
athematical modeling has made sig-
nificant contributions to scientific

progress. From ancient times through the
R e n a i s s a n c e , Euclidean geometry prov i d e d
the framew o rk for all applied mathematics,
most notably in surv ey i n g, n av i g a t i o n , a n d
a s t r o n o my. Unfort u n a t e l y, g e o m e t ry express-
es eternal—and hence static—relations
b e t ween shapes. It is, a c c o r d i n g l y, g r a p h i c a l
and often beautiful, yet it lacks dynamics.

The dynamic feature of mathematical
models was not presented until the 17th
century, when Isaac Newton and Gottfried
Wilhelm von Leibnitz independently dev e l-
oped differential calculus. Its immediate
success was in the spectacular creation of
N ew t o n ’s simple models that both repro-
duced known planetary orbits and predict-
ed the future positions of planets. The
motion of celestial bodies was described
through the rev o l u t i o n a ry invention of a
dynamical model, which expressed how
changes in velocity are related to posi-
tions. Thus, in Leibnitz’s words, the model
was a set of differential equations.

The predictive accuracy of mathematical
modeling for celestial mechanics wa s
i m p r e s s i v e , and New t o n ’s unrivalled feat
changed the contemporary view of the uni-

verse. Newton’s laws of nature
can predict the future of
a physical sys-
tem that
changes ov e r
t i m e , such as a
comet’s orbit or a
chemical reac-
tion.  The only
c aveat  is
t h a t

exact pre-
dictions require

knowing the “state”
of every physical character-

istic with  infinite precision.

Difficult solutions
Differential equations are simple in the

sense of having a compact representation,y e t
the resulting trajectories—a plot of a system’s
d evelopment over time—can be extremely
complex (Figure 1). Trajectories may be extra-
ordinarily sensitive to the initial state yet still
h ave some predictable characteristics. Recent
research has centered on this subject, a s

exemplif ied by the
Lorenz differential equa-
tions. These equations
were developed in 1963
as a crude model for
simple meteorology.
T h ey addressed prob-
lems in which the trajec-
tories always seemed to
be on one of two we l l -
d e t e rmined planes, b u t
it was impossible to pre-
dict when and how the
orbit—a trajectory plot-
ted in time and space—
would shift from one
plane to the other.

Although using
numerical methods to
predict weather was dis-
cussed at the beginning

of the last century, reaching today ’s present
prediction accuracy required overcoming many
theoretical and practical obstacles. Leibnitz
was aware of the power of differential calcu-
l u s , and he spoke about using machines to
c a rry out such calculations. A recent book,
Computational Differential Equations, q u o t e s
him on this possibility: “Knowing thus the
Algorithm of this calculus, which I call Differen-
tial Calculus, all differential equations can be
solved by a common method…not only addi-
tion and subtraction, but also multiplication
and division, could be accomplished by a suit-
ably arranged machine.”

Creative scientists using clever analyti-
cal methods can “solve” simplified ver-
sions of differential equations. The result-
ing formulas yield all the information that
we could possibly want for determining, for
e x a m p l e , the location of a spacecraft at
some future time. Regrettably, there are far
too many diverse equations and not
enough brilliant minds to solve them all.
Leibnitz envisioned a generally applicable
way of working with all differential equa-
t i o n s , and computing a solution through
approximate numerical methods has sup-
plied that technique.

Most of the 19th century was devoted to
the construction of large tables—notably of
logarithmic and trigonometric functions—
for making reliable, f a s t e r, and more accu-
rate calculations in navigation and astrono-
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Figure 2. Hole concentration (on a logarithmic scale) for a

semiconductor device model featuring a diode with p- and

n-type regions, solved from equations based on charge and

field strength.

Figure 1.

Fluid flow ov e r

a backward-facing step

can be modeled with the non-

linear incompressible Nav i e r - S t o k e s

e q u a t i o n s , which generally do not hav e

analytical solutions but can be solved

numerically.
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my. This work was superseded in the 20th
c e n t u ry not by advances in mathematics
but by the invention of the transistor—a
breakthrough in solid-state physics that
eventually gave us the computer, t h e
machine to fulfill Leibnitz’s vision.

What Leibnitz could not real-
ize was that in addition to the
t h e o ry and the machine, we
needed a third component: the softwa r e .
This missing piece in Leibnitz’s vision
embodies clever methods of approximat-
ing an equation’s solution function,
which is a continuous function with infinite-
ly many values, and then computing a finite
number of values numerically. The methods
require detailed attention to preparing num-
b e rs for an equation, because using err o r -
p r o n e , b rute-force methods to solve prob-
lems based on differential equations has
time and again proven futile.

The need for agile and astute computa-
tional methods is exemplified in the study
of semiconductor dev i c e s , where the quan-
tities of interest are the electric field and
c u rrent. The latter is carried by electrons
and their opposite entities, the “holes” in
the valence bands of doped silicon. Models
consist of the partial differential equations
(PDEs) that express the conservation of
charge and the relations between fields
and concentrations of electrons and holes,
from which the voltage-current characteris-
tics of the device are derived. The largest

e x p e n s e
of time and effort occurs in the generation
and “number crunching” of the numerical
solution for the equations. These calcula-
tions require that tens of thousands of
computational cells, each representing a
set of coordinates, be concentrated in the
regions where the fields change rapidly. In
a d d i t i o n , these fields may well change with
applied voltage and so require the genera-
tion of a new mesh—an overall picture of a
system under specific conditions—for each
n ew voltage step.

All of this computation may take billions
of arithmetic operations,which now can be
done routinely on a personal computer
(Figure 2). Although we lack a mathemati-
cal proof for the reliability of these meth-
o d s , computational experience, c a r e f u l
a n a l y s i s , and comparison with experi-
ments strengthen our confidence in the
models and software developed for this
application of differential equations.

The obstacle to realizing Leibnitz’s vision
of solving differential equations by machine
is computational efficiency. Growth in com-
puter power has increased exponentially for
the past 30 years. It has doubled ev e ry 18
months and, t h u s , increased our problem-
solving capacity by a factor of 1 million ov e r
three decades (Figure 5). Howev e r, c o n t r i b u-
tions have also come from mathematical
d evelopments in the numerical methods of
differential calculus.

A landmark in numerical analysis
o c c u rred in the early 1960s with the inv e n-
tion of the fast Fourier transform (FFT) algo-
rithm by James W. Cooley and John W. Tu key.
The FFT cut the time needed to decompose

an arbitrary wave train into its constituent
sine waves by many orders of magnitude. It
changed the perception of what could be
accomplished with digital signal processing.
The FFT serves as the heart of MPEG
(motion picture experts group) and similar
schemes for compacting video and sound
files onto CDs and transmitting them ov e r
the Internet. Electron clouds, c l u s t e rs of
g a l a x i e s , and membrane deflection prob-
lems are described by the 19th century Po i s-
son PDEs. When used with fast techniques
to solve Poisson PDEs, the FFT enables sim-
ulations of millions of galaxies, allowing sci-
entists to look at different scenarios for the
evolution of the universe in both fast-forwa r d
and rev e rs e .

Finite-element analysis
Finite-element analysis (FEA),an approx-

imation approach to studying continuous
physical systems, has evolved in the past
50 years from an ad hoc engineering tool
for structural analysis to a sophisticated
general purpose method for solving differ-
ential equations. There are variants with
proven robustness adapted to most impor-
tant classes of problems, and softwa r e
packages support all the steps in model-
ing projects for many applications.

Consider the deflection of a thin mem-
brane stretched over an L-shaped area
( Figure 3). The membrane is subject to
normal loads and fixed along its perimeter.
The first step is to cover the surface with a
set of triangles. The approximate shape of
the membrane is now a set of plane trian-
gular facets, joined along their edges, like
a dome covered with plane tiles. All one
must obtain to determine the deflection of

Figure 3. Deflection of a thin

membrane that is stretched

over an L-shaped region, sub-

jected to normal loads, and

fixed at its perimeter is

solved by Poisson’s

equation and the

finite-element method.

Figure 4. To solve a plane stress

model of a pulley with inertial forces

due to rotation and boundary forces of

the belt drive, a finite-element mesh

on the spokes and holes gives a con-

verged result.  
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the membrane is the heights of
the dome at the corners of the
triangles. FEA is able to com-
pute the heights that bring the
dome closest to the exact
deflection shape.  

The success of FEA hinges
on three key properties:

• It treats complex geometries
easily—any domain can be closely
approximated by a set of triangles
(Figure 4).

• Only a few unknowns appear in each
equation. Th is sparseness makes the
numerical solution efficient.

• For greater accuracy, the FEA ele-
ments—which include the triangles’ geom-
etry and their mathematical functions—can
easily be made smaller.

The complete FEA procedure lends itself
to computer implementation, which includes
generating the elements and equations, c o m-
puting the solution, and displaying the
results. The software was first developed in
the form of libraries for the various steps,
and you had to adapt these building blocks
to your application through Fo rtran program-
m i n g. To d ay, there are large Fo rtran pack-
a g e s , such as Nastran, for applications in
s t ructural analysis, and FEA softwa r e , s u c h
as FEMLAB, that allows users to tailor a
p a c k a g e ’s capabilities to their needs. Such
s o f t ware does not require special program-
m i n g, uses standard and intuitive graphical
t o o l s , and combines many applications
through m u l t i p h y s i c s, an emerging analytical
approach that simultaneously considers all
p hysical characteristics encountered in a
r e a l - w o rld problem.

In the relative ly  shor t t ime that
r e s e a r c h e rs have used FEA for solving
P D E s , it has become apparent that the
analysis system lends itself to solving prob-
lems in a wide range of disciplines. A few
examples of models include:

• electromagnetics models, such as
those used to examine the effect of chang-
ing magnet sizes or materials in the wind-
ings of an electric motor.

• fluid-dynamics models, whose uses
include investigating heat flow in a room or
airflow around a prototype vehicle.

• geophy s i c s
m o d e l s , whose uses

include studying the potential flow of fluid in
a rock fracture.

• heat transfer models, which are used
to investigate such things as the heat dis-
tribution in a radioactive rod.

• semiconductor device models, such as
those used for computing the current vers u s
voltage characteristic curves of new dev i c e s .

• acoustics models, whose uses include
examining the source of a humming sound
coming from electrical machinery.

• finance models, such as those used to
study the Black-Scholes equation for pre-
dicting the value of a stock option.

• chemical-reaction models, such as
those used to understand the operation of
a three-way catalytic converter in an auto-
mobile. These models are able to simulta-
neously transform unburned hydrocarbons,
carbon monoxide, and nitrogen oxides from
the exhaust into carbon dioxide, n i t r o g e n ,
and water.

M u l t i p hysics problems
Although such modeling problems are

i n t e r e s t i n g, t h ey do not account for all phy s i-
cal phenomena for one key reason: in nature,
it is not unusual for several physical phenom-
ena to occur in the same local region and for
all of them to interact. Indeed, these phy s i c a l
processes often affect the outcome of each
other in a complex fashion. Problems that
exhibit this kind of behavior fall under the
heading of multiphy s i c s .

As an example of multiphy s i c s , consider a
model that calculates the stresses in a
c r a c ked heat-exchange tube such as you
might find in a pulp mill. Because these
tubes must resist corrosion from very differ-

ent chemicals on the inside and
o u t s i d e , t h ey are made of two con-

centric lay e rs of different stainless
steels. A crack in the joint between the

inner and outer tubes severely impedes
heat flow. The resulting temperature differ-
ence creates thermal stresses, which cause
the crack to propagate along the tube inter-
face. The tube eventually deform s , and the
c r a c ked surfaces separate. Immediately, y o u
can see that this problem involves both
s t ructural mechanics and heat transfer con-
siderations. 

The future
Today, it is easy to solve PDEs on a per-

sonal computer, and it appears that we are
close to realizing Leibnitz’s vision. As
u s u a l , expectations grow with achiev e-
ments, and during the next few years the
wide accessibility of PDE modeling will have
a noticeable impact on science and engi-
neering. Graduates of engineering schools
will take such tools for granted and will con-
centrate on the truly creative processes of
design and development. Turnaround times
for what-if simulations will be short e n e d ,
increasing the number of design ideas that
can be assessed and, t h e r e f o r e , a l l o w i n g
all aspects of a design to be studied. 
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Figure 5. This model of a high-voltage

disconnector was created with

finite-element analysis software

on a PC more powerful than the

supercomputers of the 1980s.


