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Abstract

Fast electronic structure methods for studying highly-correlated molecular systems.

by

Gregory John Olaf Beran

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Martin P. Head-Gordon, Chair

Though it is often very successful, the mean-field, or Hartree-Fock (HF), approxi-

mation for predicting molecular electronic structure in quantum chemistry cannot

reliably describe systems with strong electronic correlation effects, such as transition

states, bond-breaking, radicals, diradicals, and other interesting systems, and these

difficulties can magnify when HF is used as a reference wave function for higher-level

correlation methods. In a case study on the prediction of harmonic vibrational fre-

quencies in diatomic radicals, we demonstrate the perils of using a poor HF reference

with normally very accurate correlation methods. We also find that replacing the

HF reference with one that is determined from a correlated wave function drastically

reduces the pathologies in many cases. Unfortunately, these alternative methods are

too computationally expensive to be applied to systems beyond a handful of atoms.

With the goal of developing efficient methods that can properly describe highly-

correlated systems, we explore a two-step approach to computing the correlation

energy. In this model, the leading correlation terms involving the chemically va-

lence electrons are treated in a self-consistent coupled cluster fashion. The remaining

correlations are approximated perturbatively from the improved reference.

We first demonstrate that such a procedure can viably approximate more expen-

sive coupled cluster methods at reduced cost. Next, we explore the spatial character

of these strongest correlation effects and find that they are often very localized in

space. Even the simplest local model, Perfect Pairing (PP), improves upon HF in
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many cases. We introduce an extremely efficient algorithm for PP and generalize

the model to an unrestricted formalism to enable it to properly dissociate molecular

bonds to their atomic limits and to treat systems with unpaired electrons.

Then a second-order perturbative correction to account for the numerous missing

correlation terms is applied to the PP wave function. Overall, this method, PP(2),

costs only up to a factor of a few times more than standard second-order perturbation

theory based on the HF wave function, but it substantially improves predictions in

many cases with strong correlations. We demonstrate the strengths and weaknesses

of PP(2) in various interesting systems.

Professor Martin P. Head-Gordon
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Elementary quantum chemistry

Quantum mechanics provides the mathematical framework for describing a chemi-

cal reaction from the reactants, through any intermediate reactive species, and finally

to the products. This information may be obtained by solving the Schrödinger equa-

tion,

ĤtotΨtot(r1, r2, . . . , rn, R1, R2, . . . , RN) = EtotΨtot(r1, r2 . . . , rn, R1, R2, . . . , RN),

(1.1)

for the total wave function Ψtot, where the molecular Hamiltonian Ĥtot expressed in

atomic units takes the form:

Ĥ = −
1

2

∑

i

∇2
i −

1

2

∑

A

∇2
A −

∑

iA

ZA

|RA −Ri|
+
∑

ij

1

|ri − rj|
+
∑

AB

ZAZB

|RA −RB|
. (1.2)

Here, ri and rj refer to electronic coordinates, RA and RB refer to nuclear coordinates,

and ZA and ZB refer to the nuclear charges. The first two terms in Ĥtot correspond to

the electronic and nuclear kinetic energies, followed by the nuclear-electronic attrac-

tion, the electron-electron and nuclear-nuclear repulsions. Thus, the accurate pre-

diction of chemical processes requires the solution of this many-dimensional, second-

order partial differential equation. In practice, this equation cannot be solved exactly

for all but the most trivial of systems. It is therefore necessary to make various

approximations that make the problem more tractable.
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Given the large difference in masses of the electrons and nuclei (the mass of a

hydrogen nucleus is roughly one thousand times that of an electron), we can perform

an approximate separation of variables, known as the Born-Oppenheimer approxima-

tion. In this approximation, we solve the Schrödinger equation corresponding to the

electronic Hamiltonian,

Ĥ = −
1

2

∑

i

∇2
i −

∑

iA

ZA

|RA −Ri|
+
∑

ij

1

|ri − rj|
, (1.3)

for fixed positions of the nuclei R to obtain the electronic energy,

ĤΨ(r1, r2, . . . , rn; R) = EΨ(r1, r2, . . . , rn; R). (1.4)

This resulting solutions to the electronic Schrödinger equation for varying values of the

nuclear position parameters R maps out the potential energy surface (PES). From this

surface, one may study molecular dynamics, identify stable (minima) and transition

state species (saddle points) on the PES, or compute reaction activation barriers,

reaction kinetics, and reaction thermodynamics. Likewise, one may predict various

spectroscopic properties such as infrared (IR), Raman, or nuclear magnetic resonance

(NMR) frequencies by differentiating the PES with respect to various applied fields.

Therefore, the goal of present-day electronic structure theory is to accurately

and uniformly predict these potential energy surfaces for small- to moderate-sized

systems of chemical interest. Of course, to be useful, such predictions must be com-

putationally affordable and should ideally be made available as tools that are easily

used by practicing chemists. Furthermore, any approximations utilized should satisfy

the desired criteria for a theoretical model chemistry.[6] (1) They should involve no

system-specific, user-defined parameters. (2) Potential energy surfaces generated by

the approximate methods should vary smoothly with changes in nuclear geometry

and always remain differentiable. (3) The model should be size extensive, scaling

appropriately with the number of electrons. This third criterion will be discussed

in more detail below. From this point forward, we will consider only the solution

of the electronic Schrödinger equation, which corresponds to the branch of quantum

chemistry known as electronic structure theory.
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Various strategies for solving the electronic Schrödinger equation exist. One of

these, known as density functional theory (DFT)[7] takes advantage of various the-

orems proved by Hohenburg, Kohn, and Sham in the 1960s that demonstrate that

the energy depends only on the three-dimensional density, rather than the full many-

dimensional wave function Ψ(r1, r2, . . . , rn). Unfortunately, although these theorems

prove the existence of a functional that maps the density to the exact energy, they

provide inadequate insight into what form this functional should take. Although

many highly successful approximate density functionals have been developed, partic-

ularly in the last quarter century,[8, 9, 10, 11] there remain fundamental chemical

interactions that current DFT functionals cannot describe, such as dispersion effects

or highly correlated systems. Therefore, we shall focus primarily on the other strategy

for solving the electronic Schrödinger equation: the wave-function based methods.

1.2 Wave-function-based methods

Virtually all, ab initio wave function methods begin with the mean-field Hartree-

Fock (HF) approximation. In this model, the wave function is approximated in the

form of a single, n-electron, antisymmetrized determinant of one-electron orbitals

|φi〉,

|Φ0〉 = |φ1(r1)φ2(r2) · · ·φn(rn)|. (1.5)

These one-electron orbitals are, in turn, written as linear combinations of a finite

number of atom-centered Gaussian basis functions (or predetermined contractions

thereof) |χµ〉,

|φi〉 =
∑

µ

Cµi|χµ〉. (1.6)

In the limit of an infinite basis, this latter expansion will be exact. Forcing the

electrons to reside in separate, one-electron orbitals in this manner leads to a mean-

field description of the electronic structure. The HF method solves for these molecular

orbital coefficients Cµi variationally. The resulting wave function provides a single

configuration arranging the electrons in the lowest energy orbitals consistent with the

Pauli antisymmetry principle.
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Despite its simplicity, the HF approximation typically recovers roughly 99% of

the total energy of the system. Unfortunately, chemistry depends on relative energies

between related species, and this remaining one percent of the total energy, termed

the correlation energy, is important for making quantitative chemical predictions.

Formally, the correlation energy is defined as the difference between the exact energy

and the mean-field (HF) energy in a given, finite basis:

Ecorr = Eexact − EHF (1.7)

In order to recover the correlation energy, one resorts to another basis set expan-

sion, this time in terms of n-electron determinants or “configurations”, to find the

exact wave function. Because the HF approximation typically captures the quali-

tative nature of the system, we often write this basis set expansion in terms of the

degree of “excitation” of the other n-electron configurations from the HF one:

|Ψexact〉 = (1 + Ĉ1 + Ĉ2 + Ĉ3 + · · ·)|Φ0〉 (1.8)

= |Φ0〉+
singles
∑

ia

cai |Φ
a
i 〉+

doubles
∑

ijab

cab
ij |Φ

ab
ij 〉+

triples
∑

ijkabc

cabc
ijk |Φ

abc
ijk〉+ · · · . (1.9)

The excitations are generated by n-body excitation operators Ĉn. For example, in

second quantization,

Ĉ2 =
∑

ijab

cab
ij â

†
aâiâ

†
bâj. (1.10)

In this notation, i, j, k, · · · refer to orbitals which are occupied in the HF reference

determinant, and a, b, c, · · · refer to orbitals which are unoccupied (or virtual) in the

HF reference. The operators âi and â†a annihilate an electron in orbital i and create

one in orbital a, respectively. The doubles terms given in Eq. 1.10, for example, are

determinants in which two electrons in the HF reference determinant are removed

from orbitals i and j and placed into empty orbitals a and b. As in the HF approx-

imation, the expansion coefficients {cabc···
ijk···} are solved for variationally. This method

is called configuration interaction. If all possible configurations are included in the

expansion, it is termed Full Configuration Interaction (FCI), and the method recovers

the exact correlation energy within our chosen atomic orbital basis set. Unfortunately,
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the number of configurations grows factorially with the number of orbitals/electrons,

making the approach intractable for all but the smallest systems.

However, given that the HF approximation is generally fairly good, one might

suspect that the most important terms in this expansion correspond to those configu-

rations that are fairly similar to the HF determinant. Indeed, fairly good approxima-

tions are made by solving for the coefficients in a truncated configuration interaction

expansion involving only the singles and doubles terms (CISD). If necessary, triples or

quadruples could also be included, though, as will be discussed in more detail below,

the computational effort grows rapidly with the inclusion of higher order terms in the

CI expansion. Furthermore, size extensivity is lost in truncated CI expansions.

Alternatively, given the generally good quality of the HF wave function, we can

approximate the exact energy and wave function using perturbation theory. In this

case, we partition the Hamiltonian into the effective one-body operator, F̂ which

arises in the mean-field HF procedure (the zeroth order piece), and the remaining

two-body interactions, V̂ (the first order piece):

Ĥ = F̂ + V̂ . (1.11)

Working out the perturbative expansion, the first new contribution arises at second

order and is termed second-order Møller-Plesset perturbation theory, or MP2.[12] Of

course, one may continue to higher orders of the perturbation expansion. Empirical

evidence suggests that this series is often not convergent and if higher accuracy is

required, one should resort to alternative strategies.

Finally, the other major category of wave-function-based method are the coupled

cluster (CC) methods.[13] Truncated CI expansions fail to satisfy size-consistency—

the energy of two non-interacting subunits is not the same as the sum of the individual

subunit energies. The CC Ansatz assumes a wave function of the form,

|Ψ〉 = eT̂ |Φ0〉 (1.12)

= (1 + T̂ +
1

2!
T̂ 2 +

1

3!
T̂ 3 + · · ·)|Φ0〉, (1.13)

where T̂ = T̂1 + T̂2 + T̂3 + · · ·. The T̂n operators in Eq. 1.13 are defined analogously
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to those for the CI wave function in Eq. 1.10. For example,

T̂2 =
∑

ijab

tab
ij â

†
aâiâ

†
bâj, (1.14)

defines the double excitations.

In the limit of all possible excitations being included, the CC and CI Ansätze are

equivalent, and both reproduce the FCI result. Truncated CC expansions, however,

are vastly superior to their CI counterparts. Truncated CC expansions are properly

size-consistent/size-extensive, and they tend to converge to the exact wave function

more quickly with a given excitation order.[14, 15] Both of these observations stem

from the exponential form of the wave function. Consider a simple model that includes

only doubles (usually the leading correction to HF). In this case, the CC wave function

has the form:

|ΨCCD〉 = eT̂2 |Φ0〉 = (1 + T̂2 +
1

2!
T̂ 2

2 +
1

3!
T̂ 3

2 + · · ·)|Φ0〉. (1.15)

In addition to including all of the doubles, this wave function estimates the quadru-

ples as products of two separate double excitations, the triples as products of three

separate double excitations, and so forth. It is exactly these additional terms that

make the wave function size extensive and provide a more balanced description of the

correlations.

The CC equations could be solved variationally, like the HF and CI equations.

However, it turns out that this is factorially complicated even for truncated CC

models due to the exponential Ansatz.[16] Instead, the CC equations are usually

solved projectively. Starting from the Schrödinger equation in the CC Ansatz,

Ĥ|Ψ〉 = E|Ψ〉 (1.16)

ĤeT̂ |Φ0〉 = EeT̂ |Φ0〉, (1.17)

we can left-multiply by e−T̂ to obtain a modified equation in terms of the similarity-

transformed Hamiltonian, H̄ = e−T̂ ĤeT̂ ,

e−T̂ ĤeT̂ |Φ0〉 = E|Φ0〉. (1.18)
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In order to obtain the energy, then, we simply left-project both sides on to the refer-

ence determinant, |Φ0〉,

〈Φ0|e
−T̂ ĤeT̂ |Φ0〉 = E〈Φ0|Φ0〉 = E. (1.19)

This energy expression depends on the amplitudes {t}, and in order to solve for these

we left-project with excited determinants. For example, to solve for CCSD, we would

also left-project with all possible singly- and doubly-excited determinants |Φa
i 〉 and

|Φab
ij 〉,

〈Φa
i |e

−T̂ ĤeT̂ |Φ0〉 = E〈Φa
i |Φ0〉 = 0 (1.20)

〈Φab
ij |e

−T̂ ĤeT̂ |Φ0〉 = E〈Φab
ij |Φ0〉 = 0. (1.21)

These projections produce a set of coupled, non-linear equations for the amplitudes

which must be solved iteratively. Unlike the variational solution of the CC equations,

this approach leads to equations for the unknown amplitudes that naturally terminate.

In the case of a doubles only method, the exponential expansion terminates with the

estimated quadruples, meaning that the amplitude equations are only quadratic in

nature (products of two doubles amplitudes leading to an estimated quadruple).

Currently, coupled cluster singles and doubles (CCSD),[17] or sometimes CCSD

with a perturbative estimate of the triples, CCSD(T),[18, 19] are widely used for

highly accurate calculations on small molecules (typically those with only a handful

of non-hydrogen atoms).

1.3 Computational considerations and local corre-

lation

Thus far we have outlined a hierarchy of successful approaches for computing the

wave function and energies of molecules, beginning with the HF approach, which is

typically only qualitatively accurate, to MP2, which behaves well for many standard,

primarily-organic molecules near their equilibrium geometries, and finally to CCSD



8

and CCSD(T) for more accurate predictions across a wider range of species. Unfor-

tunately, commensurate with the improvements in the description of the electron-

electron correlations is a dramatic increase in computational cost. HF scales with the

fourth power of the system size naively, and developments in the last decade or so

have brought this down to quadratic or even and effective linear scaling.[20, 21, 22, 23]

Canonical MP2 scales with the fifth power of the system size, CCSD with the sixth

power, and CCSD(T) with the seventh power! This means that a doubling the size

of the system to be studied increases the computational effort required by a factor of

32, 64, or even 128 times, respectively. Clearly, these steep scalings severely constrain

the realm of applicability of the various correlation methods.

Fortunately, a little over twenty years ago Pulay demonstrated that these unphys-

ically steep scalings could be significantly reduced by taking account of the localized

nature of electron-electron correlations.[24] The molecular orbitals |φi〉 obtained from

a HF calculation, usually termed the canonical molecular orbitals, are in fact delo-

calized over the entire molecule. This means that a complete treatment of electron

correlation must interact all possible electron configurations because all of the orbitals

interact non-trivially.

However, the HF energy depends only on the space spanned by the occupied or-

bitals, rather than the representation of the orbitals spanning this space. Therefore,

one may transform the basis in any manner that preserves the partitioning between

the occupied and virtual spaces. Given this freedom, various researchers have pro-

posed transformations that localize the canonical molecular orbitals into ones that

look like the familiar bonding orbitals used in qualitative molecular orbital theory.

Two such schemes, the Boys[25] and Pipek-Mezey[26] procedures, are widely used to

localize the canonical orbitals. The Boys scheme localizes the orbitals via a functional

that minimizes their spatial variances, while the Pipek-Mezey scheme minimizes the

number of atomic centers on which each molecular orbital has an appreciable presence.

Using localization schemes like these in combination with numeric cutoffs based on

the spatial distance between orbitals for which electrons to correlate, Saebø and Pulay

demonstrated substantial computational savings could be obtained with minimal loss

in accuracy.[24, 27, 28] Since their landmark work, a variety of local approximations
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have been pursued,[29, 30, 31, 32, 33] with much of the work being done on improve-

ments to the basic Saebø and Pulay local correlation model. In particular, it has

been extended to coupled cluster methods.[34, 35, 36, 37] These Pulay-type models

suffer from one significant flaw: the use of the numeric cutoff leads to discontinuous

potential energy surfaces as orbitals move across the cutoff and suddenly become or

cease to be correlated.[38]

In the late 1990s, Lee and co-workers proposed an alternative local correlation

model that does not utilize user-defined numerical cutoffs or suffer from discontinu-

ous energy surfaces.[39, 40] Instead, they partitioned the molecular correlations into

spatial classes using atom-centered localized orbitals. Local truncations are made by

including a subset of the one-atom, two-atom, three-atom, and four-atom pair excita-

tions in MP2. In general, the more centers involved in the correlation, the less local

it is. They found that for MP2, the triatomics-in-molecules, or TRIM, model recov-

ered roughly 99% of the non-local MP2 correlation energy at a significantly reduced

cost. Though these schemes do include some non-local terms, they recover the vast

majority of the correlation energy with many fewer amplitudes than their non-local

counterparts, scaling no worse than with the fourth power of system size. They also

do not exhibit the discontinuities of the Saebø-Pulay models.

1.4 Breakdowns of the Hartree-Fock approxima-

tion

In addition to the steep computational scaling of these correlation methods, they

also are all based on the fundamental assumption that the HF approximation provides

a good, qualitative description of the system. When this is true, perturbation methods

or low-order excitation CC methods (CCSD, for example) are able to approximate the

correlation energy well. This situation corresponds to the case when the various {c}

or {t} coefficients in Eqs. 1.9 and 1.13 are significantly smaller than 1, the coefficient

of the HF determinant.

Consider now the case where one of these excited determinants, |Π〉 is also very
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important and has a coefficient approaching the weight of the HF determinant. Now

the simplest qualitatively-correct wave function takes the form,

|Ψuncorr〉 = |Φ0〉+ cπ|Π〉, (1.22)

where 0 << cπ < 1. We would say that this wave function captures the static corre-

lation, meaning that it goes beyond the single-determinantal mean-field description

in order to be flexible enough to describe the system qualitatively. Supposing now

we applied an MP2-like correlation for each of these determinants, which amounts to

an approximate treatment of double excitations from each configuration, this wave

function would take the form,

|Ψ〉 = (|Φ0〉+
∑

ijab

tab
ij |Φ

ab
ij 〉) + cπ(|Π〉+

∑

ijab

uab
ij |Π

ab
ij 〉) (1.23)

This type of correlation is termed dynamical correlation, and it is characterized by

the short-range electron-electron scattering events. Of course, the determinant |Π〉

and its related configurations can be rewritten as excited versions of the HF reference

|Φ0〉. Suppose that |Π〉 is simply a doubly-excited determinant relative to |Φ0〉,

cπ|Π〉 = tcdkl |Φ
cd
kl〉, (1.24)

then the correlated wave function in Eq. 1.23 becomes,

|Ψ〉 = |Φ0〉+
∑

ijab

tab
ij |Φ

ab
ij 〉+ tcdkl |Φ

cd
kl〉+

∑

ijab

tabcd
ijkl |Φ

abcd
ijkl 〉. (1.25)

Now, in terms of the HF reference, this wave function includes all doubly-excited

configurations and a fraction of quadruply excited configurations! Clearly, a method

like CCSD lacks the ability to accurately describe this wave function if we start from

only the HF reference. A robust HF-based description would require CCSDTQ, which

scales computationally with the ninth power of system size.

This example wave function is not simply an arbitrary construction, either. Such

wave functions arise as chemical bonds are stretched. In fact, any case with more

than one important configuration, which includes some radicals, diradicals, transition

states, etc., requires a more careful treatment of the electronic correlation.
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The standard approach for handling such strongly-correlated systems is to con-

struct a multi-configurational reference function. This is accomplished either by the

user choosing the important configurations to construct a useful multi-configurational

self-consistent field (MCSCF) wave function, or by choosing a small number of “ac-

tive” electrons and orbitals and then including all possible configurations involving

those orbitals and electrons. This procedure, known as the complete active space self-

consistent field (CASSCF) model,[41] is basically equivalent to FCI in a subspace of

the orbitals. The only difference is that the active orbitals are variationally optimized

to minimize the energy, therefore making sure the best possible orbitals are included

in the typically small active space. Because such calculations are equivalent to FCI,

they exhibit exponential computational scaling that limits their utility in practice to

no more than fourteen active electrons and orbitals. These reference wave functions

are then typically corrected perturbatively with various multi-reference perturbation

theories.[42, 43, 44, 45]

In the hands of a skillful practitioner, these aforementioned methods are extremely

powerful and can provide very good results. Unfortunately, given their computational

expense, it is often difficult to assess whether, for example, the results are converged

with respect to active space size in CASSCF calculations or whether an unexpected

configuration is important for MCSCF calculations.

With the goal of making calculations more affordable and less prone to user er-

ror, Krylov et al. developed the valence orbital-optimized coupled cluster doubles

(VOD) approximation to CASSCF.[46] Much like CCSD approximates FCI through

the inclusion of singles and double excitations, VOD approximates CASSCF by per-

forming a CCD calculation within an active space. The orbitals are simultaneously

variationally optimized to find the best set of core occupied and active occupied and

virtual orbitals. Single excitations are not included because in CCSD they are asso-

ciated with orbital relaxation.[46] Since the orbitals are being relaxed via the orbital

optimization, singles are neglected.

VOD scales with the sixth power of system size, analogously to CCSD, and enables

the inclusion of many more active orbitals and electrons than standard CASSCF.

Calculations on the order of 50 active orbitals/electrons are quite reasonable and
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enable the user to simply select all valence orbitals as active, rather than requiring

careful selection. Though not as robust as CASSCF (just as CCSD is less robust than

FCI), VOD mimics CASSCF fairly well across a variety of difficult systems.

The formalism for VOD differs moderately from that for standard CCSD, and

because it pertains to topics discussed in subsequent chapters, it merits further dis-

cussion. The standard CC equations, Eqs. 1.20 and 1.21 are projective rather than

variational. Differentiating with respect to changes in the orbitals leads to a response

term for the amplitudes. Alternatively, one can construct a Lagrangian functional,

L = 〈Φ0|(1 + Λ̂)e−T̂HeT̂ |Φ0〉, (1.26)

with Lagrange multipliers given by the operator,

Λ̂ =
∑

ijab

λij
abâ

†
i âaâ

†
j âb. (1.27)

This functional satisfies the property that making the functional stationary with

respect to the λ amplitudes,
∂LCCSD

∂Λ̂
= 0, (1.28)

produces the original equations for the t amplitudes given in Eq.1.21 and the cor-

rect CC energy. Likewise, making the functional stationary with respect to the t

amplitudes,
∂LCCSD

∂T̂
= 0 (1.29)

produces equations for the λ amplitudes. When both sets of amplitudes have been

solved for, orbital (or nuclear) derivatives can be obtained without explicit response

terms. This formalism is simply another way to write the coupled cluster equations.

Orbital-optimized coupled cluster doubles (OD)[47] utilizes this Lagrangian for-

mulation to go beyond standard coupled cluster doubles. In addition making the

Lagrangian stable with respect to the amplitudes, it is made stationary with respect

to the reference orbitals. In other words, the orbitals are variationally optimized to

minimize the coupled cluster doubles. This enables the reference determinant in the

coupled cluster wave function to find more reasonable orbitals (e.g. less symmetry-

broken or spin-contaminated) than the HF ones and can substantially improve pre-

dictions, as will be seen in the next chapter.
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VOD works basically the same way as OD, except instead of partitioning the

reference orbitals into occupied and virtual subspaces, the orbitals are partitioned

into four subspaces: inactive (or core) occupied, active (or valence) occupied, active

virtuals, and inactive virtuals. VOD solves the coupled cluster equations only in the

active occupied and virtual spaces. The orbital optimization procedure then requires

mixing between all four subspaces: occupied and virtual, active and inactive.

VOD and OD have been demonstrated to reduce symmetry-breaking effects in

molecules and remove other pathological effects. A second order perturbative cor-

rection, termed (2),[48, 5, 49, 3] has also been developed to correct VOD for the

beyond-valence correlations and also some triple and quadruple excitations, which

add dynamical correlation via the additional configurations included in the wave

function.

1.5 Research directions

In the next chapter, we will explore the failure of many correlation methods to

treat small radicals accurately and demonstrate how these difficulties arise from the

inadequacy of the HF model.[50] More advanced correlation like OD(T) that do not

rely on the HF reference are more robust and perform admirably for these particular

systems. We also propose an inexpensive alternative to these advanced correlation

methods that replaces the HF reference with one from density functional theory and

then performs a standard CCSD(T) calculation. For these systems, the differences

between this hybrid approach and the OD(T) approaches are minimal, while the com-

putational savings are sizable. More recently, we applied similar techniques to a study

on the cleavage of the N2 triple bond under relatively mild reaction conditions using

a molybdenum complex.[51] In that particular system, the mixture of high- and low-

spin open-shell electronic states made reliable predictions very difficult with standard

DFT or wave function approaches. Unfortunately, none of these novel coupled cluster

techniques can be applied readily to systems with more than about ten non-hydrogen

atoms. We desire more affordable methods that can perform reasonably well in these

types of systems.
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In Chapter 3, a two-part approach to computing the correlation energy is proposed

and implemented.[52] A CCSD calculation is approximated using a CCSD calculation

within a relatively small valence active space to obtain the most significant correla-

tions robustly, and then a perturbative correction is used to obtain the remaining

singles and doubles correlations. This basic model demonstrates the plausibility of

such a two part approach for the efficient calculation of correlation energies in difficult

systems.

Chapter 4 explores the spatial nature of valence space correlations, which typically

comprise 30-40% of the total correlation energy.[53, 6] In particular, we decompose

the correlations in VOD according to the number of spatial sites involved in the pair

excitations and learn that same site correlations contribute some 50-70% of the valence

correlation energy. Additionally including two-center valence correlations brings this

figure to 85-95% of the valence correlation energy. The rest of the valence correlation

energy is fairly evenly distributed among the many remaining three- and four-center

correlations.

The one center model discussed in Chapter 4 already exists in the literature, and is

termed the Generalized Valence Bond Perfect-Pairing (PP) approximation.[54, 55, 56]

Though it was not originally written using the CC formalism, it can be and is then

simply a strong local approximation to VOD.[57, 58, 53] In Chapter 5 we generalize the

PP model to unrestricted and open-shell systems and develop and implement a highly

efficient algorithm for PP that makes it very affordable and a possible replacement

for HF in strongly-correlated systems.[59, 60]

Chapter 6 digresses to consider a technique for analyzing the important physical

correlations from complex, many-body wave functions.[61] Inspired by the simplicity

of the physical interpretation of PP wave functions, we utilize the singular value

decomposition on the doubles piece of CCD-like wave functions to rewrite the doubles

as a single pair excitation for each possible pair of electrons in the molecule. The pair

excitations with the largest amplitudes are the most chemically significant, and we

visualize these correlations in terms of the two-electron orbitals from which the pair

originates and to which it is excited. The technique is completely general and may

be applied to an arbitrary level of correlations in the wave function or to any MPn,
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CC-, or CI-type wave function.

Finally, in Chapter 7 we discuss the derivation, implementation and reliability of

a second-order perturbative correction built on top of PP, termed PP(2).[62] This

efficient, two-part approach scales with the fifth power of the system size (like MP2,

albeit with a larger prefactor) but obtains accuracy much closer to CCSD(T) than

MP2 across a wider range of the potential energy surface. We conclude by demon-

strating the utility of this new approach in various interesting chemical systems.
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Chapter 2

Overcoming symmetry-breaking

effects in small radicals

2.1 Introduction

Free radicals play a critical role in diverse areas of chemistry, including combus-

tion, atmospheric chemistry, interstellar reactions, and biochemistry. Because of their

high reactivity, studying them in the laboratory requires using special techniques like

rare-gas matrices to trap and stabilize the radicals. Such experimental difficulties

increase the need for accurate theoretical approaches to complement the experimen-

tal ones. A strong argument for using wave-function-based ab initio methods for

the prediction of molecular structure and properties is their general reliability and

capacity for systematic improvement. The hierarchy of Hartree-Fock (HF) theory,

Second-Order Møller-Plesset Perturbation (MP2) theory, Coupled Cluster Single and

Double excitations (CCSD)[17], and CCSD with a perturbative account of triple ex-

citations (CCSD(T))[18] is typically used to systematically improve the quality of

theoretical results. Extensive benchmarking has provided estimates of the accuracy

of these different methods. For example, one study of 19 closed-shell molecules[63]

found a mean absolute error in predicted bond lengths versus experiment of 0.57 pm

for CCSD and 0.20 pm for CCSD(T) in the cc-pVTZ basis[64]. A different study

of 10 small closed-shell molecules and 33 vibrational modes found a mean absolute
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error for predicted harmonic frequencies of 3.7% and 2.2% for CCSD and CCSD(T),

respectively, in the TZ(2df,2pd) basis[65].

However, both the magnitude of the errors and even the notion of systematic

improvement along this hierarchy do not necessarily apply for open-shell molecules.

In a recent study comparing bond lengths and frequencies of 33 small radical molecules

against experiment using both unrestricted and restricted open-shell wave functions,

Byrd et al.[66] found HF and MP2 theories to be too erratic for general use. CCSD

performed much better, though at a somewhat lower statistical accuracy than is

generally found for closed-shell molecules[63, 65]. Most surprising, however, was the

fact that CCSD(T) results showed little or no overall statistical improvement over

CCSD across a range of small to medium-sized basis sets, both for the restricted

open-shell and the unrestricted cases. For the unrestricted case in the cc-pVTZ basis,

mean absolute errors in bond lengths actually worsened, going from 0.56 to 1.25

pm for CCSD and CCSD(T) respectively, while harmonic frequencies demonstrated

negligible improvement from mean absolute errors of 69 cm−1 for CCSD to 64 cm−1

for CCSD(T). The study also found that unrestricted B3LYP, which generated mean

absolute errors of 0.75 pm and 71 cm−1, performed similarly to unrestricted CCSD

at a much reduced cost.

Although density functional theory (DFT) is a useful alternative to wave-function-

based methods for radicals, in some cases one desires a higher level of accuracy than

it or CCSD can provide. In this letter, we explore the cause of this failure of the

(T) correction and propose several approaches which achieve better agreement with

experiment. Perturbative methods and truncated coupled cluster (CC) theories can-

not obtain accurate results when the HF reference is a poor one, as is often the case

for radicals. Two obvious solutions exist to the problem of an inadequate reference:

either improve the reference or utilize perturbative corrections that do not depend

so strongly on the exact nature of the reference. In the former case, optimal orbital

methods in the CC formalism[17, 67] such as Brueckner Coupled Cluster Doubles

(BD)[68, 69] and Orbital-Optimized Coupled Cluster Doubles (OD)[47] may help to

find an appropriate reference for each case. Alternatively, Kohn-Sham (KS) orbitals,

which form a correlated single-determinantal description of the system, may provide a
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reasonable and computationally inexpensive reference for CC methods as well. This

approach is not entirely new: KS orbitals have been used as an alternative to HF

ones successfully in Configuration Interaction (CI) excited-state calculations[70] and

as a guiding function in Quantum Monte Carlo calculations[71]. Moreover, the sim-

ilarity between Kohn-Sham and Brueckner orbitals has been suggested by several

researchers[72, 73], and recently a more formal connection between the two has been

proposed[74].

For the second case, we believe that the recently-developed (2) correction[48, 49]

to coupled cluster wave functions may be less sensitive to the choice of reference and

therefore supply a reasonable alternative to the (T) correction[18]. In the following

sections we briefly describe the theory behind these methods and then investigate

their behavior for a set of 12 first-row diatomic radicals.

2.2 Theory

Orbital-optimized coupled cluster methods have been described elsewhere[47, 75].

Here we will only briefly summarize them. OD[47], the most straightforward model,

is based on the coupled cluster doubles (CCD) Ansatz, which can be written as a

Lagrangian

LCCD = 〈Φ0|(1 + Λ̂2)e
−T̂2ĤeT̂2 |Φ0〉 (2.1)

where |Φ0〉 is the HF reference, T̂2 is the double excitation operator, and Λ̂2 is a

Lagrange multiplier commonly used in CC gradient theory that acts as a double

de-excitation operator. In standard CCD, the energy is obtained by making the

Lagrangian stationary with respect to all excitation and de-excitation amplitudes in

the sets {tab
ij } ∈ T̂2 and {λij

ab} ∈ Λ̂2, which may be symbolically written as:

∂LCC

∂Λ̂2

= 0,
∂LCC

∂T̂2

= 0. (2.2)

In OD we solve the same equations, except we also make the wave function stationary

with respect to variations in the orbitals by performing rotations (with individual

angles θq
p) between the occupied and virtual subspaces until the minimum energy set
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of orbitals is found:
∂LCC

∂θ̂
= 0. (2.3)

This approach produces orbitals similar to the so-called Brueckner orbitals in the

Brueckner doubles method[68], as is described in Ref. [47]. This optimized set of

orbitals forms the “best” single reference for the given system/geometry as defined

by the minimum CCD energy.

Beyond OD and CCSD, we utilize the non-iterative (2) correction[48, 49], which

is a second-order perturbative correction based on the expansion of the similarity-

transformed CC Hamiltonian, e−T̂ ĤeT̂ . This correction is readily applicable to the

CC methods described above and has been demonstrated to be more robust than the

more common (T) correction although at a somewhat higher cost. For closed-shell

molecules near equilibrium, (2) results are very similar to those from (T). However,

in difficult diradical and bond-breaking cases, among others, it has been shown to be

much more faithful to full CI. Formally, (2) scales as the seventh power of the system

size—the same as (T)—but with a larger prefactor. In practice, a (2) calculation

costs roughly 3-5 times more than a (T) one in our implementation. For more detail,

the reader is referred to the original references.

Unfortunately, orbital optimization in the context of CC theories is computation-

ally demanding at present. Ideally, one could efficiently find an adequately optimized

or well-behaved set of orbitals from which further correlations could be included.

In active space coupled cluster methods, one good choice might be the Imperfect

Pairing[76] orbitals which we will show to approximate optimized orbitals at a re-

duced cost in Chapter 3. However, orbitals that are both cheaper and optimized

for the full space are desirable. Unrestricted B3LYP has been shown to perform

quite well for radicals.[66] More importantly, just like Brueckner methods, DFT ap-

proaches demonstrate improved stability against symmetry-breaking over Hartree-

Fock theory[77]. This is advantageous from two perspectives. First, we want orbitals

that vary smoothly and continuously with geometry changes, which does not occur

near a symmetry-breaking point. Second, unlike symmetry-constrained Hartree-Fock

wave functions, DFT or optimized/Brueckner orbitals require no constraints to re-
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main symmetric. One way of viewing symmetry-breaking is as being driven by the

asymptotic behavior of the system[78]: for example, the symmetric Hartree-Fock wave

function for F+
2 must break symmetry in order to approach the correct energetics of

the two isolated atomic fragments, since the symmetric minimum is too high in en-

ergy. For correlated references (like Kohn-Sham or Brueckner), the potential well is

deeper and the potential energy surface can smoothly reach the asymptotic limits

without breaking symmetry. Thus, just as one may include correlations based on ex-

citations from the HF orbitals, we explore the possibility of using BLYP Kohn-Sham

orbitals[9, 10] (effectively, they form the natural orbitals for the BLYP density) as the

reference from which to perform CC excitations. More specifically, the Kohn-Sham

orbitals from the DFT calculation are used to form a single-determinantal reference,

and from there the calculation proceeds like any other non-Hartree-Fock coupled

cluster calculation[79, 19, 5]. The correlation energy is thus defined as the difference

between the true energy and the energy expectation value of this KS determinant,

Ecorr = Etrue − Ẽ0 = Etrue − 〈ΦKS|Ĥ|ΦKS〉. (2.4)

If successful, this approach would provide a robust replacement for the HF refer-

ence with virtually no additional computational expense in high level coupled-cluster

calculations.

2.3 Results and discussion

In this study, we compare the harmonic vibrational frequencies for twelve diatomic

radicals (OF, F+
2 , CF, BO, NO, O+

2 , CN, CO+, N+
2 , CH, FH+, and OH) against

experiment using the Dunning cc-pVTZ and cc-pVQZ basis sets[64] as calculated with

CCSD, CCSD(T), CCSD(2), OD, OD(T), and OD(2). For simplicity, the notation

OD(x) and CCSD(x) is sometimes used to refer to either the (T) or (2) theories. All

correlated calculations use an unrestricted wave function, and only non-core orbitals

were correlated. Experimental data were obtained from Refs [80, 81, 82, 83, 84].

All other single point calculations were performed using Q-Chem[85]. The harmonic
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Table 2.1: Total energies (in hartrees) at the experimental geometry in the
cc-pVTZ basis.

Re CCSD OD KS-CCSD
CH 1.1199a -38.40709569 -38.40718259 -38.40565468
OH 0.9697a -75.63263205 -75.63260502 -75.63116680
FH+ 1.001a -99.75342511 -99.75341291 -99.75210724
BO 1.205a -99.85559766 -99.85479632 -99.85106296
CN 1.1718a -92.54722376 -92.54599638 -92.54143226

CO+ 1.1283a -112.62735434 -112.62608244 -112.62162841
N+

2 1.11642a -108.78355436 -108.78199470 -108.77759668
CF 1.272a -137.59154043 -137.59088691 -137.58711350
NO 1.1508a -129.69838704 -129.69757854 -129.69381772
O+

2 1.1164a -149.67115243 -149.67036505 -149.66639928
OF 1.354b -174.65391617 -174.65251797 -174.64811065
F+

2 1.305c -198.70532070 -198.70425505 -198.70054976
a Reference [81]. b Reference [83]. c Reference [82].

frequencies were determined from five-point fits of single-point calculations spaced

0.5 picometer apart around the experimental equilibrium geometry using PSI[86].

Since, to our knowledge, no results combining Kohn-Sham orbitals with coupled-

cluster theory have been reported, in Table 2.1 we present the total energies at the

experimental geometries for the various doubles-level methods and molecules in the

cc-pVTZ basis. Notice that the differences in total energies between the different

references are only a few millihartree. This fits well with the widely-held view that

coupled-cluster methods have limited reference dependence energetically.

In Table 2.2, we present the root-mean-square (rms) absolute and percentage er-

rors for each method for the entire test set described above. The individual frequencies

are collected in Table 2.3. Figures 1 and 2 plot the errors of the calculated frequencies

relative to experiment by method.

Looking at Table 2.2 and Figures 1 and 2, we see that CCSD(T) substantially

improves upon CCSD for the radicals in general, though cases like NO and CO+ still

have errors of 216 and 106 cm−1, respectively, in the cc-pVTZ basis (see Table 2.3).

In the cc-pVQZ basis set, many of the errors decrease further for CCSD(T), but

several outliers remain (CN, CO+, and NO). These results suggest that although

CCSD(T) performs very well for many radicals, the large scatter arising from certain
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Table 2.2: Root-mean-square absolute and percent errors relative to experi-
ment in the cc-pVTZ and cc-pVQZ basis sets for harmonic frequencies.

CCSD OD CCSD(T) OD(T) CCSD(2) OD(2)
Absolute rms errors (cm−1)
cc-pVTZ 82 86 74 22 36 23
cc-pVQZ 92 105 75 21 42 26
Percent rms errors (%)
cc-pVTZ 5.0 5.3 3.8 1.2 1.9 1.3
cc-pVQZ 5.5 5.8 3.9 1.2 2.2 1.6

cases makes it generally unreliable.

Two effects could be important in a proper description of radicals beyond the

CCSD level: a better treatment of higher order excitations or a better initial reference

than the HF one. Consider first the effects of approximately including triple and

quadruple excitations through the (2) correction. CCSD(2) represents a significant

improvement over both CCSD and CCSD(T) for both basis sets, reducing the rms

percent errors by a factor of 2-3. In particular, CCSD(2) is superior to CCSD(T) in the

outlying cases like NO, CN, and CO+. This is not surprising, since previous studies

have suggested that CCSD(2) depends less heavily on the quality of the reference wave

function than CCSD(T)[49]. Despite the improvement with CCSD(2), the rms errors

of 2-3% percent are still larger than is desirable. More importantly, the statistical

errors are slightly misleading, since particular molecules like CO+ and NO have errors

much larger than the rest.

The other alternative is to modify the reference. Optimizing the orbitals as is

done in OD should improve the reference (and therefore the correlation methods’

accuracies). In fact, though we see little benefit upon optimizing the wave function at

the doubles level (compare CCSD and OD rms errors—both methods behave similarly

on most molecules), the difference between CCSD(T) and OD(T) is substantial. The

rms errors decrease by almost a factor of four with the improved reference. In the

cc-pVQZ basis, the error in the calculated NO frequency drops from 213 cm−1 to

4 cm−1 upon orbital optimization! The largest single OD(T) error is 37 cm−1, as

compared with 213 cm−1 for CCSD(T). Even this largest OD(T) error for CO+ is

a factor of three improvement over the same CCSD(T) frequency. This evidence
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Table 2.3: Errors (in cm−1) relative to experimental harmonic vibrational
frequencies in the cc-pVTZ and cc-pVQZ basis sets.

CCSD OD CCSD(T) OD(T) CCSD(2) OD(2) Expt.
cc-pVTZ basis
CH -5.9 0.5 -18.5 -19.3 -16.9 -17.1 2858.5c

OH 39.5 42.0 7.0 6.9 7.8 8.2 3737.8b

FH+ 76 78 50 50 52 53 3090a

BO 44 50 -9 -20 -11 -7 1886a

CN 88.6 62.4 45.0 -19.2 36.9 -11.6 2068.6b

CO+ 124.2 134.4 106.2 17.9 64.0 38.4 2169.8b

N+
2 64 77 -13 -16 -14 -9 2207a

CF 39 44 13 13 14 19 1308a

NO 85.9 95.0 215.7 -4.7 73.2 -1.1 1904.2b

O+
2 127.9 138.8 9.9 8.2 0.7 4.8 1904.7b

OF 52 60 37 25 27 18 1053a

F+
2 123 132 16 23 28 33 1104c

cc-pVQZ basis
CH 14.6 15.5 -4.8 -5.7 -2.9 -3.2 2858.5c

OH 49.1 52.0 11.9 11.7 13.4 14.0 3737.8b

FH+ 58 61 28 29 31 32 3090a

BO 56 62 2 -8 2 6 1886a

CN 105.6 77.8 57.6 -6.1 58.8 2.1 2068.6b

CO+ 145.3 153.8 122.1 37.0 81.3 57.6 2169.8b

N+
2 80 93 3 0 2 7 2207a

CF 33 38 4 3 5 10 1308a

NO 98.6 105.0 212.6 4.4 79.0 16.7 1904.2b

O+
2 147.7 158.5 28.1 26.5 20.4 24.7 1904.7b

OF 60 66 36 29 28 32 1053a

F+
2 128 137 17 23 29 34 1104c

a Reference [80]. b Reference [81]. c Reference [84].
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Table 2.4: Root-mean-square absolute and percent errors relative to experi-
ment for CCSD-based methods using UBLYP Kohn-Sham orbitals to approx-
imate Brueckner orbitals.

BLYP KS-CCSD KS-CCSD(T) KS-CCSD(2)
Absolute rms errors (cm−1)
cc-pVTZ 100 95 21 25
cc-pVQZ 110 114 20 28
Percent rms errors (%)
cc-pVTZ 3.7 5.9 1.1 1.6
cc-pVQZ 3.8 6.3 1.0 1.7

strongly suggests that the failure of CCSD(T) for some of the radicals is the poor HF

reference. OD(2) also improves significantly upon CCSD(2). The difference between

the two theories is not nearly so large as for the (T) case, however, reflecting the

superior performance of (2) over (T) with HF orbitals.

We notice that OD(T) follows experiment more faithfully on the whole than does

OD(2) in these basis sets. It seems that given a good reference, the (T) theory is

more accurate for these molecules. Such agreement must in a sense be fortuitous,

however, since the (2) correction contains additional terms of quadruple excitation

character. Of course, in the absence of a stable reference, the (2) correction behaves

more robustly. The better orbitals also restore the systematic improvement from

CCSD to CCSD(T). The OD(T) rms errors of 22 and 21 cm−1 compare favorably

with the closed-shell CCSD(T) results for 13 molecules with 36 harmonic frequencies

of Martin who found rms errors of 19 and 13 cm−1 for the cc-pVTZ and cc-pVQZ

basis sets, respectively[87]. The neglected core correlation may also account for a

sizable portion of the residual errors: Paw lowski et al recently attributed errors of up

to 11 cm−1 in closed-shell diatomic molecules to it[88].

Because of the high computational expense of orbital-optimized methods, we also

studied the effects of using unrestricted BLYP Kohn-Sham (KS) orbitals to approxi-

mate Brueckner orbitals for CCSD, CCSD(T), and CCSD(2) calculations. The data

and statistics for these hybrid approaches and BLYP are presented in Tables 2.4

and 2.5. BLYP provides a reasonable starting point, with median errors signifi-

cantly below those for CCSD. There is actually significant scatter for the hydrogen-
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containing radicals with BLYP. Nevertheless, for both CCSD(T) and CCSD(2) with

KS orbitals, we see substantial improvement over the calculations using HF orbitals,

even in the cases where BLYP behaves poorly. In fact, these orbitals seem to be

similar in quality to the OD orbitals—in most cases KS-CCSD(x) frequencies are

within a few wavenumbers of OD(x) values at a drastically reduced computational

expense. For CCSD, the Kohn-Sham orbitals make only a small difference (just like

the OD orbitals) for the most part, except for CN (one of the molecules where orbital

optimizations were particularly important at the doubles-level theories).

What is it about these alternative references that differentiates them from HF?

Significant failures of unrestricted HF-based (UHF) methods for calculations of prop-

erties of open-shell molecules like doublet radicals are commonly blamed on spin con-

tamination which can unphysically deform the UHF potential energy surface (PES),

and therefore it provides a poor starting point for further correlations[89]. Although

including correlation effects generally reduces spin contamination, the effect is not

always sufficient to restore the PES. For example, the rate of convergence of the un-

restricted MPn series is drastically reduced[90, 91, 92]. Optimized orbitals are known

to reduce spin contamination significantly[93], as does density functional theory[94].

CN and CO+ in particular have substantial spin contamination at the HF level,

with 〈Ŝ2〉 values of 1.00 and 1.16 (compared to 0.75 for a doublet spin eigenstate),

respectively. Improving the reference using OD or BLYP virtually eliminates spin

contamination, reducing 〈Ŝ2〉 to 0.75-0.77. Figure 3 plots the ratio 〈Ŝ2〉ODref/〈Ŝ
2〉HF

and the OD(T) and CCSD(T) frequency errors for the cc-pVTZ basis, and Figure 4

plots the same for BLYP-CCSD(T) and CCSD(T). Small values (less than 1.0) of the

ratio of 〈Ŝ2〉 values indicate a marked decrease in spin contamination. Both of these

heavily spin-contaminated molecules have some of the largest errors with CCSD(T),

which is consistent with difficulties observed in the MPn series, and the frequencies

dramatically improve with the better reference (OD or BLYP) and its decreased spin

contamination. Similar results hold for the cc-pVQZ basis. The actual OD or CCSD

wave functions decrease 〈Ŝ2〉 even further, but this improvement does not help the

(T) correction, which depends more directly on the HF reference (unlike (2), which is

based off of the coupled-cluster wave function). However, spin contamination cannot
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Table 2.5: Errors (in cm−1) relative to experimental harmonic vibrational
frequencies using BLYP Kohn-Sham orbitals as a reference for CC correlations

BLYP KS-CCSD KS-CCSD(T) KS-CCSD(2) Experiment
cc-pVTZ basis
CH -143.1 1.4 -19.8 -17.7 2858.5
OH -189.6 45.2 7.6 9.1 3737.8
FH+ -223 82 51 54 3090
BO -49 60 -23 -5 1886
CN 5.3 65.2 -17.8 -9.7 2068.6

CO+ 2.6 148.1 16.9 37.1 2169.8
N+

2 27 84 -18 -10 2207
CF -80 55 6 21 1308
NO -55.7 106.7 -3.3 7.3 1904.2
O+

2 -37.2 149.1 9.6 5.7 1904.7
OF -14 84 12 35 1053
F+

2 4 137 25 33 1104
cc-pVQZ basis
CH -135.5 16.5 -6.0 -3.8 2858.5
OH -182.0 54.8 11.9 14.3 3737.8
FH+ -231 64 28 32 3090
BO -45 71 -11 7 1886
CN 5.2 79.9 -4.2 4.2 2068.6

CO+ 6.9 167.5 35.0 56.3 2169.8
N+

2 26 100 -2 7 2207
CF -90 48 -4 12 1308
NO -55.7 116.2 5.6 17.1 1904.2
O+

2 -31.1 168.0 27.4 25.2 1904.7
OF -11 90 12 36 1053
F+

2 0 142 24 35 1104
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account for all of the errors. For example, NO displays relatively little spin contami-

nation at the HF level.

More recently, Crawford et al[95] analyzed the effects of HF orbital instabilities

(“instability volcanos”), or regions where the wave function is likely to break spatial

symmetry, for both HF and correlated methods. Many of the molecules in this test set

are either notorious for symmetry breaking or are isoelectronic with such molecules

(NO for example is isoelectronic to O+
2 ) . They found that the instability region on the

PES is significantly larger for perturbative methods such as MPn and CCSD(T) than

it is for a method like CCSD. Thus, the erratic behavior of CCSD(T) as compared to

CCSD actually comes as little surprise. The improved performance of KS-CCSD(x)

and OD(x) is also not too surprising, since both methods have been shown to be much

more resistant (though not impervious[96, 77, 97, 98]) to symmetry-breaking[77, 97,

99, 100, 47]. Thus, it is most likely that rapid changes in the Hartree-Fock orbitals as

a function of nuclear displacement are responsible for the poor properties predictions.

Perhaps the success of KS-CCSD(x) lies simply in the fact that the Kohn-Sham

reference changes more smoothly with nuclear displacement than the Hartree-Fock

one, and therefore provides a better starting point for the perturbative corrections.

In order to analyze these spatial wave function instabilities in an “orbital-free”

manner (i.e. in a way that is not confused by the various transformations among

the orbitals), we look at how the reference one-particle density matrix changes with

respect to nuclear displacements. In particular, the derivative with respect to inter-

nuclear distance Px at the experimental equilibrium geometry is constructed by finite

difference (step size δ = 0.0001 Angstroms) in an orthogonalized atomic orbital basis:

Px =
S(rA + δ)

1

2P(rA + δ)S(rA + δ)
1

2 − S(rA)
1

2P(rA)S(rA)
1

2

δ

This quantity is the transition density from the experimental geometry at {rA} to a

new geometry at {rA + δ} and is calculated separately in the alpha and beta orbital

spaces. The norm of this derivative density matrix gives a measure the maximum

rate of change of the wave function with changes in the nuclear geometry.

A quantitative correlation between the absolute norm of Px and the error in

CCSD(T) was not observed (the decomposition of Px into its different contributions
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is underway to see if such a correlation does exist), but a very good correlation

exists between the ratio of the norms between OD (or BLYP) references and HF (e.g.

‖Px
ODref‖/‖P

x
HF‖), as is plotted in Figures 3 and 4 for the cc-pVTZ basis. Notice

in particular the large improvement in the rate of change in the density going from

HF to the OD reference for CN, CO+, and NO. Each of these molecules exhibits

dramatic improvement in the predicted frequency as the reference improves. For OF,

the CCSD(T) results are reasonable, and they improve further with the more stable

reference for OD(T)/BLYP-CCSD(T).

For FH+, OD(T) or BLYP-CCSD(T) improve negligably upon CCSD(T) and the

errors remain fairly large, so the spin contamination and ‖Px‖ ratios near 1.0 come

as no surprise. FH+ apparently requires an even larger basis set (the error in the cc-

pV5Z basis shrinks by a third) for more accurate predictions. In a few cases the rate
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of change in the orbitals is slightly faster for OD than for HF (as indicated by a ratio

> 1.0), but it does not seem to be sufficiently fast to cause serious problems in the

predicted frequencies. In the worst case, the beta space ratio ‖Px
ODref‖/‖P

x
HF‖ for

BO approaches 1.1, and we see that OD(T) is actually slightly worse than CCSD(T),

though not horribly so. Overall, a similar correlation exists between reduction in

errors and more smoothly changing reference wave functions in the cc-pVQZ basis set

as well.

Finally, at first glance, it may seem surprising that a pathological symmetry-

breaking molecule like F+
2 does not also have a rapidly changing density. However, this

simply means that in this particular basis, the symmetry-breaking point is sufficiently

far away from the equilibrium geometry that the wave function is well-behaved in the

relevant region. This also explains the relatively small errors observed for F+
2 and O+

2

frequencies in this study. Near the symmetry-breaking points, similar rapid changes

in the density are observed at the HF level for these molecules (and they are reduced

using the correlated determinants).

Thus, rapidly changing spin and spatial wave functions seem to create a poor

starting point for perturbative methods. References like OD or DFT that resist

symmetry-breaking (both spin and spatial) provide a superior starting point and can

minimize unphysical property predictions. Of course, in extreme cases where even

these methods break symmetry, their advantages may well disappear.

2.4 Conclusions

We have demonstrated that near-closed-shell CCSD(T)-type accuracy may be

obtained when studying open-shell molecules like radicals using the OD(2) or OD(T)

approaches, with rms percent errors for harmonic frequencies hovering around 1.2-

1.6% for the cc-pVTZ and cc-pVQZ basis sets. The failure of CCSD(T) for open-shell

molecules can likely be attributed to orbital instabilities (or near instabilities) in the

Hartree-Fock solutions. We have analyzed these instabilities in terms of the extent

of spin-contamination and the rate of change of the electron density in the reference

wave functions, and demonstrated that correlated determinants like OD and DFT
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tend to reduce their magnitudes and thus provide a better starting point for including

correlations.

Though formally scaling the same as CCSD, the OD iterations involve additional

repeated steps that scale to the sixth power with the number of orbitals. In practice,

a large-basis-set OD(x) calculation is much more expensive than a similar CCSD(x)

one and quickly becomes impractical at present. Thus, less costly alternatives are

desirable. We recommend two candidates:

1. CCSD(2). Since the (2) correction appears much less sensitive to the choice of

reference, this approach may make for a reasonable alternative to the optimized-

orbital methods. However, there are clearly cases like NO and CO+ where HF

orbitals are inadequate.

2. CCSD(x) with Kohn-Sham orbitals. This approach is clearly the least expensive

of the methods explored here, with KS-CCSD(x) costing only trivially more than

a standard CCSD(x) calculation.

Of course, studies on both approaches with a wider set of test molecules is desir-

able, particularly for the KS-CCSD(x) methods. Nevertheless, it appears that rad-

icals can be treated with accuracy approaching that of closed-shell molecules using

“practical” methods.

Unfortunately, the definition of affordable depends drastically on what size system

one wants to study. Methods like CCSD or CCSD(T) are really only practical up

to 10 or so non-hydrogen atoms. For this reason, we would like to develop efficient

methods to study difficult systems like these radicals that can be applied to tens of

non-hydrogen atoms. In the next chapter, we explore a two-part approach to ap-

proximating the CCSD energy. The valence correlation, which typically corresponds

to 30-40% of the total correlation energy and is typically the most challenging to

treat correctly, will be treated at the CCSD level. The beyond-valence, or dynamical

correlation, will be treated perturbatively, since it is exactly that type of correlation

for which MP2 excels.
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Chapter 3

A two-part approach to computing

the correlation energy

3.1 Introduction

Despite recent advances in computer hardware, accurate ab initio electronic struc-

ture calculations on large molecules remain difficult due to the high formal scaling

of the computational cost of standard wave-function-based correlation methods. The

widely-used second-order Møller-Plesset perturbation theory (MP2) scales formally

as N5, and the generally more accurate Coupled Cluster Singles Doubles (CCSD)

method scales as N6, where N is the number of basis functions. However, these for-

mal scalings are unphysical, [101] and one would like to reduce this formal scaling

using appropriate physical and numerical approximations.

One such approach to reducing this high cost has been through the so-called local

correlation methods pioneered by Saebø and Pulay.[27, 28] In methods of this type,

molecular orbitals are localized in some fashion and excitation amplitudes (whether in

the context of MP2 or coupled cluster theories) are explicitly treated only between or-

bitals within some predefined spatial distance. Though highly efficient and often quite

accurate,[32] these methods contain a degree of arbitrariness in how these cut-offs are

defined and also can produce discontinuous potential energy surfaces as molecular ge-

ometry changes.[28] These problems can be avoided at additional computational cost



35

by utilizing different criteria for selecting significant excitation amplitudes. One such

model implemented for MP2 is the TRIM model,[40] in which only double excitations

with one occupied and one virtual orbital on a common atom are retained. Another

alternative is to use atomic orbital basis cutoffs directly.[31, 102]

The purpose of this chapter is to explore whether efficient approximations to

CCSD can be formulated in a two-stage approach, similar to that employed in meth-

ods which first treat static correlation in an active space, followed by dynamical

correlations associated with orbitals outside the active space. This is the strategy

used in the CASSCF/CASPT2 pair of methods, for example.[42] However, instead of

the factorially expensive CASSCF treatment of the active electrons,[103] we will use

CCSD itself in the space of all valence orbitals. A subsequent second order correction

outside the valence space will be performed using our recently developed similarity-

transformed perturbation theory.[48, 5, 49, 3]

The motivation for doing this is both physical and algorithmic. We expect that

beyond-valence correlations are weaker and will thus be more satisfactorily treated by

perturbation theory than valence correlations. Furthermore, within the valence space,

approximations to CCSD can be stronger than in the full space—for example the

Perfect Pairing Generalized Valence Bond (PP-GVB) approximation [104, 54, 55, 56]

retains only a linear number of pair excitations. Generalizations to restricted pairing

[76, 105, 106] retain only a small quadratic number of amplitudes. Thus one can

potentially combine the ability of these methods to treat very large active spaces

with local MP2-like models for the beyond valence correlation.

This chapter takes the first step towards this general objective by addressing the

extent to which an approximation of this type can be faithful to full CCSD. We do

this by first obtaining an appropriate set of valence orbitals (in the 1:1 active space

where each valence occupied orbital is associated with a correlating anti-bonding

orbital, as in perfect pairing). The reference CCSD calculation is performed in this

limited valence space, with no local approximations. Subsequently the second order

perturbative correction is performed with only single and doubles terms as needed

to mimic full CCSD. This hybrid theory is defined in the following section, and its

computational cost in the absence of local approximations is discussed. It is then
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tested against full CCSD for a range of structural and energetic properties.

3.2 Theory

Our target level of theory is the standard CCSD method, which involves a wave

function of the following form:

|ΨCC〉 = eT̂ |Φ0〉 (3.1)

T̂ ≡ T̂1 + T̂2 =
∑

i,a

tai {â
†
aâi}+

1

4

∑

i,j,a,b

tab
ij {â

†
aâiâ

†
bâj}, (3.2)

Here i, j, k, ... refer to occupied orbitals, and a, b, c, ... refer to virtual orbitals. The

energy and unknown cluster amplitudes are obtained by minimizing the functional:

LCCSD = 〈Φ0|(1 + Λ̂)e−T̂ ĤeT̂ |Φ0〉 (3.3)

where

Λ̂ ≡ Λ̂1 + Λ̂2 =
∑

i,a

λi
a{â

†
i âa}+

1

4

∑

i,j,a,b

λij
ab{â

†
i âaâ

†
j âb}, (3.4)

by forcing the derivatives of the functional with respect to the λ and t amplitudes to

be stationary. Symbolically, this may be written as:

∂LCCSD

∂Λ̂
= 0,

∂LCCSD

∂T̂
= 0. (3.5)

In CCSD, the occupied orbitals may be restricted to only valence orbitals (e.g. a

frozen core approximation), but no restrictions are usually imposed on the virtual

orbitals.

We approximate the full solution of the CCSD equations in two stages. The first

step is to solve the CCSD problem in just a valence space. In other words, we restrict

the t and λ amplitudes such that excitations occur only within an active space of

valence orbitals. The second step is the addition of a perturbative second order

correction for beyond-valence correlation.

We consider that active spaces appropriate for general chemical applicability are

ones which correlate all valence electrons. Two principal alternatives are the full va-

lence (V) active space and the perfect-pairing or (1:1) active space (PP). Disregarding
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spatial symmetry, the full valence space defines the active orbitals to be equal to the

number of valence atomic orbitals. The PP space (for closed shell molecules) defines

the number of active orbitals to be twice the number of occupied valence orbitals,

where there is (at least in principle) one correlating orbital for each occupied orbital.

To apply CCSD within a valence active space means that the active orbitals must

have been optimized by another method. After all, one should not simply choose the

lowest virtual orbitals from a Hartree-Fock calculation to be the active orbitals. As

the basis set size grows, these lowest lying virtual orbitals become low-energy, diffuse

Rydberg orbitals which cannot properly correlate occupied valence bonding orbitals.

Correspondingly, the magnitude of the correlation energy from such a calculation

limits toward zero as the basis set approaches completeness—clearly an unphysical

result!

Several reasonable choices for valence optimized orbitals are possible. First, one

could choose orbitals from a valence optimized orbital CCD (VOD)[46] or QCCD[75]

calculation. However these calculations are still relatively expensive. In particular,

they are far more expensive than performing CCSD in the valence space presuming

the orbitals are available. It is therefore expedient to use a strong local correlation

approximation, which will permit (relatively) inexpensive optimization of the valence

active space. The local correlation approximation need not be quantitatively accurate;

it must simply yield a reasonably faithful set of valence orbitals.

One such possibility is perfect pairing CCD, which yields approximate PP orbitals,

based on retaining only a linear number of amplitudes.[76, 57, 58] A related possibility

is to use imperfect pairing (IP) CCD, which also determines approximate PP orbitals,

but based on retaining a quadratic number of double excitations.[76] Because of the

increased flexibility in the IP functional, the orbitals obtained have been found to

be closer to the VOD-optimized orbitals, and we therefore adopt it as our source of

valence optimized orbitals. We therefore also adopt the PP active space. In summary,

VCCSD calculations involve optimization of the PP active space within the IP Ansatz

followed by CCSD with no local correlation approximations in this valence space.

As the VCCSD calculation is performed only within the PP valence space, it re-

covers only a modest fraction of the total correlation energy, perhaps in the vicinity
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of 20% to 40% and diminishing with larger basis sets. Valence correlation can be

viewed as a definition of static or non-dynamical correlation energy. To approach

quantitatively accurate results, it is likely that a correction must be applied subse-

quent to VCCSD to account for the beyond-valence or dynamical correlations. We

apply a perturbative, second-order correction based on our recently introduced simi-

larity transformed perturbation theory[5, 49]

The resulting equations have the following general form:

E[0] = EV CCSD (3.6)

E[1] = 0 (3.7)

E[2] = 〈0|(1 + Λ)H̄ [1](E[0] − H̄ [0])−1H̄ [1]|0〉. (3.8)

This correction contains terms involving single, double, triple, and quadruple excita-

tions, as discussed in detail elsewhere.[5]

Since our goal is to approximate CCSD efficiently, we truncate this correction after

the doubles terms, ignoring the computationally demanding triples and quadruples

terms which are not present in CCSD. We term this procedure VCCSD(SD). Evalu-

ation of the (SD) correction dominates the computational time. Overall, the method

scales as o2v2V 2, where o is the number of active occupied orbitals, v is the number

of active virtual orbitals, and V is the total number of virtual orbitals. In separate

future work we will include the triples and quadruples terms to assess their ability to

directly approximate CCSD(2)[49] (which is equivalent or superior to CCSD(T)[18])

from a VCCSD starting point.

3.3 Results and discussion

The VCCSD(SD) method has been implemented in a developmental version of Q-

Chem. [85] A variety of tests have been performed in order to determine the accuracy

with which VCCSD(SD) approximates standard CCSD results. We also make some
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very preliminary tests of computational efficiency. Each of these is described below.

In some cases, it is desirable to compare the results obtained with VCCSD(SD) with

those obtained from a method where the active orbitals are fully optimized (and there-

fore represent the best choice of orbitals for such a method). For this reason, we also

introduce VOD(SD), which is equivalent to VOD(2)[5] except that the perturbative

correction is truncated as described above for VCCSD(SD).

3.3.1 The VCCSD energy and the choice of active space

The performance of any active space method depends critically upon the choice of

the orbitals within that space. Here we address this issue in the context of VCCSD.

Figure 3.1 plots the VCCSD and VOD energy (without the perturbative correction)

versus the active space size for water in a cc-pVDZ basis.[64, 107] In this example, the

water molecule has been symmetrically stretched to 1.75Re, thereby increasing the

significance of the static correlation. The active space used is of the perfect-pairing

(1:1) type until ten orbitals are active. Beyond this point, all occupied orbitals are

active, so only the active virtual space grows. With no active orbitals we obtain the

Hartree-Fock result, and with all 24 orbitals active we have the CCSD result.

Focusing first on the VOD curve in Figure 3.1, we see a dramatic gain in corre-

lation energy at four active orbitals, corresponding to the inclusion of a correlating

virtual for each pair of bonding electrons. Doubling the active space size to eight

orbitals (the PP active space) adds in correlating orbitals for the lone pairs and ob-

tains significantly more correlation energy. Although no rigorous partitioning of the

static and dynamical correlation exists, this chemically-motivated active space trans-

lates into a suitable choice for obtaining a sizable fraction of the correlation energy

roughly corresponding to the static correlation at minimal cost. Alternatively, once

might consider something like a ’double-PP’ active space with 16 active orbitals in-

stead of eight, thereby providing three correlating orbitals to each occupied. In this

case, a double-PP active space would recover almost all of the CCSD correlation

energy. However, exploration of such extended active spaces will be the subject of

future studies. For now, the remaining (dynamical) correlation will be obtained with
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Figure 3.1: Energies as a function of active space size for H2O, symmetrically stretched
to 1.75Re, in a cc-pVDZ basis as calculated with VCCSD using IP orbitals, VCCSD
using canonical orbitals, and VOD. The active space contains equal numbers of oc-
cupied and virtual orbitals until all five occupied orbitals are active, after which only
virtual orbitals are added to the space. The vertical dashed line marks the PP active
space used in a standard VCCSD calculation.
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perturbation theory.

VCCSD with the IP-optimized orbitals behaves qualitatively the same as VOD

up through ten active orbitals (i.e. in the regime in which IP is well-defined). Beyond

ten active orbitals, no more occupied orbitals remain to pair with additional virtual

orbitals, so subsequent active virtuals have little chemical significance in the IP model.

Correspondingly, the rate of correlation energy recovery drops dramatically. Thus,

the approximately-optimized orbitals (from an IP calculation) behave similarly to the

fully optimized orbitals within the PP active space. As for VOD, this choice of active

space balances efficiency and recovery of the correlation energy. In contrast, if we

use the canonical orbitals instead, the active space must be roughly twice as large to

recover the same portion of the correlation obtained with IP orbitals in the PP space,

underscoring the importance of an optimized active space.

3.3.2 Potential energy surfaces and spectroscopic constants

of diatomic molecules

Next we focus on the ability of VCCSD and VCCSD(SD) to reproduce CCSD po-

tential energy surfaces and properties. Consider, for example, the surface produced

by stretching the F2 bond, as shown in Figure 3.2. Qualitatively, VCCSD(SD) re-

produces the shape of the CCSD potential, though the absolute energy is somewhat

in error. However, this absolute error in energy is, for the most part, unimportant

in observable relative energies, as demonstrated below. First, we focus on the ability

of VCCSD and VCCSD(SD) to correctly mimic the CCSD potentials in calculating

the spectroscopic constants Re, ωe, Be, De, αe, and ωexe for the singlet ground-state

first- and second-row diatomic molecules.

Five single-point calculations about the experimental Re values[81] spaced 10 pi-

cometers apart were used for the fit, which was performed with PSI.[86] In cases

where the points were not well-centered about the experimental minimum, a shifted

set of points was used to obtain better results. Unfortunately, the target cc-pCVTZ

basis[64, 108] is unavailable for many of the elements in this study. Therefore, the

cc-pV(T+d)Z basis[109] and the 6-311G(2df,2pd) basis[110, 111] were used as well.
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Figure 3.2: The F2 potential produced by stretching the F-F bond in a cc-pVTZ
basis.
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Table 3.1: Root-mean-square errors with respect to CCSD for VCCSD(SD) and MP2
for first- and second-row diatomic spectroscopic constants. Re is in Å, while the other
properties are in cm−1.

Re ωe Be De αe ωexe

MP2a 0.0083 89.2 0.077 13.2×10−6 0.0139 2.55
VCCSDa 0.0086 43.1 0.143 10.4×10−6 0.0067 2.83

VCCSD(SD)a 0.0040 21.8 0.020 2.89×10−6 0.0032 0.72
MP2b 0.0145 71.1 0.019 2.59×10−6 0.0034 1.02

VCCSDb 0.0193 37.2 0.0830 4.53×10−6 0.0076 2.81
VCCSD(SD)b 0.0085 13.7 0.005 1.49×10−6 0.0032 1.17

MP2c 0.0242 107.9 0.0321 6.64×10−6 0.0059 2.38
VCCSDc 0.0425 51.9 0.1379 6.67×10−6 0.0032 9.61

VCCSD(SD)c 0.0175 22.9 0.0190 2.12×10−6 0.0022 2.62
a Includes: BF, BH, C2, CO, F2, HF, N2, NF, and NH, in the cc-pCVTZ basis.

b Includes: AlCl, AlF, AlH, Cl2, CS, FCl, HCl, NP, P2, SiO, and SiS, in the

cc-pV(T+d)Z basis (Al-Cl) and the cc-pCVTZ basis (H-F).

c Includes: BeO, BeS, Li2, LiH, MgO, MgS, Na2, NaF, NaH in the 6-311G(2df,2pd)

basis.

For the purpose of calculating statistics, the diatomics are divided into three groups

based on the basis sets used, as explained in Table 3.1. The first group of diatomics

contains BF, BH, C2, CO, F2, HF, N2, NF, and NH, the second group contains AlCl,

AlF, AlH, Cl2, CS, FCl, HCl, NP, P2, SiO, and SiS, and the third group contains BeO,

BeS, Li2, LiH, MgO, MgS, Na2, NaF, and NaH. We compare VCCSD, VCCSD(SD),

and MP2 results against CCSD results, since our aim is to test the faithfulness of

VCCSD(SD) to CCSD rather than to concern ourselves with choosing appropriate

basis sets for predicting experimental results. Mg2 is excluded from the study because

it was found that each theory predicted widely different bond lengths ranging from

4.5 to 7.5Å, none of which were near the experimental value of 3.89Å. Further study

of this molecule is beyond the scope of this chapter.

Table 3.1 contains the root-mean-square (RMS) errors for MP2, VCCSD, and

VCCSD(SD) as compared to the CCSD results for each group of diatomic molecules

and each spectroscopic constant. For almost every constant, VCCSD(SD) results

are a factor of two to four better overall than their corresponding MP2 results. Note
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particularly the success of VCCSD(SD) in predicting harmonic frequencies, rotational

constants, and centrifugal distortion constants as compared to MP2. The anharmonic

and coupling constants prove slightly more difficult for VCCSD(SD). The second and

third groups of anharmonic constants are the only categories in which MP2 has a

lower RMS error than VCCSD(SD), primarily due to AlH for which VCCSD(SD) is

3.4 cm−1 (15.5%) off and Li2, for which it is 6.1 cm−1 in error. However, the other

VCCSD(SD)-calculated properties of AlH are in fairly good agreement with CCSD,

so this case is not too significant. Moreover, the error in Li2 is large but qualitatively

correct. In contrast, MP2 predicts the wrong sign for this constant. The largest

errors for VCCSD(SD) occur in the third group, which contains molecules with alkali

and alkaline earth metals. This is not surprising, since the PP active spaces for these

elements are quite small. Nevertheless, VCCSD(SD) generally outperforms MP2 in

even these cases.

One molecule, AlCl, deserves closer examination. VCCSD(SD) has particular

difficulty with AlCl, as is shown by the results in Table 3.2. Due to the rather

large shift in Re, the fit for AlCl was performed on points every ten picometers

from 2.100113Å to 2.140113Å, rather than the standard five single points centered

about the equilibrium bond length (2.130113Å). In any case, VCCSD(SD) does not

correctly reproduce the potential surface. For comparison, VOD(SD) was run to

determine whether the problem stems from the partitioning of the correlation energy

or whether it is due to the difference between IP orbitals and fully optimized orbitals

(as in VOD). We see that while VOD(SD) does fix the problem somewhat, especially

in ωe and ωexe, the other properties still differ substantially from CCSD. Apparently,

AlCl does not lend itself well to a partitioned description of its correlation energy, at

least in the perfect-pairing active space.

In contrast to the fairly systematic improvement of the results going from MP2

to VCCSD(SD), the uncorrected VCCSD behaves quite inconsistently. Although in a

few cases it performs reasonably well, it generally fluctuates significantly, leading to

rather large RMS errors as shown in Table 3.1. For example, VCCSD improves upon

the MP2 description of harmonic frequencies, but it errs grossly in the rotational

constants. The anharmonic constants are also poor in most cases. The valence
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Table 3.2: Predicted spectroscopic constants for AlCl in the cc-pV(T+d)Z basis. Re

is in Å, while the other properties are in cm−1.

Re ωe Be De αe ωexe

MP2 2.136411 489.9 0.24251 0.238×10−6 0.00150 1.87
VCCSD(SD) 2.113053 517.5 0.24790 0.228×10−6 0.00193 0.78

VOD(SD) 2.115792 492.7 0.24726 0.249×10−6 0.00154 1.86
CCSD 2.137953 490.1 0.24216 0.236×10−6 0.00149 1.99
Expt.a 2.130113 481.3 0.24393 0.250×10−6 0.001611 1.95

a Values taken from Ref. [81]

correlation alone is insufficient to quantitatively describe potential energy surfaces

and their associated spectroscopic constants (although it is of course better than no

correlation at all).

We also present Tables 3.3 and 3.4 containing the actual computed values of ωe

and ωexe, which are representative of the best and worst cases for VCCSD(SD). For

harmonic frequencies, the largest VCCSD(SD) errors are roughly 50 cm−1 for C2 and

MgO. In contrast, MP2 has errors of over 100 cm−1 or more for several molecules,

including CO, N2, NP, and MgO. In the last case, the VCCSD(SD) error is one

fifth the size of the MP2 one. For uncorrected VCCSD, the errors are smaller than

those for MP2, but larger errors on the order of 50 cm−1 or more are quite common,

including most of the hydrides, N2, P2, and MgS. While MP2 and VCCSD(SD) tend

to give fairly good results for a range of molecules with intermittent exceptions,

VCCSD gives mediocre or poor results for a large number of cases. Looking at the

anharmonic constants in Table 3.4, we again see that for most molecules the methods

are fairly good, though each has its exceptions. Notably, VCCSD predicts the wrong

sign of ωexe for AlCl, MgS, and Na2. Actually, in the case of Na2, CCSD, MP2, and

VCCSD all predict a negative ωexe. The experimental value, however, is 0.725 cm−1.

Only VCCSD(SD) gets the appropriate sign, even if it is about twice as large as the

experimental value. The largest MP2 error is MgO, at 4.0 cm−1, while the largest

VCCSD error is 26.5 cm−1 for MgS, and the largest VCCSD(SD) error is 6.1 cm−1 for

Li2. Overall, while the difference between VCCSD(SD) and MP2 is less clear here,

VCCSD(SD) performs as well as or slightly better than MP2 on the whole.
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Table 3.3: Calculated harmonic frequencies ωe using MP2, VCCSD, VCCSD(SD),
and CCSD. CCSD value is the calculated one, while other columns are errors relative
to CCSD. All values are in cm−1. The horizontal lines mark the separations between
the different groups of molecules described in the text. Basis sets are described in
Table I.

MP2 VCCSD VCCSD(SD) CCSD
BF -3.47 -25.91 15.00 1427.36
BH 67.46 -90.10 -6.56 2367.86
C2 -2.83 -9.62 46.54 1891.93
CO -101.77 -6.38 16.79 2233.30
F2 0.51 -57.95 13.10 1020.64
HF -34.26 -14.04 6.12 4214.75
N2 -226.73 -37.73 6.62 2434.33
NF 22.01 20.26 34.50 1243.21
NH 60.36 -49.40 -11.30 3357.84
AlCl -0.22 -8.38 27.37 490.10
AlF -13.61 -9.73 0.56 801.94
AlH 28.61 -69.63 -15.67 1672.66
Cl2 13.88 -63.20 18.13 572.21
CS -27.71 -8.14 4.42 1359.65
FCl -3.25 -1.54 -24.43 813.55
HCl 32.39 -41.28 -6.48 3027.38
NP -196.82 -35.27 3.86 1400.05
P2 -78.26 -53.37 6.68 821.09
SiO -86.14 -5.37 5.82 1290.01
SiS -19.18 -18.74 -0.94 778.90
BeO -146.68 -20.05 9.70 1583.17
BeS -18.01 -23.44 7.64 1020.36
Li2 -12.13 0.67 -3.81 353.09
LiH 30.07 -112.09 -17.38 1416.22
MgO 282.72 8.77 55.46 746.49
MgS 30.78 -47.99 29.37 527.46
Na2 -2.23 -1.20 8.55 159.28
NaF -3.02 -9.95 -2.74 578.41
NaH 30.37 -90.84 -15.05 1158.69
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In summary, VCCSD(SD) successfully reproduces the full CCSD spectroscopic

properties of first- and second-row diatomic molecules. VCCSD(SD) is clearly supe-

rior to MP2 for bond lengths, harmonic frequencies, rotational constants, and cen-

trifugal distortion constants, and as good or better for the anharmonic and vibration-

rotation coupling constants.

3.3.3 Relative energies

To further test the faithfulness of VCCSD(SD) to standard CCSD, reaction en-

ergies for a series of 13 isogyric reactions[112] were calculated with MP2, VCCSD,

VCCSD(SD), VOD(SD), and CCSD using accurate equilibrium geometries,[63] the

results of which are shown in Table 3.5. Once again, we see a substantial improve-

ment in accuracy relative to CCSD in going from MP2 to VCCSD(SD) and VOD(SD)

in terms of the mean absolute error and the root-mean-square deviations. In fact,

VOD(SD) and VCCSD(SD) behave rather similarly, though VOD(SD) does slightly

better on the whole, as would be expected. More importantly, VCCSD without the

perturbative correction is clearly unable to accurately reproduce the relative ener-

gies of these reactions. The first reaction energy even has the wrong sign. By itself,

the valence space calculation is an insufficient model for the correlation energy. For

four of the thirteen reactions, MP2 actually gets closer to the CCSD results than

VCCSD(SD), but in most cases the difference between the two methods is rather

small. Overall, VCCSD(SD) seems to satisfactorily reproduce CCSD reaction ener-

gies.

A more sensitive test of the accuracy of any method is its ability to accurately

predict small relative energies such as torsional barriers. As an example, we focus on

the torsional barrier of ethane rotating from the anti to gauche configurations. Ta-

ble 3.6 compares the results for the torsional barrier of ethane for MP2, VCCSD(SD),

VOD(SD), and CCSD with multiple basis sets. Once again, VCCSD(SD) (and

VOD(SD)) performs much better than MP2 relative to the CCSD results, with errors

of roughly half a percent versus 2-3% for MP2. Although in this case the absolute

errors are rather small, the faithfulness of VCCSD(SD) to CCSD is encouraging. In
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Table 3.4: Calculated anharmonic constants ωexe using various methods. CCSD value
is the calculated one, while other columns are errors relative to CCSD. All values are
in cm−1. The horizontal lines mark the separations between the different groups of
molecules described in the text. Basis sets are described in Table I.

MP2 VCCSD VCCSD(SD) CCSD
BF 0.14 -0.88 0.30 11.12
BH -2.17 -6.67 0.66 48.30
C2 -1.14 -0.97 -0.27 12.42
CO 0.45 -0.96 0.81 12.11
F2 -0.58 2.35 -0.91 9.81
HF -3.80 -3.74 1.23 89.85
N2 4.45 -0.38 -0.09 13.27
NF -0.13 -0.20 0.75 9.30
NH -4.19 -2.31 0.67 75.54
AlCl -0.12 -3.11 -1.21 1.99
AlF -0.44 -0.27 0.16 4.06
AlH 0.25 8.57 3.37 21.64
Cl2 0.05 0.14 -0.14 2.33
CS -0.20 0.20 0.13 6.02
FCl -0.25 0.73 -0.51 4.56
HCl -1.45 -0.03 -0.20 52.23
NP 2.85 1.68 1.24 6.20
P2 0.86 -0.25 -0.19 2.54
SiO 0.06 -0.32 0.08 5.35
SiS 0.02 0.24 0.51 2.28
BeO 1.69 -0.89 0.26 11.07
BeS -1.98 -0.96 -0.53 6.44
Li2 -3.21 0.91 6.10 1.79
LiH -2.37 -3.62 -2.03 25.14
MgO 4.05 3.35 1.36 0.66
MgS -1.49 -26.49 1.48 2.76
Na2 -0.52 -1.61 2.55 -0.69
NaF -0.14 -0.44 0.06 3.36
NaH -3.06 -10.00 3.10 14.66
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Table 3.5: Reaction energies for isogyric reactionsa in the aug-cc-pVDZ basis. Errors
are relative to CCSD results. Energies are in kcal/mol.

Reaction MP2 VCCSD VCCSD(SD) VOD(SD) CCSD
CO+H2 → CH2O -3.1 1.6 -3.8 -3.3 -2.4
N2+3H2 → 2NH3 -39.2 -26.3 -40.4 -40.8 -40.3
C2H2+H2 → C2H4 -50.9 -40.2 -51.0 -51.4 -53.8
CO2+4H2 → CH4+2H2O -60.7 -51.6 -65.4 -64.1 -66.2
CH2O+2H2 → CH4+H2O -63.9 -56.1 -63.9 -63.7 -63.7
CO+3H2 → CH4+H2O -67.0 -54.5 -67.7 -67.0 -66.1
HCN+3H2 → CH4+NH3 -76.5 -60.8 -77.2 -77.2 -79.3
H2O2+H2 → 2H2O -137.7 -142.8 -139.4 -139.2 -136.0
HNO+2H2 → H2O+NH3 -181.8 -178.8 -180.9 -180.3 -178.3
C2H2+3H2 → 2CH4 -110.6 -91.6 -109.3 -109.3 -113.6
CH2(

1A1)+H2 → CH4 -133.4 -118.9 -126.8 -126.5 -125.2
F2+H2 → 2HF -143.6 -148.9 -141.7 -141.5 -138.3
2CH2(

1A1) → C2H4 -207.2 -186.4 -195.3 -195.1 -190.6
Mean Absolute Error 4.0 10.3 2.2 2.1
RMS Error 5.9 11.9 2.6 2.5

a Reactions taken from Ref. [112] and the geometries from Ref. [63]

contrast, VCCSD seems to perform rather erratically, sometimes doing very well and

sometimes behaving more like MP2, demonstrating once again the importance of the

perturbative correction.

3.3.4 Benzene and symmetry-breaking

Using a strong local correlation approximation for the valence correlation en-

ergy is known to sometimes introduce artifacts in computed potential energy sur-

faces. One classic example is that both IP and PP-GVB predict broken symmetry

in benzene—that is, they predict alternating longer and shorter bonds as a stable

structure as a result of the localization procedure and the restrictions placed on the

cluster amplitudes.[76] This deformation can be represented as a deviation of the

bond angles from 60 degrees to alternating angles of 60 + φ and 60 - φ. What impact

if any does the use of these IP orbitals have on VCCSD(SD)?

The results of such calculations are shown in Figure 3.3, where the energy of
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Table 3.6: Torsional barrier of ethane under anti to gauche rotation with increasing
basis set size. Energies are in kcal/mol. Percent errors relative to CCSD are in
parentheses.

cc-pVDZa aug-cc-pVDZa cc-pVTZa

MP2 3.74 ( 3.1) 3.57 ( 2.2) 3.45 ( 2.0)
VCCSD 3.60 (-0.7) 3.59 ( 1.0) 3.37 (-0.2)

VCCSD(SD) 3.61 (-0.6) 3.49 (-0.2) 3.36 (-0.5)
VOD(SD) 3.60 (-0.9) 3.47 (-0.5) 3.35 (-0.9)

CCSD 3.63 3.49 3.38
a Ref. [64]

benzene is calculated versus the deformation angle φ. The VCCSD(SD) results for

the deformation of benzene correctly restore symmetry to benzene. This is because

excitations from one localized bonding orbital are allowed to occur to localized anti-

bonding orbitals on other sites in the VCCSD calculation, thereby returning to the

picture of delocalized bonding. Thus we see no serious consequences from using the IP

orbitals for VCCSD(SD) in this case where the IP potential surface itself is incorrect.

3.3.5 The Cope rearrangement

Having demonstrated the performance of VCCSD(SD) on simple systems, we shift

our attention to a more difficult example: the Cope Rearrangement. This reaction

has been the focus of many studies at different theoretical levels including semi-

empirical, DFT, and multi-reference methods.[113, 114, 115, 116, 117] Unfortunately,

the results of many of these studies contradicted one another both qualitatively and

quantitatively, and only recently has the controversy mostly been resolved.[118] The

difficulty arises because of the very flat energy landscape along a C2h cut in the

potential energy surface that connects a diyl intermediate at R = 1.64 Å and an

aromatic transition state at R = 2.19 Å.[114, 116] One way of exploring the success of

various levels of theory on this reaction is to follow the C2h cut of the surface between

these two structures. Both RHF and UHF are inadequate since RHF cannot properly

describe the diradicaloid species involved, and UHF overestimates the stability of such

species.[118] Studies also suggest that correlated methods based on HF such as CCSD



51

Figure 3.3: Deformation of benzene and symmetry breaking. Calculations performed
in a 6-31G* basis [1, 2] and with radial distances fixed at the MP2/6-31G* level. The
symmetry-breaking angle is described in the text.
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converge slowly with classes of excitation included.[119] Therefore, multi-reference

methods have become standard in most of the accepted studies. As shown in the

works cited above, a six-electron, six-orbital CASSCF calculation incorrectly places a

small barrier between these two structures along the C2h cut. The active space used

includes the two π bonds and one σ bond explicitly involved in the rearrangement.

However, they have shown that the addition of dynamical correlation through multi-

reference perturbation theory eliminates this barrier, and predicts the true transition

state for the Cope rearrangement (the minimum on this C2h cut of the surface) to

occur near 1.85 Å with a transition state barrier height of roughly 31 kcal/mol above

hexadiene (the diyl and aromatic species lie at 33 and 35 kcal/mol, respectively).[116]

This drastic change in behavior has been attributed to the dynamical correction

allowing the sigma-bonding framework to relax during the reaction.[119] In a sense,

this can be thought of as a triple excitation involving two active π electrons and an

inactive σ one.

In this chapter, we apply VCCSD and VCCSD(SD) to this reaction and compare

against CCSD and the multi-reference methods. All calculations are performed at

CASSCF(6,6)-optimized geometries using the 6-31G* basis at 11 geometries with

the interallylic distance ranging from 1.64 to 2.19 Å along the C2h potential energy

surface. In each case, restricted orbitals are used. VCCSD(SD) and related methods

all use the PP active space, which contains 34 electrons in 34 orbitals for this system.

Figure 3.4 plots the C2h potential energy surface as generated using CASSCF(6,6)

and MRMP2, IP, VCCSD, and VCCSD(SD). In the figure, the MRMP2 minimum

and end points were estimated from Ref. [116] and a smooth function interpolated

between. The energies given are relative to the energy of hexadiene for each method.

As discussed previously, CASSCF(6,6) places an unphysical barrier between the two

intermediates. Not too surprisingly, IP performs poorly on this surface. We see two

distinct states in this region: one roughly corresponding to the diyl and the other to

the aromatic intermediate. Presumably, the occurrence of the second, lower-energy

state in the aromatic region is a problem due to broken symmetry in the orbitals

for the aromatic species, just as in benzene. The interesting question becomes, can

VCCSD overcome this broken symmetry as in the benzene example? If we simply
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Figure 3.4: C2h cut along the Cope Rearrangement potential energy surface. The
CASSCF(6,6) and MRMP2 results are compared against IP, VCCSD, VCCSD(SD),
and CCSD in the 6-31G* basis using the CASSCF optimized geometries. Except for
CASSCF, all the active space methods use the PP active space. The bond length R is
the distance (in Å) between the two allyl groups in the chair structure, and energies
are relative to hexadiene in kcal/mol. At short R is the diyl intermediate, and at long
R is the aromatic species. The MRMP2 data were estimated from Ref. 40.
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follow the lowest state at all times, the answer is no. VCCSD as calculated from

these orbitals, though smoother than the IP surface, still demonstrates a kink where

the orbitals break symmetry. In contrast, if we follow the symmetric (diyl) solution,

VCCSD produces the smooth curve shown in Figure 3.4. This curve is qualitatively

similar to the MRMP2 surface,[116] except that the minimum on these two curves is

rather long (occurring at just over 2 Å instead of 1.85 Å), and the relative energies

of the endpoint intermediates are flipped (though the actual differences are only a

few kcal/mol—well within the model errors). Despite the failure of the IP model, the

orbitals so-obtained are sufficient for VCCSD to obtain approximately the correct

shape and relative energies of the intermediates as compared to the minimum as long

as one remains on the symmetry-preserving IP surface. Unfortunately, the energy

of these states relative to hexadiene is much too high; VCCSD places the reaction

transition state at roughly 46 kcal/mol (the minimum of the C2h surface), in sharp

disagreement with the approximately 31 kcal/mol reported by Kozlowski et al.[116]

Presumably, a better description could be obtained by including dynamical cor-

relation. In the present context, we examine the effects of a partial treatment of

dynamical correlation in the form of VCCSD(SD), the results of which are plotted

in Figure 3.4. Indeed, we see that the transition state barrier is lowered to about 41

kcal/mol (still high), but the aromatic species is much lower than the diyl one. More-

over, although the minimum moves to shorter interallylic distances, it is still longer

than MRMP2. Although the perturbative singles and doubles terms are largely suf-

ficient to describe the aromatic species, the more difficult diyl species presumably

requires higher order excitations in order to be accurately described. These results

agree fairly well with those from CCSD, though CCSD shows a smaller difference

between the two endpoints and a slightly shorter transition state. Thus, although the

VCCSD(SD) surface is lacking as compared to MRMP2, we see that it is reasonably

similar to CCSD, even in this difficult case.

Once again we have demonstrated that VCCSD(SD) is rather faithful to CCSD,

even in a very sensitive system. Unfortunately, in this example, both methods are

lacking compared to higher level calculations. Intriguingly, we notice that in many

senses, the pure valence space contribution of VCCSD gives a better description of



55

the surface than the full VCCSD(SD). This behavior could arise from either of two

key effects: the increased size of the active space relative to the CASSCF calculations,

or the incomplete treatment of dynamical correlation in the truncated perturbative

correction (SD). We hope to report on a more extensive analysis of these issues in the

near future.

3.3.6 Timings

As discussed in the Introduction, the purpose of this chapter is to assess the capa-

bility of a valence-based method to approximate CCSD. Future work will more fully

exploit the potential efficiency of this approach. For the moment, we content our-

selves with a simple preliminary comparison of the efficiency of such a method against

standard methods. VCCSD(SD) and CCSD calculations on a growing linear alkane

chain in the cc-pVDZ basis were performed and the timings noted, as is plotted in

Figure 3.5. In all molecules in this set, the VCCSD(SD) calculation (including the

time required to obtain the IP orbitals) is faster than the full CCSD calculation. The

savings become more pronounced at larger system sizes, as expected. By comparing

the timings of VCCSD(SD) with and without the IP calculation, one can see that

obtaining the IP orbitals does not correspond to too large a fraction of of the total

computational time, which was one of the major goals of this study. Of course, the

cost of an MP2 calculation is still far below that of the VCCSD(SD) calculation. The

next step, which we hope to report on in the future, is to apply local correlation ap-

proximations to both the valence part of the problem and the second order correction

to generate a method well-suited to treating large systems.

3.4 Conclusions

This study has explored the validity of partitioning the correlation energy into

static and dynamical contributions to approximate a correlation method (CCSD)

which makes no such distinction. Such an approximation has the potential to be

significantly more efficient if it is sufficiently accurate. Our model uses CCSD in



56

Figure 3.5: Comparison of timings on growing linear alkane chains for various methods
in the cc-pVDZ basis. In this figure, IP-VCCSD(SD) refers to the time of both the
IP calculation and the VCCSD(SD) calculation, while VCCSD(SD) includes only the
actual VCCSD(SD) steps.
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the perfect pairing active space of all valence electrons, plus a truncated perturba-

tive (2) correction for non-valence single and double substitutions. If appropriately

optimized orbitals are employed, this VCCSD(SD) model approximates full CCSD

fairly satisfactorily for spectroscopic constants, structural properties, relative ener-

gies, and in the Cope Rearrangement. Residual deviations are likely to be largely

the result of neglected effects of coupling between the correlation effects in the va-

lence and non-valence space. Having demonstrated that such an approach can be

successful, future work will be directed towards efficient local correlation treatments

based on this framework. With this in mind, in the next chapter we will explore the

localizability of the valence space correlation.
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Chapter 4

The localizability of valence space

electron-electron correlations in

pair-based coupled cluster models

4.1 Introduction

The vast majority of wave-function-based electronic structure calculations begin

with the Hartree-Fock (HF) approximation and correct for electron-electron correla-

tions using perturbative or coupled cluster methods. Unfortunately, in cases such as

transition states, bond-breaking, radicals, diradicals, and other highly-correlated sys-

tems, HF often fails to provide an even qualitatively correct potential energy surface

(PES). For this reason, Complete Active Space Self-Consistent Field (CASSCF),[41]

which includes all possible excitations within an active space is the method of choice

for studying diverse regions of a PES, such as when following a reaction coordinate.

Unfortunately, the factorial computational scaling of CASSCF means that the

active space must contain fewer than roughly twenty active orbitals and electrons,

making it applicable only to either small molecules or very small active spaces in larger

systems. In the latter case, one wonders whether the active space is sufficiently large

to correctly reproduce the qualitative behavior of the potential energy surface. One

might try to use more selective multi-configurational approaches to treat these larger
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systems, but then the choice of effective active space becomes even more arbitrary.

Clearly, more efficient active space methods to treat such systems are desirable.

Furthermore, efficient active space methods, together with beyond-active space

corrections, may provide a means for obtaining highly accurate results at reduced

computational expense. Such a possibility was explored with moderate success in

the non-local VCCSD(SD) approach in Chapter 3, which used a CCSD calculation

in the valence space and a perturbative treatment of the beyond-valence singles and

doubles to approximate a full CCSD calculation. For example, one would like to

predict accurate molecular geometries at low computational cost. Non-local active

space coupled-cluster methods have shown promise in their predicted structures[120],

and local models could drastically expand the range of applicability of high-level

methods to structural prediction.

Non-local active space coupled cluster methods, such as Valence Orbital Optimized

Coupled Cluster Doubles (VOO-CCD or simply VOD)[46, 47] and Valence Orbital-

Optimized Quadratic Coupled Cluster Doubles (VQCCD)[75, 120], were developed

as robust, less expensive replacements for CASSCF. These methods, often in concert

with a second-order perturbative correction,[5, 48, 49, 3] have proven themselves to

be much more reliable than more standard approaches across a range of systems.[120,

5, 3].

Though promising and far less computationally expensive than CASSCF, these

non-local active space coupled cluster doubles methods nevertheless demonstrate a

steep N6 scaling with system size, making them practical only in the region of up

to roughly 50 active orbitals. In contrast, the extremely affordable Generalized Va-

lence Bond Perfect Pairing (GVB-PP) approximation can be calculated extremely

efficiently for hundreds of active orbitals, and it can provide a qualitatively correct

description for many problems in which static correlations are strong.[60] It also pro-

vides fairly good geometries as compared with both experiment and VQCCD[121,

120]. GVB-PP can be rewritten as a local coupled cluster doubles problem within

an active space in which each pair of bonding electrons correlates with a single,

spatially localized anti-bonding orbital, and all such pairs of orbitals are mutually

orthogonal[57, 58]. These correlated electron pairs then interact in a mean field way



60

with each other. We classify this Ansatz as a one-center model, since electrons cor-

relate solely in the spatial region from which they originated.

How does one progress beyond the GVB-PP model in order to obtain an accurate

potential energy surface efficiently? The most obvious way is of course to relax the

strong-orthogonality or perfect-pairing constraints in the GVB-PP wave function–i.e.

compute the full GVB wave function.[122] Unfortunately, such expansions become

computationally expensive and difficult to converge. Another possible approach is to

use the GVB-PP natural orbitals in a configuration interaction (CI) expansion, such

as GVB-RCI and related approaches.[123, 124, 125, 126, 127, 128] Like CASSCF,

Complete RCI expansions also exhibit factorial computational cost, so in practice

they are truncated. Typical truncated GVB-RCI expansions include open-shell sin-

glet and triplet configurations formed within each natural orbital pair in addition to

the GVB-PP configurations. These compact wave functions can accurately describe

bond dissociation and other highly-correlated systems. Unfortunately, these wave

functions, like other truncated CI wave functions, are generally not size consistent.

Alternatively, perturbative corrections based on generalizations of Møller-Plesset per-

turbation theory to multi-reference wave functions have also been used with success

to correct GVB-PP wave functions.[43, 44, 129, 130, 131] Such treatments typically

estimate both the remaining valence and beyond-valence correlations excluded in the

GVB-PP treatment.

Taking a different perspective, we note that a VOD wave function can be rewrit-

ten in terms of orthogonal, localized orbitals with no approximation. Including all

possible double excitations in the cluster operator requires double excitations involv-

ing up to four spatial centers. Given the success of the one-center GVB-PP model

for many problems, perhaps less restrictive local approximations for VOD could re-

cover the vast majority of the correlation energy at a much reduced cost. Recently,

Van Voorhis et al investigated what they termed the Imperfect Pairing (IP) approx-

imation, which incorporated certain two-center terms into the wave function with

moderate success[76]. In fact, this IP wave function is very similar to the GVB-RCI

wave function mentioned above.[106] This chapter will investigate the localizability

of electron-electron correlations in the valence space more generally, and, in partic-
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ular, explore the success of two-center local correlation models in terms of (1) their

recovery of the non-local correlation energy and (2) their ability to reproduce aspects

of potential energy surfaces in terms of both energetics and equilibrium structures.

These simplified correlation models will also be compared against HF to see what

benefits can be obtained by a limited treatment of valence correlation for various

systems.

4.2 The models

As mentioned above, these local correlation models may be viewed as approximate

versions of the standard coupled cluster doubles (CCD) Ansatz in which some of the

cluster amplitudes have been constrained to be zero. We assume that the wave

function takes the form

|ΨCCD〉 = eT̂2|Φ0〉, (4.1)

where |Φ0〉 is some single-determinantal reference that can be either the Hartree-Fock

(HF) state or perhaps a reference obtained from orbital optimization at a higher level

of theory, and T̂2 is a double excitation operator,

T̂2 =
∑

ijab

tab
ij â

†
aâiâ

†
bâj. (4.2)

Here, i, j, k refer to occupied orbitals, a, b, c, to virtual orbitals, µ, ν, σ to atomic

orbitals, and i∗, j∗, k∗ to virtual orbitals in same same region of space and paired with

their respective occupied orbitals. As written above, the spins are over spin orbitals.

The analogous double de-excitation operator Λ̂2 can also be defined as

Λ̂2 =
∑

ijab

λab
ij â

†
i âaâ

†
j âb. (4.3)

The energy can be calculated as the minimum of the Lagrangian,

LCCD = 〈Φ0|(1 + Λ̂2)e
−T̂2ĤeT̂2 |Φ0〉 (4.4)

with respect to the t and λ amplitudes.
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In valence orbital-optimized coupled cluster doubles (VOD)[46], two additional

aspects are necessary. First, the orbitals are varied in order to minimize the energy.

This yields the optimal single-determinantal reference at the CCD level instead of

the optimal mean-field orbitals obtained in the HF procedure. Second, it is necessary

to define an active space. We believe that the active space should in general be

large enough to contain the significant static correlations and also be well-defined

from system to system. For these reasons, we typically choose all valence orbitals as

active. Moreover, in terms of perfect pairing, each active occupied orbital requires

a corresponding virtual orbital. Together, this is called the perfect-pairing active

space. The coupled cluster equations are solved only within this space; that is, only

excitations from active occupied orbitals to active virtual ones are included.

We can now begin to consider local approximations to VOD based on the class

of excitations included. The primary change is the definition of the cluster operator,

though the orbital optimization problem also changes slightly as will be discussed

below. In the simplest case, the perfect-pairing approximation, we can write the

cluster operator as a sum over active electron pairs:[58]

T̂PP =
∑

i

ti
∗i∗

ii â†i∗ âiâ
†
ı̄∗ âı̄. (4.5)

It includes only correlations of each electron pair in orbital i with a corresponding

anti-bonding orbital i∗ localized in the same region of space (thus, it is a one-center

model).

In order to generalize slightly, one could include some or all two-center correlation

terms. These come in two types: “covalent” and “ionic” terms. The imperfect

pairing approximation (IP)[76], loosens the definition of the electron pair, and any

two electrons are correlated together, but the excitations force the electrons to remain

in their respective regions of space (or to undergo fermionic exchange), as shown in

Figure 4.1. These additional terms are covalent in nature. The cluster operator takes

the form

T̂IP =
∑

ij

ti
∗j∗

ij (â†i∗ âi + â†ı̄∗ âı̄)(â
†
j∗ âj + â†̄∗ â̄)

+tj
∗i∗

ij (â†j∗ âi + â†̄∗ âı̄)(â
†
i∗ âj + â†ı̄∗ â̄). (4.6)
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(a) (b)

(c) (d)

Figure 4.1: Different classes of one and two-center local excitations and their corre-
sponding models. Each successive model includes all terms from the previous models
in addition to the one(s) shown. (a) Perfect Pairing, (b) Imperfect Pairing, (c) Singly-
Ionic Pairing, and (d) Doubly-Ionic Pairing.
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One could go further, and include singly-ionic (SIP) or doubly-ionic (DIP) terms

which allow the electrons to move around the molecule as they correlate. DIP is

aesthetically pleasing in that it contains all two-center terms, and in that respect is

a logical successor to PP. That is to say, whereas PP is exact (as compared to both

VOD and CASSCF) for a single electron pair, DIP is fully equivalent to VOD for two

pairs. Of course, one could also include some or all three-center terms (one can break

them down into several subclasses) and four-center terms. With all terms included,

we recover VOD with no approximation.

In general, the HF and non-local correlation energies are invariant to unitary

transformations among the occupied or among the virtual orbitals. Only the space

spanned by the two sets of orbitals determines the energy. Therefore, when perform-

ing a VOD calculation, one must mix orbitals only between the occupied and virtual

subspaces, and between the active and inactive subspaces.[46] However, once local

approximations are made such that each occupied correlates only with a certain sub-

set of virtuals, it becomes necessary to also optimize the orbitals among the active

occupieds and among the active virtuals. This adds some complexity to the orbital

optimization problem, but the extra difficulty is outweighed by the computational

savings elsewhere in the methods[132].

Investigation of these various models using a pilot code offers insight into the

importance of different types of terms. In Figures 2-4, we decompose the VOD cluster

amplitudes into these aforementioned classes for a set of fixed PP orbitals (i.e. orbitals

optimized at the perfect-pairing level of theory) and plot the magnitude of each

cluster amplitude tab
ij . These orbitals were chosen because they are well-localized, and

they provide minimal bias among the different two-center models. Of course, the

orbitals should be variationally optimized for each different approximation, but the

approximate orbitals suffice for the investigation here. In effect, instead of performing

a true VOD calculation, we are computing the valence space CCD energy using the

PP orbitals.

We present three cases: propane, N2, and allyl anion in the 6-31 or 6-31G* basis

sets.[1, 2] In all three, the one-center amplitudes are unquestionably dominant and

are up five times larger than the next largest amplitudes. The covalent two-center
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Figure 4.2: Decomposition of the full coupled-cluster T2 vector into spatial classes for
propane using localized perfect-pairing orbitals formed from the 6-31G basis.

amplitudes included in the IP model clearly offer the leading correction to PP, since

they are also up to several times larger than the remaining amplitudes. For propane,

the singly and doubly ionic amplitudes are the next most important (and roughly

equal in magnitude), and they are somewhat larger than the multitude of three- and

four-center amplitudes. For nitrogen, a similar picture exists, but now the doubly-

ionic terms are substantially more important than singly-ionic ones.

At first it may seem surprising that doubly-ionic amplitudes are at least as im-

portant as the singly-ionic ones, since it is tempting to think of doubly-ionic terms

as being associated with basis-set-superposition error (BSSE). Many of them do be-

have as two electrons in one region of space correlating with an orbital elsewhere in

space. In fact, in studies on local, atom-based MP2 models doubly-ionic terms were

relatively insignificant[40]. If we were using an atomic orbital framework in which

the atomic centers defined the local truncations, this would certainly be true. How-

ever, in these models each orbital is paired with only one other orbital. Therefore,

the dominant doubly-ionic amplitudes observed here are not associated with BSSE;
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Figure 4.3: Decomposition of the full coupled-cluster T2 vector into spatial classes for
N2 using localized perfect-pairing orbitals formed from the 6-31G* basis.

0.00

0.02

0.04

0.06

0.08

0.10

Tpp Tip Tsip Tdip T3C T4C

M
ag

ni
tu

de

Figure 4.4: Decomposition of the full coupled-cluster T2 vector into spatial classes for
the allyl anion using localized perfect-pairing orbitals formed from the 6-31G basis.
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rather they are correlations of one pair of electrons with other virtual orbitals in the

same region of space. For example, the large DIP amplitudes in the nitrogen molecule

are (σ)2 → (π∗)2, (πx)2 → (π∗
y)2, (n)2 → (π∗)2, and other similar local correlations.

Thus, in a two-center model, one ought not ignore doubly-ionic excitations, particu-

larly in molecules with multiple-bonding or lone pairs. In fact, including these local

doubly-ionic amplitudes helps compensate for the difficulty in defining a correlating

orbital for the lone pairs. The lone pair will correlate with all orbitals in the same

region of space (and elsewhere).

This issue also reveals a weakness of these models. The focus on the electron

pair using orthogonal orbitals rather than the atom means that a quadratic number

of terms is necessary in a pair-based model just to describe all doubles-level atomic

correlations. In a non-orthogonal atom-based local scheme,[40, 6] one could obtain

the same atomic correlations with only a linear number of excitations (i.e. all excita-

tions on the atom). Of course, such a model would still neglect interactions between

atoms/bonds that are included in the two-center pair models. On the other hand, the

use of non-orthogonal functions required by atom-centered models adds a different

set of complexities to the theory.

Finally, the three- (T3C) and four-center (T4C) terms tend to be similar to one

another in magnitude and are generally slightly smaller than the two-center ones,

with the exception of molecules exhibiting resonance valence-bond structures. The

allyl anion has four correlated, delocalized π-electrons, and in this case we find that

the three-center terms are essentially of equal importance with the two-center ones.

Decomposition of the three-center terms into different classes reveals no obvious trun-

cations, and in many cases they are all of similar magnitude with four-center ampli-

tudes. The only minor exception is that amplitudes corresponding to excitations

where two electrons begin in the same occupied orbital and separate to two different

virtuals (whether in a two- or three-center way) tend to be slightly smaller than the

corresponding coalescence terms starting from different occupieds orbitals.

Thus, though it is clear that a two-center model alone cannot account for all

correlations in molecules exhibiting significant electronic delocalization or resonance

effects, DIP is likely to be a reasonable improvement over IP at relatively little ad-
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ditional cost. In the rest of this chapter, we focus on the SIP and DIP models in

comparison to PP, IP, and VOD for their treatment of valence correlations. The

cluster operator for DIP takes the following form:

T̂DIP = T̂IP +
i6=j
∑

ij

[

ti∗j∗ii (â†i∗ âiâ
†
̄∗ âı̄ + â†j∗ âiâ

†
ı̄∗ âı̄)

+ti∗i∗ij (â†i∗ âiâ
†
ı̄∗ â̄ + â†i∗ âj â

†
ı̄∗ âı̄)

+tj∗j∗ii â†j∗ âiâ
†
̄∗ âı̄

]

. (4.7)

The SIP cluster operator simply eliminates the last term in Eq. 4.7. The simplest way

to derive the equations for the DIP amplitudes is to eliminate the three- and four-

center amplitudes in the standard CCD equations. At present, we have done so from

a closed-shell, spin-restricted formulation[133], though one could readily generalize

to open-shell restricted or unrestricted versions. The complete equations for the t

amplitudes are presented in Appendix A.

The computational effort required for these models is dramatically reduced com-

pared to their non-local counterparts. Whereas a VOD calculation scales with the

sixth-power of system size, these calculations scale only cubicly once sparsity of the

integrals between the localized molecular orbitals is properly accounted for. Thus,

the effort is only the square root of that for VOD. Even if their performance is not

entirely faithful to VOD, they can provide improved reference wave functions over

Hartree-Fock for further calculations (such as corrections for dynamical correlation)

at very low cost.

4.3 Implementation

The doubly-ionic pairing (DIP) model is implemented along the lines described in

Ref. [132], and SIP is calculated by constraining all doubly-ionic excitations to have

zero amplitude. Briefly, just as for IP, we have only a quadratic number of cluster am-

plitudes (as compared to a quartic number in VOD) but a cubic number of integrals

(instead of quadratic) of the forms 〈ij|ik〉, 〈ij|i∗k〉, 〈i∗j|i∗k〉, and their exchange part-

ners. This means that given a set of orbitals/integrals, the DIP amplitude equations
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are trivially cheap to solve. The integrals are formed by building half-transformed

coulomb and exchange matrices of the form 〈iµ|iν〉 and then contracting over the

atomic orbital µ and ν indices with molecular orbital coefficients.

In VOD or VQCCD, solving the amplitude equations is so expensive that the or-

bital optimization problem and the amplitude equations are solved simultaneously[47,

120]. This means that the Hellman-Feynman theorem which enables us to easily find

the derivatives of the energy with respect to orbital rotations is not satisfied until

we approach convergence. In the local case, since solving the cluster equations is so

inexpensive, we can afford to solve them to convergence at each orbital rotation step.

Thus, our general algorithm runs as follows[132]:

1. Obtain a guess for the localized orbital pairs

2. Build and transform the integrals

3. Solve for the t and λ amplitudes

4. Calculate the orbital rotation gradient and diagonal Hessian

5. Take an orbital step, and return to step 2.

For the purposes of this study, we have not implemented the orbital rotations of

step 4. Instead, we simply use optimized orbitals from an IP or PP calculation as an

approximate, fixed set of orbitals from which to perform the DIP calculation.

Actually, it turns out that one needs all N4 integrals in solving for the SIP or

DIP amplitudes, but these four-index integrals always occur in contraction with the

singly- and doubly-ionic amplitudes, such as

t2 ←
∑

m

〈ij∗|km∗〉ti
∗m∗

ii . (4.8)

Since there are relatively so few of these amplitudes, we are able to define new inter-

mediates that act as modified molecular orbital coefficients,

Dı̃∗

µ =
∑

m

Cm
µ t

i∗m∗

ii (4.9)

that enable the replacement of N4 integrals with N3 ones like 〈ij∗|kı̃∗〉 at a cost of

only a larger prefactor.
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4.4 Results and discussion

We evaluate the performance of the SIP and DIP models in regards to their

ability to recover the correlation energy of the non-local VOD, and their ability to

reproduce potential energy surfaces qualitatively and quantitatively through a variety

of examples. The models are also compared to their computationally less-expensive

relatives HF, PP, and IP. Unless otherwise indicated, PP orbitals are used for all local

and non-local calculations to minimize the bias among the local orbitals. Furthermore,

both HF and the pairing models use spin-restricted orbitals. The ionic models have

been implemented in a developmental version of the Q-CHEM program package[85],

and PP and IP are available in current release versions.

4.4.1 Recovery of the valence correlation energy

To begin, we assess what fraction of the non-local VOD correlation energy these

local models recover given an identical set of PP orbitals. Consider first the three

examples from above for which the cluster amplitudes were decomposed: propane,

molecular nitrogen, and the allyl anion. The percent recoveries of the correlation

energy are listed in Table 4.1. A few sample total energies are also reported in

Table 4.2 to facilitate the reproduction of our work. For simple propane, none of

the methods do particularly poorly. Even the minimal PP model recovers a sizeable

70% of the full correlation energy, and the simplest two-center model (IP) brings

the recovery rate above 90%. Including singly- and doubly-ionic terms each provide

a little extra correlation energy for a total recovery around 95%. Thus, for fairly

simple, large-gap organic molecules, these two-center local models recover the vast

majority of the correlation energy at a drastically reduced cost.

In the nitrogen case, it was observed that the doubly-ionic terms are important

due to inter-pair correlations present in molecules with multiple bonding. This obser-

vation manifests itself in the very large improvement in going from IP/SIP (90-91%

recovery) to DIP (97% recovery), demonstrating the benefit of including all two-center

terms. Finally, for the allyl anion case, which has two delocalized electron pairs, the
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Table 4.1: Percent correlation energy recovered as compared to non-local VOD with
fixed perfect-pairing orbitals. Unless otherwise noted, calculations are in a cc-pVDZ
basis.

Molecule PP IP SIP DIP
C3H8

a 70.5 90.4 93.0 94.8
N2

b 51.3 90.0 91.3 96.9
C3H

−
5

a 56.6 81.8 85.5 87.9
CH4 77.8 95.7 97.4 98.6
C2H6 73.7 93.9 95.9 97.1
C4H10 70.8 92.1 94.2 95.5
C6H14 70.1 92.0 94.1 95.4
C8H18 69.6 91.7 93.9 95.2
C2H4 69.7 92.8 94.3 95.9
C8H10 62.4 88.0 90.6 92.3

a 6-31G basis b 6-31G* basis

correlations are less local (as indicated by larger three- and four-center cluster ampli-

tudes observed in Figure 4.4). In that case, the PP recovery rate drops below 60%.

IP provides the dominant correction, restoring up to 82% of the correlation energy,

but even the full two-center model cannot quite recover 90%.

Finally, we briefly look at the long-range behavior of the models by examining the

correlation energy recoveries for alkane chains CnH2n+2 for n=1,2,4,6,8 and alkene

chains CnHn+2 for n=2,8 in the cc-pVDZ basis (See Table 4.1)[64]. Asymptotically

(i.e. n = 8), PP recovers just under 70% of the VOD correlation energy, whereas

IP brings that value up to almost 92%. Adding singly- and doubly- ionic terms

each provide about 1.5% additional percentage points, for a total of around 95% for

DIP—similar to what was observed for propane in the 6-31G basis set as described

previously. Note also that DIP recovers roughly half of the correlation energy missing

in IP. For the alkenes, which combine multiple bonding and electron delocalization

effects, PP obtains much less of the correlation energy (62% for octatetraene). The

other methods degrade as well, though to a lesser extent—DIP asymptotes to a

value around 92% of the correlation energy. Though not as good as for the alkanes,

this value still represents a reasonable improvement over IP (recovering a third of

the missing correlation energy) and it recovers the vast majority of the correlations
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Table 4.2: Absolute energies for some sample species using PP converged orbitals
(except for HF). The alkanes here use rCH = 1.10 Å, rCC = 1.54 Å, 〈HCH = 109.5◦.
The geometry for CH3F was obtained from Ref [4]

PP IP SIP DIP
CH4

a -40.25915262 -40.27311516 -40.274395613 -40.27532274
C2H6

a -79.33963037 -79.36876008 -79.371567337 -79.37333716
F− b -99.38795411 -99.46835242 -99.46835242 -99.47272782

CH3F
b -139.13678606 -139.20727304 -139.21055877 -139.21347173

a cc-pVDZ basis b 6-31G* basis

extremely efficiently.

Based on wider testing, these examples span the range of possibilities. PP does

a moderately good job (particularly given its simplicity) of recovering the complete

correlation energy within the active space. Imperfect Pairing is the leading correc-

tion and it recovers a much larger fraction of the correlation energy (from 20 to 50

percentage points more). However, if one wishes to attempt quantitative accuracy, at

least all two-center terms are necessary. The DIP model recovers roughly 4-10 per-

centage points more correlation energy than IP. For molecules with intuitively local

electronic structure, a complete two-center model recovers in the mid-ninety percent

range. However, as the degree of electron-delocalization increases (or as multi-pair

correlations become stronger), all of these models degrade. In that case, the full two-

center models typically recover a little less than 90% of the correlation energy. The

remaining correlation energy seems to be spread out almost evenly among the three-

and four-center terms, making less restrictive approximations more difficult to define

(and much more costly computationally). On the one hand, such a recovery is still

very respectable, particularly given the economical computational cost of the models.

On the other hand, a true test is how well the model does at predicting chemistry,

which depends on the reliability of relative energies. We will assess both their re-

production of potential energy surfaces and reaction barriers, and their abilities to

inexpensively predict molecular geometries.
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Table 4.3: Barrier heights in kcal/mol for two simple reactions and percent recovery
of the VOD correlation energy for the reactant complex and the transition state using
PP orbitals.

HF PP IP SIP DIP VOD
F−+CH3F → CH3F+F−

Barrier (kcal/mol) 16.9 18.9 17.2 15.7 15.8 13.7
Complex (%) 0.0 47.9 91.5 92.9 94.4

TS (%) 0.0 46.1 89.9 92.1 93.4
HOCl+HCl → H2O+Cl2

Barrier (kcal/mol) 76.8 72.1 77.4 77.4 77.8 74.9
Complex (%) 0.0 60.5 86.4 90.0 93.4

TS (%) 0.0 63.2 84.7 88.2 91.3

4.4.2 Simple chemical reactions

Shifting the focus now to chemical reaction barriers and potential energy surfaces,

we examine a variety of reactions from the simple SN2 reaction to the very difficult

Cope rearrangement. Starting with the SN2 identity reaction of CH3F and F− to

form the same species. Using CCSD(T)/cc-pVQZ+1 optimized geometries[4], the

6-31G* basis reaction barriers from the pre-reactive complex to the transition state

are presented along with the percent correlation energy recoveries for both species in

Table 4.3. Though the overall differences are only a couple of kcal/mol, each more

elaborate correlation model progressively approaches the non-local barrier height of

just under 14 kcal/mol. In particular, an improvement occurs from PP to IP, and from

IP to the ionic pairing models. The residual error of 2 kcal/mol is a non-parallelarity

error: the local models recover slightly more of the pre-reactive complex correlation

energy than they do for the transition state, which is not surprising since the transi-

tion state contains a more delocalized electronic structure (two partial bonds). The

improvement from one-center to two-center models is attributable to a smaller non-

parallelarity error as the more elaborate models provide a better and more uniform

description of the overall potential energy surface.

Next the activation barrier for the reaction,

HOCl +HCl→ H2O + Cl2 (4.10)
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is calculated based on the B3LYP/6-31+G* basis set stationary points.[134] The

results show a similar pattern to the SN2 reaction. In this case, the methods all have

a similar error with respect to VOD, but whereas PP underestimates the barrier, the

others overestimate it. In this case, moving from IP to DIP does significantly improve

the amount of correlation energy recovered (from 85 to 91% for the transition state),

but the non-parallelarity error remains roughly constant.

In systems where only a single electron pair is strongly correlated, it is likely that

even PP can provide a reasonable description. The effects of the two-center models,

especially SIP and DIP, are not especially noticeable. In fact, neither of these systems

provided a convincing need to go beyond HF, since it also performed reasonably on

both activation barriers. Two-center correlated models should become important in

cases where at least two pairs of electrons are strongly correlated. With this in mind,

we focus on two more difficult reactions: the simultaneous removal of two hydrogen

atoms from methane and the Cope rearrangement.

4.4.3 Reactions with multiple strongly-correlated electrons

Table 4.4 and Figure 4.5 compare how well the different local approximations

conform to the VOD PES (using PP orbitals) for simultaneously removing two hy-

drogens from tetrahedral methane (rCH = 1.091, 6 HCH = 109.4◦) to form 1CH2 and

1H2. The slice of the PES is such that the H-H distance of the removed pair and

all other degrees of freedom except the distance between the two hydrogens and the

carbon stay fixed. At equilibrium, the distance from the midpoint of the hydrogen

pair to the carbon is 0.63 Å, and 2.43 Å corresponds to an C-H distance of 2.59 Å.

Table 4.4 and Figure 4.5 set the energy of equilibrium methane for each method to

zero and demonstrate the non-parallelarity energy. Restricted HF is completely un-

reasonable for this stretch, since it cannot describe the dissociated products correctly.

PP also rises in energy too quickly and introduces a sizeable error. IP behaves slightly

better, but still introduces errors of several kcal/mol. Only SIP and DIP track VOD

with a less than 1 kcal/mol error across most of this slice. DIP in particular remains

parallel to VOD to within 0.6 kcal/mol throughout this range.
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Figure 4.5: Error relative to VOD for the removal of two hydrogens from methane in
the 6-31G* basis. All methods use perfect-pairing orbitals.

Table 4.4: VOD/6-31G* potential energy surface for removing to hydrogens from
methane with a constant H-H distance. The distance coordinate measures from the
midpoint between the two abstracted hydrogens and the carbon, and all other degrees
of freedom are kept constant. Values are in kcal/mol.

R(CH2 −H2) HF PP IP SIP DIP VOD
0.63 0.00 0.00 0.00 0.00 0.00 0.00
0.83 5.40 0.89 0.38 0.13 0.10 10.23
1.03 12.78 1.90 1.03 0.33 0.24 39.39
1.23 22.34 2.81 1.83 0.55 0.40 76.53
1.43 34.25 3.39 2.69 0.70 0.52 113.72
1.63 48.56 3.58 3.48 0.72 0.57 146.40
1.83 64.83 3.73 3.99 0.57 0.52 172.30
2.03 81.20 4.50 3.54 0.23 0.39 190.55
2.23 55.20 6.12 0.82 -0.34 0.22 201.81
2.43 40.36 7.58 -4.53 -1.36 0.08 208.50
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This system exemplifies the importance of two-center terms when multiple pairs

of electrons are highly correlated. PP allows only a mean-field interaction between

pairs, whereas DIP explicitly (albeit incompletely) correlates pairs together. The

Cope Rearrangement will provide an even more difficult example, with three highly-

correlated electron pairs

Before examining the Cope Rearrangement, however, it is instructive to study the

behavior of these models on benzene. Considering only the (6,6) space corresponding

to the π electrons and their bonding and anti-bonding orbitals, one can construct three

orthogonal, localized orbitals. However, since benzene has six equivalent bonds, these

three orbitals treat three of the bonds differently than the other three, and this results

in a symmetry-breaking that deforms the D6h structure to one with alternating short

and long bonds (D3h).

In a non-local formulation using IP orbitals, including all possible excitations re-

stores the equivalency and favors the D6h structure, as we saw in Chapter 3. However,

once truncations are made, this equivalency is no longer necessarily true, as is pic-

tured in Figure 4.6. For instance, PP prefers the D3h geometry by about 3 kcal/mol

for a 2◦ deformation. It was observed that IP does much to eliminate this symmetry-

breaking, reducing it to only about 0.5 kcal/mol and 1◦[76]. Unfortunately, neither

SIP nor DIP is able to remedy this situation completely. SIP provides only a trivial

improvement over IP, but DIP cuts the IP symmetry-breaking in half, to only 0.25

kcal/mol and 0.5◦. Presumably this is due to the inclusion of correlations of each pair

of π electrons equivalently with all of the π∗ orbitals. On one hand, the symmetry

breaking in DIP is energetically small and would not affect reaction barriers signifi-

cantly. On the other hand, vibrational frequency or structural predictions would be

very poor given such a potential energy surface. However, as has been demonstrated,

the artifacts of symmetry-breaking in cases like this can be eliminated using a non-

orthogonal formulation[105], to generate six equivalent, redundant occupied (and six

virtual) orbitals, one occupied and virtual for each atom. This strategy is likely a

better solution to the problem than simply including more non-local excitations.

Another way to view the benzene symmetry-breaking is as symptomatic of a severe

non-parallelarity error. PP recovers only 59% of the VOD correlation energy for the
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Figure 4.6: Deformation of benzene and symmetry breaking of local models in the
6-31G* basis using IP orbitals (except for PP, which uses its own orbitals) for the
π-space.

D6h structure and 69% at a deformation of 1.5◦, for a 10 percentage-point difference

in the recovery rate! For the same geometries, IP recovers 79% and 83%, respectively,

reducing the gap to 4 percentage points. SIP increases the recovery to 86% and 90%,

but does not alter the gap. But DIP reaches 89% and 92%—a non-parallelarity error

of only 3 percentage points, which explains the improvement.

With some understanding of the behavior of these models on benzene, we can ap-

ply them to the Cope Rearrangement[115, 117, 116, 118]. This reaction is infamous

in electronic structure theory for its difficulty: the transition region of the reaction

involves two π bonds and one σ bond rearranging (see Figure 4.7) and requires an ac-

curate treatment of static correlation not found in a typical single-reference method.

However, the electronic structure of the “non-reactive” σ-bonding framework also

couples strongly to the bonds being directly broken and formed, meaning that these

other correlations must be treated accurately for an even qualitatively correct poten-

tial energy surface. For a nice review on the subject, see Ref [118] and references
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Figure 4.7: The Cope rearrangement. 1,5-hexadiene rearranges as shown by crossing
through a C2h chair species. The distance between the two allylic groups at the
transition state/intermediate determines to what extent it is diradicaloid or aromatic.

therein. Here, we focus only on the ability for these various models to reproduce

CASSCF and VOD in a minimal correlation space. The reaction involves a chair-

like C2h transition state/intermediate, as shown in Figure 4.7. The relevant question

is how and where the reaction crosses this C2h slice of the PES. Essentially, this

slice defines a coordinate which varies the separation between two allyl fragments.

In the six-orbital/six-electron, or (6,6), active space (i.e. the aforementioned two π

and one σ orbitals, plus their corresponding π∗ and σ∗ orbitals), CASSCF predicts

two essentially degenerate routes separated by a barrier on the C2h surface slice. At

1.64 Å separation between the adjacent carbons on each allyl-fragment in the C2h

structure, CASSCF finds a diradicaloid intermediate (the 1,4-diyl in Figure 4.7). At

2.19 Å it finds a aromatic transition state. These two stationary points are separated

by a maximum along the C2h slice.

Using CASSCF geometries, VOD(6,6) mimics CASSCF fairly well, particularly

for the aromatic species. VOD(6,6) does predict the diradicaloid intermediate to
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be a couple of kcal/mol higher above 1,5-hexadiene than CASSCF, which reflects

the difficulty in describing the diradical correctly with a restricted wave function.

Nevertheless, VOD(6,6) is qualitatively correct and quantitatively in error by less

than 2 kcal/mol. Using IP(6,6) orbitals instead of the true VOD orbitals introduces

only a slight error (less than 1 kcal/mol) in the aromatic region. On the other

hand, restricted HF predicts a very unphysical curve along this PES slice, failing in

particular to describe the diradicaloid species at short bond-lengths.

It is reasonable to ask how the various local models do on this same slice of

the PES. First, just like for benzene, in the aromatic region of the C2h slice there

exists a symmetry-breaking solution. First let us focus on the symmetry-preserving

solution. Looking at Figure 4.8, we find that PP(6,6) is woefully inadequate. It has

a non-parallelarity error of almost 25 kcal/mol and it recovers almost 96% of the

VOD(6,6) correlation energy (with IP(6,6) orbitals) at 1.64 Å, but only half as much

at 2.19 Å. Though PP is not totally unreasonable for the diradical, it cannot describe

the aromatic region well.

Perhaps the inclusion of two-center correlations will improve the description.

Though IP(6,6) performs far better, it still introduces an error of roughly 8 kcal/mol,

recovering 99.4% (1.64 Å) and 86% (2.19 Å) of the VOD(6,6) correlation energies

respectively. Using IP(6,6) orbitals, SIP(6,6) and DIP(6,6) improve further on IP.

In fact, DIP(6,6) recovers 99.8% and 96% of the VOD(6,6) correlation energies and

gives a relative error of only 2-3 kcal/mol in the aromatic region relative to VOD(6,6).

As in benzene, the improved model describes the aromatic behavior better. If one

allows the local wave functions to break symmetry in the aromatic region, the energy

gaps are reduced, though at the cost of introducing a cusp into the potential energy

surface around 2.0 Å and destroying the symmetry of the wave function. Clearly

the additional two-center terms are very important in approximating the non-local

VOD or CASSCF potential energy surfaces and demonstrate the improvement DIP

provides over even IP or SIP. However, the symmetry-breaking issue is indicative of

the challenge systems with multiple resonance structures provide for these simplified

models.
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4.4.4 Molecular structure prediction

Finally, another important use of static correlation methods is for the determi-

nation of molecular structures. GVB-PP does fairly well at predicting structures,

but for some molecules (particularly those containing halogens and requiring the

coupling of lone pair electrons with the bonding ones) it does not perform as well

corresponding non-local models do. We investigate whether including the majority

of the valence correlation energy provides a sufficiently accurate description of PES

minima. For PP, IP, and VOD (using the truly optimized orbitals) analytical gradi-

ents are available and used. For SIP and DIP, IP orbitals are used and the geometries

are optimized by finite difference. A test set of 22 small molecules with 34 unique

bond lengths[121, 120] shows that although it is improved over HF in general, PP in

particular overestimates bond lengths by roughly 0.03-0.10 Angstroms for molecules

like F2, ClF, Cl2, HOF, and H2O2. Non-local VOD reduces this error to around 0.01

for these same cases.

As shown in Table 4.5, including more local correlations via IP, SIP, or DIP does

statistically improve upon PP equilibrium geometries as compared to experiment or

VOD. Whereas HF has a root-mean-square (RMS) error of 0.036 Å and PP has a

root-mean-square (RMS) error of 0.033 Å versus experiment, IP/SIP/DIP (using IP

orbitals) reduce this error to around 0.23 Å, and VOD has an RMS error of 0.016 Å.

This error would be cut further in a larger basis set[120]. If instead we compare against

VOD to avoid basis set effects, we see an even more noticeable improvement from HF

(0.038 Å) to PP (0.026 Å), and another significant improvement upon going to the

two-center models (0.015 Å). The advantage of the limited correlation over HF stands

out more in the maximum errors, which are cut in half from HF (0.134 Å for Li2) to

the two-center models (0.064-0.069 Å for Cl2). Comparing instead against VOD, the

maximum errors do not change much, since none of the local models predict the Cl2

bond distance very well, and HF still fails for Li2, unlike the correlated models.

Comparing PP against the two-center models, particular improvement occurs in

the cases mentioned previously where PP was inadequate. The largest exception is

Cl2, where despite the improvement, the error is still 0.069 Å for DIP. However, in
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Table 4.5: Predicted equilibrium geometries in the 6-31G* basis.

bond HF PP IP SIPa DIPa VOD Expt.b

Li2 rLiLi 2.807 2.717 2.717 2.717 2.717 2.717 2.673
N2 rNN 1.078 1.103 1.110 1.111 1.112 1.112 1.098
F2 rFF 1.345 1.498 1.431 1.429 1.427 1.420 1.412
CO rCO 1.114 1.127 1.138 1.139 1.139 1.139 1.128
CS rCS 1.520 1.533 1.543 1.543 1.546 1.543 1.535
NP rNP 1.455 1.503 1.502 1.504 1.505 1.503 1.491
P2 rPP 1.859 1.922 1.933 1.933 1.931 1.920 1.893

NaF rNaF 1.885 1.889 1.899 1.899 1.899 1.899 1.926
ClF rClF 1.612 1.693 1.661 1.656 1.658 1.653 1.628
Cl2 rClCl 1.989 2.070 2.054 2.052 2.057 1.992 1.988

HCN rHC 1.059 1.073 1.075 1.077 1.076 1.079 1.065
rCN 1.132 1.158 1.165 1.163 1.167 1.167 1.152

HNC rHN 0.985 0.999 1.002 1.003 1.003 1.005 0.994
rNC 1.154 1.170 1.179 1.177 1.181 1.183 1.169

HCP rHC 1.063 1.086 1.083 1.083 1.083 1.085 1.069
rCP 1.515 1.561 1.557 1.556 1.559 1.560 1.540

HNO rHN 1.032 1.048 1.052 1.057 1.059 1.066 1.063
rNO 1.175 1.219 1.221 1.222 1.220 1.217 1.212

HPO rHP 1.431 1.450 1.449 1.457 1.460 1.470 -
rPO 1.461 1.505 1.497 1.497 1.498 1.496 1.512

HOF rHO 0.952 0.973 0.976 0.976 0.977 0.977 0.966
rOF 1.376 1.488 1.444 1.441 1.443 1.438 1.442

HOCl rHO 0.951 0.971 0.975 0.975 0.975 0.975 0.975
rOCl 1.670 1.760 1.725 1.718 1.728 1.718 1.690

H2CO rCO 1.184 1.212 1.217 1.215 1.216 1.214 1.208
rCH 1.092 1.105 1.105 1.105 1.110 1.116 1.116

H2CS rCS 1.597 1.631 1.642 1.635 1.635 1.629 1.611
rCH 1.078 1.095 1.096 1.097 1.097 1.101 1.093

H2O2 rHO 0.949 0.969 0.973 0.973 0.974 0.974 0.965
rOO 1.468 1.499 1.464 1.456 1.465 1.459 1.452

H2S2 rHS 1.327 1.350 1.355 1.355 1.357 1.352 1.345
rSS 2.063 2.108 2.116 2.118 2.119 2.067 2.058

N2H2 rHN 1.014 1.033 1.036 1.038 1.039 1.042 1.028
rNN 1.216 1.253 1.258 1.258 1.260 1.259 1.252

RMS error vs. Expt. 0.036 0.033 0.023 0.022 0.024 0.016
Max. error vs. Expt. 0.134 0.086 0.066 0.064 0.069 0.044
RMS error vs. VOD 0.038 0.026 0.015 0.014 0.015
Max. error vs. VOD 0.090 0.078 0.062 0.060 0.065

a used IP orbitals b Ref. [121]
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these examples there is little statistical improvement from IP to DIP. Nevertheless,

these two-center methods do seem to provide an efficient approach for equilibrium

structures with quite reasonable accuracy. Transition structures would likely prove

more difficult and might separate the methods further, particularly in cases with

multiple bonds being broken and formed simultaneously. Unfortunately, without an

implementation of analytical gradients, transition state searching and characterization

is computationally tedious and is beyond the scope of this chapter.

4.5 Conclusions

The contributions of different classes of excitations in a local electron-pair model

were analyzed for some test systems, and the most promising truncations were iden-

tified as PP, IP, and a full two-center model (DIP). The three- and four-center terms

suggest no obvious truncations, and their implementation would eliminate much of

the efficiency of the two-center version relative to the non-local relatives; therefore,

they were not investigated further.

These various models were applied to a variety of chemical reactions, potential

energy surfaces, and geometry predictions. In general, all of these models improve

upon HF. However, in a number of cases PP was found to be lacking, and IP provides

the leading correction. Often, this leading correction is sufficient to improve upon the

PP results. SIP/DIP usually provide the next largest correction, and DIP typically

brings the recovery of the non-local correlation energy into the mid- or low-ninety

percent range. However, in many cases, this additional recovery is insufficient to

capture all of the effects missed by IP, as exemplified by benzene and the Cope

rearrangement.

In this study, we used approximate orbitals for the ionic-pairing models instead

of implementing the orbital gradients. Presumably the true orbitals would help these

methods somewhat, particularly in cases where the approximate orbitals are heavily

symmetry-broken. However, given the generally small improvements DIP provides

over IP, it is unlikely that the correct orbitals could completely rectify any of the

problems observed here.
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These results suggest several directions for further research. First, there is the

problem of symmetry-breaking in benzene, for example. This can be alleviated via

the use of redundant excitations with non-orthogonal (NO) orbitals, as was demon-

strated in a pilot implementation of NO-PP[105]. So in principle, this problem is not

insurmountable.

Second, there was the slightly surprising result that doubly-ionic excitations played

such a large role. This was attributable to atomic-like correlations and correlations

between bonds in multiple-bonding systems. This character demonstrates a weakness

of the orthogonal orbital electron-pair formulation: a non-orthogonal atomic-based

model can include these same-atom atomic correlations with only a linear number

of excitations.[6] In those models, only the singly-ionic excitations are important,

whereas the doubly-ionic ones are negligible and more truly attributable to basis-set-

superposition error. Moreover, the symmetry-breaking issues are eliminated, since

for benzene for example, one would have six equivalent, atomic-like non-orthogonal

orbitals. These atomic models also have the advantage that they can be defined for

an arbitrary active space or even the full space. Furthermore, one might conceive of

hybrid models where one correlates to some high excitation level on each atom and

uses lower-level excitations (such as double) to account for inter-atomic correlations in

a local fashion. Assuming that the orbital and amplitude equations can be converged

efficiently, atomic orbital-based local schemes may prove overall more versatile than

these pair models and offer superior wave function expansions for the correlation

energy at low computational cost. However, no such efficient implementations have

been made, so the extent of the trade-off in changing to redundant orbitals is not

entirely clear.

Third, given the incompleteness of these models as stand-alone theories, one won-

ders how best to improve on them. For example, one might devise corrections to

account for the remaining three- and four-center terms and the beyond valence dy-

namical correlations. Such corrections could come in the form of the (2) correction

which has already been implemented for VOD and related methods, [5, 48, 49, 3]

or one might explore other corrections using a different formulation of perturbation

theory or even density functional theory. In the case of (2), it needs to be adapted to
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take advantage of the local formulation. Any of these approaches raises the question

of what is the best reference to correct from. Given the fact that valence correlation is

typically only 30-40% of the total correlation energy, it may suffice to use a very sim-

ple model like PP which obtains more than half of the valence portion and captures

the leading correlations, and correct from there. Or possibly the higher correlation

energy recovery rate of DIP will prove important.

Finally, another interesting application of these approaches is for cases where

the Hartree-Fock reference is poor due to orbital instabilities and symmetry-breaking

effects, such as for radicals. In Chapter 2 we demonstrated that an improved reference

in the context of a full-space OO-CCD helps to solve this problem in many cases.

Open-shell versions of these models might offer a very inexpensive means of achieving

a stable reference from which to introduce further correlations.

In conclusion, it is clear that the valence correlations are in general quite local-

izable, and very good approximations can be made that neglect all but a linear or

quadratic number of cluster amplitudes in a VOD-like model. The models presented

here have the most difficultly for systems involving multiple resonance structures

or highly-delocalized electronic structure. However, for systems in the intermediate

regime between those well-described by HF and those requiring an advanced method

like VOD or CASSCF, the two-center local approximations provide a very nice bal-

ance between potential computational efficiency and accuracy.

Though there are clearly cases where the two-center or non-local models are prefer-

able to PP, its utter simplicity makes it very useful as a reference wave function for a

low-cost perturbative correction. Therefore, in the next chapter we generalize PP to

an unrestricted formalism to enable bond dissociation to the proper atomic subunits.

We will also present an extremely efficient algorithm that makes PP cost only a few

times more than a HF calculation.
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Chapter 5

Unrestricted perfect-pairing: The

simplest wave-function-based

model chemistry beyond mean

field.

5.1 Introduction

Standard wave function-based electronic structure theory generally begins with a

mean-field Hartree-Fock (HF) computation in order to obtain a qualitative descrip-

tion of the system of interest. Often, the HF description is sufficiently accurate that

straightforward perturbative corrections such as second-order Møller-Plesset pertur-

bation theory (MP2) enable the reliable prediction of chemical energetics and proper-

ties. The success of the MP2 approach, however, is predicated on obtaining a reason-

able single-reference description of the system from HF. In systems with unusually

strong static electron-electron correlations (radicals, diradicals, stretched bonds, and

transition states, for example), the qualitatively correct wave function requires multi-

ple determinants. In such cases, the HF wave function contains only the single most

important electronic configuration and thereby biases subsequent electron-electron

correlation treatments in favor of this determinant over other significant ones.
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The usual approach in cases where HF behaves poorly is to construct a multi-

configurational self-consistent-field (MCSCF) or complete-active-space self-consistent

field (CASSCF) [41] wave function which captures the multiple significant configura-

tions to provide a description of the static correlations in the system. For quantitative

results, this wave function can be corrected with multi-reference perturbation theo-

ries. Given an active space that is sufficiently large, CASSCF, which incorporates all

correlations in the active space, qualitatively describes even highly-correlated systems

very well. Unfortunately, its computational cost grows factorially with the size of the

active space, and feasible CASSCF calculations can only contain up to about fourteen

electrons/orbitals at present. In MCSCF, this extreme computational cost is lowered

by hand-selecting only those configurations that the practitioner deems important.

However, its reliability and accuracy depends strongly on the skill of the user in iden-

tifying and including the important configurations. Additionally the result is not a

well-defined theoretical model chemistry.[6]

The valence orbital-optimized coupled cluster doubles (VOO-CCD, or simply

VOD) model was proposed several years ago to approximate CASSCF and make

it applicable to a wider variety of systems.[46, 47] In VOD, a coupled cluster doubles

(CCD)[17] calculation in the active space approximates the full configuration inter-

action (FCI) one in CASSCF, and the orbitals are optimized to minimize the energy,

as in CASSCF. This approach breaks the link to the HF reference, and instead finds

the reference determinant that minimizes the energy of the valence space CCD wave

function. In many cases, VOD performs comparably to CASSCF at much lower cost

(N6), and it enables one to simply choose all valence orbitals as active for small to

moderate-sized systems, thereby eliminating the problem of choosing the chemically

relevant active space. Unfortunately, even this scaling is high, and it limits practi-

cal VOD computations to typically about fifteen non-hydrogen atoms (fewer in large

basis sets).

There are some other approaches to replacing the HF reference function that

should be mentioned. One promising approach that has recently been explored by

Rassolov[135] uses an antisymmetrized product of strongly orthogonal geminals. Even

simpler than this is to take just two functions to describe each geminal, which leads
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to the so-called Generalized Valence Bond Perfect-Pairing (PP) approximation.[104,

54, 55, 56]

GVB-PP is an even simpler approximation to CASSCF which can be viewed as

a strongly local restriction of VOD. Instead of including N4 amplitudes in the wave

function as in VOD, only a linear number of amplitudes are used to form a set of

alpha-beta electron pairs, each of which resides in a spatial occupied orbital and

which are then correlated with a single spatial virtual correlating orbital. Though

somewhat crude, these alpha-beta pair correlations comprise the leading terms in the

correlation energy expansion and are essential for describing the breaking of bonds

correctly. It has also been applied to the study of certain classes of diradicals with

much success.[136, 137, 137, 138] Importantly, it is potentially very inexpensive to cal-

culate. Suggestions have also been made for generalizations of the PP approach that

include interpair couplings,[76] or employ non-orthogonal orbitals.[105] Additionally

there has been considerable effort devoted to the development of more sophisticated

GVB wave functions that lift the restriction of orthogonality.[139, 140]

In this paper, we explore the feasibility of the simplest possible extension beyond

HF theory, which is PP. We generalize the restricted PP approach to handle unre-

stricted open- and closed-shell molecules. Our point of view is that we want the result

of bond-dissociation reactions to yield products that are exactly those which would

be computed from separate calculations on the product fragments. For approximate

treatments of electron correlation, such as PP, this can only be accomplished using

unrestricted orbitals. Our implementation is based on an extremely efficient algorithm

for PP utilizing the resolution of the identity approximation[141, 142, 143, 144] that

introduces sub-millihartree errors in total energies. Turning from the methodology

to chemistry, we will show that the simple PP model for correlation often provides a

much improved starting point over HF for radicals and other difficult systems. This

improved reference is a viable alternative to HF for many chemical problems and may

be used subsequently for the treatment of additional correlations. Additionally, some

of its limitations will be revealed in our series of test calculations.
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5.2 Theory and implementation

5.2.1 Coupled-cluster perfect-pairing

In the perfect pairing model, the wave function for a closed-shell system is written

as an antisymmetrized product of pair functions, gi, and core orbitals φi,

|Ψ〉 = |A[φ1φ1̄φ2φ2̄ · · · g1g2 · · · ]〉 (5.1)

where the pair functions gi are defined as,

gi = A[ψiψī + tiψi∗ψī∗ ]. (5.2)

The core orbitals φi, the active orbitals ψi and amplitudes ti are determined varia-

tionally.

The same wave function can be rewritten as a simplified coupled cluster wave

function.[57, 58] In this case, it takes the form,

|ΨPP 〉 = eT̂PP |Φ0〉 (5.3)

where |Φ0〉 is the reference determinant and T̂PP is the cluster operator,

T̂PP =
pairs
∑

i

ti
∗ ı̄∗

īı â†i∗ âiâ
†
ı̄∗ âı̄ =

pairs
∑

i

tiâ
†
i∗ âiâ

†
ı̄∗ âı̄ (5.4)

In this notation, i is an alpha active orbital, ı̄ is the beta active orbital paired with i,

and i∗ and ı̄∗ are the virtual orbitals that correlate with i and ı̄, respectively. In the

standard restricted version of PP, the alpha and beta spatial orbitals are identical.

Here we explicitly allow them to differ.

In the unrestricted Ansatz, we separate the occupied space into three subspaces.

The first two are the core space and the valence (or active) occupied pair space,

containing equal numbers of alpha and beta orbitals. We typically choose all valence

pairs to be active, but any chemically-reasonable number of active pairs can be used.

In the active space, each alpha occupied orbital is paired with one beta occupied

orbital, analogously to the restricted version. The third subspace contains unpaired,

alpha-space singly-occupied molecular orbitals (SOMOs). Only the paired, active
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occupied orbitals are correlated, meaning that the SOMO electrons are treated in a

UHF-like fashion.

The virtual space contains only two subspaces: active and inactive. The singly-

unoccupied molecular orbitals (SUMOs) are effectively part of the inactive virtual

space. Of course, the orbitals in PP are completely optimized, meaning that the five

alpha subspaces (and the four beta subspaces) mix freely to minimize the energy.

This uncorrelated treatment of the radical electrons is consistent with the PP

treatment of electron pairs in a closed-shell species undergoing bond dissociation.

Once the bond is stretched enough, the two electrons should localize to their respective

atomic centers and have zero correlation amplitude between them. Any attempt to

correlate these excess electrons would therefore be inconsistent with the closed-shell

PP model.

The PP coupled-cluster equations are solved by constructing a coupled cluster

Lagrangian,

LPP = 〈Φ0|(1 + Λ̂PP )e−T̂PP ĤeT̂PP |Φ0〉 (5.5)

where Λ̂PP =
∑pairs

i λiâ
†
i âi∗ â

†
ı̄ âı̄∗ An efficient algorithm for solving this Lagrangian

for the optimal t and λ amplitudes and variationally minimizing the energy with

respect to the orbitals has been discussed previously,[132] so we will not repeat all

the details here. Instead, we will focus only on the key steps and changes introduced

by generalizing to unrestricted systems and the adaptation of the RI approximation.

The interested reader is referred to Ref. [132] for further detail.

5.2.2 Initial guess

We start the UPP calculation from either a restricted (RHF or ROHF) or un-

restricted (UHF) Hartree-Fock wave function. In the restricted cases, the occupied

pairs are formed from electrons sharing a valence spatial orbital. In the unrestricted

case, we identify the pair space using the corresponding orbital transformation to

maximize the overlap of each alpha orbital with one beta orbital. The corresponding

orbitals are formed by diagonalizing the alpha-beta spatial orbital overlap matrix,



91

Dαβ
ij = 〈φα

i |φ
β
j 〉, via the singular value decomposition,

Dαβ = (Cα)†SCβ = UΣV †, (5.6)

where S is the atomic basis overlap matrix. Given the orthogonal transformations U

and V , the corresponding orbitals C̃ are obtained as,

C̃α = CαU C̃β = CβV. (5.7)

To ensure the selection of valence orbitals for the active space, the corresponding

orbital transformation is performed separately in the core and active spaces. In all

cases, the orbitals are then localized separately in each subspace. The localized alpha

and beta orbitals are paired by maximum overlap. These alpha/beta occupied pair

orbitals are then paired with virtual orbitals by maximizing the exchange overlap of

the virtual with each occupied according to the procedure proposed by Sano.[145] The

Sano algorithm is used separately for the alpha and beta components of each occupied

pair and may draw in parts of the SUMO in forming the pairs. As described above,

alpha SOMOs are not paired in any fashion and comprise a third alpha occupied

subspace, leading to core, active, inactive SOMO subspaces.

5.2.3 Unrestricted energy evaluation and orbital optimiza-

tion

For a given set of orbitals, the correlation energy is determined by a linear number

of t amplitudes according to,

EPP = Eref +
pairs
∑

i

ti〈īı|i
∗ı̄∗〉. (5.8)

In effect, this means we treat unpaired, excess alpha electrons in a UHF fashion

while correlating all the valence electron pairs. The advantage of the PP model not

shared by any of the more complicated coupled cluster methods described above[46,

17, 127, 76, 106, 105] is that the amplitude equations completely decouple, allowing

for the analytical solution of each amplitude via the solution of a quadratic equation
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(choosing the root that gives the lowest energy):

〈īı|i∗ı̄∗〉+Witi − 〈īı|i
∗ı̄∗〉t2i = 0, (5.9)

where,

Wi = fi∗i∗ + fı̄∗ ı̄∗ − fii − fı̄̄ı + 〈īı|īı〉+ 〈i∗ı̄∗|i∗ı̄∗〉+ 〈ii∗|i∗i〉 − 〈ii∗|ii∗〉

+ 〈̄ı̄ı∗ |̄ı∗ı̄〉 − 〈̄ı̄ı∗ |̄ı̄ı∗〉 − 〈īı∗|īı∗〉 − 〈̄ıi∗ |̄ıi∗〉. (5.10)

In this notation, the fpp are diagonal elements of the fock matrix and 〈pq|rs〉 =
∫

dr1dr2φp(r1)φq(r2)
1

r12

φr(r1)φs(r2). The λ amplitudes are also trivially obtainable

as,

λi = −
〈īı|i∗ı̄∗〉

Wi − 2ti〈īı|i∗ı̄∗〉
. (5.11)

Thus, the energy and amplitudes can be obtained with only a linear number of molec-

ular orbital (MO) basis two-electron integrals.

Having obtained the t and λ amplitudes, the coupled cluster Lagrangian can be

written down according to Eq. 5.5, as presented in Table 5.1. Differentiating this

Lagrangian with respect to a rotation ∆p
q between orbitals p and q gives,

dL

d∆p
q

=
∑

µ

(

∂L

∂Cp
µ
Cq

µ −
∂L

∂Cq
µ
Cp

µ

)

(5.12)

where Cp
µ is the molecular orbital coefficient for atomic orbital µ in molecular orbital p.

In order to compute the gradient with respect to orbital rotations, we therefore need

only the partial derivatives of the Lagrangian with respect to the molecular orbital

coefficients, which requires a partial set of two-center integrals. For the unrestricted

case, these derivatives must be evaluated separately for rotations in the alpha and beta

subspaces. These derivatives are also listed in Table 5.1. Convergence of the orbital

optimization procedure is enhanced by utilizing diagonal second derivatives in the

geometric direct minimization (GDM) procedure.[146] In the interest of brevity, these

second derivatives are not presented here. Computationally they require additional

two-center integrals of the forms 〈pq|pq〉 and 〈pq|qp〉 where p is in the occupied or

active virtual spaces, and q is any orbital. Because of the simple structure of the

PP equations, computing the energy, amplitudes, and orbital derivatives is trivial
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Table 5.1: The unrestricted perfect pairing Lagrangian and its orbital derivatives.

LPP = Eref +
pairs
∑

i

λiti

(

fi∗i∗ + fı̄∗ ı̄∗ − fii − fı̄̄ı

)

+
pairs
∑

i

(ti + λi − λit
2
i )〈īı|i∗ı̄∗〉

+
pairs
∑

i

λiti

(

〈īı|īı〉+ 〈i∗ı̄∗|i∗ı̄∗〉+ 〈ii∗|i∗i〉 − 〈ii∗|ii∗〉+ 〈̄ı̄ı∗ |̄ı∗ı̄〉 − 〈̄ı̄ı∗ |̄ı̄ı∗〉

−〈īı∗|īı∗〉 − 〈̄ıi∗|̄ıi∗〉
)

Orbital Gradient dL
d∆p

q
=

∑

µ

(

∂L

∂Cp
µ
Cq

µ −
∂L

∂Cq
µ
Cp

µ

)

l ∈ inact. occ. ∂L
∂Cl

µ
= 2fµl

−
pairs
∑

i

2λiti

(

〈iµ|il〉 − 〈iµ|li〉+ 〈̄ıµ|̄ıl〉

−〈i∗µ|i∗l〉+ 〈i∗µ|li∗〉 − 〈̄ı∗µ|̄ı∗l〉
)

k ∈ act. occ. ∂L
∂Ck

µ
= −

pairs
∑

i

2λiti

(

〈iµ|ik〉 − 〈iµ|ki〉+ 〈̄ıµ|̄ık〉

−〈i∗µ|i∗k〉+ 〈i∗µ|ki∗〉 − 〈̄ı∗µ|̄ı∗k〉
)

+(2− 2λktk)fµk + (tk + λk − λkt
2
k)〈µk̄|k∗k̄∗〉

+2λktk

(

〈µk̄|kk̄〉+ 〈µk∗|k∗k〉 − 〈µk∗|kk∗〉 − 〈µk̄∗|kk̄∗〉
)

k∗ ∈ act. virt. ∂L
∂Ck∗

µ
= 2λktkfµk∗ + (tk + λk − λkt

2
k)〈kk̄|µk̄∗〉

+2λktk

(

〈µk̄∗|k∗k̄∗〉+ 〈kµ|k∗k〉 − 〈kµ|kk∗〉 − 〈k̄µ|k̄k∗〉
)

l∗ ∈ inact. virt. ∂L
∂Cl∗

µ
= 0
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compared to the time necessary to compute and transform the integrals. Thus, in the

next section, we outline an efficient approach for computing the requisite molecular

integrals utilizing the resolution of the identity approximation.

5.2.4 The resolution of the identity approximation

The primary algorithmic difference between the closed-shell PP code described

previously[132] and the implementation here is the adaptation of the resolution of

the identity (RI) or density-fitting approximation. In this approximation, a larger,

higher-angular momentum auxiliary basis set {|K)} is used to expand products of

two Gaussian basis functions that typically occur in two-electron integrals,

|ρ) = |µν) ≈ |µν) =
aux
∑

K

AK
µν |K). (5.13)

In this notation, µ, ν, . . . refer to atomic orbitals (AOs), K,L, . . . refer to auxiliary

basis functions, i, j, . . . refer to occupied molecular orbitals (MOs), and a, b, . . . refer

to virtual MOs. The fitting coefficients AK
µν are given by,

AK
µν =

aux
∑

L

(µν|L)(L|K)−1. (5.14)

A typical two-electron integral (µν|λσ) =
∫

dr1dr2φµ(r1)φλ(r2)
1

r12

φν(r1)φσ(r2) takes

the form

(µν|λσ) ≈ (µν|λσ) =
aux
∑

KLMN

(µν|K)(K|L)−1(L|M)(M |N)−1(N |λσ) (5.15)

=
aux
∑

KL

(µν|K)(K|L)−1(L|λσ) (5.16)

=
aux
∑

KLM

[

(µν|K)(K|M)−
1

2

][

(M |L)−
1

2 (L|λσ)
]

(5.17)

=
aux
∑

M

BM
µνB

M
λσ, (5.18)

where BM
µν =

∑aux
K (µν|K)(K|M)−

1

2 .

Although there are typically several times as many auxiliary basis functions {|K)}

as there are primary AO basis functions, the approximation requires only three-center
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integrals to be built via explicit integration, and the final four-center integrals are

formed as matrix multiplies of the BK
µν matrices. It also facilitates the development

of cubic disk storage algorithms, since all two-electron integrals can be formed as

needed from the BK
µν matrices.

The details of our algorithm will be presented elsewhere, but the basic procedure

is as follows. Following the approach outlined in Ref. [132], we wish to construct

half-transformed coulomb- and exchange-like matrices,

J [ii]
µν = 〈iµ|iν〉 = (ii|µν) K [ii]

µν = 〈iµ|νi〉 = (iµ|iν) (5.19)

J [ii∗]
µν = 〈iµ|i∗ν〉 = (ii∗|µν) K [ii∗]

µν = 〈iµ|νi∗〉 = (iµ|i∗ν) (5.20)

J [i∗i∗]
µν = 〈i∗µ|i∗ν〉 = (i∗i∗|µν) K [i∗i∗]

µν = 〈i∗µ|νi∗〉 = (i∗µ|i∗ν) (5.21)

and then transform the final two AO indices. In this case, the half-transformed

integrals are constructed in an RI-fashion. That is, we:

1. Form (M |L)−
1

2 and (µν|M). Contract to form BL
µν =

∑

M(µν|M)(M |L)−
1

2 .

This needs to be done only once, and the resulting AO basis BL
µν can be stored

on disk. All subsequent steps must be updated each iteration.

2. Transform first AO index µ to the MO basis for orbitals i and i∗, e.g. BL
iν =

∑

µCµiB
L
µν .

3. Form K [ii]
µν =

∑

LB
L
iµB

L
iν , along with K [ii∗]

µν and K [i∗i∗]
µν .

4. Transform second AO index to the MO basis,e.g. BL
ii∗ =

∑

µCνi∗B
L
iν .

5. Form J [ii]
µν =

∑

LB
L
iiB

L
µν , along with J [ii∗]

µν and J [i∗i∗]
µν .

6. Transform the final to AO indices to form J [ii]
pp , K [ii]

pp , etc., where p is any MO.

Alternatively, form the necessary three-quarter transformed integrals used in

the orbital derivatives listed in Table 5.1.

All steps in this procedure, including the final formation of the half-transformed

integrals, are performed in batches to maintain quadratic memory. This procedure
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generates all the integrals necessary to compute the energy, the first orbital deriva-

tives, and the diagonal second orbital derivatives. Finally, note that the Sano initial

guess algorithm requires the formation of many exchange matrices K [ii]
µν , which is also

performed using the RI approximation as described above.

Overall, this algorithm is quartic, albeit with a small prefactor, requires cubic disk,

and quadratic memory. Calculations on fifty carbon linear alkanes in the cc-pVDZ

basis (more than 1200 basis functions in the primary basis)[64] are quite feasible on

a modern personal computer. Further details on the algorithm, timings, and errors

introduced by the RI approximation are beyond the scope of this paper and will be

addressed elsewhere.[60]

5.2.5 Nuclear gradient

An efficient algorithm for nuclear gradients allows molecular geometries to be

computed at the UPP level. Because the Lagrangian has been variationally minimized

during the energy calculation, the Hellman-Feynman theorem permits an equation for

its gradient to be obtained trivially. If (x) indicates partial differentiation with respect

to nuclear displacement, then the Lagrangian becomes:

L
(x)
PP = E

(x)
ref +

pairs
∑

i

λtti

(

f
(x)
i∗i∗ + f

(x)
ı̄∗ ı̄∗ − f

(x)
ii − f

(x)
ı̄̄ı

)

+
pairs
∑

i

(ti + λi − λit
2
i )〈īı|i∗ı̄∗〉(x)

+
pairs
∑

i

λiti

(

〈īı|īı〉(x) + 〈i∗ı̄∗|i∗ı̄∗〉(x) + 〈ii∗|i∗i〉(x) − 〈ii∗|ii∗〉(x)

+〈̄ı̄ı∗ |̄ı∗ı̄〉(x) − 〈̄ı̄ı∗ |̄ı̄ı∗〉(x) − 〈īı∗|īı∗〉(x) − 〈̄ıi∗ |̄ıi∗〉(x)
)

(5.22)

Although the PP wave function is stable with respect to infinitesimal changes in the

nuclear positions, the MO coefficients must vary to ensure that the orbitals remain

orthogonal when the (atom-centered) basis functions are moved. Differentiating the

MO coefficients implicit in Equation 5.22 yields a term in which an energy weighted

density matrix, W , contracts with the overlap derivatives. [147, 148]
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Our strategy for evaluating the two electron gradients efficiently is the same as

before.[132] Half-transformed coulomb and exchange matrices are contracted with the

set of effective density matrices listed in Table 5.2.5. Note that the effective density

matrices used in Ref [132] have been redefined to accommodate the unrestriction.

The resulting expression for the gradient is:

L
(x)
PP = E

(x̃)
ref

+
∑pairs

i λiti

(

f
(x̃)
i∗i∗ + f

(x̃)
ı̄∗ ı̄∗ − f

(x̃)
ii − f

(x̃)
ı̄̄ı

)

+
∑pairs

i

∑

µν

(

P [ii]
µν J

[ii](x)
µν + P [̄ı̄ı]

µν J
[̄ı̄ı](x)
µν

−Q[ii]
µνK

[ii](x)
µν −Q[̄ı̄ı]

µνK
[̄ı̄ı](x)
µν

+P [ii∗]
µν J [ii∗](x)

µν + P [̄ı̄ı∗]
µν J [̄ı̄ı∗](x)

µν

+P [i∗i∗]
µν J [i∗i∗](x)

µν + P [̄ı∗ ı̄∗]
µν J [̄ı∗ ı̄∗](x)

µν

−Q[i∗i∗]
µν K [i∗i∗](x)

µν −Q[̄ı∗ ı̄∗]
µν K [̄ı∗ ı̄∗](x)

µν

)

+
∑

µν WµνS
(x)
µν , (5.23)

where (x̃) indicates partial differentiation of the one and two electron integrals, but

not the MO coefficients.

The time necessary to compute these derivatives is comparable to that required

for a single point energy evaluation. Batching the formation of the derivative matrices

enables the gradient to be computed with only quadratic memory use. The speed of

the gradient calculation is improved further by an RI implementation which will be

described elsewhere.[60]

5.2.6 Orbital optimization convergence

In typical closed-shell organic molecules (i.e. with single bonds connecting the

different atoms) near their equilibrium structures, the PP algorithm described here

and in Ref. [132] converges within 10-30 iterations, which is comparable to the conver-

gence rate of HF. However, in more complicated cases like radicals, the convergence

is much slower and can take hundreds of iterations (though with GDM it always con-

verges eventually). Moreover, just as different initial guesses often lead to different
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Table 5.2: The derivative matrices and effective density matrices used for computing
the nuclear gradient for the unrestricted perfect pairing Lagrangian. For the coulomb
and exchange derivative matrices, differentiation has been intentionally limited to the
external indices.

J [ii](x)
µν = 〈iµ(x)|iν〉+ 〈iµ|iν(x)〉

K [ii](x)
µν = 〈iµ(x)|νi〉+ 〈iµ|ν(x)i〉

J [ii∗](x)
µν = 〈iµ(x)|i∗ν〉+ 〈iµ|i∗ν(x)〉

K [ii∗](x)
µν = 〈iµ(x)|νi∗〉+ 〈iµ|ν(x)i∗〉

J [i∗i∗](x)
µν = 〈i∗µ(x)|i∗ν〉+ 〈i∗µ|i∗ν(x)〉

K [i∗i∗](x)
µν = 〈i∗µ(x)|i∗ν〉+ 〈i∗µ|i∗ν(x)〉

P [ii]
µν = λiti(CµiCνi − Cµi∗Cνi∗ − Cµı̄∗Cνı̄∗)

Q[ii]
µν = λitiCµi∗Cνi∗

P [ii∗]
µν = (λi + ti − λit

2
i )Cµı̄Cνı̄∗

P [i∗i∗]
µν = λiti(Cµı̄∗Cνı̄∗ − CµiCνi − Cµı̄Cνib)

Q[i∗i∗]
µν = λitiCµiCνi

W α
µν = −1

2

∑occ,actα
i,j

∑

σ Cµi
∂L

∂Cσi
CσjC

T
jν
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SCF solutions in more challenging species, we often find multiple PP solutions de-

pending on the initial localization scheme used. In general, Pipek-Mezey orbitals[26]

provide the fastest convergence, but sometimes the Boys orbitals[25] lead to lower

energy solutions.

In order to use PP widely, it might be helpful to adapt Pulay’s direct inversion of

the iterative subspace (DIIS) to the PP problem[149, 150] to provide an alternative

convergence scheme that could be faster when starting far away from the orbital

minimum. Also, an implementation of complete orbital second derivatives to allow

for stability analysis on converged stationary points in certain cases might also be

helpful. Perhaps other initial guesses than the Sano guess from HF orbitals could

be devised as well. Nevertheless, we were able to converge every molecule and made

a serious effort (by varying the initial guess) to ensure that the variationally lowest

energy solution was found for all of the results reported herein.

5.3 Results and discussion

The RI-PP algorithm for open- and closed-shell systems has been implemented in

a developmental version of Q-Chem, and all calculations herein were performed using

Q-Chem.[85] Unless otherwise specified, all PP calculations use the RI approximation

with the auxiliary basis sets developed for RIMP2/cc-pVXZ calculations,[151, 64]

and all valence orbitals were correlated. The active spaces in VOD always match

those used in PP, with one correlating orbital for each pair of valence electrons.

Furthermore, unless otherwise specified, all calculations were spin unrestricted and

break symmetry whenever it lowers the energy.

5.3.1 Bond-breaking

To begin, we revisit the bond-breaking problem in the context of the N2 molecule

dissociating to two quartet state nitrogen atoms. Figure 5.1 compares HF, PP and

VOD against FCI results (with the frozen core approximation)[152] in the cc-pVDZ

basis. It comes as no surprise that RHF rises in energy much too quickly and dis-



100

-109.2

-109.0

-108.8

-108.6

-108.4

1.2 1.4 1.6 1.8 2.0

E
ne

rg
y 

(H
ar

tr
ee

s)

RNN (Angstroms)

FCI
HF
PP

VOD

Figure 5.1: Restricted (solid lines) and unrestricted (dotted lines) N2 bond breaking
in the cc-pVDZ basis. The correlated methods employ a frozen core approximation,
and the FCI results were obtained from Ref [3].

sociates to a high asymptote, leading to a PES that very non-parallel to the FCI

one. RPP is significantly more parallel to FCI than RHF and does not exhibit the

non-variational collapse associated with standard restricted MP2 or coupled-cluster

doubles methods. For example, restricted VOD turns over around 1.75 Å. However,

this parallelism of RPP does come at a cost: the dissociation limit is still too high as

compared to a PP description of the atoms. Unrestricting enables the wave function

to reach localized atomic limits, with the alpha electron in a bonding pair localizing

to one atom and the beta electron to the other.

As we dissociate, the five valence pairs (1 σ bond, 2 π bonds and 2 lone pairs at

equilibrium) should asymptote to two equivalent 2s pairs with non-zero correlation

energy contribution and three amplitudes with magnitude zero corresponding to the

non-existent interaction between the three alpha unpaired 2p electrons on one N atom

and the three beta 2p unpaired electrons on the other atom at infinite separation.

However, because the PP orbitals are variationally optimized and we are considering
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five pairs, the energy can be lowered by correlating the 1s core electrons together

or with the unpaired 2p electrons. Though the correlation energy contributions from

these interactions are small, they are non-zero. This means that the wave function will

change character discontinuously on the way to dissociation unless either all electrons

are made active or the core electrons are not allowed to mix with the valence ones.

Note, however, that this issue of the variationally best active space changing qual-

itatively across the potential energy surface is in principle present in all variationally

orbital-optimized active space methods, such as VOD or CASSCF. Of course, the

more inter-pair correlations present in the model and/or the larger the active space,

the less likely that ”core” orbitals will be drawn into the active space. In N2, for

example, a more complete treatment of the correlations would correlate the unpaired

electrons in quartet nitrogen atom, thereby obviating core electron correlations.

In this case, given the relative unimportance of the core 1s electrons on each

nitrogen atom, we have frozen those orbitals (based on their HF definitions) and

prevented them from mixing with the active orbitals in PP and VOD. The FCI data

also employs the frozen core approximation. Freezing the core orbitals in PP instead of

leaving them as inactive provides a minimal energetic penalty (less than 0.1 kcal/mol

across the regime examined here) and ensures that our pairs remain valence in nature.

Looking at the UPP curve, we see both that the unrestriction occurs noticeably

later than for UHF and that the difference between the restricted and unrestricted

solutions is much less significant at the PP level. Not too surprisingly, VOD main-

tains spin symmetry even further away from equilibrium due to its more complete

description of the correlations.[93] Notice too that UHF overshoots the atomic limits

and has turned over slightly by 2.0 Å. In contrast, UPP and UVOD rise monotonically

toward the dissociation limit for N2. Because there is less correlation energy in the

separate atoms than the molecule, the asymptotic limits of UHF, UPP, and UVOD

are all much closer in energy than at the equilibrium geometry. This leads to an

increased non-parallelarity error versus FCI, which in the case of UPP, is worse than

RPP. Nevertheless, UPP is much more parallel than UHF, and its correct asymptotic

behavior of UPP should be helpful in combination with the inclusion of dynamical

correlation effects. Overall, UPP captures much of the energetic benefit of UVOD at
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much lower cost.

The issue of unusual unrestricted pairing leads to especially odd behavior in F+
2 .

Unlike UHF in the 6-31G* basis, which predicts that F+
2 is unbound, UPP successfully

predicts F+
2 to be bound, though by only 17 kcal/mol (versus 48 kcal/mol at the VOD

level). The PP PES minimum and curvature are also somewhat in error, leading to

an erroneous bond length and harmonic frequency, as will be discussed below. More

importantly in the current context, as the bond is stretched to about 1.8 Å, the

standard ground state,

Ψ2Πg
= · · · (σg)2(πu)4(π∗

g)3, (5.24)

crosses with an excited state with configuration,

Ψ = · · · (σg)2(πu)4(π∗
g)2(σ∗

u). (5.25)

This second state is bound by about 9 kcal/mol at its optimal bond length of 2.01 Å.

Thus, the adiabatic ground state has a second, unphysical minimum. This second

state crosses the ground state when it becomes energetically favorable to form a pair

with (σgβ)(σ∗
uα) instead of the conventional (σg)2 pair. Fortunately, F+

2 seems to be

an unusually severe case, and problems of this extent have not been observed in other

systems. Of course, in the broader context, where UHF does not even predict a bound

state in this and many other basis sets, this failure on the part of PP 0.4 Å from

equilibrium is more acceptable.

5.3.2 Geometries of open- and closed-shell species

Because molecular geometries generally do not depend too much on the descrip-

tion of the correlation energy, one of the best uses for HF is molecular structure

prediction. However, it is known that the absence of correlation typically leads HF

to underestimate bond lengths. To this end, we can assess to what extent including

a limited description of pair correlations improves these structures. Therefore, we

assess the reliability of PP in predicting open- and closed-shell geometries. We shall

consider the two types of molecules separately in the 6-311G** basis. In this particu-

lar instance, we did not utilize the RI approximation for PP, though it introduces only
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Table 5.3: Errors in predicted bond-lengths (in Å) versus experiment in the 6-311G**
basis for various small closed-shell molecules. All methods are unrestricted, and the
RI approximation was not used for PP.

Expta HF PP VOD B3LYP
C2H2 rCH 1.063 -0.008 0.008 0.013 0.000

rCC 1.203 -0.020 -0.001 0.014 -0.005
C2H4 rCH 1.081 -0.004 0.013 0.019 0.004

rCC 1.334 -0.018 0.011 0.015 -0.007
1CH2 rCH 1.107 -0.022 -0.002 0.023 -0.010
CH4 rCH 1.086 -0.002 0.018 0.019 0.005
Cl2 rClCl 1.988 0.015 0.095 0.016 0.069
ClF rClF 1.628 -0.009 0.091 0.041 0.051
CO rCO 1.128 -0.023 -0.010 0.002 -0.001
CO2 rCO 1.160 -0.025 -0.014 0.001 0.000
CS rCS 1.535 -0.019 -0.007 0.004 0.007
F2 rFF 1.412 b 0.131 0.008 -0.005
H2 rHH 0.741 -0.006 0.015 0.015 0.001

H2CO rCH 1.116 -0.021 -0.009 0.003 -0.006
rCO 1.208 -0.029 0.002 0.000 -0.008

H2CS rCH 1.093 -0.015 0.003 0.009 -0.004
rCS 1.611 0.017 0.021 0.013 0.005

H2O rOH 0.957 -0.016 0.002 0.004 0.005
H2O2 rOH 0.965 -0.023 -0.003 0.001 -0.003

rOO 1.452 -0.059 0.043 0.004 0.009
H2S2 rSH 1.345 -0.016 0.007 0.000 0.002

rSS 2.058 0.066 0.125 0.073 0.116
HCN rCH 1.065 -0.007 0.007 0.013 0.002

rCN 1.153 -0.026 -0.002 0.008 -0.005
HCP rCH 1.069 -0.004 0.011 0.017 0.004

rCP 1.540 0.019 0.009 0.016 0.000
HF rHF 0.917 -0.021 -0.003 -0.002 0.005

HNC rNH 0.994 -0.010 0.004 0.011 0.006
rNC 1.169 -0.020 -0.005 0.007 -0.001

HNO rHN 1.063 -0.037 -0.016 0.001 -0.002
rNO 1.212 -0.021 0.001 -0.003 -0.009

HOCl rOH 0.975 -0.031 -0.011 -0.008 -0.007
rOCl 1.690 -0.017 0.085 0.036 0.047

HOF rOH 0.966 -0.020 0.000 0.004 0.005
rOF 1.442 -0.080 0.046 -0.014 -0.008

Li2 rLiLi 2.673 0.257 0.016 0.016 0.032
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Table 5.3: (continued)

Expta HF PP VOD B3LYP
N2 rNN 1.098 -0.028 -0.002 0.006 -0.003

N2H2 rNH 1.028 -0.015 0.003 0.012 0.007
rNN 1.252 -0.040 -0.003 0.002 -0.011

NaF rNaF 1.926 -0.014 -0.008 0.003 -0.009
NH3 rNH 1.012 -0.011 0.008 0.010 0.003
NNO rNN 1.127 -0.042 -0.024 -0.003 -0.001

rNO 1.185 -0.016 0.017 0.012 -0.001
NP rNP 1.491 0.038 0.005 0.007 -0.002
NSF rNS 1.448 -0.023 -0.011 -0.001 0.003

rSF 1.643 -0.017 0.016 0.060 0.069
P2 rPP 1.893 0.072 0.018 0.020 0.004

SO2 rSO 1.485 -0.078 -0.066 -0.041 -0.027
SO3 rSO 1.420 -0.024 -0.013 0.011 0.026

Median Errorc -0.017 0.004 0.009 0.000
RMS Errorc 0.048 0.033 0.020 0.026

a Reference b unbound c excludes F2

tiny errors into the predicted structures (typically on the order of 10−3 − 10−4Å). In

all cases, unrestricted wave functions were used and symmetry was broken whenever

possible. Unrestricted B3LYP results are presented as well, since it is probably the

most-widely used method for molecular structure determination.

We consider first a group of closed-shell species containing first and second-row

atoms. The test set consists of 34 molecules containing 49 unique bond lengths, and

contains most of the species examined in references [121, 120] along with others found

in references [153, 63, 87, 154]. The errors are presented in Table 5.3 and pictorially

using box plots in Figure 5.2. These plots mark the median error with a white line

inside the black box. The box then extends to include the central 50% of the data.

The whiskers extend to include any data within a range extending up to 1.5 times

the size of the box in each direction, and points lying beyond this range are denoted

as outliers and are marked separately.

Looking at Figure 5.2, we see that, as expected, including some correlation tends

to lengthen bonds slightly on average, shifting the median error (excluding F2, for
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which HF is unbound as discussed below) from -0.017 Å for HF to 0.004 Å for PP,

0.009 Å for VOD, and 0.000 Å for B3LYP. Indeed, the limited correlation in PP helps

to correct for the underestimated bond lengths in HF. Also, the PP, VOD, and B3LYP

root-mean-square (rms) errors of 0.033, 0.020, and 0.026 Å are noticeably improved

over HF (0.048 Å). The largest improvements over HF with the correlated methods

is observed for Li2, which goes from 0.26 Å too long to 0.016 Å in error with PP or

VOD, and F2, which is not even bound at the HF level. Unfortunately, as observed

previously [121, 120] and in Chapter 4, PP predicts much too long of a bond length

for F2 and other halogenated species, for which inter-pair correlations are important.

Many of the species for which PP has the most difficulty, H2S2 (∆rSS = 0.125 Å), Cl2

(0.095 Å), ClF (0.091 Å), and HOCl(∆rOCl = 0.085 Å) are also problematic for VOD

and B3LYP. In general, however, if one does not use PP on halogenated species, it

predicts the geometries of these closed-shell species very reasonably, with only slightly

larger errors than VOD. Although B3LYP is in general slightly more accurate than

VOD for these structures, it exhibits some significant outliers that err more than their

VOD counterparts.

One might expect that PP would have trouble in hyper-valent species, for which

the electron pairing is perhaps more complicated than in standard octet-rule-obeying

structures. The test set includes three hyper-valent species, NSF, SO2, and SO3. PP

clearly makes improvements over HF on these species, and its geometry predictions

for these species are not particularly worse than for the other species. On the other

hand, we have not tested PP in systems such as transition-metal complexes which

exhibit even more complicated bonding patterns.

Unrestricted PP also performs well for open-shell molecules. Table 5.4 and Fig-

ure 5.3 present UHF, UPP, and UVOD, and UB3LYP results for 29 diatomic and

triatomic open-shell species containing 32 unique bonds.[155] Most of these species

have doublet ground states, but BN, 3CH2, NF, NH, O2, and OH+ exhibit triplet

ground states. Overall, if we exclude F+
2 (which UHF predicts to be unbound), PP

reduces the rms error for the open-shelled species from 0.031 Å at the HF level to

0.015 Å. Furthermore, PP is statistically on par with VOD, which has an rms error

of 0.014 Å, though for any given species the results differ moderately. The PP and
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Figure 5.2: Errors in 6-311G** predicted bond lengths versus experiment for a set of
small, closed-shell molecules.
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Figure 5.3: Errors in 6-311G** predicted bond lengths versus experiment for a set of
small, doublet- and triplet-state open-shell molecules. Note: HF excludes F+

2 , since
it is unbound.

VOD geometries are also slightly improved over B3LYP, which has an RMS error of

0.021 Å. As in the closed-shell species, the inclusion of static correlation increases the

bond lengths versus HF and brings the median error closer to zero.

The largest improvements PP provides over HF are for C+
2 and for F+

2 , for which

UHF predicts no binding due to severe symmetry-breaking effects. On the other hand,

F+
2 is the only significant outlier in this data set for PP, with an error of 0.13 Å. This

is not too surprising, however, since F+
2 , like F2, requires a description of inter-pair

correlations to be reliable, as discussed in Chapter 4.[120] The fact that VOD has no

trouble with F+
2 substantiates this reasoning. In any case, the fact that PP binds F+

2

at all, unlike HF, is a notable success, even if the bond length is 10% too long.

Combining these two data sets, we see that overall PP predicts fairly reliable

geometries for open- and closed-shelled systems (typically accurate to within a 0.01 Å)

with some improvement over HF at much lower cost than VOD. However, the limited
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Table 5.4: Errors in predicted bond-lengths (in Å) versus experiment in the 6-311G**
basis for various small doublet- and triplet-state molecules. All methods are unre-
stricted, and the RI approximation was not used for PP.

Expta HF PP VOD B3LYP
BeF rBeF 1.361 0.003 0.011 0.022 0.011
BeH rBeH 1.343 0.000 0.025 0.025 0.000
BH+ rBH 1.215 -0.027 -0.006 -0.009 -0.010
BH2 rBH 1.181 0.004 0.026 0.028 0.007
BN rBN 1.281 0.007 0.029 0.046 0.038
BO rBO 1.205 -0.024 -0.011 0.002 -0.003
C+

2 rCC 1.301 0.101 0.000 0.007 0.100
CF rCF 1.272 -0.015 0.013 0.009 0.007
CH rCH 1.120 -0.017 0.014 0.018 0.008

3CH2 rCH 1.078 -0.006 0.012 0.016 0.002
CH2 rCH 1.079 -0.006 0.011 0.013 0.001
CN rCN 1.172 -0.018 -0.006 0.005 -0.006

CO+ rCO 1.115 -0.027 -0.013 0.000 -0.005
F+

2 rFF 1.322 b 0.129 -0.022 -0.023
FH+ rFH 1.001 -0.023 -0.006 -0.001 0.008
HCO rHC 1.125 -0.016 -0.004 0.011 0.002

rCO 1.175 -0.023 -0.002 0.005 -0.001
HNF rHN 1.060 -0.047 -0.026 -0.020 -0.024

rNF 1.370 -0.036 0.016 0.010 0.002
HO2 rOH 0.977 -0.030 -0.013 -0.004 -0.002

rOO 1.335 -0.036 0.023 0.002 -0.007
N+

2 rNN 1.116 -0.008 0.006 0.006 -0.007
NF rNF 1.317 -0.026 0.016 0.011 0.001

NH+ rNH 1.070 -0.016 0.003 0.006 0.010
NH rNH 1.036 -0.013 0.010 0.014 0.009
NH2 rNH 1.024 -0.012 0.008 0.013 0.007
NO rNO 1.151 -0.034 -0.008 0.002 -0.003
O+

2 rOO 1.116 -0.055 -0.019 -0.006 -0.010
O2 rOO 1.208 -0.051 -0.033 -0.003 -0.002

OH+ rOH 1.028 -0.021 0.000 0.003 0.009
OH rOH 0.970 -0.018 0.001 0.004 0.006

OH+
2 rOH 0.999 -0.019 -0.001 0.005 0.007
Median Errorc -0.018 0.001 0.006 0.002
RMS Errorc 0.031 0.015 0.014 0.021

RMS doubletsc 0.032 0.013 0.012 0.021
RMS tripletsc 0.026 0.020 0.021 0.016

a Reference b unbound c excludes F+
2
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description of correlation effects in PP is likely to cause trouble in systems with

halogen atoms, multiple resonance structures, or other odd bonding patterns. In

those cases, a more complete treatment of valence correlation that does not bias

so strongly in favor or individual electron pairs, like the other models discussed in

Chapter 4, is necessary. For typical systems, of course, B3LYP generally remains

as accurate or better than VOD or PP. In complicated systems with very strong

static correlation effects, however, density functional theory can fail miserably, and

an inexpensive alternative like PP for structure prediction can be very useful.

5.3.3 Radicals and symmetry-breaking

Symmetry-breaking effects in radicals are known to produce spurious potential

energy surfaces and properties. In the worst-case scenarios, such as F+
2 , UHF is un-

bound in certain basis sets (6-31G*, for example). Even if they are bound, symmetry-

breaking leads to asymmetric electronic spin distributions, anomalous vibrational fre-

quencies, etc. Byrd and co-workers demonstrated that standard methods like MP2

and CCSD(T) performed far below their standard, closed-shell system levels of ac-

curacy on the geometries and vibrational frequencies of various small radicals.[66]

It was later demonstrated in Chapter 2 that these problems are primarily linked to

spin and spatial symmetry-breaking effects in the underlying HF reference, and that

property predictions are substantially improved by improving upon the HF reference.

In particular, this latter study demonstrated that methods like orbital-optimized cou-

pled cluster doubles with perturbative tripled (OD(T)) or KS-CCSD(T), which uses

Kohn-Sham orbitals as a more stable reference than HF, predicted vibrational fre-

quencies of small diatomic radicals faithfully compared to experiment. In both cases,

the new reference determinants are far more stable against symmetry-breaking.

Unfortunately, even KS-CCSD(T) is much too computationally expensive for ap-

plicability in systems beyond a few atoms, so it is desirable to explore to what extent

the limited correlations included in PP can overcome these problems. With this in

mind, we revisit the set of twelve diatomic radicals studied in Chapter 2 using unre-

stricted HF, PP, and VOD in the cc-pVTZ (and the auxiliary basis set for cc-pVTZ
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Table 5.5: Harmonic vibrational frequencies (in cm−1) for various diatomic radicals
in the cc-pVTZ basis set as compared to experiment.

Expt. HF PP VOD CCSDa

CH 2858.5d 215 -59 -63 -6
OH 3737.8c 301 -30 -11 -40
FH+ 3090b 233 90 62 76
BO 1886b 195 113 40 44
CN 2068.6c -54 19 31 89

CO+ 2169.8c 239 187 68 124
N+

2 2207b -326 -81 42 127
CF 1308b 110 -5 -5 39
NO 1904.2c 319 62 62 86
O+

2 1904.7c 591 153 123 128
OF 1053b 157 -231 6 52
F+

2 1104d 479 -370 104 123
MAD (%) 14.7 7.7 2.8 4.4

a Chapter 2 b Reference [80]. c Reference [81].

d Reference [84].

in the PP case). These results are presented in Table 5.5. We see that for these

species, HF is typically 50-600 cm−1 in error in this basis set, with the worst cases

percentage-wise being F+
2 (43%), O+

2 (32%), NO (17%), and OF and N+
2 (15%). The

UPP model, on the other hand systematically improves virtually every one of these

frequencies.

Some of the most difficult cases from previous studies are the isoelectronic pairs

CO+, CN, and N+
2 , which suffer from severe spin contamination, and O+

2 and NO,

and F+
2 and OF, all of which suffer from spatial symmetry-breaking or rapid changes

in the wave function for small displacements in the nuclei (for NO and OF, which

technically do not have left-right symmetry). This explains the inclusion of most of

these in the list above of the worst percentage errors at the HF level. In all of these

cases except for F+
2 and OF, PP predicts significantly more reasonable frequencies,

dropping the percentage errors to below 10%. In most cases, PP even recovers the

majority of the improvement offered by VOD (see particularly CH, OH, CN, CF, NO,

and O+
2 ), which makes no local approximation.
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Table 5.6: Reference determinant 〈S2〉 for various diatomic radicals in the cc-pVTZ
basis set.

HF PP
BO 0.794 0.776
CN 1.076 0.822

CO+ 0.908 0.807
N+

2 1.163 0.794
OF 0.753 0.760
F+

2 0.766 0.772

The worst frequencies (as compared against experiment percentage-wise) at the

PP level are for BO (6%), CO+ (9%), O+
2 (8%), OF (22%), and F+

2 (34%). The first

three of these are all noticeably better than UHF and all correspond to systems with

sizable spin-contamination at the UHF level. Table 5.6 lists all of the radicals from

this set with UHF 〈S2〉 values greater than 0.77. For these doublet radicals the exact

ground state should have 〈S2〉 = 0.75. From this table, we see that UPP usually

somewhat decreases the degree of spin contamination, as indicated by the lower 〈S2〉

values, particularly for the most spin-contaminated cases of CN, CO+, and N+
2 . For all

of the diatomics not listed in Table 5.6, UPP does reduce the spin-contamination, but

it is already relatively minor at the UHF level and the improvement provided by UPP

is not particularly significant. The sizable improvement in spin-contamination helps

to explain the improvement in the computed frequencies for a number of species,

particularly for BO, CN, CO+, and N+
2 . These effects would become even more

pronounced if dynamical correlation were included.

OF and F+
2 are unique in that PP gives slightly larger reference 〈S2〉 values.

Those two also stood out in their frequency predictions, with each being hundreds of

wavenumbers in error. Furthermore, the OF frequency is actually worse at the UPP

level than at the UHF level, though neither is particularly accurate. However, the

difficulty for these isoelectronic species is a mixture of their being among the most dif-

ficult diatomic radicals in terms of symmetry-breaking with the general difficulty PP

has treating halogens, for which inter-pair correlations are important (See Ref [120] or

Chapter 4). On the other hand, even if UPP does not particularly improve upon HF
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for these frequencies, it is worth noting once again that while UHF fails to bind F+
2

in many basis sets (e.g. 6-31G*[78] or 6-311G**, as discussed above), UPP predicts

a bound structure, albeit with only a qualitatively correct PES near equilibrium.

In summary, UPP substantially improves the predicted harmonic vibrational fre-

quencies over UHF in these challenging radicals, cutting the mean-absolute percent

deviation almost in half. Though UPP does not perform as well as VOD for these

species, it is much less expensive to compute. The UPP wave function should then

make for a significantly better reference for treating the dynamical correlation per-

turbatively and avoid the pathological frequency predictions characteristic of MP2

from the UHF reference.

Of course, the simplicity of the PP Ansatz dictates that it perform only mod-

erately compared to more complete correlation treatments like VOD. Consider, for

example, the allyl radical. The π system contains three electrons delocalized over the

three carbons. This species exhibits the classic competition between the symmetric,

delocalized three-electron π system with both carbon-carbon bonds equal in length

and the symmetry-broken wave function that localizes the radical electron on one

end of the molecule and the double bond on the other end. Restricted open-shell HF

(ROHF) favors the symmetry-broken solution, but UHF actually prefers the symmet-

ric one. The ROHF and UHF HOMO and SOMO orbitals for allyl at the symmetric,

UB3LYP/cc-pVDZ optimized geometry are plotted in Figure 5.4. At this point on the

PES, ROHF orbitals are symmetry-broken, with a slight shift in the HOMO towards

the left carbon atom and the SOMO towards the right carbon atom. UHF, on the

other hand, exhibits perfectly symmetrical orbitals. Therefore, correlation methods

like MP2 that rely on the UHF reference will preserve the symmetry. In contrast,

the open-shell PP model described here correlates the electron pair but treats the

radical electron in a UHF-like fashion. This asymmetry acts as a driving force for

the electron pair to localize and maximally separate itself from the radical electron,

tipping the scales in favor of the symmetry-broken solution. The UPP orbitals are

also plotted in Figure 5.4, and although the beta HOMO is delocalized reasonably

over the molecule, the alpha HOMO and SOMO are extremely symmetry-broken. As

expected, the electron pair localizes to a carbon-carbon double bond, and the radical
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Table 5.7: Charge and spin symmetry Mulliken populations for the left and right
atoms in selected diatomic radicals in the cc-pVTZ basis set.

HF PP
Charge Spin Charge Spin

N+
2 0.393/0.606 -0.817/1.817 0.434/0.566 0.130/0.870

O+
2 0.500/0.500 0.500/0.500 0.498/0.502 0.494/0.506

F+
2 0.500/0.500 0.500/0.500 0.702/0.298 -0.051/1.051

electron primarily occupies the other carbon atom.

A similar picture emerges energetically. Figure 5.5 plots the slice of the potential

energy surface for deforming C-C bond from the UB3LYP/cc-pVDZ optimized sym-

metric structure (R(C-C) = 1.386 Å). All other degrees of freedom were held fixed.

By slightly less than 2 kcal/mol, UPP favors the symmetry-broken structure with one

C-C bond 0.1 Å longer than the other. In contrast, VOD, which correlates all three

π electrons equivalently, maintains symmetry. Likewise, UHF favors the symmetric

solution.

Revisiting the three homonuclear diatomics from our test set above, we do see that

for F+
2 and O+

2 , HF has not yet broken spatial symmetry at the PES minimum in this

basis set, as shown by the Mulliken charge and spin population analysis results in

Table 5.7. In contrast, PP is already heavily symmetry-broken for these species. This

helps to explain the difficulty PP has with these species. On the other hand, for N+
2 ,

HF is far more symmetry-broken than PP, and PP behaves much better than HF.

Overall, PP will sometimes help with symmetry-breaking phenomena, particularly

spin contamination. However, it is clear that the asymmetry in the description of

radical electrons and pairs will provide impetus for additional spatial symmetry-

breaking, as in allyl radical.

5.4 Conclusions

Perfect-Pairing provides the leading correlation correction beyond Hartree-Fock

at only slightly higher cost (some 3-5 times that of the HF calculation). We have

extended the restricted coupled cluster Ansatz of PP to unrestricted wave functions
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Figure 5.4: Occupied π molecular orbitals for allyl at the (a) ROHF, (b) UHF, and (c)
UPP levels in the cc-pVDZ basis, using the symmetric UB3LYP/cc-pVDZ-optimized
structure.
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Figure 5.5: Symmetry-breaking in the allyl radical in the cc-pVDZ basis. The defor-
mation ∆R is relative to the UB3LYP/cc-pVDZ optimized symmetric structure. The
UHF and VOD curves are virtually coincident on the energy scale plotted here.

in a straightforward manner that treats unpaired electrons in a UHF-like fashion and

correlates only the valence electron pairs. This formulation preserves the decoupling

of the cluster amplitude equations with a linear number of correlation amplitudes

that is characteristic of closed-shell PP and enables UPP to correctly describe the

separation of electron pairs.

We have demonstrated that, in practice, this simple treatment of the electron

correlations makes noticeable improvements over HF for a variety of systems and

properties. Molecular structures are slightly improved, and symmetry-breaking effects

in radicals are often reduced relative to HF. Furthermore, unlike HF or most other

high-level correlation methods, PP can qualitatively correctly describe bond-breaking,

diradicals, etc.

However, PP itself does suffer from various weaknesses. Though it substantially

improves upon HF, it comes nowhere near eliminating the symmetry-broken solutions

found in HF. For the challenging diatomic radicals studied here, 〈S2〉 values are
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noticeably reduced, and F+
2 is bound, unlike at the UHF level in many basis sets. A

more complete correlation model like VOD, in contrast, more significantly reduces the

symmetry-breaking in these molecules (though of course, it may not be completely

impervious to symmetry breaking either).

On the other hand, the asymmetry in how UPP treats the unpaired electrons

versus the paired ones leads to some strange chemical predictions in certain classes

of systems. Singlet-triplet gaps, for example, are bound to be poor, as the singlet is

preferentially stabilized relative to the triplet through the correlation of an additional

electron pair. The use of orthogonal, localized orbitals causes PP to slightly favor

D3h symmetry over D6h for benzene, or likewise to predict that the allyl radical has

two unequal carbon-carbon bonds rather than equivalent ones. In cases like these,

additional correlation effects must be included to remove the symmetry breaking,

such as with a non-orthogonal formalism[105].

In the future, it will be very interesting to see what wave function method offers

the best compromise between cost and accuracy in order to become established as

the smallest useful step beyond the HF model as a general-purpose reference wave

function. PP is one contender given its general improvement over HF combined

with its affordability. Artifactual symmetry breaking of the type discussed above

is clearly its main weakness, as may be valence-shell expansion in heavier elements.

Although more elaborate methods (for instance CASSCF or VOD) are more reliable,

they cost significantly more and often force the user to choose a limited number of

active electrons. PP describes a narrower range of phenomena well, but can do so

without requiring any such input from the user and at a very low cost. Its simplicity

also recommends it as a tractable starting point for a perturbative description of the

remaining correlations.

We will explore just such a combination, the PP(2) method, in Chapter 7. First,

however, we digress to explore an analytic tool for understanding the nature of

electron-electron correlations in many body wave functions. This technique was in-

spired by the simplicity of the PP wave function and the desire to rewrite more

complicated wave functions in a similarly intuitive fashion.
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Chapter 6

Extracting dominant pair

correlations from many-body wave

functions.

6.1 Introduction

Modern wave-function-based electronic structure calculations offer the straightfor-

ward and often accurate prediction of molecular properties for relatively well-behaved

systems. Methods such as second-order Møller-Plesset perturbation theory (MP2) or

coupled cluster singles and doubles (CCSD) are widely used for this purpose, and the

vastness of the scientific literature involving such methods vouches for their success.

All of these approaches can be described as having a configuration interaction

(CI)-like wave function,

|Ψ〉 = (1 + Ĉ1 + Ĉ2 + · · ·)|Φ0〉, (6.1)

where Ĉn refers to an operator that generates the set of n-tuply-excited configurations,

though the specific terms used in the expansion and their method of calculation differ.

For example, in the context of CCSD, Ĉ2 = T̂2 + 1
2
T̂ 2

1 , and the individual t amplitudes

are solved for projectively.[17]

However, analyzing the wave function obtained from a CI-like electronic structure
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calculations can prove very difficult due to the long and complex configuration ex-

pansion. Looking at the expansion, it is not always obvious which physical electron

correlations contribute dominantly to the total molecular correlation. It is indeed

these dominant correlations that often correspond to interesting chemistry, such as

bond-formation or diradicaloid behavior. One may analyze the largest double excita-

tion amplitudes from a CCD calculation, for example, but these are usually expressed

in terms of the one-particle molecular orbitals (MOs) obtained from a mean-field

Hartree-Fock (HF) calculation. Such orbitals are by no means guaranteed to provide

a good (compact) basis for the description of the pair (or higher order) correlations.

In fact, the unphysically-large scaling of canonical MP2, CCSD, CCSD(T), etc., is

due to the inability to write the corrections to the mean-field wave function efficiently

in the basis of MOs.[24, 28]

Alternatively, based on the known local nature of electronic correlations, one might

represent the wave function in terms of localized orbitals. This has the tendency to

significantly shorten the expansion for a large molecule (i.e. localized orbitals form

a better basis than canonical MOs). Unfortunately, it is not totally clear what form

these localized orbitals should take. Some methods, such as Perfect-Pairing and

related methods,[104, 54, 55, 56, 58] utilize bonding and anti-bonding pairs of or-

thogonal bond-centered, localized orbitals.[25, 26] In contrast, some non-orthogonal

local correlation approaches utilize atomic centered orbitals.[156, 40, 31] Both ap-

proaches certainly show promise for the understanding of the intrinsic structure of

the wave function beyond their commonly-cited computational efficiency. However,

despite much progress in the field, local correlation approaches have not yet become

widely accepted in practice and require further development.

Yet another choice are the so-called natural orbitals, which are those orbitals that

diagonalize the one-particle reduced density matrix (1-PDM).[157] They are some-

times used as an alternative to the standard HF orbitals. For example, natural

orbitals have been used to characterize unpaired electrons in the wave function.[158,

159, 160, 161] or to select configurations for CI expansions. However, this expan-

sion is based entirely on one-particle information, whereas we are really interested

in two-particle or higher correlations. In practice, despite conventional wisdom to



119

the contrary, natural orbitals do not form a very compact expansion for the corre-

lation energy of the molecule, at least compared to localized orbitals (though they

are still typically more efficient than canonical MOs).[162] Moreover, the eigenvalues

corresponding to each natural orbital determines its occupancy in the wave function.

In complicated wave functions, this occupancy may come from a variety of differ-

ent excitations from the reference determinant, but the natural orbital analysis gives

us no clear way of differentiating among these physically distinct correlations. One

wants both to understand how important a correlating orbital is and to associate that

orbital with certain physical correlations.

For the purpose of wave function analysis (as distinct from wave function com-

putation), we desire an optimal basis in which to represent the wave function as

computed with coupled cluster theory or some other CI-like approach. In particular,

we believe it is interesting to ascribe the contributions to some particular n-body

effect, such as pair correlations. The method for finding such a basis should have the

following properties:

1. It should represent the wave function in terms of a few dominant terms and

many smaller corrections. For example, in a local representation based on

bond-centered orbitals, the perfect-pairing-like (e.g. σ → σ∗) correlations over-

whelmingly dominate any other individual term in the wave function expansion

(though the combined contribution of those other terms is non-trivial). The

dominant terms should describe the most significant correlations that define

the interesting correlation behavior.

2. It should be well-defined for any chosen Ansatz and any level of excitation. For

example, to a large extent, pair correlations in MP2, CCSD, and CCSDTQ are

similar and ought to emerge as such. Similarly, local approximations or valence

space methods[46, 76] should not deter the analysis. Furthermore, an approach

that is readily generalizable from double to quadruple excitations enables the

facile analysis of whatever correlations happen to be relevant for the system of

interest.
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3. Its results ought to be independent of the initial choice of wave function rep-

resentation, whether it has been written in terms of localized orbitals, atomic

orbitals or canonical HF orbitals.

4. Its results should avoid unphysical basis set dependencies. Although the con-

vergence of the correlation energy with basis set size is somewhat slow, the

qualitative physical nature of the dominant correlations are unlikely to change

significantly as the basis grows (assuming the original basis provides suitable

flexibility for a qualitative description of the system).

5. It should be asymptotically size intensive.[163, 164] The nature of correlations

in butane and octane are similar, though the total correlation energy will ap-

proximately double in size.

6. It should preserve size consistency—the description of the correlations for two

non-interacting, identical subunits ought to be the same as for each monomer

(assuming that the initial wave function was also size consistent).

7. It should be computationally inexpensive relative to the method used for deter-

mining the wave function.

For practical purposes, we focus on pair correlations in the CCD Ansatz. The

straightforward approach for pair correlations is to look at the two-particle density

matrix (2-PDM) and perhaps to construct the “natural geminals” by diagonalizing

it. For example, such analysis has been done for the beryllium atom using primitive

wave functions[165, 166, 167, 168]. However, the construction of the full 2-PDM is

often computationally expensive and is typically unnecessary for the computation of

the energy and wave function. One would prefer to utilize information that is already

available from the wave function calculation.

To this end, we wish to transform the operator describing pair correlations into

the basis of two-particle functions, or geminals, (since we are talking about pairs of

electrons, we must abandon one-particle functions) in a way that provides an optimal

expansion. A standard approach in the fields of data compression, signal processing,
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and numerical analysis to obtain such an optimal expansion is to use the singular

value decomposition (SVD),

A = UΣV † =
∑

p

upσpv
†
p. (6.2)

Geometrically, any m×n matrix A maps the unit hypersphere in ℜn to a hyperellipse

in ℜm.[169] The right singular vectors vi form the basis of vectors for the unit hyper-

sphere, and the left singular vectors ui form the basis of unit vectors describing the

hyperellipse. The singular values express the length along each unit vector in the hy-

perellipse as induced by the matrix A. A theorem regarding the SVD states that the

best approximation to A of rank r is the r-th partial sum from above (low-rank ap-

proximation). Geometrically, this amounts to saying that the best one-dimensional

approximation to an ellipse is a line along the major axis. Analogously, the best

two-dimensional approximation to a three-dimensional hyperellipse is the ellipsoid

spanned by the two-largest axes, etc. Thus, each subsequent term in the above sum-

mation provides the leading correction to the approximation for A. It is in this sense

that we consider the SVD expansion as providing the optimal basis for wave function

representation.

For CCD in particular, we wish to decompose the T2 vector, which is fundamental

to the description of pair correlations, using the SVD and analyze the singular val-

ues and their corresponding vectors for insights into the nature of pair-correlations

in the calculated wave function. The SVD has been recently applied to the T̂2 op-

erator by Kinoshita and co-workers.[170] However, their primary goal was to reap

computational savings by decomposing an approximate T2 vector and reducing the

dimensionality of the problem via the SVD’s data compression abilities. In contrast,

we have been evaluating the SVD for its utility in wave function analysis.

Clearly this analysis is by no means unique to the T̂2 operator. One could just as

easily decompose the Ĉn operator for any excitation level n and any Ansatz. How-

ever, because of the typically dominant nature of the double excitations and their

preponderance in standard electronic structure methods, we shall focus primarily on

the double excitation operator in this chapter. Perhaps more importantly, the pair

correlations are special in that they alone contribute to the correlation energy (when
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Brillouin’s theorem applies), and all other correlations couple indirectly to the corre-

lation energy via the double excitations. This means that the principal-component

analysis of the pair correlations is also roughly a principal-component analysis of the

correlation energy (though subject to variations due to the values of the individual

integrals). One can obtain these double excitation operators from perturbation the-

ory, coupled cluster theory, local correlation models, etc. Because of its widespread

use and general quality, we will primarily study the T̂2 operator from coupled cluster

theory.

The generalization to CCSD is straightforward: the singles terms generally con-

tribute to pair correlations (and the correlation energy) directly as the product of two

single excitations,

τ̂2 = T̂2 +
1

2
T̂ 2

1 , (6.3)

and τ̂2 can be decomposed as above. Because the weight of 1
2
T̂ 2

1 is generally small, this

correction will make little difference in general. However, it is the formally correct

way to account for pair-correlation effects in the CCSD wave function and will be

used whenever singles are included in the calculation.

The rest of the chapter is organized as follows: First we will explain some of

the theoretical aspects of the SVD in application to the T2 vector from doubles-level

coupled cluster theories. Secondly, we will examine properties of the SVD-T2 for some

model systems in order to learn about its behavior. Finally, we will apply the analysis

to some more complex systems to automatically extract the interesting correlations.

6.2 Theory

Since we will focus on the T̂2 operator in the coupled cluster Ansatz, we briefly

review the standard coupled cluster doubles equations.[13] The wave function is as-

sumed to take the form:

|ΨCCD〉 = eT̂2|Φ0〉, (6.4)

where |Φ0〉 is some single-determinantal reference state that can be either the Hartree-

Fock (HF) state or perhaps a reference obtained from orbital optimization at a higher
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level of theory, and T̂2 is a double excitation operator,

T̂2 =
1

4

∑

ijab

tab
ij â

†
aâiâ

†
bâj. (6.5)

Solving the CCD energy and amplitude equations,

E = 〈Φ0|e
−T̂ ĤeT̂ |Φ0〉 (6.6)

0 = 〈Φab
ij |e

−T̂ ĤeT̂ |Φ0〉 (6.7)

provides the converged tab
ij amplitudes.

From this point on, the converged T̂2 operator is written as an O2 × V 2 matrix

and denoted simply as T2 (no hat), where O is the number of occupied spin orbitals

and V is the number of virtual spin orbitals. From Perfect-Pairing (PP) theory,[104,

54, 55, 56, 58] we know that the dominant correlation contributions typically come

from a pair of electrons in the same region of space correlating only with one pair of

virtual orbitals (holes) that are localized in the same region of space. In the somewhat

arbitrary definition of T2 as an O2×V 2 matrix, we are implicitly viewing correlations

as a pair of electrons exciting from an occupied geminal to a virtual geminal. We will

return to this point momentarily.

We can perform the singular value decomposition and rewrite the operator as:

T̂2 =
∑

P

t̃P
∗

P

(1

2

∑

ab

V †
(ab),P â

†
aâ

†
b

)(1

2

∑

ij

U(ij),P âj âi

)

=
∑

P

t̃P
∗

P Ĉ†
P ÂP , (6.8)

where C†
P and AP are two-particle creation and annihilation operators, and the paren-

theses in U(ij) indicate a collective index (ij). This notation is the same as was used

by Kinoshita et al.[170] These two-particle operators are in fact a superposition of

products of their one-particle counterparts âi and â†a. In other words, they transform

products of two one-particle MO functions (what might be termed “simple geminals”)

into the new non-separable basis of geminals that provides the optimal expansion. The

column vectors in U and the row vectors in V † provide the transformations for the

occupied and virtual spaces obtained from the SVD, respectively. This enables us to

examine the occupied and virtual geminals involved in the pair correlation. The new

amplitudes {t̃i} characterize the weight of each pair excitation in the wave function.



124

Notice too that this representation is somewhat analogous to PP theory (without

of course the PP restriction to the valence space). The coupled cluster formulation

of PP also uses the CCD wave function, except the T̂2 operator is redefined as:

T̂2 =
∑

i

ti
∗ ı̄∗

īı â†i∗ âiâ
†
ı̄∗ âı̄. (6.9)

However, unlike in PP theory, the SVD representation of CCD actually forms each

possible pair of electrons (PP makes an assumption about the way electrons pair,

matching each individual electron with exactly one other electron of opposite spin),

regardless of spatial locality or other considerations, in the same way standard CCD

does. It is an exact transformation to within machine precision, as we have not

explicitly truncated any singular values. Importantly, the number of nonzero singular

values can never be more than the smallest dimension of the original matrix, which in

practice means that their are never more than O2 singular values, regardless of how

large the basis set becomes.

As hinted above, one might have written the four-dimensional T̂2 operator in

several possible different ways. For example, it could also be written as an OV ×OV

matrix, thereby viewing pair correlations as two simultaneous single excitations. The

transformation vectors obtained by the SVD of this alternative form for T̂2 would

each describe an occupied to virtual transition. It was found empirically that this

second approach led to much longer optimal expansions with many more significant

terms than did the O2×V 2 matrix, making the latter more desirable for analysis. The

interpretation of the singular vectors is also less intuitive, as they would correspond

to a superposition of products of occupied and virtual orbitals. One might also write

T̂2 as an O × OV 2 or V × O2V , as was used in the D2 diagnostic[164]. This would

generate one-particle functions that might be easier to interpret but that seem less

suited to describing the pair- or higher-order correlations. Also, these three-index by

one-index matrices potentially couple non-interacting blocks of the T̂2 matrix (e.g.

αααα and αβαβ) unless one separates out the blocks a priori.

Because we wish to learn about the nature of pair correlations, we must work with

geminal functions, which involve six spatial dimensions. Unfortunately, such functions

are difficult to visualize. Therefore, we have considered two possible approaches for
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analyzing these geminals. The information regarding the geminal functions is con-

tained in the left- and right-hand singular vectors. First, one could take the column

vectors of U or the row vectors of V †, which have composite indexing (ij,1) or (1,ab),

and write them as a matrix (i,j) or (a,b). The SVD may be applied once again to

these matrices to determine the one-particle molecular orbitals that contribute prin-

cipally to each geminal. However, in test cases tried it seems that there are often

several important singular values to these matrices, and that each one corresponds

to a mixture of several molecular orbitals, making this analysis comparable in diffi-

culty to the initial, untransformed wave function. In fact, this observation further

supports the notion that the one-particle MOs are a poor basis for the representation

of the intrinsically largest pair correlations. This approach can be used, however, to

complement the next approach which will be used extensively: we construct and plot

the 1-PDM (i.e. averaged over all positions of the second electron) associated with

each occupied and virtual geminal. These 1-PDMs are not the true coupled cluster

relaxed densities which would involve the the left-hand coupled-cluster wave function,

〈Φ0|(1 + Λ). They are, however, adequate and useful for the intended wave function

analysis.

In order to generate the density, we operate the P -th pair-wise creation or anni-

hilation operator from the T̂2 operator onto the reference determinant. For the P -th

occupied geminal, the occupied-occupied block of the 1-PDM for the wave function

|ΦP 〉 = ÂP |Φ0〉 =
1

2

∑

ij

U(ij),P |Φij〉, (6.10)

where the occupied geminal P has been annihilated from the N -electron HF reference

is given by:

dΦP
rs = 〈ΦP |â

†
râs|ΦP 〉 =

1

4

∑

ijkl

U †
(ij),PU(kl),P 〈Φ0|â

†
i â

†
j â

†
râsâlâk|Φ0〉. (6.11)

Notice that |ΦP 〉 results from annihilating a superposition of occupied orbitals from

the HF reference to give an N−2 electron state. It is therefore a multi-determinantal

expansion in the MO basis. All other blocks of the 1-PDM are zero in this case. The

1-PDM for the P -th geminal is then obtained by subtracting dΦP from the HF 1-PDM
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dHF ,

dP = dHF − dΦP = 2U †
PUP (6.12)

where UP is the matrix form UP
i,j of the P-th column vector in U(ij),P . This density

matrix satisfies

Tr(dP ) = −2, (6.13)

corresponding to the two holes created by the pair-annihilation operator ÂP . Alter-

natively, by inverting the sign of dP , we obtain a pair density for the occupied geminal

that has been annihilated.

Analogously, the virtual geminal 1-PDM is formed from constructing the virtual-

virtual block of the 1-PDM for the state vector

|ΦP ∗

〉 = Ĉ†
P ∗|Φ0〉 =

1

2

∑

ab

V †
(ab),P |Φ

ab〉, (6.14)

which is an N + 2 electron state. One obtains,

dΦP∗

rs = 〈ΦP ∗

|â†râs|Φ
P ∗

〉 =
1

4

∑

abcd

V(ab),PV
†
(cd),P 〈Φ0|âbâaâ

†
râsâ

†
câ

†
d|Φ0〉. (6.15)

Since we care only about the two created electrons, we calculate only the virtual-

virtual block of the 1-PDM. It is given by:

dP ∗

= 2VPV
†
P , (6.16)

where V †
P ∗ is formed from the P-th row vector of V †

(ab),P . This density for the created

virtual geminal satisfies

Tr(dP ∗

) = 2, (6.17)

These geminal functions provide the spatial and physical meaning behind the SVD

amplitudes. Recall that the SVD writes the wave function such that each hole geminal

correlates with only one particle geminal, and the SVD amplitude gives the strength

of the correlation. More specifically, the SVD amplitude reflects the weight of that

particular configuration in the wave function, analogously to the untransformed am-

plitudes. We can also separate the excitations by their spin class (e.g. αα → αα,

ββ → ββ, or αβ → αβ) Combined with visualization of the hole and particle densities
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for a given excitation (by mapping the 1-PDM onto the real-space density), one may

learn what physical and spatial correlations dominate the wave function. Concep-

tually, these geminals densities resemble the attachment/detachment densities used

in the analysis of complex excited-state wave functions.[171] Like natural orbitals,

these geminals transform according to the point-group symmetry of the molecule, so

they are in general delocalized around the molecule. However, in cases with lower

symmetry or where a certain type of correlation dominates the wave function, more

localized correlations are interpretable from the geminals, as will be demonstrated

in the results. Unlike natural orbitals from the 1-PDM, these two-particle quanti-

ties provide information on associations between hole and particle densities, which is

fundamental to describing correlations.

The efficient calculation of the SVD of the T̂2 operator is not entirely trivial.

The SVD of an O2 × V 2 matrix requires O4V 2 work. Substantial further savings are

achieved by utilizing the block structure of T2 and treating the T2(
αα
αα), T2(

αβ
αβ), and

T2(
ββ
ββ) blocks separately. Finding the SVD block-wise reduces the cost by 26 = 64 and

eliminates the redundancy inherent in the full matrix due to permutational symmetry.

Eliminating this redundancy scales each of the singular values by 1
2

and assigns them

the proper physical meaning (i.e. they typically range from 0 to 1 under intermediate

normalization, as expected).

Though the SVD calculation scales less than CCSD, because of the sizeable pref-

actor it can cost a non-trivial fraction of the full CCSD calculation. However, due to

the low-rank approximation for the SVD and our primary interest in the dominant

correlations, we may calculate only the largest handful of singular values and analyze

their geminals to learn much about molecular correlations. Therefore, we wish to use

iterative techniques designed to calculate only the largest singular values of a matrix.

Unfortunately, to our knowledge, no such standard algorithms for the SVD exist in

major, public-domain linear algebra libraries. However, the SVD is readily related to

the eigenvalue problem and we have adapted the Davidson diagonalization[172, 173]

procedure for this purpose, as described in Appendix B. This approach is both com-

putationally inexpensive (scaling only O2V 2 per root and costing essentially nothing

compared to the underlying CCSD calculation) and easy to implement, since the
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Davidson diagonalization is well-known and widely-used in the electronic structure

community.

Before discussing the results, we should emphasize once again that although we

have presented the formalism and the examples below in terms of pair correlations

from CCD or CCSD, it is readily applicable to any single reference CI-type wave func-

tion and any level of many-body correlation, which was the second criterion listed in

the introduction (for multi-reference methods, one must decide how to treat excita-

tions from both the primary and secondary references on equal footing). Actually,

we have already demonstrated that the SVD satisfies several of the criteria described

above. It is also independent of the representation of the wave function (criterion

#3), since any unitary transformation of the wave function will not alter the singular

value spectrum (analogously to diagonalization). The singular vectors will differ nom-

inally, though only in their representation and not in their direction or magnitude. If

both sets were transformed to a common basis (the atomic orbital basis for example),

they would be the same. Finally, it meets the last criterion for being computationally

inexpensive. In practice, the iterative SVD for the largest few singular values costs

only a tiny fraction of the full CC calculation.

6.3 Results and discussion

To begin, the results from the SVD of the T2 vector as obtained from CCD are pre-

sented for some simple examples in order to demonstrate the mechanics of the proce-

dure. All calculations were performed using a developmental version of Q-Chem.[85]

If a CCSD calculation is used instead, the single excitations are included by their

contribution to the doubles as 1
2
T̂ 2

1 . Unless otherwise indicated, all results use the

6-31G* basis.[1, 2] Some basic properties of the SVD-T2 have already been discussed

in Ref [170], so we will only briefly reiterate the relevant properties here. Also, it is

instructive to look at the fraction of the correlation energy obtained by each ampli-

tude, so the integrals have also been transformed into the geminal basis to enable the
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energy calculation:

Ecorr =
1

4

∑

ijab

〈ij‖ab〉tab
ij =

1

4

∑

P

∑

ijab

U(ij),P 〈ij‖ab〉V
†
(ab),P t̃

P ∗

P =
1

4

∑

P

〈P‖P ∗〉t̃P
∗

P . (6.18)

First, the decomposition spectrum of N2 at its equilibrium geometry, along with

each amplitude’s contribution to the total correlation energy, is presented in Fig-

ure 6.1. Immediately one notices that a small handful of amplitudes account for a

disproportionate share of the correlation energy. The first five amplitudes account

for more than 42% of the correlation energy, and the largest one accounts for 18%! A

perfect-pairing calculation on N2 containing all the valence orbitals would also utilize

five amplitudes, but it recovers only 28% of the correlation energy. This suggests that

the SVD amplitudes are recovering some of the coupling between localized pairs that

would be found in Imperfect Pairing (or other generalizations of PP)[76, 46] as well

as aspects of beyond valence (core and dynamical) correlation (as in Chapter 3). The

full CCD wave function contains 5063 permutationally unique amplitudes (above a

10−9 threshold). Approximating the wave function using the rank 1 (i.e. approxi-

mating T2 by only the first SVD amplitude) or rank 5 wave function generates an

estimate for 1065 (21%) and 3041 (60%) of the amplitudes, respectively. Clearly

the SVD transformation compresses the wave function dramatically and stores much

information within each SVD amplitude.

Further singular value decomposition of the top five geminal pairs (all of which

come from the αβ → αβ block) individually indicates that there are primarily valence

contributions to each excitation, but that there are also some minor beyond-valence

effects. The 1-PDMs for the first five geminal pairs are plotted in Figure 6.2. The

dominant excitation, t̃ = 0.17 (Figure 2(a)), corresponds to a mixture of all valence

excitations: σ, π, and lone pair electrons going to their virtual counterparts. This

characterization of the largest amplitude being a sort of “molecular valence correla-

tion” is quite typical, particularly in systems with high symmetry. It means that all

valence correlations in the molecule are roughly comparable in strength. Of course,

equilibrium N2 has relatively uninteresting electronic structure according conventional

wisdom. These dominant singular values will play a more significant role in more in-

teresting examples below.
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Figure 6.1: SVD-T2 spectrum for N2 (rNN = 1.1 Å) at the CCD/6-31G* level. Both
the 91 amplitudes (solid line, left axis) and the corresponding integrated percent
correlation energy (dashed line, right axis) are plotted.
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Figure 6.2: Top five geminal pairs for the CCD/6-31G* SVD of T2 for N2 at rNN = 1.1
Å. The hole (occupied) geminal density is plotted on the left, and the particle (virtual)
geminal density on the right. Note that excitation (b) is doubly degenerate.
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Secondary contributions come from two degenerate πx → π∗
x and πy → π∗

y excita-

tions (t̃ = 0.10, Figure 2(b)), and the next two excitations (t̃ = 0.08 and t̃ = 0.06 and

Figures 2(c) and 2(d), respectively) involve lone pair, core, and further σ correlations.

Because the π → π∗ excitations are doubly degenerate, we have the freedom to mix

them arbitrarily. The SVD mixes them to form the fully symmetric combination of

πx and πy, though they could equally-well be represented as individual πx and πy

excitations. At this point it may seem that the SVD has made the description of the

correlations far more complicated than the initial wave function. But this is only the

case because of the simple and well-understood nature of N2’s electronic structure

in terms of the canonical MOs. We shall look at more interesting examples shortly

that will demonstrate the interpretive simplicity of this approach. It should be noted,

though, that this general pattern for the distribution of the singular values holds for

all systems examined thus far.

Moreover, the dominant singular value amplitudes in N2 were all of the type

αβ → αβ, as is typical for closed-shell molecules, where the largest same-spin corre-

lations often occur well below the dominant paired-spin correlations. In the nitrogen

molecule, the largest same-spin excitations have amplitude t̃(αα) = t̃(ββ) = 0.05 and

occur after nine larger αβ → αβ excitations. In open-shell molecules like triplet

O2, however, the same-spin correlations play a more important role. The largest

two excitations at the UCCD/6-31G* level are a somewhat typical t̃(αβ) = 0.1016

and the more surprising t̃(ββ) = 0.1014. This unusual and large second excitation

looks primarily like a π → π∗ excitation in the β spin space, exciting from the highest

doubly-occupied orbitals to the singly-occupied orbitals. Like the original amplitudes,

the SVD decomposition enables ready spin-specific analyses.

Clearly the SVD satisfies the first criterion of producing a compact expansion

for the wave function. Secondly, as was previously demonstrated,[170] it is roughly

independent of basis set size. The dominant correlations contained in the expansion

do not change significantly as the basis set grows, but the smaller terms on the tail

of the distribution each increase slightly to account for the additional correlation

energy gained by the larger basis set. Significantly, enlarging the basis set leaves

the fundamental length of the SVD expansion unchanged. Molecular nitrogen always



133

Table 6.1: Largest singular value for growing alkane chains CnH2n at the CCD/6-31G*
level.

n t̃max n t̃max

1 0.1248 5 0.1319
2 0.1293 6 0.1323
3 0.1307 7 0.1325
4 0.1314 8 0.1326

requires only 91 (the number of possible electron pairs) SVD configurations to describe

the pair correlations, though not all of these configurations will necessary contribute

significantly. This is another advantage of the SVD analysis over natural orbitals

or natural geminals. The number of natural functions grows with the basis set size

(though those extra functions may or may not have significant occupations). Thirdly,

the SVD analysis preserves size consistency in size-consistent wave functions. The

spectrum of singular values for two non-interacting subunits simply doubles in size,

with each monomeric singular value occurring twice.

The final criterion from our original list of requirements is that the method should

provide comparable descriptions for the correlations that are inherently similar, de-

spite differences in system size. Table 6.1 lists the largest singular value for a growing

linear alkane chain, from methane to octane, and we observe that this amplitude

changes somewhat from methane to ethane (there is now a C-C bond), but once

the chain gets longer and most of the C-H bonds and C-C bonds exists in roughly

identical environments, the largest amplitude stabilizes around t̃ = 0.133. The fact

that the correlation energy grows is compensated for by filling in the spectrum more

densely, so there are more terms of a similar size that contribute. In other words,

the wave function has many more correlations of similar strength, rather than a con-

stantly increasing correlation strength. Thus, the SVD is properly asymptotically

size intensive and thereby satisfies all seven criteria initially laid out.

Having demonstrated that the procedure is sound, we now focus on more interest-

ing chemical examples. To begin, we look at single, double and triple bond breaking

in the context of ethane, ethylene, and acetylene. Figure 6.3 plots the largest singular
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Figure 6.3: Largest singular value t̃max for bond-breaking in C2H6, C2H4, and C2H2

with restricted (solid) and unrestricted (dashed) CCD/6-31G*.
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value for each of these species using both restricted and unrestricted HF references.

For the double and triple bond-breaking, there are two or three dominant singular

values, respectively—one for each highly-correlated electron pair. These multiple

singular values are listed in Table 6.2.

For the restricted cases, the largest amplitude (spin type αβ → αβ) for both

ethane and acetylene rises quickly as the bond is stretched (unfortunately, the re-

stricted CCD calculation for ethane would not converge after 7.0∗Re, but this does

not fundamentally alter the analysis). t̃max for ethylene also rises quickly, but it

then turns over at 2.0∗Re and asymptotes to t̃max = 0.22. The largest amplitude

for the single and triple bond cases behaves roughly as expected—the electrons in

the breaking bond become highly correlated and the corresponding amplitude grows

substantially, heading towards 1.0 as the species becomes a pure diradical. For the

unrestricted case, the ethane and acetylene curves turn over and asymptote to much

lower values than the highest point on their corresponding restricted curves, and the
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Table 6.2: Primary singular values associated with restricted bond breaking.

C2H6 C2H4 C2H2

n ∗Re t̃1 t̃1 t̃2 t̃1 t̃2 t̃3
1.0 0.129 0.170 0.104 0.162 0.110 0.110
1.5 0.216 0.354 0.167 0.319 0.244 0.244
2.0 0.434 0.609 0.370 0.601 0.212 0.198
2.5 0.656 0.240 0.236 0.755 0.185 0.184
3.0 0.786 0.224 0.224 0.825 0.180 0.180
4.0 0.847 0.218 0.218 0.868 0.179 0.177
5.0 0.856 0.216 0.216 0.877 0.178 0.177
6.0 0.861 0.216 0.216 0.882 0.178 0.177
7.0 0.216 0.216 0.885 0.178 0.177
8.0 0.215 0.215 0.887 0.178 0.177

unrestricted ethylene case turns over even sooner than the restricted case, though its

asymptote is the same.

Examining the geminal pairs corresponding to the largest-amplitude excitation

in ethane, which are plotted in Figures 6.4 and 6.5, will clarify the reason for these

turnovers for the unrestricted case. At equilibrium, there is no unrestricted solu-

tion, and the dominant correlation behaves like a molecular valence bonding to anti-

bonding excitation, analogous to what was observed in N2. However, in the restricted

case, stretching the bond shifts the correlation such that by 1.5∗Re the dominant cor-

relation now appears to be purely along the C-C bond as a σ → σ∗ excitation. The

dominance of this correlation becomes even more pronounced by 2.5∗Re or 3.0∗Re.

Once the two fragments get far enough apart, very little density occurs in the middle

of the bond, but the electrons remain highly correlated due to the restricted formal-

ism.

The unrestricted case behaves similarly up to 1.5∗Re, but beyond this point (when

the dominant t̃ amplitude has completely turned over), the dominant correlation now

occurs along the C-H bonds. The unrestriction allows the C-C bond electrons to

localize onto their respective centers, and they are no longer intensely correlated. By

3.0∗Re the two fragments are far enough apart that they act mostly like two non-

interacting methyl radicals, at least in terms of the most significant correlation effects.
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Figure 6.4: Geminal pairs corresponding to the largest restricted SVD-T2 amplitude
t̃max for C2H6 with C-C bond lengths of (a) 1.0∗Re, (b) 1.5∗Re, (c) 2.0∗Re, and (d)
3.0∗Re at the CCD/6-31G* level.
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Figure 6.5: Geminal pairs corresponding to the largest unrestricted SVD-T2 ampli-
tude t̃max for C2H6 with C-C bond lengths of (a) 1.0∗Re, (b) 1.5∗Re, (c) 2.0∗Re, and
(d) 3.0∗Re at the CCD/6-31G* level.
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The two largest amplitudes are virtually degenerate, each localizing onto one of the

two centers (at degeneracy, one is free to take any linear combination of the singular

vectors to localize them completely).

Returning to the ethylene stretch and examining the two leading amplitudes,

we see that the primary excitation t̃1 corresponds to a π → π∗ excitation, and the

secondary one corresponds to the σ → σ∗ along the C-C bond. Both the restricted

and unrestricted curves for ethylene turned over because when stretching a double

bond, the electrons recouple to the other free electron on the same site rather than

with their now distant former partners. The system then behaves like two singlet

methylene units rather than ethylene for a moderate stretch. This recoupling can

happen in both the restricted and unrestricted cases. The two dominant correlations

become sp2 → p excitations on each fragment’s carbon atom. In the triple bond case,

a recoupling happens between one pair of π electrons and the σ electrons around

2.0∗Re, analogously to ethylene. This recoupling leaves only a dominant π → π∗

excitation, t̃1. The power of this SVD approach has become clear—it has extracted

the fundamental behavior of the electrons in these systems in an automatic fashion

that enables the facile understanding of bond-breaking.

In molecules with lower symmetry, one can expect to obtain useful information

from multiple singular values and vectors. Consider the molecule HOF. In this bent

molecule at equilibrium, the largest singular value (t̃ = 0.17) corresponds to corre-

lation primarily along the O-F bond, while the second largest correlation (t̃ = 0.10)

corresponds to correlation mainly along the O-H bond. Looking at H2O and F2O we

observe that the correlation energy per electron is 0.0198 Eh for H2O and 0.0214 Eh

for F2O, suggesting that the O-F bond does indeed involve stronger correlations at

equilibrium. Stretching the O-H bond to 1.5∗Re leaves the O-F correlation strength

almost unchanged at t̃ = 0.16, but it more than doubles the O-H correlation amplitude

to t̃ = 0.21, thereby reversing the order of the correlation strengths (though the re-

spective geminal densities remain qualitatively the same). Water stretched to 1.5∗Re

has a correlation energy of 0.0248 Eh per electron, again confirming the ordering of

the excitations.

As a final example of diradicaloid behavior, we consider the planar ring BOBO
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capped with four hydrogens. This model compound and others have been studied in

the context of controlling diradical character based on neighboring group interactions

using natural orbital analysis.[174] As with most diradicals, the diradicaloid correla-

tion arises primarily from a HOMO-LUMO transition. Using the SVD approach on

the VOD wave function (which should provide a better description than CCD),[46, 93]

the largest αβ → αβ singular value of t̃ = 0.54 dominates all other values (the second

largest amplitude is t̃ = 0.12). As one would expect, the geminal functions corre-

sponding to the largest excitation are essentially the densities associated with the

HOMO and LUMO orbitals described in Ref [174]. Once again, the SVD analysis has

extracted the interesting correlation from the wave function automatically.

In all of the cases described thus far, the excitations were predominantly based

on a single pair of electrons. In such situations, natural orbital analysis of the wave

function is fairly straightforward, and the associations between natural orbitals can

often be extracted from their occupation numbers, since there will usually be only one

significantly populated virtual and a correspondingly-depleted occupied orbital. In

cases with more complicated correlations, however, it is not always clear how certain

electrons are correlated. With this problem in mind, we look at the case of benzene

using OD, which is a variant of CCD in which the orbitals are variationally optimized

during the CCD calculation.[47] In the natural orbital analysis, the top five most

depleted occupied orbitals consist of various π and σ orbitals (see Table 6.3), with

the two most depleted orbitals being one of each. The virtual orbitals provide similar

difficulties. Although some of the most heavily populated virtual natural orbitals

resemble anti-bonding forms of the most-depleted occupied natural orbitals, there is

clearly no direct correspondence between the two sets. In particular, one cannot in

general map the population depletion of a single occupied orbital with the population

generation in a particular virtual orbital.

In contrast, if we apply the SVD to T̂2 for this system and examine the five largest

excitations and their dominant character, which are listed in Table 6.4, we find that

the largest corresponds to a fully symmetric π → π∗ correlation with amplitude

t̃ = 0.17. The next four strongest correlations are somewhat smaller and form two

doubly degenerate sets of σ → σ∗ excitations with amplitudes t̃ = 0.12 and t̃ = 0.10,
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Table 6.3: Natural spin orbital occupation numbers for benzene from the OD/6-31G*
wave function.

occupation character occupation character
HOMO 0.959 π LUMO π∗ 0.035

HOMO-1 0.959 π LUMO+1 π∗ 0.035
HOMO-2 0.974 σ LUMO+2 π∗ 0.018
HOMO-3 0.979 σ LUMO+3 π∗ 0.013
HOMO-4 0.979 σ LUMO+4 σ∗ 0.013

Table 6.4: Largest five SVD-T2 amplitudes and their dominant characters for benzene
from the OD/6-31G* wave function. All excitations come from the αβ → αβ spin
block.

t̃ character
t̃1 0.167 π → π∗

t̃2 0.119 σ → σ∗

t̃3 0.119 σ → σ∗

t̃4 0.102 σ → σ∗

t̃5 0.102 σ → σ∗
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respectively. Further down the list occur additional correlations of both types to

account for all the possible electron pairs. Nevertheless, the analysis of benzene is

substantially facilitated using the SVD analysis over natural orbitals.

The geminals formed from the SVD also verify the commonly-held understanding

of “in-out” correlation. The Hartree-Fock wave function typically places the electrons

too close to the nucleus on average, over-emphasizing the electron-electron repulsions.

Introducing dynamical correlation into the wave function scatters the electrons into

larger virtual orbitals which has the general effect of reducing electron-electron re-

pulsion and thereby lowering the energy. To see this effect, we examine the geminals

corresponding to the largest singular value (t̃ = 0.07) for the neon atom as a func-

tion of distance from the nucleus (the densities are spherically symmetric). Both

the geminal densities, ρhole(r) and ρparticle(r), and their corresponding radial distri-

bution functions, 4πρ(r) are plotted in Figures 6.6 and 6.7. As seen in Figure 6.6

the leading correlation depletes the density at intermediate distances and enhances

it at the nucleus and at longer distances. Weighting the density by the appropriate

volume elements to construct the radial distribution function (Figure 6.7) provides a

clear demonstration of “in-out” correlation. The excitation depletes the probability

of finding an electron near 1.0 bohr and increases it substantially at longer distances.

Looking at a simple molecule like ethane, we see a very similar pattern for the

leading correlation. Figures 6.8 and 6.9 plot density contours for the HCCH plane

of the leading correlation in ethane at equilibrium. The correlation depletes density

in the bond regions (along the C-C bonding axis in particular) and adds it near

the hydrogen atoms and away from the other bonds near the carbon atoms, thereby

extending the density distribution. This excitation exhibits the molecular version of

“in-out” correlation.

6.4 Conclusions

The decomposition of pair correlations from CCD wave functions using the sin-

gular value decomposition has been presented as an efficient means of extracting the

dominant pair correlations from many-body wave functions. This technique can also
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Figure 6.6: Densities corresponding to the largest SVD excitation for the neon atom.
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be generalized to higher-order correlations. For pair correlations, the SVD rewrites

the wave function exactly in terms of one double excitation per pair of electrons and

thereby associates an occupied and virtual geminal pair. Analysis of these geminals

provides insight into the nature of the correlations, while the magnitude of the corre-

sponding singular value determines the weight of this geminal in the wave function.

That one obtains associations between pairs of occupied and virtual electrons is per-

haps the principal advantage of this approach over natural orbital analysis, which,

as a one-particle method, can only tell us the total occupation of an orbital, but not

necessarily from which correlations that occupation comes from. Using the iterative

Davidson SVD algorithm described here, the calculation of these dominant correla-

tions requires almost trivial computational effort (as compared to the wave function

determination), making it applicable to almost any molecular system accessible by

standard correlation methods.

In general the dominant correlation resembles a “molecular valence” excitation

that typically involves bonding to anti-bonding excitations among all the valence



143

Figure 6.7: Radial distribution function corresponding to the largest SVD excitation
for the neon atom.
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Figure 6.8: Contour plot in the HCCH plane of the occupied geminal corresponding
to the leading SVD excitation in ethane. Contours are separated by 0.01 probability.
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Figure 6.9: Contour plot in the HCCH plane of the virtual geminal corresponding to
the leading SVD excitation in ethane. Contours are separated by 0.01 probability.
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orbitals. In cases with more interesting correlation, however, this largest excitation

can identify diradicaloid behavior or other unusual correlation effects. As an example,

the SVD approach provided a clear analysis of the changes in the wave function during

restricted and unrestricted bond-breaking with very little effort. We were also able to

provide a simpler description of the correlations for benzene using the SVD analysis

instead of natural orbital analysis. It is for these latter cases that the SVD analysis

presented here seems most useful. Finally, the SVD geminals nicely demonstrated

the notion of “in-out” correlation in a couple of simple examples.

The approach described herein is lacking in two regards. First, given the known

local nature of electronic correlations, one would like a decomposition that describes

the correlations locally. For example, the correlations in a particular functional group

ought to remain similar in a variety of different molecules. Except in the case of a

very strong correlation localized to one region of the molecule, the SVD will return

delocalized descriptions of the correlations. Unfortunately, it does not seem likely to

obtain a unique, well-defined decomposition that does not also adhere to molecular

point-group symmetry. Any attempt to partition the excitations into localized blocks
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for decomposition will depend dramatically on the partitioning scheme and could also

miss non-local correlation effects.

Second, we have decomposed the wave function in terms of its dominant pair

excitations. One might instead prefer to obtain the decomposition of the energy in

terms of its dominant contributions. Though these two decompositions will in general

be somewhat similar, the contributions of the SVD amplitudes to the energy are

modulated by the integrals with which they contract. Empirically, it seems that the

dominant energetic contributions typically arise from the dominant SVD amplitudes,

but we are not guaranteed this result. A similar difficulty arose in the study of natural

geminals.[165, 168] Of course, one can simply apply similar techniques to the energy

itself rather than the wave function if one truly desires an energy decomposition.

Finally, in this chapter, we have not placed too much significance on the actual

size of the largest correlation in the SVD wave function. We know, however, that

stronger correlations correspond to a breakdown in the single reference assumption,

suggesting that the calculated wave function requires higher-order excitations (either

in the context of multi-reference approaches or longer CC expansions). The difficulty

is knowing when such approaches are necessary or, conversely, how bad an approxima-

tion the single reference approach is. Perhaps this largest singular value can provide

a key to measuring the reliability of a CCSD or related calculation with respect to

the single reference character of the system. In particular, the SVD could extract this

indicator from the wave function regardless whether or not the initial wave function

representation made this multi-reference character obvious. Thus, the SVD technique

presented here might make a useful diagnostic tool for the validity of an approximate

wave function.

Finally, in the next chapter we return to our original stated goal of developing an

efficient method for the treatment of strong correlations. We apply a second-order

perturbative correction, (2), to the perfect pairing wave function. This very affordable

method will be assessed in a variety of interesting chemical systems.
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Chapter 7

An inexpensive electronic structure

method for the treatment of

highly-correlated systems.

7.1 Introduction

Reliably describing the electronic structure of species with significant diradicaloid

character, such as bond-breaking, transition states, and novel organic materials, re-

quires a careful treatment of the electron-electron correlations not present in stan-

dard density functional theory (DFT) or wave function methods (e.g. second-order

Møller-Plesset perturbation theory, MP2). Instead, researchers must use computa-

tionally expensive methods like complete active space self-consistent field (CASSCF),

to properly describe the static correlation effects,[41] followed by multi-reference per-

turbation theories such as CASPT2,[42] for these systems. Unfortunately, the factorial

scaling of CASSCF limits its applicability to no more than fourteen active electrons.

Clearly less expensive methods for studying large systems are desirable.

The simplest model chemistry wave function beyond the mean-field approxima-

tion is Generalized Valence Bond Perfect Pairing (PP), which in a coupled cluster
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formalism writes the wave function as,[57, 58]

|ΨPP 〉 = eT̂PP |Φ0〉, (7.1)

where |Φ0〉 is a single-determinantal reference wave function and

T̂PP =
p
∑

i

tiâ
†
i∗ âiâ

†
ı̄∗ âı̄, (7.2)

where p is the number of electron pairs (usually all valence pairs). This model can

be viewed as a strongly local approximation to a valence active space coupled clus-

ter doubles calculation[46] that correlates the active electrons one pair at a time,

with a single correlating amplitude per pair. This linear number of pair correlations

typically comprises the leading terms in the correlation energy expansion, and PP

generally recovers 50-80% of the full valence space doubles correlation energy (which

requires a quartic number of amplitudes[6, 59]). The PP wave function serves as

a significant improvement over Hartree-Fock (HF) wave functions, improving struc-

tural predictions[53] and even overcoming some symmetry-breaking effects and other

pathologies found in HF.[59] We have recently developed an extremely efficient im-

plementation of PP using auxiliary basis sets and the resolution of the identity (RI)

approximation (also known as density fitting)[141, 142, 143, 144] that makes the cost

of a PP calculation only a factor of several times that of a HF one with negligible

additional errors.[60] With this implementation, single point PP energy calculations

on systems with a thousand basis functions and tens of non-hydrogen atoms can be

performed in a day or two on a modern personal computer.

Despite the advantages of the PP model, the limited description of the correlation

energy with only a linear number of retained amplitudes is inadequate for accurate

energetics and properties. We need to account for the multitude of individually-

less-important but cumulatively-significant missing correlation terms. To this end,

previous researchers have extended the treatment of correlations in various ways.

One straightforward approach is to utilize configuration interaction (CI) expansions

from the PP orbitals.[123, 124, 125, 126, 127, 128] As with all CI expansions, they

generally must be truncated at some relatively low order to ensure that the number of

configurations remains manageable. These expansions have been used to accurately
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predict singlet-triplet gaps, for example,[175] but they are not size-consistent. Size

consistent coupled cluster expansions similar to these restricted CI ones have also been

developed,[76, 106] but these only improve the treatment of the valence correlations

and do not account for the rest of the dynamical correlation.

Alternatively, based on the success of MP2 for treating dynamical correlation in

systems for which HF provides a good reference wave function, one might use pertur-

bation theory from the PP reference. Multi-reference Møller-Plesset perturbation the-

ory has been applied to GVB wave functions with some success.[43, 44, 129, 130, 131]

Similarly, perturbative corrections to the slightly more general antisymmetrized prod-

uct of strongly orthogonal geminals (APSG)[135] have been developed.[176]

We want to apply the perturbative correction to our efficient coupled-cluster for-

mulation of PP, so we have adapted the similarity-transformed perturbation theory of

Gwaltney and Head-Gordon[48, 5, 49, 3] to PP wave functions. We have implemented

the second-order correction, again using the RI approximation, which we term PP(2).

As will be discussed below, this correction is MP2-like in computational cost and can

be applied to systems with tens of heavy atoms and many hundreds of basis functions.

As mentioned above, PP is a strongly local approximation to valence orbital opti-

mized coupled cluster doubles (VOD)[46] that includes only one correlation amplitude

per valence pair.[53] For this reason, PP(2) can be viewed as a much simpler approxi-

mation to VOD(2).[5] We will place some emphasis on how PP(2) differs from VOD(2)

in addition to how PP(2) compares to MP2 and other standard methods.

7.2 Theory

7.2.1 The formalism

Similarity-transformed perturbation theory has been presented elsewhere.[48, 5,

49] Here, we will review it only briefly and emphasize how the application differs for

PP(2). In this Ansatz, the similarity-transformed Hamiltonian,

H̄ = e−T̂ ĤeT̂ , (7.3)
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which is represented in the basis of all many-body determinants, is partitioned into

two spaces, p, which is the space in which the coupled cluster equations have been

solved (e.g. the space of determinants spanned by the PP wave function), and q,

which is the remainder of the space,

H̄ = |p〉〈p|H̄|p〉〈p|+ |p〉〈p|H̄|q〉〈q|+ |q〉〈q|H̄|p〉〈p|+ |q〉〈q|H̄|q〉〈q|. (7.4)

A perturbative expansion for the exact ground state energy and wave function for H̄

is then written, taking the reference coupled cluster wave function to be zeroth order.

Because H̄ is not Hermitian, it has different right- and left-hand eigenvectors which

form a biorthogonal set, each of which we expand in orders of the perturbation:

Rp = Rp
(0) + Rp

(1) + Rp
(2) + · · · (7.5)

and

Lp = Lp
(0) + Lp

(1) + Lp
(2) + · · · . (7.6)

With this partitioning,

E(0) = 〈0|Lp
(0)H̄(0)

ppRp
(0)|0〉 (7.7)

and the first non-zero correction arises at second order,

E(2) = 〈0|Lp
(0)H̄(1)

pq(E(0)1− H̄(0)
qq)−1H̄(1)

qpRp
(0)|0〉. (7.8)

To ensure that the zeroth order energy and wave function are those from PP, we

choose Lp
(0) = (1+Λ) and Rp

(0) = 1, in accordance with the standard coupled cluster

Lagrangian. Substituting these in to Eqs 7.7 and 7.8, we find:

E(0) = 〈0|(1 + Λ)H̄(0)
pp|0〉 = EPP (7.9)

and

E(2) = 〈0|(1 + Λ)H̄(1)
pq(E(0)1− H̄(0)

qq)−1H̄(1)
qp|0〉. (7.10)

In the application of the (2) correction to PP, we made two significant changes

from VOD(2). First, as will be discussed further below, we compute the quadru-

ple excitation terms exactly, without the aid of the factorization approximation used
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in other (2) methods. Because of the simplicity of the PP wave function, only a

small subset of the full quadruples vector is included, and the quadruples are there-

fore almost trivial to compute in comparison to the doubles and triples, so no such

approximation is necessary.

Second, the nature of the PP wave function makes it prudent to alter our choice

of the zeroth-order Hamiltonian slightly. Unlike VOD, PP is not invariant to orbital

rotations within the active occupied or active virtual subspaces. This means that

changes of orbital representation in the active space will generally increase the number

of amplitudes in the wave function from linear to quartic, thereby destroying the

computational efficiency of PP(2).

The zeroth-order Hamiltonian used in VOD(2) is:

H̄(0) = |p〉〈p|H̄|p〉〈p|+ |q〉〈q|(E(0) + F̄ i′

•j′ + F̄ I
•J + F̄A

•B + F̄ a′

•b′)|q〉〈q|, (7.11)

where F̄ i′

•j′ and F̄ I
•J represent the inactive and active occupied-occupied blocks, and

F̄A
•B and F̄ a′

•b′ represent the active and inactive virtual-virtual blocks of the one-electron

piece of H̄, respectively.

Using this partitioning, it is necessary to semi-canonicalize F̄ i
•j and F̄ a

•b in order to

facilitate evaluating the energy denominator (E(0)1 − H̄(0)
qq)−1 in Eq 7.10. However,

doing so will destroy the compactness of the PP wave function. Instead, we wish to

utilize the PP orbitals (with the inactive blocks semi-canonicalized in terms of the

bare Fock matrix), and therefore we choose only the diagonal of F̄ for the second

piece in the our zeroth-order Hamiltonian,

H̄(0) = |p〉〈p|H̄|p〉〈p|+ |q〉〈q|(E(0) + F̄ i′

•i′ + F̄ I
•I + F̄A

•A + F̄ a′

•a′)|q〉〈q|, (7.12)

The fact that we do not semi-canonicalize the orbitals in terms of F̄ also means that

it is not necessary to work in a biorthogonal basis, as was the case for VOD(2), which

simplifies the implementation. In numerical tests with VOD(2) on small molecules,

this alternate partitioning typically changed the total energy at the sub-millihartree

level, which is small compared with the overall error.

When applied to a non-local coupled cluster doubles t vector, this second-order

correction scales formally with the ninth power of system size (though in practice,
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a factorization approximation in the quadruples reduces this scaling overall to the

seventh power) . In contrast, PP(2) scales only with the fifth power with no fac-

torization approximation, which is the same as canonical MP2. The computational

savings arise from the PP-model-imposed sparsity of the doubles amplitude vectors

t and λ, which each have only a linear number of non-zero elements. For example,

whereas the formation of the two-body pieces of H̄ for VOD(2) requires sixth-order

work after the integrals and amplitudes have been obtained, it requires only linear

work that depends on the number of PP pairs in PP(2). Similarly, the triples and

quadruple excitation terms in the (2) correction simplify dramatically. The PP(2)

equations are presented in spin-orbital form in Table 7.1. The relevant pieces of H̄

which serve as intermediates are found in Appendix C.

7.2.2 Interpretation of the terms

The PP(2) correction includes six classes of terms. Representative examples of

each class are listed in Table 7.2. The discussion of scaling contained herein assumes

that we have more virtual orbitals than occupied ones, as is usually the case. The first

terms are the MP2 singles and the Lambda singles. These two sets of terms account

for single excitations, which are completely absent in PP. However, they tend to

be small and do not play a major role in the overall correction. Evaluating these

terms requires only OV work for the MP2 singles and pOV work for the Lambda

singles terms, where O is the number of occupied orbitals, V is the number of virtual

orbitals, and p is the number of PP pairs. They are therefore computationally trivial

to compute once we have the requisite two-electron integrals. Though the details

differ, the physics imparted by these terms is not significantly different from the

singles in VOD(2).

Next come the MP2 doubles and Lambda Doubles terms. The MP2 doubles,

which dominate the PP(2) correction both energetically and computationally, look

exactly like the standard canonical MP2 expression, except that the integrals and

energy denominators are replaced by the corresponding dressed elements of H̄. These

terms provide an MP2-like treatment of all pair correlations neglected by PP, and
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Table 7.1: Spin-orbital equations for PP(2). These equations were obtained by ap-
plying the sparsity of the amplitude vectors to the VOD(2) equations[5].

MP2 Singles =
∑

ia

F̄ i
•aF̄

a
•i

ε̄i − ε̄a

MP2 Doubles =
1

4

∑

ijab

W̄ ij
••abW̄

ab
••ij

ε̄i + ε̄j − ε̄a − ε̄b

Lam Singles =
∑

I

λI

(

F̄ Ī∗

•Ī F̄
I∗

•I

ε̄I − ε̄I∗
+
F̄ I∗

•I F̄
Ī∗

•Ī

ε̄Ī − ε̄Ī∗

)

+
∑

Ia

λI

(

W̄ I∗Ī∗

••aĪ F̄
a
•I

ε̄I − ε̄a

−
W̄ I∗Ī∗

••aI F̄
a
•Ī

ε̄Ī − ε̄a

)

−
∑

Ij

λI

(

W̄ jĪ∗

••IĪ
F̄ I∗

•j

ε̄j − ε̄I∗
−
W̄ jI∗

••IĪ
F̄ Ī∗

•j

ε̄j − ε̄Ī∗

)

+
∑

Ija

λItIF̄
a
•j

ε̄j − ε̄a

(

W̄ Ī∗j
••Ī∗a

+ W̄ I∗j
••I∗a − W̄

Īj
••Īa
− W̄ Ij

••Ia

)

(7.13)

Lam Doubles =
∑

Ib′
λI

(

F̄ Ī∗

•b′W̄
I∗b′

••IĪ

ε̄I + ε̄Ī − ε̄I∗ − ε̄b′
−

F̄ I∗

•b′W̄
Ī∗b′

••IĪ

ε̄I + ε̄Ī − ε̄Ī∗ − ε̄b′

)

−
∑

Ij′
λI

(

F̄ j′

•Ī
W̄ I∗Ī∗

••Ij′

ε̄I + ε̄j′ − ε̄I∗ − ε̄Ī∗
−

F̄ j′

•IW̄
I∗Ī∗

••Īj′

ε̄Ī + ε̄j′ − ε̄I∗ − ε̄Ī∗

)

+
1

4

∑

Iab

λIW̄
I∗Ī∗

••ab W̄
ab
••IĪ

ε̄I + ε̄Ī − ε̄a − ε̄b

+
1

4

∑

Ijk

λIW̄
jk
••IĪ

W̄ I∗Ī∗

••jk

ε̄j + ε̄k − ε̄I∗ − ε̄Ī∗

−
∑

Ija

λI

(

W̄ jĪ∗

••IbW̄
I∗b
••jĪ

ε̄j + ε̄Ī − ε̄I∗ − ε̄b

−
W̄ jI∗

••IbW̄
Ī∗b
••jĪ

ε̄j + ε̄Ī − ε̄Ī∗ − ε̄b

−
W̄ jĪ∗

••Īb
W̄ I∗b

••jI

ε̄j + ε̄I − ε̄I∗ − ε̄b

+
W̄ jI∗

••Īb
W̄ Ī∗b

••jI

ε̄j + ε̄I − ε̄Ī∗ − ε̄b

)

−
1

2

∑

Ijab

λItI

(

W̄ Īj
••abW̄

ab
••Īj

ε̄Ī + ε̄j − ε̄a − ε̄b

+
W̄ Ij

••abW̄
ab
••Ij

ε̄I + ε̄j − ε̄a − ε̄b

)

−
1

2

∑

Ijka

λItI

(

W̄ jk
••Ī∗a

W̄ Ī∗a
••jk

ε̄j + ε̄k − ε̄Ī∗ − ε̄a

−
W̄ jk

••I∗aW̄
I∗a
••jk

ε̄j + ε̄k − ε̄I∗ − ε̄a

)

(7.14)
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Table 7.1: (continued)

Lam Triples =
∑

Ikc

λIF̄
k
•cW̄

I∗Ī∗c
•••IĪk

ε̄I + ε̄Ī + ε̄k − ε̄I∗ − ε̄Ī∗ − ε̄c

+
1

2

∑

Ibck

λIW̄
Ī∗k
••bcW̄

I∗bc
•••IĪk

ε̄I + ε̄Ī + ε̄k − ε̄I∗ − ε̄b − ε̄c

−
1

2

∑

Ibck

λIW̄
I∗k
••bcW̄

Ī∗bc
•••IĪk

ε̄I + ε̄Ī + ε̄k − ε̄Ī∗ − ε̄b − ε̄c

−
1

2

∑

Ijkc

λIW̄
jk
••Īc

W̄ I∗Ī∗c
•••Ijk

ε̄I + ε̄j + ε̄k − ε̄I∗ − ε̄Ī∗ − ε̄c

−
1

2

∑

Ijkc

λIW̄
jk
••IcW̄

I∗Ī∗c
•••Ījk

ε̄Ī + ε̄j + ε̄k − ε̄I∗ − ε̄Ī∗ − ε̄c

(7.15)

Lam Quads =
1

4

∑

Iklcd

λIW̄
kl
••cdW̄

I∗Ī∗cd
••••IĪkl

ε̄I + ε̄Ī + ε̄k + ε̄l − ε̄I∗ − ε̄Ī∗ − ε̄c − ε̄d

(7.16)

there are O2V 2 such terms. The Lambda doubles occur for a smaller set of pair

correlations, those involving at least one orbital that is a member of a PP correlation

pair, {IĪ} → {I∗Ī∗}. In this notation, capital letters are orbitals that are correlated

by PP; i, j, k, . . . (lower case) are any occupied orbitals in the reference determinant;

and a, b, c,. . . (lower case) are any virtual orbitals in the reference determinant. In

general, the Lambda doubles occur with the opposite sign of the MP2 doubles and

are largest when the PP t and λ amplitudes are large. In other words, they help to

compensate for the overestimation of the correlation by the MP2 doubles in cases with

strong correlations. These terms are also similar to their VOD(2) counterparts, except

that the non-local valence doubles absent in PP are treated by the (2) correction,

instead of iteratively at the VOD level.

Finally come the Lambda triple and quadruple excitations. These terms provide

dynamical correlation for the excited configurations generated in the PP wave func-

tion. The triple excitations, of which there are pOV 2, take the form {IĪk} → {I∗ab},

which can also be viewed as a double excitation {Ī∗k} → {ab} from the configuration

in which {IĪ} has been replaced by {I∗Ī∗}. Other triples like {Ijk} → {I∗Ī∗a} take
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the form of a double excitation from the {I∗Ī∗} configuration that reoccupies orbital

Ī and one other virtual orbital a, {jk} → {Īa}.

Only a small subset of the full quadruples arise in PP(2), and they primarily

describe excitations from the reference such as {IĪJJ̄} → {I∗Ī∗J∗a}, which looks

like the excitation of {JJ̄} → {J∗a} after PP has generated {IĪ} → {I∗Ī∗}. Notice

that only p2V such terms exist, so the quadruples are very inexpensive to evaluate.

The quadruples also estimate the connected quadruple contribution, e.g. {IĪJJ̄} →

{I∗Ī∗J∗J̄∗}, to balance the occurrence of disconnected quadruples arising as products

of two pairs in the PP wave function. Notice that PP(2) includes no quadruples in

the one pair case, since they require at least two active pairs for these terms. This is

no different than VOD(2), however.

The triples and quadruples provide the most significant difference between PP(2)

and VOD(2). Because the PP wave function produces many fewer doubly-excited

determinants than the VOD one, far fewer semi-internal triples and quadruples are

included by PP(2). For example, the quadruples in VOD(2) provide pair correlation

for a doubly-excited configuration where two of the orbitals in the second correlating

pair can lie outside the active space. In PP(2), only one of these orbitals can be

outside the active space, and all the other three orbitals must correspond to the same

pair.

Thus, at first glance, PP(2) behaves like a hybrid doubles level treatment of the

electron correlation, where a linear number of the most important terms are treated at

the coupled cluster level using PP, and the rest of the doubles are treated at the MP2

level. However, the MP2-like treatment couples to the correlation of the potentially

large PP amplitudes through the similarity transformation and the counter-balancing

Lambda singles and doubles terms. It is of course the coupling of amplitudes that

differentiates CCSD from MP2 and makes the former much more reliable. These

singles and doubles terms on top of PP could then be said to provide a simple and

inexpensive approximation to CCSD.[52] PP(2) goes further, though. The triples

and quadruples terms then provide dynamical correlation for those doubly excited

configurations contained in the PP wave function. This makes it more suitable to the

treatment of systems with strong electron-electron correlations than MP2.
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Table 7.2: Representative terms for the correlations included in the PP(2) model.
Capital letters refer to active pairs in the PP calculation, and lower case letters refer
to any occupied (i, j, k) or virtual (a, b, c) orbitals.

Term Correlation
MP2 singles i→ a
MP2 doubles ij → ab

Lambda singles I → a
j → I∗

Lambda doubles Ij → ab
jk → I∗b

Lambda triples IĪj → I∗ab
Ijk → I∗Ī∗a

Lambda quadruples IĪJJ̄ → I∗Ī∗J∗ā
IĪJk̄ → I∗Ī∗J∗J̄∗

We should be clear, however, that PP(2) does not treat all of the configurations

equivalently and is therefore inherently a single-reference method. Whereas all double

excitations from the reference configuration are included, only the limited set of corre-

lations from the excited PP configurations are included via the triples and quadruples

terms. For this reason, we have implemented PP(2) within an unrestricted formal-

ism to ensure correct separation of species. On the other hand, the model is likely

to capture the most important pair correlations from the excited configurations and

provide much of their dynamical correlation.

7.2.3 Implementation

Because all of the steps after obtaining the integrals scale no worse O2V 2 (the

cost of evaluating the MP2 doubles), the computation of PP(2) is dominated by the

fifth-order steps involved in the construction and transformation of the molecular

orbital basis integrals, just like MP2. Unlike MP2, for which only 〈ij‖ab〉 integrals

are needed, PP(2) requires most of the full set of two-electron integrals over all spin

orbitals, 〈pq‖rs〉. This, combined with the fact that the integrals must be dressed

with a linear or quadratic number of terms (to form H̄) and that there are many more

types of terms than in standard MP2 theory, PP(2) will scale the same as MP2 but
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with a larger prefactor. On the other hand, PP(2) is dramatically less expensive than

VOD(2), for which there are sixth and seventh-order steps involved in computing the

(approximate) second-order energy.

The computation of an electronic structure method that is dominated by the

construction of the two-electron integrals is the ideal situation for employing the RI

approximation. In addition to the computational savings obtained with minimal loss

of accuracy, the RI approximation facilitates the development of efficient algorithms.

The standard RI-MP2 algorithm[141] and our own RI-PP(2) algorithm form the in-

tegral 〈ij|ab〉 as,

〈ij|ab〉 = (ia|jb) =
aux
∑

K

BK
iaB

K
jb . (7.17)

Thus, we are able to form and store the BK
pq matrices on disk using only a cubic

amount of storage (without even exploiting sparsity), instead of the typical quartic

storage required to store the full set of two-electron integrals. The integrals can

be formed as needed by reading in blocks of BK
pq in batches and performing matrix

multiplies. The integrals are then used and discarded.

Consider the construction of the necessary integrals and the evaluation of the MP2

doubles terms, which dominates the computation. Our algorithm is nearly identical

to an RI-MP2 one,[141] except for the integral dressing steps. It proceeds as written

in Table 7.3. Our PP(2) algorithm is therefore fifth order, dominated by the matrix

multiplication to form the integrals from the BK
pq. It also requires quartic I/O to read

the BK
pq from disk. Finally, the loops are designed to utilize only quadratic memory,

but they could be optionally batched to take advantage of all of the available memory.

In fact, the Lambda doubles terms require many of the same integrals, particularly

the dressed W̄ ab
••Ij, where orbital I is active. Rather than rebuilding these integrals

later or storing them on disk, we simply evaluate the Lambda doubles energy con-

tribution simultaneously with the MP2 doubles. While this complicates the coding

slightly, it does not alter the algorithm fundamentally.

The Lambda triples terms are also computationally intensive. Though there are

only pOV 2 triples, instead of O2V 2 terms for the MP2 doubles, their cost is compara-

ble to that of the MP2 doubles since we usually take all valence orbitals to be active.
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Table 7.3: MP2 doubles algorithm using the RI approximation.

Dress and store F̄ p
•q in memory

loop over i

Read B(X, a, i) for all X and a from disk

loop over j

Read B(X, b, j) for all X and b from disk

Form (ia|jb) =
∑Aux

X B(X, a, i)B(X, b, j), antisymmetrize

Dress (ia‖jb) to form W̄ ab
••ij, W̄ ij

••ab

loop over a

loop over b

E
(2)
MP2 Doubles+= 1

4
W̄ ab

••ijW̄
ij
••ab/(F̄

i
•i + F̄ j

•j − F̄
a
•a − F̄

b
•b)

end loop

end loop

end loop

end loop
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In contrast, the singles and quadruples terms require minimal computational effort.

For C20H42 in the cc-pVDZ basis and its corresponding auxiliary basis,[64, 151] the

singles and quadruples consumed only 4% of the computational time, while the dou-

bles and triples terms consumed 84% of the time, and the rest went to the formation

of BK
pq and other overhead.

The most difficult aspect in implementing PP(2) efficiently is the proper treatment

of the dressing terms to minimize I/O bottlenecks. In a loop structure like the one

given above, forming W̄ ab
••ij for all a, b with a given i, j will include dressing terms for

one particular a, b element where a and b correspond to some particular active orbitals

from PP pairs. A naive implementation of these terms requires two disk seeks to load

two vectors to form a single integral, which is extremely wasteful (since a seek takes

roughly 104 times longer than reading a double precision number). However, there

are usually no more than a quadratic number of such terms, so an efficient algorithm

must build these in advance using fewer disk seeks and store them in memory or on

disk until they are needed. Our implementation is partially optimized with regard to

this issue, though further work could be done to bring down the computational time.

Nevertheless, our current implementation demonstrates the affordability of PP(2) as

compared to MP2 or other coupled cluster methods.

7.3 Results and discussion

PP(2) was implemented in a developmental version of Q-Chem[85], and all cal-

culations reported here were performed using this version of Q-Chem. All PP and

PP(2) calculations use the RI approximation. The correlation consistent basis sets

cc-pVXZ[64] used in PP and PP(2) are combined with their corresponding auxiliary

basis sets[151] for the RI approximation. Here we will examine a variety of cases with

PP(2) and show that it significantly improves upon MP2 in many of them. First,

however, we examine the efficiency of PP(2).
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Figure 7.1: Total CPU timings on linear alkane chains comparing PP(2) against other
standard methods. In this basis set, C20H42 corresponds to 490 basis functions.

7.3.1 Timings

CPU timings on linear alkanes on a 2.0 GHz Mac G5 XServe with 2 gigabytes

of RAM are presented in Figure 7.1. All calculations are unrestricted and ignore

point-group symmetry. Though not plotted explicitly here, an RI-(2) calculation

(excluding HF and PP) is more expensive than a comparable RI-MP2 one (excluding

HF) because of the additional terms in PP(2). On the other hand, for alkanes up to

around C18H38 (roughly 450 basis functions), RI-(2) costs less than canonical MP2.

Comparing the time for the full PP(2) job versus a full MP2 one in Figure 7.1, we

see that PP(2) costs a little more than canonical MP2. This is because the cost of the

PP calculation is several times beyond that of the initial HF calculation. However,

for C20H42, the total PP(2) time was only 76% more than that for MP2. PP(2) also

costs far less than CCSD or other standard coupled cluster methods. Clearly, PP(2)

is very affordable for systems with tens of heavy atoms and up to the high hundreds

of basis functions.
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7.3.2 Reaction energies

One of the most important uses of electronic structure theory is the prediction of

reaction energetics. Table 7.4 lists the energetics for a set of thirteen isogyric reactions

from Ref. [112] using geometries obtained from Ref. [63]. It compares these energies

against CCSD(T) in the cc-pVTZ basis. For reaction energetics, the static correlation

methods PP and VOD are no better than HF, since they lack the important dynamical

correlation terms. All three of them have mean absolute deviation (MAD) versus

CCSD(T) of at least 15 kcal/mol. Adding in the dynamical correlation through MP2

or (2) significantly improves the predicted energies. MP2 predictions have a MAD

of only 4.6 kcal/mol, and PP(2) improves this to 3.8 kcal/mol, virtually the same as

CCSD! Of course, VOD(2), with its more complete treatment of valence correlation

and triples and quadruples (by having a more complete reference wave function),

performs even better, with a MAD of 2.4 kcal/mol versus CCSD(T).

The worst case for PP(2) is the reaction:

CO2 + 4H2 → CH4 + 2H2O. (7.18)

Its large error of 13 kcal/mol is primarily associated with CO2, for which valence inter-

pair correlations are important. PP recovers only 38% of the VOD correlation energy

for CO2 instead of the more typical range of 50-75%.[53] A simple self-consistent

treatment of interpair correlations using the imperfect pairing (IP) model[76] raises

this recovery to 84% of VOD, which is quite typical for IP. Given the poor PP refer-

ence in this molecule, it is not surprising that PP(2) misbehaves. In general, PP(2)

behaves well as long as PP provides at least a reasonable description of the system,

similarly to how the quality of MP2 depends strongly on the appropriateness of the

HF description.
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Table 7.4: Errors in reaction energies (in kcal/mol) as compared against CCSD(T) for a set of isogyric reactions in the
cc-pVTZ basis. All calculations are unrestricted.

HF PP VOD MP2 PP(2) CCSD VOD(2) CCSD(T)
CO+H2 → CH2O 6.8 0.9 7.1 0.4 1.0 -0.3 -1.3 3.7
N2+3H2 → 2NH3 4.3 14.4 17.6 0.5 1.1 -2.0 2.0 -36.5
C2H2+H2 → C2H4 -0.9 0.9 12.6 2.1 1.4 -0.9 3.0 -50.2

CO2+4H2 → CH4+2H2O 0.2 -4.1 16.8 2.4 -13.0 -4.3 2.5 -55.9
CH2O+2H2 → CH4+H2O 0.7 9.8 9.0 -1.3 -0.2 -1.6 0.4 -61.1

CO+3H2 → CH4+H2O 7.5 10.7 16.1 -1.7 0.7 -1.9 -0.9 -64.9
HCN+3H2 → CH4+NH3 -0.8 10.6 20.2 1.2 2.5 -2.5 3.4 -76.6

H2O2+H2 → 2H2O -36.3 11.3 -11.0 -10.1 -4.6 -10.0 -2.4 -127.2
HNO+2H2 → H2O+NH3 -6.7 6.3 -0.1 -5.6 -4.0 -3.4 -1.1 -173.7

C2H2+3H2 → 2CH4 -2.4 7.6 21.1 0.9 3.5 -2.5 4.6 -109.8
CH2(

1A1)+H2 → CH4 24.2 22.8 18.6 -4.5 1.5 1.5 -0.2 -130.5
F2+H2 → 2HF -13.3 11.4 -10.0 -7.6 -4.0 -3.4 -0.8 -131.7

2CH2(
1A1) → C2H4 49.8 38.8 28.8 -7.9 0.9 4.7 -1.3 -201.4

Mean Abs. Deviation 15.4 15.0 18.9 4.6 3.8 3.9 2.4
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7.3.3 Bond-breaking in N2

One particular strength of the PP model is its behavior during bond-breaking.

Unlike restricted MP2 (RMP2) or many other approximate restricted coupled cluster

methods, restricted PP does not exhibit pathological non-variational behaviors as we

stretch the N2 bond, as shown in Figure 7.2. We also present total energies for selected

methods in Table 7.5 to facilitate the reproduction of our work. Full Configuration

Interaction (FCI) results were obtained from Ref [152]. RMP2 turns over only slightly

beyond the equilibrium region. RCCSD(T) behaves well further out, but still turns

over eventually as the underlying RHF reference cannot describe the bond-breaking

correctly. RCCSD is the most robust of the standard single-reference methods, but

it has levelled out and will turn over just beyond the range of the plot. In contrast

to these methods, RPP (with all electrons correlated to ensure that the same PP

pairs are correlated across the potential energy surface) is almost perfectly parallel

to FCI. Clearly, however, the PP wave function is much too high in energy, and it

does not dissociate to the proper atomic products. Unlike the other methods with

dynamical correlation, restricted PP(2) also does not diverge at large bond lengths.

However, with the restricted wave function PP(2) cannot dissociate to the proper

atomic products, so it overestimates the binding energy.

The difficulty faced by restricted wave functions in breaking chemical bonds is well

known, so perhaps a fairer test is to consider the unrestricted models which properly

dissociate to the atomic species, as plotted in Figure 7.3 and listed in Table 7.5.

Now all of the methods behave reasonably at long distances and near equilibrium,

though UMP2 in particular predicts a very inaccurate potential energy surface in the

intermediate regime. UPP now underbinds N2, since it unrestricts to lower the energy

at long range but not near equilibrium. On the other hand, UPP(2) is much more

parallel to FCI than RPP(2) and much improved over UMP2. Though the absolute

error versus FCI for UPP(2) is larger than for UCCSD or UCCSD(T), the relative

errors are similar. Clearly PP(2) is vastly superior to MP2 for this challenging bond-

breaking problem, and its low computational cost makes it potentially more useful

than higher-level coupled cluster methods.
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Table 7.5: Total energies for N2 bond-breaking in the cc-pVDZ basis.

R(N-N) HF PP [7 pairs] PP(2)
Restricted

1.0679 -108.955234 -109.038539 -109.232187
1.1208 -108.949377 -109.041257 -109.238721
1.1737 -108.928479 -109.029990 -109.228364
1.2700 -108.866830 -108.989045 -109.186919
1.4288 -108.737382 -108.903786 -109.094884
1.5875 -108.606251 -108.829215 -109.006341
1.7463 -108.487612 -108.775669 -108.936385
1.9050 -108.384780 -108.740261 -108.888575
2.0638 -108.297078 -108.717405 -108.858744

Unrestricted
1.0679 -108.955234 -109.038577 -109.234279
1.1208 -108.949377 -109.041257 -109.238721
1.1737 -108.930114 -109.029990 -109.228364
1.2700 -108.891633 -108.989045 -109.186919
1.4288 -108.833680 -108.903786 -109.094884
1.5875 -108.790279 -108.837260 -109.009774
1.7463 -108.769959 -108.809995 -108.955919
1.9050 -108.767548 -108.796189 -108.915940
2.0638 -108.771051 -108.791646 -108.909681
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Figure 7.2: N2 bond-breaking using restricted wave functions in the cc-pVDZ basis.

-109.3

-109.2

-109.1

-109.0

-108.9

-108.8

-108.7

1.0 1.2 1.4 1.6 1.8 2.0

E
ne

rg
y 

(h
ar

tr
ee

s)

N-N distance (Ang)

UHF
UPP

UMP2
UPP(2)
UCCSD

UCCSD(T)
FCI

Figure 7.3: N2 bond-breaking using unrestricted wave functions in the cc-pVDZ basis.
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7.3.4 G2 set atomization energies

A more challenging test than reaction energies is posed by the prediction of at-

omization energies, which expose the large difference between atomic and molecular

correlations. We have computed the atomization energies for the 54 small first- and

second- row species in the G2 set[177] using the VDZ(d) basis set (which has exist-

ing auxiliary basis sets available for all atoms present in the G2 set)[178, 143] and

compared against CCSD(T) results. All calculations were unrestricted and broke

symmetry whenever it was energetically favorable.

As expected, HF substantially underbinds molecules, since the neglected corre-

lation energy forms a larger fraction of the molecular total energy than the atomic

ones. Root-mean-square (rms) atomization energy errors exceed 50% with HF. Not

surprisingly, PP also underbinds, though by a fair amount less than HF, with an

rms error of 37 kcal/mol, or 28%. The increased binding arises in large part because

PP includes only opposite spin correlations. This preferentially stabilizes molecules

over atoms, the latter of which tend to have higher spin states and fewer electron

pairs. To get a balanced treatment of atomization energies, dynamical correlation is

clearly necessary. MP2 significantly improves on HF and PP, with an rms error of

8.0 kcal/mol. PP(2) is actually slightly worse energy-wise, with an rms error of 8.3

kcal/mol. On the other hand, if we look at percentage rms errors, MP2 is almost

twice as bad as PP(2) with an error of 15.1% instead of 8.2% because MP2 makes

sizable errors on many of the more weakly-bound species, whereas PP(2) errors are

much more even percentage-wise. CCSD remains somewhat better, with rms errors

around 4.3 kcal/mol and 3.9%. These results suggest that PP(2), though it behaves

well as a bond is stretched, is not always as reliable in the atomization energy as it

was for N2.

In many of these species the correlations are not particularly strong, meaning

that MP2 should behave reasonably well. Furthermore, because of the unbalanced

treatment of high- versus low-spin states in PP which PP(2) must overcome, this test

is one of the most difficult for PP(2). However, the advantage of PP(2) over MP2 is

clearest in a case like F2, which has the highest diradical character in this set with a
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Table 7.6: Root-mean-square errors versus CCSD(T) atomization energies for G2 set
molecules in the VDZ(d) basis.

RMS Error HF PP MP2 PP(2) CCSD
(kcal/mol) 64.5 36.9 8.0 8.3 4.3

(%) 54.2 27.9 15.1 8.2 3.9

lowest-unoccupied MO (LUMO) occupation number of 0.14 (compared to ∼0.04 for

a typical equilibrium carbon-carbon single bond). CCSD(T) predicts a well depth of

28.6 kcal/mol. MP2 underbinds F2 by almost 22 kcal/mol (i.e. it is barely bound!),

whereas PP(2) predicts it only 1.5 kcal/mol too small. This example is also nice

because PP has particular trouble with a species like F2, underbinding it by almost

23 kcal/mol. F2 is an example in which interpair correlations play and important

role,[120, 53] and it seems that PP(2) is able to overcome this particular deficiency

in its reference wave function in this instance.

7.3.5 Radicals

We have recently demonstrated the success of UPP when applied to the challeng-

ing prediction of harmonic vibrational frequencies for various diatomic doublet-state

radicals which suffer from serious spin and spatial symmetry-breaking effects.[59] In

a set of twelve diatomic radicals, UPP in the cc-pVTZ basis cut the errors in UHF

predicted frequencies versus experiment by almost half, with a mean absolute devia-

tion of 7.7% instead of 14.4%. UPP also significantly reduced the spin contamination,

particularly for the most heavily spin-contaminated species like CN, CO+, and N+
2 .

It also reduced the extent of spatial symmetry breaking in N+
2 . OF and F+

2 , the most

challenging species for UPP because of their notorious symmetry-breaking and the

importance of interpair correlations, were the only species for which UPP did not

improve the predicted frequencies.

The primary goal of improving the reference wave function for these challenging

radicals is to enable a stable perturbative correction. As demonstrated in Refs [66, 50],

MP2 and CCSD(T) make very inaccurate predictions because of the high degree of

symmetry-breaking and spin contamination in these radicals. However, we demon-
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strated that improved references significantly stabilized the corrections and made

them much more reliable.[50] Here, we apply PP(2) to see if similar improvements

can be obtained at much lower cost than at the VOD(2) or CCSD(2) levels. MP2,

PP(2), and VOD(2) results, along with those from Ref. [59] are presented in Table 7.7.

Notice first how the symmetry-breaking effects in the UHF reference explode at

the MP2 level.[95] MP2 errors range from roughly 40 cm−1 in the best two cases to

over 1300 cm−1 for NO, with half of the frequencies off by more than 300 cm−1! The

mean absolute percent error is almost 23%, one and a half times larger than that for

HF. UPP makes a significant improvement over UHF, cutting the mean percentage

error almost in half. Furthermore, PP(2) uniformly outperforms MP2 and improves

upon PP. Whereas PP has a mean absolute percent error of almost 8% (or less than

4% if we exclude the clear aberrations of F+
2 and OF), PP(2) reduces it to around 5%

(or less than 3% if we exclude F+
2 ).

The most notable gains are made for the worst-case molecules. For example,

the errors in the predicted frequencies for the three most heavily spin-contaminated

species, CO+, CN, and N+
2 , drop from more than 700 cm−1 (33, 40, and 45%, re-

spectively) to 125-150 cm−1 (6, 7, and 6%, respectively). Even more impressively,

PP(2) reduces the error in the NO frequency from 1324 cm−1 (70%) with MP2 to 146

cm−1 (8%). Interestingly, although PP itself was very close to VOD for NO, PP(2)

is actually much worse than VOD(2) or OD(T) for this species. Even OF, for which

PP was not very well-behaved, cleans up nicely at the PP(2) level, with an error of

only 9 cm−1 (0.9%). Unfortunately, PP(2) does not significantly improve upon F+
2 ,

with an error of 245 cm−1 (22%). The difficulty of UPP with F+
2 and OF due to the

importance of interpair correlations in these species has been noted previously.[59] So

it is not surprising that PP(2) does not fare as well in a case where PP is not clearly

better than HF.

Comparing instead against VOD(2) or experiment, we see that it is for these poorly

behaved molecules that PP(2) fares the worst. Despite the substantial improvements

PP and PP(2) provide over HF and MP2 for species like CN, CO+, N+
2 , and NO,

PP omits significant correlations (primarily those involving the radical electron, and

secondarily those between pairs) and cannot correct the wave function as successfully



168

Table 7.7: Harmonic vibrational frequencies (in cm−1) for various diatomic radi-
cals in the cc-pVTZ basis set as compared to experiment. All calculations are spin
unrestricted.

Expt. HF PP VOD MP2 PP(2) VOD(2) CCSDa

CH 2858.5d 215 -59 -63 109 17 -31 -6
OH 3737.8c 301 -30 -11 98 -1 -17 -40
FH+ 3090b 233 90 62 79 38 73 76
BO 1886b 195 113 40 43 6 19 44
CN 2068.6c -54 19 31 839 128 -4 89

CO+ 2169.8c 239 187 68 707 151 52 124
N+

2 2207b -326 -81 42 981 137 -5 127
CF 1308b 110 -5 -5 46 31 19 39
NO 1904.2c 319 62 62 1324 146 8 86
O+

2 1904.7c 591 153 123 -383 39 3 128
OF 1053b 157 -231 6 313 -9 15 52
F+

2 1104d 479 -370 104 -218 245 27 123
MAD (%) 14.7 7.7 2.8 22.6 4.7 1.1 4.4

a Reference [50] b Reference [80]. c Reference [81].

d Reference [84].

as VOD. The better description of these types of correlation in VOD(2), along with

a more complete description of triple and quadruple excitations, reduces their errors

to about 1%. Of course, given the vast difference in computational costs between

VOD(2) and PP(2), and the relatively modest difference between the costs of PP(2)

and MP2, this approximation appears to provide a good balance between cost and

reliability. Furthermore, when one considers the CCSD results, we see that CCSD

also has some difficulty with these hardest species (CO+, CN, N+
2 , O+

2 , and F+
2 ),

suggesting that a significant part of the discrepancy between PP(2) and VOD(2) is

due to the additional triples and quadruples described by VOD(2). In fact, PP(2) is

fairly comparable with CCSD overall here, but at a lower cost. The improvement of

PP(2) over MP2 recommends it for systems for which these more reliable advanced

coupled cluster methods are not affordable.
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7.3.6 Benzene and symmetry-breaking

One notorious short-coming of the PP model is its failure to predict the D6h sym-

metric structure of benzene. Instead, it favors the D3h structure with alternating

single and double bonds because it is impossible to treat all six bonds equivalently

with only three orthogonal pairs describing the π space. There are two ways to

eliminate this symmetry breaking. The first is to switch to non-orthogonal orbitals,

though this makes the theories more complex.[105] Alternatively, one can include

interpair correlations to restore the orbital invariance found in VOD or CCSD. In-

cluding even a limited set of interpair correlations substantially reduces the degree

of symmetry-breaking, though only a complete set of doubles correlations for the six

orbitals/electrons will completely restore symmetry.[76, 53]

Here, we use PP(2) to include those missing correlations and find that PP(2)

correctly favors the D6h symmetric structure, as plotted in Figure 7.4. In fact, the

PP(2) potential energy slice is very similar to the MP2 one. There is, of course, a

small artifactual cusp at the symmetric structure due to the symmetry-breaking in

the PP wave function. Nevertheless, PP(2) clearly helps overcome this deficiency in

PP.

PP also breaks symmetry for the allyl radical, C3H5, which has three equivalent

electrons in the π space.[59] The fact that PP can only correlate two of the three

electrons leads it to break symmetry by a little less than 1 kcal/mol, with one bond

about 0.05Å longer than the other in the cc-pVDZ basis. It does break symmetry

less severely than does restricted open shell HF, which prefers a structure with a

0.1Å difference in bond length by almost 2 kcal/mol. On the other hand, UHF and

UMP2 (or UCCSD) have no trouble predicting a symmetric structure. When we

apply dynamical correlation to PP for this species, it is not quite able to predict the

symmetric structure, though the deviation from symmetric is only 0.02Å and less

than 0.1 kcal/mol. Unsurprisingly, PP(2) also exhibits a cusp at the symmetric point

where the two symmetry-broken solutions cross.
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Figure 7.4: The deformation of benzene, in the cc-pVDZ basis. PP uses only three
pairs corresponding to the π space.

7.3.7 H + H2 → H2 + H

Of particular interest among strongly-correlated systems are transition states,

which can be quite difficult to predict reliably. We examine the simplest chemical

reaction, H + H2 → H2 + H. All calculations are unrestricted, and the resulting

potential energy surface along the reaction coordinate is plotted in Figure 7.5. Despite

its apparent simplicity, this is a challenging case for PP. The limited correlations

allowed in PP means that it cannot treat the three electrons equivalently at the

transition state. Instead, proceeding along the reaction as written above, the wave

function must change discontinuously from pairing the electrons on the right two

hydrogen atoms to pairing those on the left two hydrogen atoms, leading to a cusp

at the PP transition state. The barrier is also roughly a factor of two too-high.

In contrast, HF and VOD predict a smooth barrier. In particular, VOD is able to

correlate both possible pairs across the potential energy surface, so it can transition

smoothly between the two species.

When we apply dynamical correlation via MP2, PP(2), or VOD(2), the barrier
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Figure 7.5: Potential energy surface for the H + H2 → H2 + H reaction in the cc-
pVDZ basis along the CCSD reaction coordinate. The energy scale is relative to the
reactants at infinite separation.

drops significantly. The MP2 barrier is still a few kcal/mol above the VOD(2) one,

which itself is about 2 kcal/mol above the CCSD(T) one (not shown). PP(2) makes a

valiant effort to obtain the correct PES despite the woeful PP reference, bringing the

barrier height very close to that predicted by MP2. Unfortunately, PP(2) dips slightly

and retains a small cusp at the transition state. In fact, this result is completely

analogous to the allyl radical described above, which also suffers at the PP and

PP(2) levels because of its three equivalent electrons.

7.3.8 Highly-correlated species: the [TCNE]− dimer.

Finally, we consider an interesting organic radical, the tetracyanoethylene [TCNE]

radical anion. The species is ethylene with the hydrogens replaced by cyanide groups,

and an excess electron in the π system. In the solid state, this species dimerizes in

several ways, but the most interesting one is a π stacking-like interaction that forms

an unusually long four-center, two-electron carbon-carbon bond.[179]
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This dimer is particularly challenging to describe because this long carbon-carbon

bond is very diradicaloid, with a PP occupation number in the lowest-unoccupied

MO (LUMO) of just under 0.20 at 2.6Å and 0.36 at 2.9Å, the experimental dimer

separation. In addition, dispersion effects between the two π systems are impor-

tant in the binding. This means that standard wave function methods like MP2

cannot be trusted for this problem due to the very strong correlation, and density

functional theory with existing functionals cannot be used because it fails to capture

dispersion interactions. Finally, its large size, C12N8, makes more elaborate methods

prohibitively expensive.

Jung and Head-Gordon recently showed that one-pair PP describing the dimer

bond produces a fully repulsive binding curve, emphasizing the importance of disper-

sion effects.[138] They used a model system with a single dimer and capped it with

two potassium counter ions to stabilize the structures. When they combined this PP

wave function with multi-reference perturbation theory, they predicted a dimer bound

by -17.3 kcal/mol in the 6-31G* basis at a distance of 2.6Å. Counter-poise-correcting

for basis set superposition error (BSSE), these numbers were revised to -11.2 kcal/mol

and 2.7Å, which is in reasonable agreement with the solid-state experimental data

that suggests a binding enthalpy of -8.8 kcal/mol at 2.9Å.[180]

We repeated their calculations with PP(2) using one pair and restricting all or-

bitals except those in the pair, to enable them to dissociate to the separate atomic

species to reach twice the restricted open-shell HF (ROHF) and RI-RMP2 monomer

energies. We also used the VDZ(d) basis for which an auxiliary fitting set is available

for the dimer and potassium counter ions. Doing so, we find that, as expected, RI-PP

is completely repulsive. Likewise, PP(2) results predicted a binding energy of -15.3

kcal/mol at an optimal dimer separation of 2.6Å, in excellent agreement with the

multi-reference perturbation results. Having demonstrated that PP(2) can reproduce

the correct behavior of the TCNE dimer, in the future it would be interesting to

examine how it behaves with all electron pairs correlated and using an unrestricted

formalism. In this case, PP was used to generate a two-configuration wave func-

tion, and is therefore equivalent to CASSCF(2,2) (ignoring the RI approximation).

However, we could correlate all 83 electron pairs using PP(2) and investigate what ef-
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fect this has on the potential energy surface. Such calculations are utterly impossible

with CASSCF and multi-reference perturbation theories or other common correlation

methods, and they will be the subject of future studies.

7.4 Conclusions

We have presented a low-cost perturbative correction for perfect-pairing coupled

cluster wave functions based on similarity-transformed perturbation theory. The com-

putational requirements for PP(2) scale with the fifth power of system size, the same

as canonical MP2, and overall it costs only up to a factor of several times more than

MP2. This makes it applicable to systems with hundreds of active electrons and tens

of non-hydrogen atoms.

We have demonstrated that PP(2) significantly improves upon MP2 in many dif-

ficult problems, including those of bond-breaking, the treatment of radicals suffering

from symmetry-breaking effects, and reaction energetics. It is also able to treat

highly-correlated species such as the TCNE dimer. This last example is particularly

significant, because of the inability of DFT and MP2 to treat it reasonably. PP(2) is

the simplest single reference method which can correctly predict the potential energy

surface for the TCNE dimer.

Despite the large number of problems for which PP(2) is likely to be successful, it

needs to be tested more widely. For example, it is likely to have trouble with many

transition states. We saw the difficulty PP had with the reaction of H2 + H, and

we know that certain classes of highly-delocalized transition states involving multiple

electron pairs, such as those found in organic electrocyclic reactions like the Cope

rearrangement, are very difficult for pair-based local correlation models.[53]. It is

not clear that PP(2) can adequately compensate for the deficiencies in PP in such

systems. Further study in this regard is necessary

Nevertheless, there exist large classes of problems for which DFT with current

functionals is inadequate due to either very strong correlations or dispersion effects.

Similarly, MP2 fails outright for highly-correlated systems. More robust coupled

cluster methods may perform better in such situations, but they are usually too
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computationally expensive. It is exactly this niche which may be filled by PP(2).
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Chapter 8

Conclusions

Though mean-field Hartree-Fock theory (HF) is extremely successful in many well-

behaved molecules near their equilibrium structures, when the electron correlations

in the molecule become more important, the performance of HF degrades. In our case

study on the diatomic radicals (Chapter 2), we saw just such an example where the

HF reference provided a poor starting point for further correlations. This degradation

can lead to highly erroneous predictions from even nominally very accurate post-HF

methods, since they are still based on HF orbitals.

Clearly, more elaborate multireference methods like CASSCF and CASPT2 can

overcome the limitations of HF, but their extreme computational cost limits them

to very small systems with no more than 14 active electrons. With the goal of

developing a method that can describe strong correlations while remaining highly

computationally affordable, we have developed a two-step approach PP(2).

PP(2) replaces the HF piece with an inexpensive perfect pairing (PP) calculation

that incorporates a linear number of the leading pair correlations into the reference

wave function to account for the static correlation. In many cases, these few terms

are enough to overcome the deficiencies in HF and enable PP to provide a more

stable reference wave function. Applying a second-order perturbative correction, (2),

to account for dynamical correlation effects makes PP(2) quantitative. Our efficient

implementation of PP(2) using the resolution of the identity approximation makes it

cost only a few times more than canonical MP2, and PP(2) is applicable to systems
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with tens of non-hydrogen atoms.

We have demonstrated that PP(2) often performs extremely well, particularly

given its simplicity. For example, it reduces errors in harmonic vibrational frequen-

cies in highly symmetry-broken species by up to an order of magnitude over MP2.

Likewise, a small set of standard reaction energies was predicted very well by PP(2).

It also provides a very good description of diradicaloid species and bond-breaking.

The tetracyanoethylene dimer dianion provided the perfect case for the need for a

method like PP(2). The dimer forms a very diradicaloid bond, which HF and MP2

cannot describe well. The bonding is also strongly influenced by π dispersion inter-

actions between the two monomers, meaning that DFT (with current functionals)

cannot describe it either.

On the other hand, we have also probed some of the limits of PP and PP(2).

Due to its constrained description of correlation effects, PP exhibits a tendency to

break symmetry in species with delocalized electronic structure. We have seen how

poorly PP behaved for benzene and the Cope rearrangement. It also has trouble

with three-electron systems like the transition state for the reaction H + H2 → H2

+ H or the allyl radical, for example. In both cases, the inability of PP to correlate

three electrons equivalently leads to spurious predictions that PP(2) can not quite

overcome.

Clearly, further testing of PP and PP(2) is necessary to understand for which

systems it behaves reasonably. This is the trade-off we face for the extreme computa-

tional efficiency obtained by neglecting so many correlation terms in PP and PP(2).

As we saw in Chapter 4, however, much better recovery of the valence correlation

energy is obtained by IP and DIP with only a quadratic number of correlating am-

plitudes. Unrestricted IP, for example, would likely eliminate many of the flaws in

UPP for radicals, since it would correlate the unpaired electrons. Combined with dy-

namical correlation, IP(2) could likely provide a more robust treatment than PP(2).

On the other hand, a full implementation of IP(2) should scale with the sixth power

of system size, instead of the fifth power in PP(2), making it far less affordable for

large systems. Of course, one could approximate the expensive triple and quadruple

excitation terms in IP(2) in some fashion to reduce this scaling.
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Alternatively, one might prefer to develop an efficient, non-orthogonal formulation

of PP.[105] Using redundant orbitals would enable the uniform treatment of equivalent

centers, as in allyl or benzene. This could overcome the troubling symmetry-breaking

cases in PP and make it much more widely usable. On the other hand, developing an

efficient non-orthogonal PP method with robust convergence presents its own set of

challenges. Even if one of these proposals or some other affordable method eventually

supersedes PP(2) for the problems where PP has some difficulty, it is likely that the

low cost of PP(2) will make it a method of choice in the near future for treating the

many strongly-correlated systems for which it can make useful predictions.
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Appendix A

Restricted, closed-shell

doubly-ionic pairing (DIP)

amplitude equations

The coupled cluster energy and T̂ amplitude equations for closed-shell DIP are

presented below. They were derived by eliminating the singles and non-local doubles

terms from the restricted CCSD equations presented in Ref [133]. The SIP equations

can be obtained trivially by setting tj
∗j∗

ii = 0 for all i and j. The IP and PP equations

have been presented previously.[58, 76]

• The energy equation:

Ecorr =
∑

i

〈ii|i∗i∗〉ti
∗i∗

ii +
∑

ij

(1− δij)
{

[2〈ij|i∗j∗〉 − 〈ij|j∗i∗〉]ti
∗j∗

ij

+[2〈ij|j∗i∗〉 − 〈ij|i∗j∗〉]tj
∗i∗

ij + 2〈ii|i∗j∗〉ti
∗j∗

ii + 2〈ij|i∗i∗〉ti
∗i∗

ij

+〈ii|j∗j∗〉tj
∗j∗

ii

}

(A.1)

• T̂ -amplitude equations. For the ti
∗j∗

ij , tj
∗i∗

ij , ti
∗i∗

ij , ti
∗j∗

ii , and tj
∗j∗

ii equations, i 6= j,

and Pij is defined as Pij(xij) = xij +xji. All sums run over active electron pairs only.
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where the following intermediates are defined:

aij
ii = aji

ii = 〈ij|ii〉+
∑

k

[〈ij|k∗i∗〉+ 〈ij|i∗k∗〉(1− δik)]ti
∗k∗

ii (A.8)

(for i 6= j) aik
ij = 〈ik|ij〉+ 〈ik|i∗i∗〉ti

∗i∗

ij + 〈ik|i∗j∗〉ti
∗j∗

ij + 〈ik|j∗i∗〉tj
∗i∗

ij

+〈ik|j∗j∗〉tj
∗j∗

ij (A.9)

(for i 6= j) aki
ij = 〈ki|ij〉+ 〈ki|i∗i∗〉ti

∗i∗

ij + 〈ki|i∗j∗〉ti
∗j∗

ij + 〈ki|j∗i∗〉tj
∗i∗

ij

+〈ki|j∗j∗〉tj
∗j∗

ij (A.10)

(for i 6= j) akk
ij = 〈ki|jk〉+ 〈ki∗|j∗k〉(ti

∗j∗

ij + tj
∗i∗

ij ) + 〈ki∗|i∗k〉ti
∗i∗

ij

+〈kj∗|j∗k〉tj
∗j∗

ji (A.11)

(for i 6= j) ajk
ii = 〈ij|ki〉+

∑

m

[

〈m∗k|jm∗〉tm
∗m∗

ii + (1− δim)(〈jk|i∗m∗〉

+〈jk|m∗i∗〉)ti
∗m∗

ii

]

(A.12)

ej
i = 〈ji|i∗i∗〉ti

∗i∗

ii +
∑

k

(1− δik)
{

[2〈jk|i∗k∗〉 − 〈jk|k∗i∗〉]ti
∗k∗

ik +

[2〈jk|k∗i∗〉 − 〈jk|i∗k∗〉]tk
∗i∗

ik + [〈ji|i∗k∗〉+ 〈ji|k∗i∗〉]ti
∗k∗

ii

+〈jk|k∗k∗〉tk
∗k∗

ki + 〈jk|i∗i∗〉ti
∗i∗

ik + 〈ji|k∗k∗〉tk
∗k∗

ii

}

(A.13)

ei∗

j∗ = 〈ii|j∗i∗〉ti
∗i∗

ii +
∑

k

(1− δik)
{

[2〈ik|j∗k∗〉 − 〈ik|k∗j∗〉]ti
∗k∗

ik
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+[2〈ik|k∗j∗〉 − 〈ik|j∗k∗〉]tk
∗i∗

ik + [〈ik|j∗i∗〉+ 〈ki|j∗i∗〉]ti
∗i∗

ik

+〈kk|j∗k∗〉tk
∗i∗

kk + 〈ii|j∗k∗〉ti
∗k∗

ii + 〈kk|j∗i∗〉ti
∗i∗

kk

}

(A.14)

jk∗i
ij∗ = 〈k∗i|ij∗〉+

1

2
δki

∑

m

{

− 〈im|j∗m∗〉tm
∗i∗

im

+[2〈im|j∗m∗〉 − 〈im|m∗j∗〉]ti
∗m∗

im

+(1− δmi)[〈im|j
∗i∗〉 − 〈im|i∗j∗〉]ti

∗i∗

im

}

+
1

2
(1− δki)

{

− 〈ik|j∗i∗〉ti
∗k∗

ik + [2〈ik|j∗i∗〉 − 〈ik|i∗j∗〉]tk
∗i∗

ik

+[〈ik|j∗k∗〉 − 〈ik|k∗j∗〉]tk
∗k∗

ik

}

(A.15)

ji∗j
ki∗ = 〈i∗j|ki∗〉+

1

2
δki

∑

m

{

− 〈jm|i∗m∗〉tm
∗i∗

km

+[2〈jm|i∗m∗〉 − 〈jm|m∗i∗〉]ti
∗m∗

km

+(1− δmi)[〈ji|i
∗m∗〉 − 〈ji|m∗i∗〉]ti

∗m∗

ki

}

+
1

2
(1− δki)

{

− 〈ji|i∗k∗〉tk
∗i∗

ki + [2〈ij|k∗i∗〉 − 〈ij|i∗k∗〉]tk
∗i∗

ik

+ + [〈jk|i∗k∗〉 − 〈jk|k∗i∗〉]tk
∗i∗

kk

}

(A.16)

ji∗k
ij∗ = 〈i∗k|ij∗〉+

1

2

∑

m

{

− 〈km|j∗m∗〉tm
∗i∗

im

+[2〈km|j∗m∗〉 − 〈km|m∗j∗〉]ti
∗m∗

im

+(1− δmi)
(

[〈ki|j∗m∗〉 − 〈ki|m∗j∗〉]ti
∗m∗

ii

+[〈km|j∗i∗〉 − 〈km|i∗j∗〉]ti
∗i∗

im

)

}

(A.17)

(for i 6= jk) ji∗i
jk∗ = 〈i∗i|jk∗〉+

1

2
〈ii|k∗j∗〉(tj

∗i∗

ij − ti
∗j∗

ij )

+
1

2
(〈ij|k∗j∗〉 − 〈ij|j∗k∗〉)tj

∗i∗

jj

+
1

2
(〈ij|k∗i∗〉 − 〈ij|i∗k∗〉)ti

∗i∗

jj (A.18)

jk∗i
ji∗ = 〈k∗i|ji∗〉+

1

2
δjk

∑

m

[

− 〈im|i∗m∗〉tm
∗j∗

jm

+(2〈im|i∗m∗〉 − 〈im|m∗i∗〉)tj
∗m∗

jm

+(1− δjm)(〈im|i∗j∗〉 − 〈im|j∗i∗〉)tj
∗j∗

jm

+(1− δjm)(〈ij|i∗m∗〉 − 〈ij|m∗i∗〉)tj
∗m∗

jj )
]

+
1

2
(1− δjk)

[

− 〈ik|i∗j∗〉tj
∗k∗

jk + (2〈ik|i∗j∗〉 − 〈ik|j∗i∗〉)tk
∗j∗

jk

+(〈ij|i∗j∗〉 − 〈ij|j∗i∗〉)tj
∗k∗

jj + (〈ik|i∗k∗〉 − 〈ik|k∗i∗〉)tk
∗k∗

kj
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+(〈ij|i∗k∗〉 − 〈ij|k∗i∗〉)tk
∗k∗

jj

]

(A.19)

jj∗k
ii∗ = 〈j∗k|ii∗〉+

1

2
δij
∑

m

[

− 〈km|i∗m∗〉tm
∗i∗

im

+(2〈km|i∗m∗〉 − 〈km|m∗i∗〉)ti
∗m∗

im

+(1− δmi)(〈ki|i
∗m∗〉 − 〈ki|m∗i∗〉)ti

∗m∗

ii

]

+
1

2
(1− δij)

[

(〈kj|i∗j∗〉 − 〈kj|j∗i∗〉)tj
∗j∗

ji

+
1

2
〈kj|i∗i∗〉(tj

∗i∗

ij − ti
∗j∗

ij )

+
1

2
(〈ki|i∗j∗〉 − 〈ki|j∗i∗〉)tj

∗j∗

ii

]

(A.20)

kki∗

ij∗ = 〈ki∗|ij∗〉 −
1

2

∑

m

{

〈km|m∗j∗〉tm
∗i∗

im + (1− δmi)[〈ki|m
∗j∗〉ti

∗m∗

ii

+〈km|i∗j∗〉ti
∗i∗

im ]
}

(A.21)

kij∗

ik∗ = 〈ij∗|ik∗〉 −
1

2
δij
∑

m

{

〈im|m∗k∗〉tm
∗i∗

im + (1− δmi)[〈ii|m
∗k∗〉ti

∗m∗

ii

+〈im|i∗k∗〉ti
∗i∗

im ]
}

−
1

2
(1− δij)

[

〈ij|i∗k∗〉ti
∗j∗

ij + 〈ij|j∗k∗〉tj
∗j∗

ji

+〈ii|i∗k∗〉ti
∗j∗

ii + 〈ii|j∗k∗〉tj
∗j∗

ii

]

(A.22)

kkj∗

ik∗ = 〈ik∗|kj∗〉 −
1

2
δij
∑

m

{

〈km|m∗k∗〉tm
∗i∗

im

+(1− δmi)[〈ki|m
∗k∗〉ti

∗m∗

ii + 〈km|i∗k∗〉ti
∗i∗

im ]
}

−
1

2
(1− δij)

[

〈kj|i∗k∗〉ti
∗j∗

ij + 〈ki|i∗k∗〉ti
∗j∗

ii + 〈kj|j∗k∗〉tj
∗j∗

ji

+〈ki|j∗k∗〉tj
∗j∗

ii

]

(A.23)

kkj∗

ii∗ = 〈ii∗|kj∗〉 −
1

2
δij
∑

m

{

〈km|m∗i∗〉tm
∗i∗

im + (1− δmi)[〈ki|m
∗i∗〉ti

∗m∗

ii

+〈km|i∗i∗〉ti
∗i∗

im ]
}

−
1

2
(1− δij)[〈kj|i

∗i∗〉ti
∗j∗

ij + 〈ki|i∗i∗〉ti
∗j∗

ii

+〈kj|j∗i∗〉tj
∗j∗

ji + 〈ki|j∗i∗〉tj
∗j∗

ii ] (A.24)

(for i 6= jk) kii∗

jk∗ = 〈ii∗|jk∗〉 −
1

2
(1− δij)[〈ii|j

∗k∗〉ti
∗j∗

ij + 〈ii|i∗k∗〉ti
∗i∗

ij

+〈ij|j∗k∗〉tj
∗i∗

jj + 〈ij|i∗k∗〉ti
∗i∗

jj ] (A.25)

kki∗

ji∗ = 〈ki∗|ji∗〉 −
1

2
δij
∑

m

[

〈km|m∗i∗〉tm
∗i∗

im

+(1− δim)(〈km|i∗i∗〉ti
∗i∗

im + 〈ki|m∗i∗〉ti
∗m∗

ii )
]
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−
1

2
(1− δij)[〈ki|j

∗i∗〉tj
∗i∗

ji + 〈kj|j∗i∗〉tj
∗i∗

jj + 〈ki|i∗i∗〉ti
∗i∗

ij

+〈kj|i∗i∗〉ti
∗i∗

jj ] (A.26)
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Appendix B

Iterative singular value

decomposition via Davidson

diagonalization

As discussed above, it turns out that one typically only cares about the largest or

largest few singular values for the Tn matrix. Moreover, the number of elements in the

Tn matrix scales as OnV n and therefore a full SVD, scaling as O2nV n, quickly becomes

expensive. An ideal algorithm should be computationally inexpensive compared to

the underlying coupled cluster calculation, making such analysis feasible for all sys-

tems that can be studied with CC theory. A stable, inexpensive, iterative approach

for calculating a small number of singular values along the lines of the Davidson di-

agonalization meets these criteria and is presented here. The computational effort

associated with this calculation is almost trivial compared to the underlying CCSD

calculation.

As explained in most graduate-level books on numerical matrix computations,[169]

the stable way to write the SVD of Tn = UΣV † as an eigenvalue problem is as the

Hermitian matrix,

H =

(

0 T †
n

Tn 0

)

(B.1)
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which has the following eigenvalue equation:

(

0 T †
n

Tn 0

)(

V V

U −U

)

=

(

V V

U −U

)(

Σ 0

0 −Σ

)

. (B.2)

The matrix H can be diagonalized using the Davidson diagonalization (or using

any other iterative diagonalization procedure.). Obviously, one does not want to form

the full H matrix, as it is extremely large and would quickly become impossible to

store in memory. Fortunately, the Davidson procedure requires only the formation

of matrix-vector products δi = Hbi and inner products between vectors in the sets

{bi} and {δj}. These matrix-vector products can be formed by multiplying only the

proper rows and columns of the full T2 matrix without ever constructing the full H

matrix. This most expensive step scales as O2V 2, which is substantially less than the

O2V 4 scaling of CCSD.

Secondly, standard Davidson diagonalization as applied to Configuration Inter-

action utilizes a preconditioner based on the diagonal elements of the Hamiltonian,

which is typically diagonal-dominant. In this case, the H matrix is definitely not

diagonal dominant (the diagonal elements are all zero), but nevertheless, we empir-

ically find convergence within roughly 20 iterations using the standard Davidson or

Davidson-Liu (to solve for multiple roots simultaneously)[181] procedures. There-

fore, the diagonal non-dominance of the H matrix here does not seem to be a major

obstacle in the application of this procedure.
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Appendix C

Blocks of the

similarity-transformed Hamiltonian

H̄ = e
−T̂

Ĥe
T̂ required for PP(2).

In the notation used here, i, j, k, . . . refer to any occupied orbital, a, b, c, . . . to any

virtual orbital, and capital letters to the orbitals in the pair: I and Ī, the alpha and

beta occupied orbitals in pair I, and I∗ and Ī∗, the corresponding alpha and beta

virtual orbitals in the pair. Summations run over all occupied, virtuals, or pairs,

respectively.

One-body operator F̄ p
•q{p

†q}:

F̄ a
•i = fa

•i + δI∗Af
Ī
•Ī∗tI +W aI

••I∗Ī∗tI − δJ∗AW
JJ̄
••iJ̄∗tJ (C.1)

F̄ a
•b = fa

•b − δJ∗AW
JJ̄
••bJ̄∗tJ (C.2)

F̄ i
•j = f i

•j +W iJ̄
••J∗J̄∗tJ (C.3)

F̄ i
•a = f i

•a (C.4)

• Two-body operator W̄ pq
••rs{p

†q†sr}:

W̄ ab
••ij = W ab

••ij + δIJ̄P (ab)
(

δĪ∗Bf
a
•I∗ − δI∗Bf

a
•Ī∗

)

tI

−δAK∗δAB̄P (ij)
(

δJK̄f
K
•i − δJKf

K̄
•i

)

tK

+P (ab)P (ij)
(

δAI∗W
Īb
••Ī∗j − δAĪ∗W

Īb
••I∗j

)

tI
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+δIJ̄W
ab
••I∗Ī∗tI + δAB̄δAK∗WKK̄

••ij tK

+P (ij)P (ab)δAI∗δB̄J̄∗W ĪJ
••Ī∗J∗tItJ + δIJ̄δAB̄δAK∗WKK̄

••I∗Ī∗tItK

−P (ij)δAB̄δBJ∗W ĪJ̄
••I∗Ī∗tItJ − P (kj)δIJ̄δBJ∗δAK∗W K̄K

••K̄∗J̄tItK (C.5)

W̄ ab
••ci = W ab

••ci +
(

δAI∗δAB̄ − δI∗ĀδĀB

)

f Ī
•ctI − δAB̄δAK∗WKK̄

••ic tK

+P (ab)
(

δBI∗W
aĪ
••cĪ∗ − δBĪ∗W

aĪ
••cI∗

)

tI (C.6)

W̄ ia
••jk = W ia

••jk − δJK̄

(

δaJ̄∗f i
•J∗ − δaJ∗f i

•J̄∗

)

tJ − δJK̄W
ai
••J∗J̄∗tJ

+P (jk)
(

δAK∗W iK̄
••jK̄∗ − δAK̄∗W iK̄

••jK∗

)

tK (C.7)

W̄ ab
••cd = W ab

••cd + δI∗AδAB̄W
IĪ
••cdtI (C.8)

W̄ kl
••ij = W kl

••ij + δIJ̄W
kl
••I∗Ī∗tI (C.9)

W̄ ia
••jb = W ia

••jb +
(

δAJ∗W iJ̄
••J̄∗b − δAJ̄∗W iJ̄

••J∗b

)

tJ (C.10)

W̄ ai
••bc = W ai

••bc (C.11)

W̄ ij
••ka = W ij

••ka (C.12)

W̄ ij
••ab = W ij

••ab (C.13)

(C.14)

• Required blocks of the three-body operator W̄ abc
•••ijk{a

†b†c†ijk}:

W̄ I∗Ī∗c
•••Ijk = (1− δI∗c)(1− δĪ∗c)(1− δIj)(1− δIk)tI

×
[

− W̄ Īc
••jk + P (jk)δjĪ(W̄ Ī∗c

••Ī∗k + W̄ I∗c
••I∗k − W̄

Ic
••Ik)

]

+
pairs
∑

M 6=I

tM(W̄ Ī∗I∗

••M̄∗I + tiF̄
Ī
•M̄∗)δcM∗(δjM̄δkM − δjMδkM̄) (C.15)

W̄ I∗Ī∗c
•••Ījk = (1− δI∗c)(1− δĪ∗c)(1− δĪj)(1− δĪk)tI

×
[

W̄ Ic
••jk − P (jk)δjI(W̄ Ī∗c

••Ī∗k + W̄ I∗c
••I∗k − W̄

Īc
••Īk)

]

+
pairs
∑

M 6=I

tM(W̄ Ī∗I∗

••M∗Ī − tiF̄
I
•M∗)δcM̄∗(δjMδkM̄ − δjM̄δkM) (C.16)

W̄ I∗bc
•••IĪk = (1− δIk)(1− δĪk)(1− δI∗b)(1− δI∗c)tI

×
[

W̄ bc
••Ī∗k + P (bc)δĪ∗b(W̄

I∗c
••I∗k − W̄

Īc
••Īk − W̄

Ic
••Ik)

]

−
pairs
∑

M 6=I

tM(W̄ M̄I∗

••ĪI − tiF̄
M̄
•Ī∗)δkM(δcM∗δbM̄∗ − δcM̄∗δbM∗) (C.17)

W̄ Ī∗bc
•••IĪk = (1− δIk)(1− δĪk)(1− δĪ∗b)(1− δĪ∗c)tI

×
[

− W̄ bc
••I∗k − P (bc)δI∗b(W̄

Ī∗c
••Ī∗k − W̄

Īc
••Īk − W̄

Ic
••Ik)

]
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−
pairs
∑

M 6=I

tM(W̄MĪ∗

••ĪI + tiF̄
M
•I∗)δkM(δcM∗δbM̄∗ − δcM̄∗δbM∗) (C.18)

• Required blocks of the four-body operator W̄ abcd
••••ijkl{a

†b†c†d†ijkl}:

W̄ I∗Ī∗cd
••••IĪkl = P (cd)P (kl)

pairs
∑

M 6=I

tItM

×
{

(1− δI∗c)(1− δĪ∗c)

×[δdM̄∗δkMδlM̄δc∈α(W̄ Ī∗c
••Ī∗M∗ + W̄ I∗c

••I∗M∗ − W̄ Īc
••ĪM∗ − W̄ Ic

••IM∗)]

+ (1− δI∗c)(1− δĪ∗c)

×[δdM∗δkM̄δlMδc∈β(W̄ Ī∗c
••Ī∗M̄∗ + W̄ I∗c

••I∗M̄∗ − W̄ Īc
••ĪM̄∗ − W̄ Ic

••IM̄∗)]

+ (1− δIk)(1− δĪk)

×[δlM̄δcM∗δdM̄∗δk∈α(W̄ ĪM
••Īk + W̄ IM

••Ik − W̄
MĪ∗

••kĪ∗ − W̄
MI∗

••kI∗)]

+ (1− δIk)(1− δĪk)

×[δlMδcM̄∗δdM∗δk∈β(W̄ ĪM̄
••Īk + W̄ IM̄

••Ik − W̄
M̄Ī∗

••kĪ∗ − W̄
M̄I∗

••kI∗)]
}

(C.19)
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2000.

[149] R. P. Muller, J. M. Langlois, M. N. Ringnalda, R.A. Friesner, and W.A. God-

dard III. A generalized direct inversion in the iterative subspace approach for

generalized valence bond wave functions. J. Chem. Phys., 100:1226–1235, 1994.

[150] Irina V. Ionova and Emily A. Carter. Orbital-based direct inversion in the

iterative subspace for the generalized valence bond method. J. Chem. Phys.,

102:1251–1256, 1995.
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