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We present a greatly improved method for converging generalized valence bond (GVB) 
self-consistent wave functions. This method starts with the direct inversion in the interative 
subspace (DIIS) ideas of Pulay. Previously implemented DIIS methods were limited to special 
cases: closed-shell Hartree-Fock (HF), restricted open-shell HF, or a single pair GVB wave 
function. Here we extend this method to general wave functions including arbitrary numbers of 
closed-shell, restricted open-shell, and GVB orbitals (including second-order orbital mixing 
terms). The efficacy of GVB-DIIS is illustrated by applying it to several cases (including GVB 
wave functions with up to ten pairs) and comparing with other standard methods. 

1. INTRODUCTION 

Essentially, all methods for calculating the electronic 
wave functions (i.e., solving the Schriidinger equation) of 
atoms, molecules, and solids include a first step involving 
optimization of orbitals (atomic orbitals, molecular orbit- 
als, or band orbitals). 

The most common starting point for accurate wave 
functions is the Hartree-Fock (HF) method in which a 
product of orbitals and spins is antisymmetrized (using a 
Slater determinant) and the orbitals optimized self- 
consistently (SCF for self-consistent field). 

For systems where the description in terms of doubly 
occupied orbitals is adequate, this might then be used as 
the starting point for more accurate configuration interac- 
tion (CI) (e.g., singles and doubles CI, HF-SD) or per- 
turbation theory (e.g., MP2 and MP3) calculations by in- 
cluding excitations where various numbers of electrons are 
excited from the occupied orbitals of the HF wave function 
to unoccupied or virtual orbitals. 

An alternative approach is the generalized valence 
bond method’** (GVB) in which (i) each pair of electrons 
is described with two orbitals (rather than one, as in HF); 
(ii) the form of the wave function is generalized from a 
Slater determinant to a form that ensures that the Pauli 
principle and spin symmetry are both satisfied; and (iii) 
the orbitals are optimized self-consistently. 

The GVB orbitals generally localize uniquely to re- 
gions near a bond or atom and each pair can be viewed as 
involving one orbital very similar to a localized occupied 
HF orbital and the other involving an optimized unoccu- 
pied (virtual) HF orbital. Thus for the simple closed-shell 
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case with N electrons in which HF involves N/2 doubly 
occupied orbitals, the N orbitals of the GVB wave function 
can be viewed as a localized set of N/2 HF-like occupied 
orbitals plus N/2 localized unoccupied HF orbitals opti- 
mized for electron correlation. With GVB one can corre- 
late just a subset of HF pairs, leading to localized orbitals 
similar to the full GVB wave function. As with HF, many 
GVB calculations are followed by some kind of CI; how- 
ever, since the dominant correlating orbitals have been 
solved self-consistently, the GVB wave function often al- 
lows an accurate description of the wave function to be 
obtained with very compact CIs. These GVB-based meth- 
ods have proved most advantageous for examining excited 
states,3 transition metal complexes,4 organometallics,5 re- 
action pathways,6 reactions at surfaces,’ and catalysis,’ 
where the description in terms of doubly occupied orbitals 
would be quite poor. 

GVB is a special case of multiconfiguration SCF (MC- 
SCF) methods [including complete active space self- 
consistent field (CAS-SCF)] for which the methods in this 
paper also prove useful; however, we focus here on GVB. 

Because of the two-electron interactions, optimization 
of the wave function is nonlinear. Hence critical to such 
SCF methods as HF or GVB is an iterative approach that 
converges quickly and reliably to the desired state. 

The variational principle leads directly to the Euler- 
Lagrange condition’ 

Fdi= Edi (1.1) 

that must be satisfied for pi to be the optimum orbital, 
where the Fock operator Fi contains fields due to all other 
orbitals. The earliest approaches for solving Eq. ( 1.1) in- 
volved using the orbitals from a previous iteration {#f} to 
evaluate F: and then solving 

F$$f + ’ = e&f + ’ (1.2) 
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to obtain new orbitals. Using various convergence schemes 
to average or extrapolate orbitals, such approaches were 
often successful for closed-shell HF wave functions (all 
orbitals doubly occupied). However for GVB, wave func- 
tions for such methods were much less successful and in 
1970 Hunt, Dunning, and Goddard (HDG) lo developed a 
general approach for including the higher-order correc- 
tions to the variational equations for GVB and open-shell 
HF wave functions. This leads to an approach that can be 
quadratically convergent (given good trial functions). 
However, practical implementations’ of HDG generally ig- 
nore some coupling terms, often leading to pseudolinear 
convergence. 
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More commonly, the perfect pairing (PP) restriction* is 
made in which each pair of electrons is written as a valence 
bond (VB) pair: 

(Mb+#bAJ (a&Pa). (2.2a) 

The GVB formalism allows any number of electrons 
On ,,,) to be described with doubly occupied orbitals 
(Q,,) and any number of electrons (no,,) to be high- 
spin coupled (S=nOp,/2), leading to the composite wave 
function”” 

There are two classes of self-consistent wave functions: 
(i) Hartree-Fock, unrestricted Hartree-Fock, GVB-PP 
(perfect pairing), which can be calculated without trans- 
formations of the two-electron integrals, and (ii) more 
general MC-SCF methods including CAS-SCF, general 
GVB, which do require full integral transformations. Class 
b is restricted to much smaller systems than class a, but 
with fully transformed two-electron integrals it is possible 
to obtain quadratic convergence.15*22 With class a one 
could do integral transformations and also get quadratic 
convergence; however, this is often not practical and hence 
other convergence methods are necessary. 

A breakthrough for convergence of HF wave functions 
was the development in the early 1980s by Pulay of the 
direct inversion of the iterative subspace (DIIS)‘1-13 
method. Instead of extrapolating orbitals from iteration to 
iteration, DIIS methods average the Fock matrices from 
different iterations to obtain a new trial Fock matrix for the 
orbitals of the next iteration. Because GVB and open-shell 
wave functions have d$Srent Fock operators for different 
orbitals, generalizing DIIS for such wave functions is not 
trivial. However, DIIS has been successfully applied to 
closed-shell HF,“,‘* restricted open-shell HF (ROHF) ,I3 
and single-pair GVB wave functions.13 In Sec. III we ex- 
tend the DIIS methodology to be appropriate for general 
GVB wave functions. In this process we include in the 
Fock operator all second-order terms from HDG. This 
leads to very rapid convergence for GVB, comparable to 
that for HF-DIIS. 

y = d [ ycoreyopenypairl~ (2.3) 

where JZ! is the antisymmetrizer, where 

y,,= Ig C&a) (@;B), (2.4a) 

“0 
Y open = IT (&a), (2.4b) 

i=l 

n ‘I 

ypair = fl Cti&i+&&i) (@--Pa), (2.4~) 
i=l 

where C43, C&l are orthogonal spatial orbitals, and 
where a and p are spin functions. Here & and & denote 
the GVB orbitals in pair i, and normalization of the total 
wave function is ignored. Within a pair, the GVB orbitals 
overlap, Si= (#ail ~bi). However, in the PP restriction we 
take the orbitals of pair i as orthogonal to all other pairs 
(and to {&j and {+q}). F or computational purposes it is 
convenient to rewrite the GVB wave function (2.2a) as 

( cgdgz4.gi+ CuAuAui) (2.2b) 

and Eq. (2.4c) as 

“pair 
ylpair= II ( cgz4gf$gi+ cuAuR*i) (@-Pa), (24) 

where 

Section II summarizes aspects of GVB used in subse- 
quent sections and Sec. IV illustrates the methods by ap- 
plication to several systems and comparison to results us- 
ing previous methods. 

(2Sb) 

are orthogonal GVB natural orbitals. Here the GVB con- 
figuration interaction (CI) coefficients satisfy 

Cui l-Si 
-=- 
Cgi l+Si 

(2.6a) 

and 

ci++ 1. (2.6b) 

The wave function (2.3) leads to the general energy ex- 
pression for GVB-PP wave functions,’ 

E= F 2fftii+ Y (aiiJij+bijKij), (2.7) 
i i,i 

where the standard definitions for the one-electron, Cou- 
lomb, and exchange energies are used: 

II. SUMMARY OF GVB METHODS 

A. The GVB-PP wave function and general energy 
expressions 

The GVB wave function’ involves a product of orbitals 
with a general spin function x which is an eigenfunction of 
the total spin operator [$*x=S(S+ 1)x]: 

~GVB=44i,...,QNXl, (2.1) 

where both the orbitals and spin functions are optimized. 
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hii=(klhl4i)t (2.8) 

Jij= (ii1 jj) = s 
d3r, #[( l)Jj( 1)4i( I), (2.9a) 

tional equation (2.14) is nonlinear and must be solved 
iteratively. The general condition for orbitals to be opti- 
maPI is that the matrix 

Aij= (iI (F’-F’) 1 j) 

be zero for all pairs of orbitals 
virtuals) . 

Jj( 1) = 
s 

d3rz 
+jC2)4jt2) 

h2 ' 

Kij=(ij]ij)= Id’r,gi(l)K’(l)Oi(l), 

(2.9b) 

(2.10a) 

I<‘( 1) = s d3r2 
$j(2)r12+j(2) 

r12 
, (2.1Ob) 

and ri2 is the transposition operator. Here h may include 
effective core potentialsI in addition to kinetic energy and 
nuclear attraction terms. 

The orbital occupation coefficient fi in Eq. (2.7) is 
given by 

fi= 1 if i is a core orbital, 

f i=i if i is an open orbital, (2.11) 

fi= (Ci)’ if i is a pair orbital with coeficient Ci. 

The two-electron coefficients in Eq. (2.7) can then be writ- 
ten as 

cIij=2fifj, 
(2.12) 

bij= - fifi 
except that 

aij=& bij= - f if i and j are both open orbitals, 
(2.13a) 

aii= f it bii=O if i is a pair orbital, (2.13b) 

aij=O, b,= C~~j if i#j are in the same pair. 
(2.13~) 

Another useful case is the open-shell singlet 

(bRj++jdi) (CrB-819 

where +i and +j are orthogonal. In this case 

aii= bii=O, 
(2.13d) 

aij=2, bij=l if i#j. 

The general condition for convergence is that the first- 
order change in the energy is zero. With the energy expres- 
sion (2.7) this leads to9 

C (S4ilFil#i>=os (2.14) 
i 

where a single Fock operator Fi is constructed for all or- 
bitals (given by the columns of Vi) in shell i [which have 
the same X a, and b coefficients in Eqs. (2.11)-(2.13)]. 
Thus, one diagonalization is needed for closed-shell HF, 
two are needed for open-shell HF, and 2nPti+ 1 Fock op- 
erators are needed for a GVB case having a core plus npair 
GVB pairs. These Fock operators are constructed in the 
space spanned by the occupied orbitals in shell i plus all 
virtuals. 

where Fi is the Fock operator for the orbital Cpi, 

Fi=f&+ Y (aijJ’+bijK’) (2.15) 
i 

In addition to the above orbital optimizations, the 
GVB CI coefficients in Eq. (2.6) are optimized each iter- 
ation, leading a two-by-two diagonalization for each GVB 
pair j: 

(for an unoccupied or virtual orbital j we define Fj=O). 
Because the Jj and Ki operators depend on the orbitals 

where 

[Eqs. (2.9) and (2.10)], the solution of the set of varia- Y~j=Kgu, 
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B. GVB2P5 orbital optimization 

(2.16) 

I and #j (including 

The standard method’ of orbital optimization for wave 
functions with Fock operators of the form in Eq. (2.15) is 
a two-step procedure. The first step (ROTATE) mixes 
occupied orbitals with each other to optimize the energy.’ 
The second step, called orthogonality constrained basis set 
expansion ( OCBSE),9 consists of diagonalizing each Fock 
operator in the space spanned by the virtual orbitals plus 
the occupied orbitals associated with the same Fock oper- 
ator (all ncore doubly occupied orbitals for the closed-shell 
Hamiltonian, all nope,, high-spin coupled orbitals for the 
open-shell Hamiltonian, always a single occupied orbital 
for GVB pairs). 

For ROTATE we write the (orthogonal) matrix T 
that transforms an initial set of orbitals {#p} into a final set 
of orbitals {$:} asI5 

T=@ (2.17) 

and calculate the antisymmetric matrix A that generates 
the optimum transformation. Expanding Eq. (2.7) 
through second-order in orbital changes, leads to’0’15 

(2.18) 

where Aij is in Eq. (2.16) and 

Bij,ij=(jI (Fj--Fi) Ii)--( jl (Fj-Fi) Ij)+r;j, (2 19) 

The OCBSE equations for mixing occupied orbitals 
with virtuals is 

FiUi= Ugi 9 (2.20) 

(2.21a) 

(2.21b) 
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Ynj=F,/f, for g or U. e” = F”D% - SD”F”, 

Because only Coulomb and exchange operators are in- 
volved in the above energy expression (2.7) and orbital 
optimization expressions (2.17)~( 2.2 1 ), the requisite 
quantities can be evaluated directly from a list of integrals 
(an p procedure) without carrying out an integral trans- 
formation (an N5 procedure) .9p’o 

where S@= (xcx I xs) and 

Dm,= c CokCqk 
k 

is the density matrix. 
For multishell systems the choice of the error vector is 

not straightforward, * 3 and we propose in Sec. III B a gen- 
eral approach. Ill. DllS METHODOLOGY 

A. Introduction 

Writing Eq. ( 1.1) for iteration n as 

F!“‘#” -e(n),$!d = (a) 
t 1 I I ei (3.1) 

(where the field terms in Ftn) include the orbitals from 
iteration n) the convergenc6 condition is that the error 
vector ej”) be zero for all occupied orbitals i. The DIIS 
procedure uses the errors for various iterations to find a 
“best” combination: 

“ita 
c qnenzO, (3.2) 
n 

where the errors for iterations n are grouped into a super- 
vector etn). The next iteration then uses the best Fock 
operator 

“iter 
PP’= 1 q$(“), (3.3) 

” 
where F” is the general Fock operator at iteration n. Di- 
agonalizing this predicted Fock operator FOP’ (rather than 
the newest Fock operator F”iter, as in an eigenvalue 
method) leads to accelerated convergence. 

For closed-shell HF the variation equation ( 1.1) be- 
comes 

Pdi=Edi, i= l,...,n- (3.4) 
and it is convenient to define the error vector as” 

en= iz [Plk)(kl- Ik)(kl~l. (3.5) 

This has the property that 

e;=O if i, j are occupied, 

e$= -q if i is occupied and ,u is unoccupied, 

e;i=ci if i is occupied and p is unoccupied, 

eLv=O if P,Y are unoccupied. 

Moreover, in terms of the atomic orbital basis k,): 

Eq. (3.5) can be expressed as 

e$= ; [~k(~lx~)-(x~Ik)~vl 

Or 
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(3.6) 

Given a sequence of error vectors {e(‘),...,e”iter}, the 
weights {qn} in Bq. (3.3) are determined”-13 by minimiz- 
ing 

“iter 

e - qne(*) new _ c 
n=l 

under the constraint that 

(3.7a) 

“iter 

z, 4n=l* 

This leads to the equations” 

P.q=f 

of order niter+ 1 where 

P..=e(‘) l e(g) 

JJ  

for j,j > 0, 

Poi=P&= - 1 for i>O, 

(3.7b) 

(3.8a) 

(3.8b) 

Pm=O, 
(3.8~) 

fi=O for i>O, 

f,=-1, 

where {qi, i= 1, niter} are used in Eq. (3.3) to obtain the 
orbitals of the new interation where qO is a Lagrange mul- 
tiplier corresponding to half the norm of the new vector 
(3.7a). 

B. General Fock operators 

The Fock operator (2.15) represents the first-order 
change in the energy with respect to mixing various pairs 
of orbitals. Pure diagonalization (i.e., eigenvalue) methods 
for multishell cases generally give slow convergence be- 
cause only first-order changes in the energy are considered. 
A major advantage to DIIS is that through extrapolation it 
can provide the fast convergence generally only seen in 
second-order methods. The question is how to choose the 
error vector and Fock matrix for GVB wave functions. 

7. Combine separate Fock operators, 3-l 

The simplest definition of a multishell Fock operator 
9- satisfying the convergence criteria in Eq. (2.16) is 
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23-h= FG , where i, j are orbitals in shell I, 

Yt=FG-ej, where i, j are in different 

occupied shells I, .I, 

yt=FL., where i is an orbital in sheii I, j 

is unoccupied, 

“S-t=r, where i, j are unoccupied orbitals. 

F1 is the operator used in the GAME&~ program suite for 
DIIS convergence of one-pair GVB wave functions. 

We find that DIIS methods based on .3’ work well 
when the wave function is sufficiently close to convergence 
but have difficulty with less optimal starting guesses. More- 
over, this method is inherently unsuited to cases with mul- 
tiple GVB pairs because two or more pairs may be degen- 
erate (e.g., the two OH bonds in water). With Y-’ the 
diagonal elements for degenerate pairs are equivalent and 
diagonalization delocalizes the GVB natural orbitals over 
the equivalent pairs. 

Further difficulties with 9’ occur in the mixing due to 
off-diagonal elements. In a matrix diagonalization, the cou- 
pling between i and j is proportional to 

Mij 

Mjj- Mii ’ 
(3.10) 

where near convergence one has Mij*g 1 Mjj-MiiI. With 
F’, the mixing between two occupied orbitals becomes 

(3.11) 

However, from Eqs. (2.16)-(2.18) and (2.19), the correct 
second-order form for the mixing between two occupied 
orbitals is 

(3.12) 

Ignoring the rij terms for the moment, the most striking 
part of Eq. (3.11) is that it has the wrong sign for the 
combination of ~j and Fi in the denominator. This can 
cause the denominator to be small (or even zero) and the 
mixing terms consequently to become very large and un- 
stable. The lack of rij terms in IQ. (3.11) prevents the 
wave function from converging with equivalent sets of or- 
bitals such as in H&O or H,O (which would have 
~j = F~) . In this case all of the terms in F&S. (3.11) and 
(3.12) approach zero as the wave function converges ex- 
cept rij (which is large for localized orbitals). The rij term 
causes Eq. (3.12) to go to zero upon convergence, while 
Eq. (3.11) leads to very large mixing. The absence of F~j 
and fi terms in Eq. (3.11) further adds to the convergence 
problems. 

2. The Pulay method 
Pulay13 has used as the multishell Fock operator, 

3;=Fp where i, j are both in shell I 

or i, j are both unoccupied orbitals, 

P-;=F;-flj, where i, j are in different 

occupied shells, (3.13) 

3’$=,7;, where i is occupied, and j 

is unoccupied. 

The advantage to Yp is that the denominator of the mix- 
ing term in Eq. (3.10) becomes F”T - ere which is a 
somewhat better approximation than the ~j- FB of Eq. 
(3.11). However, ST’ has an obvious problem for cases 
like Hz0 where the orbital pairs become equivalent. Thus 
ey = $y, leading to problems as in the above section. 

3. Page and Mclver 

Page and McIver” suggested that the problems asso- 
ciated with the Fock matrix definition in Eq. (3.13) can be 
avoided by incorporating the proper orbital mixing terms 
into the Fock operator and then scaling them by the dif- 
ference in the diagonal elements so that the proper mixing 
terms are obtained when the matrix is diagonalized. A 
further improvement is made if pseudocanonical orbitals 
are used by diagonalizing each shell individually before 
forming the Fock operator. This allows an artificial diag- 
onal term, say 

Ff=i, 

to be used and then divided out. 

(3.14) 

4. The GVB-D/IS multishell Fock operator, Fg 

For GVB-DIIS, following Page and McIver, we use 
the following form for the multishell Fock operator: 

F$=Fiaij, where i, j 

both unoccupied, 

Aij 9-c= -r (F;-F;), 
‘J.‘J 

are both in shell I or 

(3.15a) 

where i, j are in different shells, (3.15b) 

3fj= 
F;(F;.-Ff) 

F;. ’ 
where i is occupied, j 

is unoccupied. (3.15c) 

In Eq. (3.15b) the Aij and Bj,ij are as defined in E+. 

(2.16) and (2.19), leading to 

(3.15b’) 

Multiplying the off-diagonal blocks with (Fg-F:) re- 
moves the effect of the division by this term when the 
matrix is diagonalized [see Eq. (3.10)]. This allows us to 
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choose in Eq. (3.15b) the correct second-order terms as in 
Eq. (2.18). This approach reduces exactly to the standard 
approach in the limit that all off-diagonal elements of Eq. 
(3.15) go to zero. We should emphasize that the term 
(F$-Ff) in Eq. (3.15b’) is not included to scale the 
offdiagonal elements, but rather to ensure that the correct 
second-order mixing strength is included when the matrix 
F is diagonalized. 

E. initial guesses for GVB wave functions, GVB-INIT 

The error vector for iteration n is defined as the super- 
vector 

A recent paperlg presents a very general, automatic, 
and fast procedure, GVB-INIT, for constructing initial 
guesses for GVB wave functions. This involves (i) building 
an HF-like wave function based on the SCF orbitals of the 
individual atoms and (ii) piecewise localizing this HF trial 
wave function in an automatic way to obtain the first and 
second natural orbitals for the trial GVB orbitals. We used 
GVB-INIT for all cases unless noted otherwise. 

e!?)=FF 
?I ,j, where i<n, and j>i, (3.16) 

where all quantities in 3 are for iteration n. With GVB- 
DIIS, the basis used in constructing ecn) is the current set 
of orbitals at each iteration [rather than the atomic orbital 
basis as in Eq. (3.6)]. This matrix is then transformed to 
the atomic orbital basis so that all error matrices are in 
terms of the same basis. 

F. Sequence of operations 

C. Related DIIS issues 

Once the calculation is within the DIIS radius of con- 
vergence, the sequence of operations within a DIIS itera- 
tion is: (i) calculation of J and K operators; (ii) calcula- 
tion of GVB-CI coefficients; (iii) formation of the general 
Fock operator and error matrix; (iv) determination of it- 
eration coefficients from the DIIS equations; and (v) di- 
agonalization of the composite Fock operator to obtain 
new orbitals. If the wave function is not converged, the 
calculation then proceeds back to (i) for another iteration. 

Pulayt3 has found the use of level shifting and off- 
diagonal element scaling useful in improving DIIS conver- 
gence. For GVB-DIIS we find satisfactory convergence for 
a wide variety of cases without resorting to such methods. 
Indeed, for GVB-DIIS we have seen no improvement when 
such methods are introduced. 

IV. RESULTS 

The DIIS extrapolation scheme, Eqs. (3.3) and (3.7), 
requires that the Fock matrices and error vectors must be 
saved for each iteration. This can result in large values for 
the qn coefficients in Eq. (3.3) as the number of iterations 
becomes large. Pulay uses scaling terms when solving Eq. 
(3.7) to resolve this problem. We have found it useful to 
save only ten iterations. For each iteration past the tenth, 
we overwrite the matrix which had the lowest qn coefficient 
in the previous extrapolation. We have seen no decrease in 
the efficiency of the GVB-DIIS method from using this 
simplification. 

J 

The GVB-DIIS method as described above provides 
excellent convergence for a wide variety of wave functions. 
For one-pair GVB wave functions we compare GVB-DIIS 
to the convergence methods in both GVB2P520 and GAUSS- 
IAN9021 and to the DIIS convergence in GAMESS.~~ The 
DIIS scheme in GAMEST cannot handle more than one 
GVB pair and cannot handle open-shell orbitals combined 
with a GVB pair. GAUSSIAN90 does not use DIIS for GVB 
wave functions. Thus for more complex wave functions, we 
compare GVB-DIIS only to GVB2P5 and GAUSSIAN90 
standard (i.e., non-DIIS) convergence. 

D. Hierarchical convergence strategies 

While the introduction of second-order terms [Eq. 
(3.16)] greatly increases the radius of convergence for 
GVB-DIIS, and while quality initial guesses (GVB-INIT) 
most often put the starting point of a calculation within 
this radius of convergence, it is still possible to find systems 
for which the initial guess is outside the radius of conver- 
gence of GVB-DIIS. To be fail safe, we install a threshold 
e -, corresponding to the maximum value of the error 
vector e, above which standard convergence method iter- 
ations are used. The results presented herein use emax= 1.0 
as this threshold, which we find to be optimal for minimiz- 
ing overall computation time. Using a lower value for e,, 
the standard (non-DIIS) methods may take a long time to 
reach e-. Using a higher value for e,, there is a chance 
the wave function will be outside of the radius of conver- 
gence for DIIS. With the GVB-INIT scheme discussed in 
Sec. III E is used, generally no more than one non-DIIS 
iteration is necessary. 

All cases used the GVB-INIT initial guess. We should 
emphasize that reliable convergence does require a reliable 
automatic procedure for initial guesses and that GVB- 
INIT is very effective. Thus the convergence reported here 
for the GVB2P5, GAUSSIAN90, and GAMESS programs is 
generally much better than with the default procedures. 

The convergence criteria used in the following exam- 
ples requires that 

NBE N 
SQCDF= c c (C$-c;1)2 

p~=l j=l '- '- 

satisfy SQCDF(lO-‘. This is usually a much more strin- 
gent requirement than the more commonly used criteria of 
energy changes between iterations being less than 10F9. All 
cases report’ the number of iterations from trial guess to 
convergence. 

A. One-pair GVB wave functions 

1. H@, one bond stretched 

J. Chem. Phys., Vol. 100, No. 2, 15 January 1994 

The first example tests the ability of GVB-DIIS to con- 
verge a wave function with a single correlated CJ bond. 
Here we calculated the wave function for H,O using a 
GVB pair for one of the G-H o bonds. We stretched the 
correlated Q-H bond from equilibrium (0.94 A) to near 
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TABLE I. (a) Number of iterations to converge the one-pair GVB wave 
function for Hz0 as one OH bond is dissociated. The starting geometry 
(R,,=0.94 A, aHOH= 105.98”) was the optimum geometry for the HF 
wave function with an STO-3G basis. The 6-31G** basis set was used 
with the GVB-INIT initial guess. (b) Initial guess based on localizing the 
orbitals of the HF wave function (rather than GVB-INIT). 

ARon Energy (h) GVB-DIIS GVB2P5 GAME.% G90 

(a) 0.0 - 76.043 561 
0.2 -76.023 038 
0.5 -75.963 830 
1.0 -75.904 616 
2.0 -75.883 588 

(b) 0.0 -76.043 561 
0.2 -76.023 038 
0.5 -75.963 830 
1.0 -75.904 616 
2.0 -75.883 588 

‘dnc = did not converge. 

13 24 dnc’ 41 
13 23 dnc’ 26 
11 23 22 24 
12 19 20 22 
11 20 22 26 

13 22 dnc’ 34 
12 21 dnc’ 26 
11 19 dnca 24 
11 37 19 46 
10 107 27 392 

dissociation (2.94 A). In each case we calculated the wave 
function using the GVB-DIIS, GVB2P5, GAUSSIAN90, and 
GAMES programs (starting from the GVB-INIT guess for 
all programs). 

The results are in Table I A. GVB-DIIS showed excel- 
lent convergence ( 11 to 13) iterations in all cases. 
GVB2P5 took about twice as long in most cases. The 
GAMES DIIS convergence scheme does about as well as 
GVB2P5 for the three most stretched cases, but does not 
converge for the two cases closer to the equilibrium geom- 
etry. This is probably due to mixing between the first GVB 
natural orbital and the uncorrelated Q-H bond, which re- 
sults from using the F’ multishell Fock operator, Eq. 
(3.9), which would have near-identical matrix elements 
along the diagonal for these two orbitals. GVB-DIIS has 
no difficulty whatsoever with these degeneracies (see dis- 
cussion in Sec. 111 B). GAUSSIAN90 uses a GVB conver- 
gence scheme based upon GVB2P5, resulting in the same 
general trends as GVB2P5. However, GAUSSIAN90 takes 
slightly longer for each case, with convergence much 
slower than for GVB-DIIS. 

We investigated the effect of using a guess based on a 
converged HF wave function before generating the GVB 
orbitals (see Table I B). These guesses are significantly 
more expensive than the guesses used in Table I A. In 
every case GVB-DIIS saves one or two iterations with 
these guesses. However, the saved iteration hardly justifies 

TABLE II. Number of iterations for the one-pair GVB wave function of 
CsH, as a function of twisting about the C-C bond. Starting geometry: 
Rcc=1.334 A, R,,=1.081 A, an,-n=117.4” (Ref. 18). The 6-31G** 
basis set was used with GVB-INIT. 

Twist (deg) Energy (h) GVB-DIIS GVB2P5 GAhiESS GW 

0 - 78.066 047 7 11 13 27 
30 -78.022 104 12 19 21 23 
60 -77.906 403 12 29 25 31 
90 -77.748 43 1 21 46 dnc’ 74 

‘dnc = did not converge. 
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FIG. 1. Convergence of the one-pair GVB wave function for formalde- 
hyde with various methods. These calculations used the 6-3 lG** basis set 
and GVB-INIT. The geometry is Rco=1.18 A, Rou=1.09 A, aHCO 
= 122.15’ from an STO-3G minimization. 

the expense of obtaining the guess. On the other hand, 
while GVB2P5 does work slightly better for some of the 
less distorted geometries, it behaves very poorly for the 
more distorted geometries. This is because the HF orbitals 
are poor descriptions for chemical bonds at very distorted 
geometries leading to a poor basis for initial guesses. The 
convergence in GAUSSIAN90 is also improved slightly for 
the less distorted geometries but does poorly for the more 
distorted geometries. GAMESS failed to converge three of 
the five cases. The general conclusion is that added accu- 
racy of the guesses based on using the converged HF wave 
function to generate the initial GVB orbitals does not jus- 
tify the added expense. The remainder of the paper uses the 
less expensive GVB-INIT method (as in Table I A). 

2. Twisted ethylene 
We examined the one-pair GVB wave function to de- 

scribe twisting of the P bond in C2H4 from 0” to 90”. The 
results and various details” are in Table II. We report the 
total number of iterations required to converge the wave 
function from the trial guess to a SQCDF less than 10m9. 

At the equilibrium structure all methods display ac- 
ceptable convergence, but as the bond twists above 45” 
GVB2P5, GAUSSIAN90, and GAMESS have increasing diffi- 
culty. GVB2P5 and GAUSSIAN90 take a large number of 

TABLE III. Same as Table I (a) except that both bonds are simulta- 
neously dissociated and a two-pair GVB wave function is used to corre- 
late both G-H (T bonds. 

AOH,/ AOH/ Energy (h) GVB-DIIS GVB2P5 GW 

0.0 0.0 - 76.063 303 14 24 89 
0.0 1.0 -75.925 219 15 31 36 
1.0 1.0 - 75.799 411 14 17 61 
0.0 2.0 -75.904 235 14 32 40 
1.0 2.0 - 75.778 726 15 56 65 
2.0 2.0 -75.756 784 18 13 dd 

“dnc = did not converge. 
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TABLE IV. Number of iterations for the two-pair GVB wave function of 
C2H, as a function of C-C bond dissociation. The GVB pairs correlate 
both the C-C o and P bonds. Otherwise the same as Table II. 

4X&Q 

0.0 
0.5 
1.0 
2.0 
3.0 

Energy (h) GVB-DIIS 

- 78.075 75 1 10 
- 77.975 870 13 
-77.862 122 8 
- 77.800 986 15 
-77.798 767 15 

GVB2P5 GW 

15 26 
36 40 
14 70 
54 74 
39 125 
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TABLE VI. Number of iterations for converging GVB wave functions for 
glycine, H,N-CH,-C(O)OH. The 6-3 lG** basis set was used with GVB- 
INIT. The geometry was from an STO-3G HF minimization: RNH= 1.03 
bi, RNc=1.48 ii, Rc =1.09 A, Rcc=1.55 A, R,=1.22 A, R-,H 
= 1.37 A, R,,=0.99 1, aHNH= 104.25’, aHcII= 107.54, amc= 107.24’, 
a,=113.59”, acW=125.67”, ao,=122.44”, aaH=lO4.750, THNcc 
=55.98’, ~H,--=-122.W, all heavy atoms and the hydroxyl H are 
coplanar. 

Nti, Description Energy (h) GVB-DIIS GVB2P5 G90 

0 HF -282.837 281 12 48 16n 
1 CO rr bond -282.864 83 1 13 26 30 
5 all NC, CC, CO bonds -282.932 640 20 162 111 
6 CO T, CH, NH, OH -282.953 850 17 42 42 

10 all bonds -283.019 396 20 90 75 

“HF DIIS convergence used in Gaussian. 

iterations for the 90” geometry, and GAMESS does not con- 
verge at all. In contrast, GVB-DIIS shows rapid conver- 
gence in every example. 

3. Formaldehyde, one pair 
Using a single GVB pair to correlate the r bond of 

H&O leads to the results in Fig. 1 which shows 
-log,o(SQCDF) vs iteration number for GVB-DIIS, 
GVB2P5, GAUSSIAN90, and GAMES methods. GVB-DIIS 
has the fastest convergence of the four programs. GAMESS 
also displays the rapid convergence typical of DIIS meth- 
ods. GVB2P5 takes much longer than either of the DIIS 
methods to converge, and GAUSSIAN~O takes even longer. 
These calculations illustrate how standard methods often 
slow down close to convergence. In contrast the DIIS 
methods continue the rapid rate of convergence for the 
entire sequence. 

GVB2P5 converges in fewer iterations than GVB-DIIS for 
one case. GAUSSIAN90 does significantly worse than either 
of the other programs for all cases and does not converge 
for one. 

2. Dissociation of the double bond in ethylene 

Dissociating a double bond is a stiff test of the conver- 
gence method. We considered dissociation of C-C double 

B. Multiple pair GVB wave functions 

7. Dissociating both bonds of H@ 
We used a two-pair GVB wave function to describe the 

simultaneous dissociation of both bonds of HzO. This is 
not a significant pathway for most physical processes in 
HzO, but it provides a good test for the methods. The 
bonds are stretched from equilibrium (0.94 A> to over 
three times the equilibrium distance (2.94 A). We report 
in Table III the total number of iterations from the GVB- 
INIT trial guess to SQCDF < 10e9. 

GVB-DIIS converges quickly ( 14 to 18 iterations) for 
every case reported. We see that the convergence using 
GVB2P5 can be quite poor (up to 56 iterations), although 

(aj 0 5 10 15,te,20 25 30 35 

TABLE V. Number of iterations for converging the three-pair GVB wave 
function of CH, radical for symmetric dissociation of the three C-H 
bonds. The geometry is kept planar with bond angles of 120’. The 
6-31G** basis set was used with GVB-INIT. 

&d(A) Energy (h) GVB-DIIS GVB2P5 G90 

1.0 -39.585 824 14 17 28 
1.2 - 39.583 762 12 15 28 
1.4 -39.492 389 11 18 30 
1.6 -39.382 916 11 21 39 
1.8 -39.281492 11 22 41 
2.0 -39.196 612 10 21 67 
2.2 -39.127 903 12 20 111 
2.4 -39.072 965 12 18 191 
2.6 - 39.029 350 14 17 249 

I I I I 1 
0 20 40 60 80 100 

04 lter 

FIG. 2. (a) Convergence of the one-pair GVB wave function for glycine 
(C-G rr bond correlated). See Table VI for details. (b) Convergence of 
the ten-pair GVB wave function for glycine. 
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a ONEIr---~ -ONE 

FIG. 3. The GVB orbitals for glycine (with all ten bond pairs corrected). (a) C-N D bond; (b) C-C o bond; (c) C-O o bond; (d) C-0 P bond; 
(e) C-O o bond; (f) O--H u bond. Not shown are the two CH bonds and two NH bonds out of the plane. Each plot is for a GvJ3 orbital conn&lng 
one electron. Contours of the orbitals are plotted in the xy plane (increments of 0.05 a.u., zero not shown) except for the C-O P bond (d), which is 
plotted 0.7 b; above the xy plane. 

bond in C,H4 using two GVB pairs for the wave function 
(correlating the (T and r bonds). We use the same (planar) 
geometry’* as in Table II and stretched the bond from 
1.334 to 4.334 A. As summarized in Table IV, GVB-DIIS 
is dramatically faster than the other two programs for ev- 
ery geometry, requiring no more than 15 iterations from 
initial guess to SQCDF < 10m9 for any case. GVB2P5, on 
the other hand, takes no less than 14 and as many as 54 
iterations, while GAUSSIAN~O requires from 26 to 125 iter- 
ations for these same geometries. 

3. Dissociating three bonds of mefhy/ radical 
The next example (Table V) examines the effect of an 

open-shell orbital on the convergence rate. We use the CH, 
radical (6-31G** basis) as our test molecule in a planar 
geometry ( 120” bond angles). We vary the C-H bond 
distances from 1.0 to 2.6 A, and calculate the wave func- 
tion of the doublet state at each geometry. Once again, 
GVB-DIIS requires 10-14 iterations whereas GVB2P5 
leads to 13-22 while GAUSSIAN90 has increasing difficulty 
as the molecule dissociates (28 to 249 iterations). 

4. Correlating all fen bond pairs of glycine 

For glycine we examined the convergence for wave 
functions with up to 10 GVB pairs. We correlated zero 
pairs (the regular HF wave function), one pair (correlat- 
ing the C-G 7r bond), five pairs (correlating all bonds 
between heavy atoms, four o and one rr bonds), six pairs 
(correlating the C-G rr bond, the three C-H o bonds, 
and the two N-H o bonds), and ten pairs (correlating all 
bonds). Table VI reports the results: GVB-DIIS requires 
from 12 to 20 iterations to converge these wave functions, 
while GVB2P5 requires from 26 to 162 iterations, and 
GAUSSIAN90 from 16 to 111 iterations. 

Figure 2 illustrates these cases graphically for GVB- 
DIIS, GVB2P5, and GAUSSIAN90. We see consistently 
rapid convergence for GVB-DIIS. Both GVB2P5 and 
GAUSSIAN90 require many additional iterations with a rate 
of convergence that slows as the iterations increase. 

Figure 3 shows the GVB orbitals of glycine. Electron 
correlation leads naturally to localized optimum orbitals 
closely related to simple valence bond concepts. The vari- 
ous bonds between heavy atoms (C, N, 0) all involve 
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sp2-like orbitals with one electron more on the left and the 
other more on the right. Similarly each M-H bond pair 
has one orbital that is very His-like while the other corre- 
sponds to an sp2- or sp3-like orbital on M. This localization 
is a virtue for correlating very large systems, since the 
virtual orbitals in the CI can be restricted to the region 
near the orbitals being correlated. 

V. DISCUSSION 

The results presented in the previous sections reflects a 
number of significant points. GVB-DIIS in general con- 
verges much more quickly than the standard method 
(GVB2P5 ). GAUSSIAN90 convergence follows the same 
general trends as does GVB2P5, but generally takes signif- 
icantly longer, leading to convergence far inferior to that 
for GVB-DIIS. Finally, the radius of convergence for 
GVB-DIIS, while perhaps not as wide as that of GVB2P5, 
is a significant improvement over the DIIS scheme in 
GAME% (restricted to one GVB pair). 

GVB-DIIS (in conjunction with GVB-INIT) allows 
fast and reliable convergence of wave functions having ar- 
bitrary numbers of core, open, and GVB orbitals. This 
makes it possible now to use physically accurate wave 
functions to calculate force fields, to describe bond distor- 
tion and dissociation processes, and to obtain highly con- 
verged wave functions for the purpose of calculating mo- 
lecular properties such as charges and dipole moments. 

The GVB-DIIS convergence scheme has already been 
implemented in the PS-GVB electronic structure program. 
We expect that the pseudospectral approach, when com- 
bined with the methods detailed here, should allow GVB 
calculations on much larger systems than have been possi- 
ble before. 
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