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The solution of the Hartree-Fock equations involves the iterative construction of the Fock 
matrix based on approximate molecular orbit& and the diagonal&&ion of that Fock matrix to 
obtain new approximations to those orbitals. A significant portion of this work is unnecessary, 
however, because the occupied molecular orbitals, which are required to construct the Fock 
matrix, represent a small fraction of the total number of orbitals that are obtained in the 
diagonalization, and furthermore, typically change little in each iteration. In this paper we 
introduce a new method which significantly accelerates diagonalization of the Fock matrix by 
avoiding the unnecessary calculation of the virtual orbitals. Using the occupied orbitals from the 
previous iteration as an initial guess, accurate updated orbitals are obtained through a 
combination of diagonalization in the subspace spanned by the occupied orbitals and the mixing 
of virtual orbital character into the occupied orbitals using a single-vector Lanczos algorithm. 
Calculations are presented which demonstrate up to 15-fold acceleration of the Fock matrix 
diagonal&&ions in a typical problem of 430 orbit&. 

I. INTRODUCTION 

With the explosive growth in the power of computers 
over the past 10 years, ab initio electronic structure calcu- 
lations of increasingly large molecules have become feasi- 
ble. At present, both GAUSSIAN 92 and our own PSGVB 
program can carry out self-consistent field calculations us- 
ing as many as 2000 basis functions; for a double-zeta plus 
polarization (DZP) basis set, this corresponds to mole- 
cules of 200 &&-row atoms. Powerful and increasingly 
reliable density functional codes, e.g., DGAUSS and DEMON, 
have also been developed and are similarly capable of deal- 
ing with very large molecular structures.’ 

Assembly of the self-consistent (Fock) operators in 
both the Hartree-Fock and density functional methods 
scales asymptotically as iV2, where iV is the size of the basis 
set, and the use of sophisticated cutoff strategies has al- 
lowed these limits to be approached in actual calculations. 
In contrast, diagonalization of the Fock matrix (necessary 
for most convergence schemes, in particular the DIIS ap- 
proach of Pulay,’ which is presently the most efficient 
available) using standard QR packages scales as iV3. Con- 
sequently, a point will be reached where the time for ma- 
trix diagonalization dominates the self-consistent field 
(SCF) iteration process. It is likely, in fact, that this point 
will be reached for molecules in the 100-200 atom range 
when numerical methods in the PSGVB program are applied 
to density functional calculations, work that is currently in 
progress. 

This state of affairs provides a motivation to develop 
diagonalization methods that are more efficient than the 
existing QR algorithms, spectically tailored to the problem 
at hand. Given that one has a good initial guess for the 
occupied orbitals on every iteration, it seems wasteful not 
to optimally utilize this information. A reasonable hypoth- 
esis is that iterative refinement techniques would be able to 
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start from this initial guess and yield adequately converged 
answers in less cpu time than would be required for a full 
QR diagonalization. An additional advantage, of equal if 
not greater importance for modern hardware, is the ease of 
parallelization of the multiple iterative refinements of the 
occupied orbitals, the most expensive part of which is com- 
pletely independent for each orbital. 

A variety of iterative diagonalization methods exist for 
finding a restricted number of eigenvectors of a matrix. 
The problem considered here, however, has a number of 
features not commonly associated with the use of such 
methods; ( 1) the matrix is not particularly sparse; (2) 
there are numerous near degeneracies in the occupied 
space; and (3) a relatively large number eigenvectors are 
required. These features are all inimical to the use of iter- 
ative methods and account for the use of the QR algorithm 
in existing SCF ab initio programs. 

In the present paper we describe a new approach, 
based on the Lanczos algorithm3 but containing a number 
of innovative modifications which allow the difficulties al- 
luded to above to be surmounted. The essential feature of 
our proposed method is the use of a low-order Krylov- 
spa& expansion to refine initial guesses for the occupied 
molecular orbitals. The n-dimensional Krylov space for a 
given matrix F and initial vector v. is that space spanned 
by the vectors Five, where j =0 ,..., (n - 1). Thus, this 
space contains by construction those parts of the overall 
vector space of F that are most strongly coupled to v. . If v. 
is already close to some eigenvector of F, then diagonal- 
ization of F within a Rrylov space built upon v. would 
reasonably be expected to yield an improved estimate of 
this eigenvector. 

There are two characteristics of the Hartree-Fock 
equations that make this a fruitful approach. First, there is 
typically a significant energy gap between the occupied and 
virtual orbitals, and the coupling of these two sets of or- 
bitals by an unconverged Fock matrix can be expected to 
be smaller than the couplings among the occupied orbitals 
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themselves. This suggests that it would be productive to 
first diagonalize the Fock matrix in the space of the occu- 
pied orbitals and then allow for the weaker coupling of 
these orbitals to the virtual orbitals by diagonalizing, again, 
in a small Krylov space based on each of the occupied- 
space eigenvectors in turn. Second, because the number of 
occupied orbitals is typically somewhat less than half the 
total number of orbitals in the basis set, and the cost of 
matrix diagonalization scales as the cube of the matrix size, 
diagonalization in the occupied subspace is quite inexpen- 
sive compared to full diagonalization of the Fock matrix. 
In the problem considered below, for instance, only a fifth 
of the total number of calculated orbitals are occupied, so 
that diagonalization of F  in the occupied subspace is 
roughly a hundred times faster than full diagonalization. 

The new diagonalization algorithm is described in 
some detail in the next section below, and then calculations 
are presented which demonstrate the behavior of this 
method in a typical large-molecule calculation. Substantial 
tim ing improvements are obtained over the standard QR 
packages for a Hartree-Fock calculation on porphin at the 
DZP level, which requires a Fock matrix of 430 basis func- 
tions. We have automated the method in a robust fashion 
and, indeed, have now incorporated it as a standard com- 
ponent in PSGVE?. Future publications will describe a more 
extensive set of tests on larger molecules, where the advan- 
tages are considerably more significant, as well as applica- 
tions to density functional calculations. _ 

II. THEORY 

The Hartree-Fock equations, expressed in a general 
basis set, take the form of the generalized eigenvalue equa- 
tion (the Roothaan equation) ,4 

FC=SCE. (1) 
Here, F  is the Fock matrix and S is the overlap matrix of 
the basis functions; the eigenvectors and eigenvalues, in 
matrix C and diagonal matrix E, respectively, represent the 
molecular orbitals and their energies. Although the Lanc- 
zos algorithm can be applied to this equation directly3 it is 
more efficient to first transform the problem into an or- 
thogonal basis set, so that S becomes a unit matrix. In fact, 
this is the usual first step in solving this equation, and it is 
natural to use the eigenvectors of S in the transformation. 
One particular scheme, canonical orthogonalization, em- 
ploys the transformation matrix X=UX-I”, where U and 
X are the eigenvectors and eigenvalues of.the overlap ma- 
trix, i.e., SU=UZ Equation (1) becomes 

GV=VE, (2) 
where 

G=XTl?X, 

v=x-‘c. (3) 
At the nth stage of the iterative solution of Eq. (2)) the 

occupied orbitals from the complete set, V,, define the 
electronic density matrix, which is needed to construct the 

Fock matrix, F,. The transformed Fock matrix, G,, is 
then diagonalized to yield a new (complete) set of orbitals, 
V n+l. That is, 

GVtt+l=V,+~%+l. (4) 
The occupied orbitals of this new set are then used to 
construct a better estimate of the Fock matrix, etc., until a 
self-consistent Fock matrix and orbital set are obtained. As 
self-consistency is approached, the orbitals Vn+l will be 
less and less different from the orbitals V, that were used to 
construct G, . With the Lanczos refinement algorithm, we 
can obtain, at each stage, just the occupied orbitals of 
V n+l, using the V, as an initial guess. 

The application of our proposed Lanczos refinement 
method to a set of approximate cigenvectors of the Fock 
matrix is an iterative process involving four stages. First, 
the Fock matrix G, is diagonalized in the subspace of the 
occupied (approximate) orbitals, V,, since their mutual 
couplings are expected to be significantly stronger than the 
coupling of the occupied and virtual orbitals. This is fol- 
lowed by the Lanczos refinement of each occupied eigen- 
vector, in turn, to incorporate the couplings to the virtual 
orbitals. The refined eigenvectors are reorthogonalized and 
finally G, is diagonalized again over the refined eigenvec- 
tors. The latter step is necessary to resolve secondary cou- 
plings among the occupied eigenvectors through the virtual 
orbitals. The convergence of the refined eigenvectors is 
checked, and any unconverged vectors are subjected to ad- 
ditional cycles of refinement and rediagonalization. Each 
of these stages is considered now, in turn. 
A. Diagonalization in occupied subspace 

The first step is to diagonalize the Ivan matrix G in 
the space of the iV,, occupied orbitals. Writing V’ to de- 
note the matrix whose columns are the occupied orbitals of 
V, then G’ = V’ TGV’ is the representation of G in the space 
of the occupied orbit&. Its eigenvalue equation is 

G’D’ = D’E. (5) 
The columns of the matrix D = V’D’, are therefore approx- 
imate eigenvectors of G in which only couplirigs among the 
occupied-space vectors of V’ have been considered. The 
vectors of D now become the object of Lanczos refinement 
to include the weaker couplings to the virtual orbitals. In 
the next section, we describe in detail the refinement of a 
given trial vector out of this set. 

A final point is that in a typical problem, where N,, is 
significantly smaller than N, the computational cost of di- 
agohalization in the occupied subspace is dominated by the 
construction of the G’ matrix and that the cost of the 
actual diagonalization of G’ is negligible. The construction 
of the G’ requires the multiplication of each initial (ap- 
proximate) eigenvector by the full G  matrix, sol that the 
overall constructiofi scales roughly as iV2iVm,; the diago- 
nalization, in contrast, scales simply as N&. ._ 

B. Lanczos refinement of a trial eigenvector 

Given a symmetric matrix G and an initial (normal- 
ized) vector wo, the Lanczos algorithm describes the con- 
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struction of an orthonormal basis set, {wi), that spans the 
n-dimensional space defined by n- 1 applications of G to 
w. (the Krylov space); the special property of the Lanczos 
basis is that it gives G a tridiagonal representation. The 
basis vectors are defined by the recurrence relation3 

pj+lwj+l=Gwj-ajw~-~jwj-l, 

where 
36). 

a j = WTGwj = Tj, j 3 

T Pj+l=Wj+lGwj=Tj+l,js 
(7) 

with the definition po=O, note that &=O when the initial 
vector w. is already an eigenvector of G. Here, Wj is the fib 
orthonormal basis vector and T,j is a matrix element of G 
in this basis. Using the recurrence relation, Eq. (6), the 
(wj} are constructed iteratively; starting from a given vec- 
tor Wj, the next basis vector Wj+l is obtained by 

(1) Uj+l=Gwj, 

(2) CtjLi=WTUj+l, 

(3) Ui+1=Uj+l-ajWj-fijWj-lt 

(4) Pj+l=CU~~lU$+l)1’29 
,- 

and finally, 

(8) 

(5) Wj+l”U>+l/pi+l- 

We denote by TCNkryj the Nkry x Nti (tridiagonal) ma- 
trix that is generated by Nkry - 1 iterations of Eq. (8)) and 
by W(N,), the NXNw matrix whose columns are the 
Lanczos basis vectors wc,...,wNw-l. Writing the eigen- 
value equation for TcNkry) as 

T,Nw,Y’=Y’E, (9) 

the columns of Y = WY’ are the Krylov-space eigenvectors 
expressed in the full basis set of G. As Nkry approaches N, 
the eigenvalues of TANS) will converge on those of G. It is 
well known that different eigenvalues converge at different 
rates and that, typically, the extreme eigenvalues converge 
most quickly.3 In our application, since w. is assumed to be 
close to some particular eigenvector of G, this eigenvector 
is expected to converge especially quickly with increasing 
Nkry* TcNkry) is diagonalized for every Nti and its eigen- 
vectors are checked for convergence to some arbitrary level 
of accuracy. Once the eigenvector that correlates most 
strongly with w. has satisfied the convergence criterion, it 
is accepted and iteration is halted. 

One advantage of the Lanczos algorithm is the conve- 
nience with which convergence of the approximate eigen- 
vectors can be estimated. A natural criterion to use is p”, 
where p is the value of fll that would be obtained if the 
approximate eigenvector were used as another initial vec- 
tor w. in Eqs. (6), (7)) and (8). That is, for some approx- 
imate (normalized) eigenvector yj, 

P”=ll (G-Y,rGyi>Yjll”, (lo)- 

which vanishes when yi is an eigenvector of G. When yj is 
close to some eigenvector z of G, it can be shown (see 
Appendix) that /?” is proportional to both the error in the 
eigenvector, 1 - I ZTyil, and to a factor, AZ), that is differ- 
ent for every eigenvector of G. In the porphin calculation 
presented below, the quantity 1;) is found to be on the 
order or unity or greater (up to two orders of magnitude 
greater). In our implementation, we conservatively assume 
that /3” is a direct measure of the absolute error. The cal- 
culation of /?” is simplitied when yi is the ith eigenvector of 
T,N~, , in which case 

(12) 

where PN, = w:~+ lGwNti was calculated in the last iter- 
ation of Eq. (8) and wNtiml is the highest-order Krylov- 
space basis vector. Thus, no extra work, in particular no 
additional multiplication with G, is required to estimate 
the convergence of the eigenvectors of TANS). 

In practice, the convergence of the eigenvector being 
refined is initially rapid, but eventually reaches a point at 
which further expansion of the Krylov space no longer 
improves the refined eigenvector. For most examples con- 
sidered, f12 actually increases significantly, or fluctuates, 
with Nkry after the initial period of rapid convergence. Pre- 
sumably this behavior is related to the well-known charac- 
teristic of the Lanczos algorithm that orthonormality of 
the Lanczos basis vectors is lost once some of the eigen- 
vectors of TANS) have converged.3 Because of this, how- 
ever, it is necessary to set a maximum size on the Krylov 
space used for refinement. As the Krylov space is increased 
in size, the best eigenvector obtained, i.e., the one with the 
lowest /3” value, is always kept if the convergence criterion 
is not met before the Krylov-space size lim it is reached. 
Eigenvectors which have not converged are marked and 
resubmitted to Lanczos refinement after rediagonalizing 
the Fock matrix in the space of the refined eigenvectors. 

C. Reorthogonalization and final diagonalization 

Once each of the approximate eigenvectors has been 
refined, the Fock matrix must be diagonalized again in the 
space of the refined eigenvectors. This step serves two pur- 
poses. First, although the exact eigenvectors of G are nat- 
urally orthonormal, the approximate eigenvectors that re- 
sult from the Lanczos refinement will typically not be. 
Therefore, they must be reorthogonalized, which can be 
done straightforwardly and inexpensively using the stan- 
dard Gram-Schmidt procedure.5 However, the results of a 
Gram-Schmidt orthogonalization depend upon the order 
in which the vectors are treated, and this introduces an 
undesirable source ~of ambiguity in the results. Further- 
more, the eigenvalue obtained for each eigenvector in the 
refinement stage is generally no longer correct for the re- 
orthogonalized eigenvectors. As it is, the cost of computing 
the diagonal matrix elements of G for these eigenvectors is 
almost as expensive as a complete rediagonalization of the 
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Fock matrix in the occupied subspace, since no further 
multiplications by G are required to compute the off- 
diagonal matrix elements. Thus, diagonalizing the Fock 
matrix using the reorthogonalized eigenvectors as a basis 
inexpensively removes the dependence of the final eigen- 
vectors on the details of the Gram-Schmidt orthogonaliza- 
tion and ensures that the final approximate eigenvectors 
and eigenvalues are self-consistent. 

A more important reason for rediagonalizing is that 
the Lanczos refinement reintroduces couplings among the 
occupied orbitals. This is especially problematic in the case 
of near-degenerate sets of eigenvectors, in which even small 
couplings can cause significant m ixing. Furthermore, when 
nearby approximate eigenvectors are significantly coupled, 
the p2 test for convergence can be highly inaccurate, be- 
cause the factor ,l.c) will be very small for near-degenerate 
eigenvectors, causing the actual error in the refinement to 
be significantly underestimated. Rather than try to identify 
and treat these situations explicitly, it is equally effective, 
and simpler, to resolve them by a complete rediagonaliza- 
tion in the occupied subspace. 

Writing V” to denote the matrix whose columns are 
the Lanczos-refined eigenvectors, G” = V” TGV” is the rep- 
resentation of G in this new space and 

G”D” =I)“&‘. (13) 

The matrix V,,= V”D”, then, holds the final refined 
eigenvectors generated by a single cycle of this algorithm, 
and the diagonal elements of E are the final eigenvalues. 

Ill. CALCULATIONS 

As a challenging sample problem to test the perfor- 
mance of our proposed method, we chose a calculation of 
the closed-shell ground state of the molecule porphin. This 
molecule, which contains 28 heavy atoms and 14 hydrogen 
atoms, represents an intermediate-size problem by current 
standards; a 6-31G** basis set of 430 atomic orbitals was 
used to obtain 81 occupied molecular orbitals. Eight SCF 
iterations were required for convergence of the Fock ma- 
trix and the occupied molecular orbitals to self- 
consistency; the iterative Lanczos refinement algorithm 
was used to obtain the occupied molecular orbitals for the 
new Fock matrix at each stage in this sequence, using the 
eigenvectors from the previous Fock matrix as initial 
guesses. To evaluate the ability to control the error in the 
calculated orbitals, each matrix was diagonalized using 
four different target error levels (pi,,). 

Table I displays results illustrating the convergence of 
individual eigenvectors in one particular calculation. The 
Fock matrix in this example was from the second SCF 
iteration and the eigenvectors were calculated to an error 
level of 10A8; the maximum size of the Krylov space used 
before rediagonalizing was eight. This case was the most 
demanding of all examples considered because the Fock 
matrix was the most poorly converged and the target error 
level was fairly strict, yet all 8 1 occupied eigenvectors were 
obtained at the specked error level in less than half of the 
time that would have been required for a QR diagonaliza- 
tion of the full Fock matrix, 

The main point to take from Table I is that the amount 
of work necessary to converge a given eigenvector varied 
considerably, with those eigenvectors near the energy gap 
requiring much more work than those far from the gap. 
The 24 lowest-energy eigenvectors converged quite 
quickly, requiring only one cycle of Lanczos refinement, 
while five of the eight highest-energy eigenvectors needed 
four cycles to satisfy the specified error level. To some 
extent, this behavior reflected the quality of the initial 
guess used for Lanczos refinement (reflected in the third 
column of Table I). However, there was also a real differ- 
ence in the rate of convergence and eigenvectors farther 
from the energy gap generally converged more rapidly 
than those higher in energy; for instance, eigenvectors 54 
and 55, which have fairly large initial errors, converged in 
just two cycles, while eigenvectors 79 and 81 had much 
smaller initial errors, but took the most effort to converge. 

Similarly, the final accuracy attained for each eigen- 
vector was significantly lower for those farther from the 
energy gap. In particular, the first 24 eigenvectors signifi- 
cantly overstepped the error goal of 10m8, uniformly reach- 
ing levels below 10-l’; the four lowest eigenvectors were 
all below 10-12! To some extent, this was another manifes- 
tation of the more rapid rate of convergence of the lower- 
energy eigenvectors. To an equal degree this also reflects 
the greater discrepancy between the error estimator fi2 and 
the actual error for the lower-energy eigenvectors. As 
shown in the Appendix, /3” is proportional to the error and 
the factor 1&, which is roughly the average of the square 
of the energy difference between the refined (approximate) 
eigenvector and the other (exact) eigenvectors with which 
it is still m ixed. If the residual couplings of the occupied 
eigenvectors are largely to the virtual. eigenvectors, then 
A$) will be on the order of the square of the distance be- 
tween the eigenvectors and the energy gap. Empirically, it 
was observed that this factor is in the range of 400-600 for 
eigenvectors 14, around 200 for eigenvectors 5-24, and 
between 1 and 10 for most of the higher-energy eigenvec- 
tors. 

Tables II, III, and IV present overall results obtained 
with the increasingly well-converged Fock matrices from 
later SCF iterations. The numbers given in Tables II and 
III are averages over all 81 eigenvectors; the behavior of 
the individual eigenvectors in all of these cases followed the 
general patterns discussed above. Note that these two ta- 
bles also include the average error of the initial eigenvec- 
tors, before any treatment; this number is the most direct 
indication of the degree of convergence of the Fock matrix. 
For the calculation summarized in Table I, for instance, 
the average error in the initial eigenvalues is 0.035, which 
is larger than the average separation among the eigenval- 
ues. Comparing these initial errors with the errors after the 
initial diagonalization, we see that the error typically drops 
2-3 orders of magnitude in this stage, making it the most 
significant stage in the overall refinement process. In fact, 
the initial approximate eigenvalues could not be included 
in Table I because it was not consistently possible to assign 
the approximate eigenvectors to the exact eigenvectors un- 
til after the initial diagonalization. 
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TABLE I. Intermediate results in the iterative refinement of the 81 occupied orbitals of porphin. The absolute error in the approximate eigenvalues is 
shown after each stage in the refinement process. The Fock matrix was taken from the second SCF iteration. The maximum size of the Krylov space in 
each refinement cycle was 8 and the target error level was 1O-8. 

No. Energy 

2 
3 
4 

6 
7 

- 15.6699 
- 15.6626 
- 15.2201 
-15.2181 
- 11.2246 
- 11.2212 
-11.1924 

22 -11.1265 
23 - 11.1253 
24 -11.1233 
25 - 1.2301 
26 - 1.2280 
27 -1.1618 
28 - 1.1557 

86 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 

- 0.4720 
-0.4698 
-0.4659 
-0.4603 
-0.4560 
-0.4215 
-0.4168 
-0.3991 
-0.3347 
-0.3308 
-0.3169 
-0.3039 
-0.2856 
-0.2792 
-0.1929 
-0.1772 

Init. Diag. 

0.192x 1o-5 
0.193 x 10-s 
0.181~10-~ 
0.197x 10-s 
0.241 x 1O-6 
0.223 x 1O-6 
0.277X IO@ 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 

0.140x 10-12 
0.141 x lo-‘2 
0.387~ 10-l’ 
0.499x lo-is 
0.231 x lo--” 
0.192x lo-lo 
0.222x 10-10 

0.323 x 1O-5 
0.333 x 10-s 
0.102x 10-s 
0.152X 1O-2 
0.147x 10-s 
0.196x 1O-3 
0.312~ 1O-3 

0.603 x 10-z 
0.385x 10-l 
0.428X 1O-2 
0.446x 10-l 
0.116x10-’ 
0.778x 1O-2 
0.740x 10-s 
0.231 x 1O-2 
0.187~ 10-l 
0.238 x 10-l 
0.523 x lo-’ 
0.184X 10-l 
0.823~ 1O-2 
0.893 x 1O-2 
0.129x 10-l 
0.469x IO-’ 

0.706; 10-12 
0.119x lo-” 
0.911x10-‘2 
0.290x 10-s 
0.250 x 1O-6 
0.207~ 1O-7 
0.732X 1O-7 

0.201x 10-s 
0.450x 10-s 
0.107x 10-s 
0.338x lO-5 
0.427~ lo-’ 
0.687X 1O-5 
0.706x lo-’ 
0.135 x 10-s 
0.855 x lo-’ 
0.128 x 1O-4 
0.340x 1o-5 
0.306X 1O-4 
0,128~ 1O-4 
0.725X 1O-4 
0.449 x 10-4 
0.156~ 1O-4 

0.106x lo-’ 
0.727x 10-l’ 
0.982x 10-l’ 
0.349x 10-s 

-~ 0.818; 10-9 
0.185X 10-s 
0.142~ 1O-8 
0.241 x 10-s 
0.364~ 10-s 
0.513x10-s 

._ 0.765 x 1O-8 
0.305x 10-s 
0.122x 10-s 
0.869x 1O-7 
0.212x 10-7 

-1 0.497x 10-r 
0.402x 19-7 
0.515x 10-6 
0.284~ 1O-6 
0.400x 10-6 

0.120x 1o-8 

0.251 x 1O-8 
0.152x 1O-8 
0.280X 1O-8 

0.649x 1O-8 0.511x10-s 
0.484X 10-s 0.395x 10-s 
0.364x 10-s 
0.396x 1O-8 
0.792x 10-s 
0.291 x 10-r 0.189x 1O-8 
0.357x 10-7 0.123X 1O-7 
0.519x 1o-7 0.128 x 1O-7 

TABLE II. The overall rms errors in the approximate eigenvalues before treatment, after the initial diagonalization in the subspace of the occupied 
orbitals, and after each cycle of Lanczos refinement and rediagonalization. The results are given for Fock matrices from a sequence of SCF iterations and 
for increasingly stringent target error levels. The maximum size of the Krylov space in each refinement cycle was 8. 

Iter. Input Init. Diag. Cycle 1 Cycle 2 Cycle 3 Cycle 4 

10-s 0.349x 10-l 0.469x 1O-3 0.208~ 1O-5 0.261 x 1O-6 
2 10-e 0.208 x 1O-5 0.287~ 1O-7 0.281 x 1O-7 

10-7 0.208 x 1O-5 0.890~ 1O-8 0.255 X 1O-8 
10-s 0.208 x lo-’ 0.980x 1O-8 0.704x 1o-g 0.294x 1o-g 

1o-5 0.105x 10-l 0.797x 10-4 0.408x 1O-6 0.268x10-6 
10-s 0.368x 1O-6 0.282X !O-7 
lo-’ 0.368~ 10W6 0.341 x 1o-8 o.311x1o-8 
1o-8 0.368X lo@ 0.252~ 1O-8 0.284x lo-’ 0.264x 10-s 

10-s 0.266x 1O-2 0.423 x 1O-5 0.249x 10-s 
10-6 0.252~ 1O-7 0.232x 1o-7 
10-7 0.165X 1O-7 0.266X 1O-8 
10-s 0.164X 1O-7 0.365 x lo-’ 0.312x lo-’ 

10-s 0.233x lo-’ 0.144x10-6 0.144x 10-6 
6 10-6 0.457x 10-r 

10-7 0.273 x 1O-8 
1o-8 0.682~ lo-’ 0.326x lo-’ 

1o-5 0.287 x 1O-4 0.240x 10-7 0.240x 1o-7 
8 10-e 0.240 x 10-r 

1o-7 0.390x 1o-8 
10-s 0.278X lo-’ 
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TABLE III. The overall rms errors in the approximate eigenvectors before treatment, after the initial diagonalization in the subspace of the occupied 
orbitals, and after each cycle of Lanczos refinement and rediagonalization. The error is detined as the difference from unity of the overlap of the exact 
and approximate eigenvectors. The results are given for Fock matrices from a sequence of SCF iterations and for increasingly stringent target error levels. 
The maximum size of the Krylov space in each refinement cycle was 8. 

Iter. 

2 

3 

4 

6 

8 

I%% 

1o-s 
10-b 
10-7 
10-g 

10-S 
10-6 
lo-’ 
1o-8 

10-s 
10-e 
10-7 
10-s 

10-s 
10-6 
10-7 
10-s 

10-s 
10-6 
10-r 
10-s 

Input Init. Diag. 

0.360x 10-i 0.251 x lo-’ 

0.272x 10-l 0.139x 10-z 

0.998x lo-’ 0.416x lo-’ 

0.483x 1O-2 0.176~ 1O-6 

0.225 x 1O-3 0.430x 10-7 

Cycle 1 

0.122x 1o-s 
0.122x 10-s 
0.122x 10-S 
0.122x 10-s 

0.310x 10-h 
0.304x 10-s 
0.304x 10-6 
0.304x 10-6 

0.165x 1O-6 
0.169x lo-’ 
0.152~ lo-’ 
0.152x lo-’ 

0.176x l+’ 
0.375X IO--’ 
0.227x lo-’ 
0.719x 10-s 

0.430x 10-7 
0.430x lo-’ 
0.358 x 1O-8 
0.171x 10-9 

Cycle 2 

0.211 x 1o-6 
0.194x 10-7 
0.829x 1O-8 
0.902x 10-s 

0.206x lo@ 
0.219x 10-7 
0.262x 1O-8 
0.227~ 1O-8 

0.155 lo-’ x 
0.202 10-s x 
0.339x 10-a 

0.244x 1o-v 

Cycle 3 Cycle 4 

0.189x lo-’ 
0.234x 1O-8 
0.878x lo-’ 0.285x lo-’ 

0.235~ lo-* 
0.223 x lo-’ 0.209x 1o-g 

0.219x 10-s 

The results in Tables II and III demonstrate that the error level, &,, it is also apparent that there is a fairly 
new algorithm was able to obtain converged results to any constant factor by which the error actually achieved ex- 
specified error level in every case that was examined. Com- 
paring the final error for each calculation with its target 

ceeded the target level, reflecting the spread in the 1;) 
values and the rates of convergence of the individual eigen- 

TABLE IV. The time required for the initial diagonalization in the subspace of the occupied orbitals and for each cycle of Lanczos refinement and 
rediagonalization. The time is given as a fraction of the time required for full diagonalization of the Fock matrix; the number of eigenvectors treated in 
each stage is noted in parentheses. The results are given for Fock matrices from a sequence of SCF’iterations and for increasingly stringent target error 
levels. The maximum size of the Krylov space in each refinement cycle was 8. 

Iter. &ax Init. Diag. Cycle 1 Cycle 2 Cycle 3 Cycle 4 Total 
. . 

10-s 
2 10-6 

10-7 
1o-8 

10-s 
3 10-e 

10-7 
10-g 

10-s 
4 10-6 

10-7 
10-s 

1o-5 
6 10-6 

10-7 
1o-8 

10-s 
8 10-6 

10-7 
10-s 

0.04 (81) 0.20 (81) 
0.21 (81) 
0.21 (81) 
0.22 (81) 

0.04 (81) 0.16 (81) 
0.20 (81) 
0.21 (81) 
0.21 (81) 

0.04 (81) 0.08 (61) 
0.13 (81) 
0.19 (81) 
0.21 (81) 

0.04 (81) 0.02 (0) 
0.03 (19) 
0.09 (59) 
0.14 (81) 

0.04 (81) 0.02 (0) 
0.02 (0) 
0.02 (10) 
0.07 (54) 

0.04 (34) 
0.08 (54) 
0.11 (57) 
0.13 (57) 

0.00 (6) 
0.03 (26) 
0.08 (54) 
0.11 (57) 

0.00 (1) 
0.01 (11) 
0.06 (50) 

0.00 (3) 

0.29 
0.00 (1) 0.34 
0.01 (8) 0.39 
0.03 (17) 0.00 (5) 0.45 

0.21 
0.28 

0.00 (2) 0.34 
0.02 (9) 0.00 (2) .. 0.40 

0.13 
0.18 
0.25 

0.00 (1) 0.33 

_ 0.06 
0.08 
0.13 
-0.19 

0.06 
0.06 
0.07 
0.11 
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TABLE V. The total diagonalization time is given as a function of the maximum size Krylov space size in each retinement cycle; times are expressed 
a fraction of the time required for full QR diagonalization of the Fock matrix. Results are given for Fock matrices from a sequence of SCF iterations 
and for increasingly stringent error levels. Asterisks mark those calculations in which some eigenvectors could not be refined to the specitied error level. 

Iter. Bz nmx 4 5 6 8 10 12 14 16 18 

10-s 0.27 0.27 0.26 0.29 
2 10-e 0.42* 0.40* 0.31 0.34 

10-7 0.64* 0.50* 0.38 0.39 
10-s 1.02* 0.69* 0.44 0.45 

1o-5 
3 10-6 

10-7 
1o-8 

1o-5 
4 10-e 

lo-’ 
10-s 

1o-5 
6 10-6 

10-7 
1o-8 

1o-5 
8 10-e 

lo-’ 
10-E 

0.20 0.21 0.20 0.21 
0.28 0.29 0.28 0.28 
0.44* 0.35 0.33 0.34 
0.94* 0.45 0.40 0.41 

0.13 0.13 0.13 0.13 
0.18 0.18 0.18 0.18 
0.26 0.25 0.25 0.25 
0.39* 0.30 0.31 0.33 

0.06 0.06 0.06 0.06 
0.08 0.08 0.08 0.08 
0.13 0.13 0.13 0.13 
0.20 0.19 0.18 0.19 

0.06 0.06 -0.06 0.06 
0.06 0.06 0.06 0.06 
0.07 0.07 0.07 0.07 
0.12 0.12 0.11 0.11 

0.32 0.37 
0.38 0.43 
0.43 0.47 
0.48 0.53 

0.21 0.21 
0.32 0.35 
0.38 0.43 
0.43 0.50 

0.13 0.13 
0.18 0.19 
0.25 0.26 
0.30 0.32 

0.06 0.06 
0.08 0.08 
0.13 0.13 
0.19 0.19 

0.06 0,06 
0.06 :. 0.06 
0.07 0.07 
0.11 0.12 

0.42 0.46 0.51 
0.49 0.55 0.62 
0.53 0.60 0.67 
0.58 0.65 0.74 

0.22 0.23 0.23 
0.39 0.43 0.49 
0.48 0.54 0.61 
0.53 0.60 0.69 

0.13 0.13 0.13 
0.18 0.18 0.18 
0.25 0.25 0.26 
0.32 0.33 0.34 

0.06 0.06 0.06 
0.08 Cj.08 0.08 
0.13 0.13 0.13 
0.19 0.19 0.19 

0.06 
0.06 
0.07 
0.11 

0.06 
0.07 
0.11 

0.06 
0.06 
0.07 
0.11 

vectors. The exceptions were those calculations in which 
the errors of most of the eigenvectors already exceeded the 
error criterion following the initial diagonalization. 

Table IV summarizes the computer time required for 
each stage of these calculations, as well as the total time to 
diagonalize each Fock matrix to each of the target error 
levels. Together with Tables II and III, it shows that the 
effort required to diagonalize the Fock matrix is signifi- 
cantly reduced as the quality of the initial approximate 
eigenvectors is improved and as the target error level, &, , 
is relaxed. In Table IV, we see that even in the worst case, 
the diagonalization of the second Fock matrix to an error 
level of 10m8, the total time required is only 0.45, or 45% 
of the time required for full diagonalization. Relaxing the 
error level to lop5 reduces this time to 0.29, a significant 
savings in time if greater accuracy is not required at this 
stage; as Tables II and III show, even the exact eigenvec- 
tors for the second Fock matrix are poor approximations 
to the eigenvectors of the next (third) Fock matrix, with 
an average error of 10m2. Diagonalization times are uni- 
formly reduced for the later Fock matrices. In the best 
cases, the occupied eigenvectors were obtained in a time of 
just 0.06. This represents the point at which no Lanczos 
retiement at all was required after the initial diagonaliza- 
tion, which itself requires a time of 0.04; the additional 
time of 0.02 is that which required to multiply each ap- 
proximate eigenvector into the Fock matrix once, in order 
to calculate /3” and test for convergence. 

The only adjustable parameter which affects the effi- 
ciency of the method is the size limit imposed on the Kry- 
lov space used for Lanczos refinement. In Table V we 
present results showing the dependence of the overall di- 
agonalization times on this parameter. For the poorly con- 

verged Fock matrices in iterations 2 and 3, diagonalization 
times depended quite strongly on the Krylov space limit. 
When the limit was relaxed to 18, for instance, the time 
required for diagonalization of the second Fock matrix to 
an accuracy of lo’-’ went up to 0.74. On the other hand, 
for well-converged Fock matrices there was almost no de- 
pendence on this parameter. 

This behavior reflects the fact that some eigenvectors 
are unable to converge to the desired error level in a single 
Lanczos refinement step, i.e., they reach an impasse at 
which increasing the size of the Krylov space no longer 
improves the approximate eigenvector. Once a refinement 
reaches this stage, the additional work to increase the size 
of the Krylov space is simply wasted, since no progress can 
be made until couplings among the retlned eigenvectors are 
resolved by explicit rediagonalization of the Fock matrix 
over all the vectors. For the more well-converged Fock 
matrices, when all or most of the eigenvectors can reach 
the target error level in a single Lanczos refinement cycle, 
it does not matter where the size limit is set. For the other 
cases, it is more efficient to truncate the Lanczos retine- 
ment early than to let it proceed too long, and so better 
results are obtained for lower limits on the size of the 
Krylov space used in each cycle. However, the limit can 
also be too low; the starred entries in Table V, for Krylov- 
space limits of 4 and 5, represent calculations in which it 
was impossible to converge all of the eigenvectors to the 
desired accuracy. The optimum Krylov-space limit was 
found to be in the range of 6-8; the timings for these values 
were essentially the same, although fewer refinement cycles 
were generally required when the limit was 8. Therefore, 
this value seems to represent a good compromise between 
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safety and efficiency, and the calculations in Tables I, II, 
III, and IV were all performed with this limit. 

IV. CONCLUSIONS 

We have described a new algorithm which allows one 
to rapidly obtain a large block of the eigenvectors of a 
symmetric matrix when reasonable initial guesses for those 
eigenvectors are available. The method has been intro- 
duced and demonstrated in the context of the diagonaliza- 
tion of the Fock matrix in self-consistent-field (Hartree- 
Fock) calculations, in which the occupied orbitals 
obtained from one Fock matrix can be used as good initial 
guesses for diagonalizing the new Fock matrix constructed 
from those orbitals. 

Our algorithm is based on the refinement of each ap- 
proximate eigenvector by diagonalizing the Fock matrix in 
a small Krylov space built on the trial vector using the 
Lanczos algorithm. The size of the Krylov space is in- 
creased in steps until the eigenvector under refinement is 
converged to some specified accuracy, estimated by the 
convergence estimator /3”, or a maximum Krylov-space 
size is reached. This becomes significantly more efficient 
when it is preceded and followed by the diagonalization of 
the Fock matrix in the complete subspace of the approxi- 
mate eigenvectors (occupied orbitals) , which is typically 
very inexpensive compared to full diagonalization of the 
Fock matrix. The prior diagonalization treats the stronger 
couplings among the occupied orbitals exactly, allowing 
the weaker coupling of the resulting eigenvectors to the 
virtual orbitals to be handled using small Krylov-space 
diagonal&-&ions; the subsequent diagonalization in the 
space of the refined eigenvectors resolves secondary cou- 
plings introduced among the occupied orbitals by their 
mixing with the virtual orbitals; this step is particularly 
critical for the treatment of near-degenerate sets of eigen- 
vectors. The proposed algorithm is most efficient when the 
Krylov-space refinements are limited to a fairly small size; 
approximate eigenvectors that are not converged to the 
desired accuracy in a single cycle of Lanczos refinement 
and rediagonalization are then submitted to additional cy- 
cles of refinement and diagonalization until converged. In 
this form, the method is fast, stable, and reliable. 

The algorithm has a number of features that make it 
computationally attractive. First, it consists predominantly 
of matrix-vector multiplications, which means that, unlike 
the traditional QR diagonalization algorithm, it can be im- 
plemented quite efficiently on modern parallel- and vector- 
processing computer architectures. The Krylov-space re- 
flnement method itself is naturally parallelizable at a 
higher level, since it treats each approximate eigenvector 
independently. Second, because the the matrix to be diag- 
onalized enters only in the context of matrix-vector and 
matrix-matrix multiplication, it is not modifled in any 
way. Thus, much less computer storage is required than in 
diagonalization methods which explicitly transform the 
original matrix; less storage is also required for the eigen- 
vectors themselves, since only the relevant eigenvectors are 
calculated. These advantages are increased tremendously 
when the matrix to be diagonalized is sparse, or otherwise 

structured, since this makes multiplication with the matrix 
significantly cheaper and computer storage for the full ma- 
trix need never be allocated at all. Finally, the ability to 
specify the accuracy of the eigenvectors allows additional 
economies, since in many iterative problems, such as SCE 
calculations, the eigenvectors obtained in the early itera- 
tions need not be as precise as those required for the final 
solution. Practical experience suggests that error levels of 
10m4 or lo-’ are completely adequate for the first few SCF 
cycles; for the porphin calculation this would allow an 
overall savings in diagonalization time of more than 80%. 

These ideas were successfully demonstrated in a calcu- 
lation of the molecular orbitals of the molecule porphin. In 
this system, 81 occupied molecular orbitals were obtained 
from a Fock matrix constructed in a 430-orbital basis set. 
The new method allowed the accurate calculation of these 
orbitals to specified accuracies between 1O-5-1O-8 in one- 
half to one-fifteenth of the time required for complete di- 
agonalization, depending on the quality of the initial 
guesses, i.e., on the level of convergence of the Fock ma- 
trix, and on the specified accuracy level. For poorly con- 
verged Fock matrices, the time required for the diagonal- 
ization depended strongly on the maximum Krylov-space 
size allowed per refinement cycle, and a Krylov-space size 
limit of 6-8 was found to be optimal. For well-converged 
Fock matrices, the diagonalization time approached an as- 
ymptotic lower limit representing a 15-fold speedup over 
full QR diagonalization of the Fock matrix; this limit re- 
flects the time for a single diagonalization in the occupied 
subspace and the testing of each eigenvector for conver- 
gence. 

It is anticipated that this method will be generally use- 
ful in Hartree-Fock electronic structure calculations, espe- 
cially as the size of these system increases and diagonaliza- 
tion becomes the rate-limiting step in the convergence of 
the Fock matrix. Moreover, for sufficiently large mole- 
cules, the Fock matrix will begin to display usable sparsity, 
in which case our diagonalization algorithm scales asymp- 
totically as N2, rather than N3. The method will be simi- 
larly applicable in density-functional calculations of elec- 
tronic structure. In addition, it should be useful in the 
broader range of calculations in which a series of similar 
matrices must be diagonalized and only a subset of the 
eigenvectors required. Applications in these more general 
contexts will be explored in subsequent papers. 
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APPENDIX 

Let r be an N vector that is meant to be an approxi- 
mation to zi, the ith eigenvector of the NxN symmetric 
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matrix A, and let iii be the eigenvalue associated with zi. 
Then, we characterize the error in the approximate eigen- 
vector by the quantity e, dellned as the difference in the 
overlap of r and zi from unity. We expand r in the basis of 
the eigenvectors of A, 

N 

r= 2 rjZj, (Al I- 
i 

where 

rj = z;r, (Ml 

and, in particular, 

ri= l--E. (A31 
Then, since r is considered to be normalized, 

rTr=l--2e+ $6 
i#i 

(A41 

or 

2e= 5 rj=R 2 5, (A51 
i#i j#i 

neglecting terms of order 2. In the final equation, the ex- 
pansion coefficients are separated into a scale factor R’j2, 
and the normalized coefficients Fj. If r is normalized then 
R will be unity, since the zj are orthonormal. 

Another measure of the error is to compare /zip the 
eigenvalue corresponding to zi, and the diagonal matrix- 
element of A with respect to r, which is written 

CZ=r’Ar=Ai( l-26) + 2 Aj< * (Aa 
i#i 

The error in this approximate eigenvalue is 
N 

fl=a-&=R C Aj~-2AlE=2d~~, 
i#i 

where 

x(i)= 2  (Aj-Ai)3 / J$i 3. 

i#i 

(A71 

(A81 

In this way M, the eigenvalue error, is seen to be 
proportional to e, the eigenvector error, and also to the 
quantity ~,i~ , which reflects the distribution of the extra- 
neous components of r, i.e., its projection on other eigen- 

vectors of A besides Zi. More precisely, /zCi) can be de- 
scribed as the weighted average of the difference between 
the eigenvalue of interest and the eigenvalues of those 
eigenvectors to which approximate eigenvector is still cou- 
pled. 

The error measure 0” used in the Lanczos refinement is 
related to the &g&vector and eigenvalue errors in a simple 
way. Starting with the definition of fl”, and again neglecting 
terms of order 2, we find that 

p”= IjAr-arl12 

=r’A%-a2 
N 

=R c ‘l;6+‘1:( l-26) -a2 
i#i 

=2d& 

where 
W) 

a&= iii tnjeLi12~ / $5. (AlO) 

Thus, 0” is proportional to the eigenvector error, e, and 
to the quantity, A&, which is another measure of the dis- 
tribution of extraneous components in r; in this case, it is 
the weighted average of the squared differences between 
the eigenvalue of zi and the eigenvalues of those other 
eigenvectors to which r is still coupled. 

In the context of eigenvector refinement, f12 is useful 
because it can be calculated without knowledge of the ex- 
act eigenvectors. However, its use as an estimator of E and 
U is complicated by the uncertainty in the quantities X(i) 
and X~,, which will differ for each eigenvector and change 
throughout the course of the refinement. Nonetheless, ex- 
perience suggests that these quantities do not change as 
dramatically as e, which decreases by many orders of mag- 
nitude over the course of a refinement. 
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