cartesian version.
• soln.dat - A file generated by strawman1.cc and num.cc. This file is the solu-
tion to Poisson’s Equation. It is similar to rho.dat in that it has been thoroughly
tested for both Cartesian and cylindrical coordinates. soln.dat is intended to be
plotted in Octave.
• soln.vtk - A file generated by strawman1.cc and num.cc. This file is also the
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solution to the Poisson Equation. Similar to rho.vtk, soln.vtk is a structured-
Points vtk file that is intended to be plotted using plotVtk.py to create a 3d
volume rendering of the solution. Again, note that the cylindrical version of
this file produces lower quality plots that the Cartesian version.

Gnuplot Files
• timings/num.gp - This file produces the plot seen in Figure 2. The data file
that this script uses for input is timings/num.data. num.gp is currently set to
produce a postscript plot, but a png plot can be produced instead by uncom-
menting the appropriate lines.

Octave Files
• anger.m - This script plots the uniform solution stored in soln.bak and three
non-uniform solutions stored in soln1.dat, soln2.dat, and soln3.dat. For anger.m
to work properly, you must manually set the radius of the beam pipe (max) and
the r-values where your non-uniform solutions go from fine to coarse (brk1,
brk2, brk3).
• index.m - index.m is a function that takes three inputs, an r-index, a φ-index,
and a z-index. index.m returns the corresponding index in a one-dimensional
array.
• lai.m - This script plots soln.dat, the solution produced when strawman1.cc
is run in cylinder c mode. lai.m also plots the exact solution to the Poisson
Equation when the input is a rigid cylinder. There are two arguments to lai.m.
They are the grid size in r and the grid size in φ respectively. If you uncomment
the last couple of lines, you can get a postscript version of the plot.
• ndx.m - ndx.m performs the same function as index.m but for the two-
dimensional case where there is only an r-index and a φ-index.
• num.m - This script takes an integer argument. An argument of 0 plots the
right hand side of a uniform grid stored in rho.bak as well as the non-uniform
right hand side stored in rho.dat. An argument of 1 does the same as 0 except
that it plots the solutions in soln.bak and soln.dat instead of the right hand
sides. An argument of 2 plots the solutions to two uniform grids. The finer grid
should be stored is soln.bak and the coarser should be in soln.dat. An argument
of 3 produces the same as 1 except that it adds a second non-uniform grid stored
in soln.data.
Note that you have to manually set the cutoffs between coarse and fine grids in
brk. Note also that num.m calculates the error function discussed in Section 7
for all arguments with the exception of 3. You can also produce a postscript
version of the plot by uncommenting the last couple lines in the file.

Python Files
• plotField.py - plotField.py is intended to plot the electric field of the solution
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to the Poisson Equation using vtk. This script has one mandatory argument
and two optional arguments. The required argument is the name of the file
that contains the field you want to plot (probably field.dat produced by straw-
man1.cc). The first optional argument is a file containing the solution to the
Poisson Equation (probably soln.vtk produced by strawman1.cc). The other
optional argument is a png file where you want the plot to be stored.
• plotVtk.py - plotVtk.py is intended to produce a 3-dimensional volume render-
ing of a structuredPoints vtk file. This script has one optional and one required
argument. The required argument is the vtk structuredPoints file (probably
rho.vtk or soln.vtk produced by strawman1.cc). The optional argument is the
png file where you want the plot to be stored.
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