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Quantum structural methods for atoms and molecules

Jack Simons

B3.1.1 What does quantum chemistry try to do?

Electronic structure theory describes the motions of the electrons and produces energy surfaces and wave-
functions. The shapes and geometries of molecules, their electronic, vibrational and rotational energy levels,
as well as the interactions of these states with electromagnetic fields lie within the realm of quantum structure
theory.

B3.1.1.1 The underlying theoretical basis—the Born–Oppenheimer model

In the Born–Oppenheimer [1] model, it is assumed that the electrons move so quickly that they can adjust their
motions essentially instantaneously with respect to any movements of the heavier and slower atomic nuclei.
In typical molecules, the valence electrons orbit about the nuclei about once every 10−15 s (the inner-shell
electrons move even faster), while the bonds vibrate every 10−14 s, and the molecule rotates approximately
every 10−12 s. So, for typical molecules, the fundamental assumption of the Born–Oppenheimer model is
valid, but for loosely held (e.g. Rydberg) electrons and in cases where nuclear motion is strongly coupled to
electronic motions (e.g. when Jahn–Teller effects are present) it is expected to break down.

This separation-of-time-scales assumption allows the electrons to be described by electronic wavefunc-
tions that smoothly ‘ride’ the molecule’s atomic framework. These electronic functions are found by solving
a Schrödinger equation whose Hamiltonian Ĥe contains the kinetic energy Te of the electrons, the Coulomb
repulsions among all the molecule’s electrons Vee, the Coulomb attractions Ven among the electrons and all
of the molecule’s nuclei, treated with these nuclei held clamped, and the Coulomb repulsions Vnn among all
of these nuclei, but it does not contain the kinetic energy TN of all the nuclei. That is, this Hamiltonian keeps
the nuclei held fixed in space. The electronic wavefunctions ψk and energies Ek that result

Ĥeψk = Ekψk

thus depend on the locations {Qi} at which the nuclei are sitting. That is, the Ek and ψk are parametric
functions of the coordinates of the nuclei, and, of course, the wavefunctions ψk depend on the coordinates of
all of the electrons.

These electronic energies’ dependence on the positions of the atomic centres cause them to be referred
to as electronic energy surfaces such as that depicted below in figure B3.1.1 for a diatomic molecule. For
nonlinear polyatomic molecules having N atoms, the energy surfaces depend on 3N − 6 internal coordinates
and thus can be very difficult to visualize. In figure B3.1.2, a ‘slice’ through such a surface is shown as a
function of two of the 3N − 6 internal coordinates.

The Born–Oppenheimer theory is soundly based in that it can be derived from a Schrödinger equation
describing the kinetic energies of all electrons and of all N nuclei plus the Coulomb potential energies of
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Figure B3.1.1. Energy as a function of internuclear distance for a typical bound diatomic molecule or ion.

Figure B3.1.2. Two-dimensional slice through a (3N − 6)-dimensional energy surface of a polyatomic molecule or ion.
After [2].
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interaction among all electrons and nuclei. By expanding the wavefunction � that is an eigenfunction of
this full Schrödinger equation in the complete set of functions {ψk} and then neglecting all terms that involve
derivatives of any ψk with respect to the nuclear positions {Qi}, one can separate variables such that:

(1) the electronic wavefunctions and energies obey

Ĥeψk = Ekψk

(2) the nuclear motion (i.e. vibration/rotation) wavefunctions obey

(T̂N + Ek)χk,L = Ek,Lχk,L

where TN is the kinetic energy operator for movement of all nuclei.

Each and every electronic energy state, labelled k, has a set, labelled L, of vibration/rotation energy levels
Ek,L and wavefunctions χk,L.

B3.1.1.2 Non-Born–Oppenheimer corrections—radiationless transitions

Because the Born–Oppenheimer model is obtained from the full Schrödinger equation by making approxi-
mations, it is not exact. Thus, in certain circumstances it becomes necessary to correct the predictions of the
Born–Oppenheimer theory (i.e. by including the effects of the neglected coupling terms using perturbation
theory). For example, when developing a theoretical model to interpret the rate at which electrons are ejected
from rotationally/vibrationally hot NH− ions, we had to consider [3] coupling between:

(1) 2� NH− in its v = 1 vibrational level and in a high rotational level (e.g. J > 30) prepared by laser
excitation of vibrationally ‘cold’ NH− in v = 0 having high J (due to natural Boltzmann populations),
see figure B3.1.3; and

(2) 3�− NH neutral plus an ejected electron in which the NH is in its v = 0 vibrational level (no higher
level is energetically accessible) and in various rotational levels (labelled N ).

Because NH has an electron affinity of 0.4 eV, the total energies of the above two states can be equal
only if the kinetic energy KE carried away by the ejected electron obeys

KE = Evib/rot(NH− (v = 1, J )) − Evib/rot(NH (v = 0, N)) − 0.4 eV.

In the absence of any coupling terms, no electron detachment would occur. It is only by the anion converting
some of its vibration/rotation energy and angular momentum into electronic energy that the electron that
occupies a bound N2p orbital in NH− can gain enough energy to be ejected.

My own research efforts [4] have, for many years, involved taking into account such non-Born–Oppen-
heimer couplings, especially in cases where vibration/rotation energy transferred to electronic motions causes
electron detachment, as in the NH− case detailed above. Professor Yngve Öhrn has been active [5] in
attempting to avoid using the Born–Oppenheimer approximation and, instead, treating the dynamical motions
of the nuclei and electrons simultaneously. Professor David Yarkony has contributed much [6] to the recent
treatment of non-Born–Oppenheimer effects and to the inclusion of spin–orbit coupling in such studies.

B3.1.1.3 What is learned from an electronic structure calculation?

The knowledge gained via structure theory is great. The electronic energies Ek(Q) allow one to determine
[7] the geometries and relative energies of various isomers that a molecule can assume by finding those
geometries {Qi} at which the energy surface Ek has minima ∂Ek/∂Qi = 0, with all directions having positive
curvature (this is monitored by considering the so-called Hessian matrix Hi,j = ∂2Ek/∂Qi∂Qj : if none of its
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Figure B3.1.3. Energies of NH− and of NH pertinent to the autodetachment of v = 1, J levels of NH− formed by laser
excitation of v = 0, J ′′NH−.

eigenvalues are negative, all directions have positive curvature). Such geometries describe stable isomers, and
the energy at each such isomer geometry gives the relative energy of that isomer. Professor Berny Schlegel
[8] has been one of the leading figures in using gradient and Hessian information to locate stable structures
and transition states. Professor Peter Pulay [9] has done as much as anyone to develop the theory that allows
us to compute gradients and Hessians for most commonly used electronic structure methods.

There may be other geometries on the Ek energy surface at which all ‘slopes’ vanish ∂Ek/∂Qi = 0, but
at which not all directions possess positive curvature. If the Hessian matrix has only one negative eigenvalue,
there is only one direction leading downhill away from the point {Qi} of zero force; all the remaining directions
lead uphill from this point. Such a geometry describes that of a transition state, and its energy plays a central
role in determining the rates of reactions which pass through this transition state. The energy surface shown
in figure B3.1.2 displays such transition states, and it also shows a second-order saddle point (i.e. a point
where the gradient vanishes and the Hessian has two directions of negative curvature).

At any geometry {Qi}, the gradient vector having components ∂Ek/∂Qi provides the forces (Fi =
−∂Ek/∂Qi) along each of the coordinates Qi . These forces are used in molecular dynamics simulations
which solve the Newton F = ma equations and in molecular mechanics studies which are aimed at locating
those geometries where the F vector vanishes (i.e. the stable isomers and transition states discussed above).

Also produced in electronic structure simulations are the electronic wavefunctions {ψk} and energies {Ek}
of each of the electronic states. The separation in energies can be used to make predictions on the spectroscopy
of the system. The wavefunctions can be used to evaluate the properties of the system that depend on the
spatial distribution of the electrons. For example, the z component of the dipole moment [10] of a molecule µz

can be computed by integrating the probability density for finding an electron at position r multiplied by the
z coordinate of the electron and the electron’s charge e: µz = ∫

eψ∗
k ψkz dr. The average kinetic energy of

an electron can also be computed by carrying out such an average-value integral:
∫

ψ∗
k (−h̄2/2me∇2)ψk dr.

The rules for computing the average value of any physical observable are developed and illustrated in popular
undergraduate text books on physical chemistry [11] and in graduate-level texts [12].

Not only can electronic wavefunctions tell us about the average values of all the physical properties for
any particular state (i.e. ψk above), but they also allow us to tell us how a specific ‘perturbation’ (e.g. an
electric field in the Stark effect, a magnetic field in the Zeeman effect and light’s electromagnetic fields in
spectroscopy) can alter the specific state of interest. For example, the perturbation arising from the electric
field of a photon interacting with the electrons in a molecule is given within the so-called electric dipole
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approximation [12] by:
Ĥpert =

∑
j

e2rj ·E(t)

where E is the electric field vector of the light, which depends on time t in an oscillatory manner, and rj

gives the spatial coordinates of the j th electron. This perturbation, Ĥpert can induce transitions to other states
ψk′ , with probabilities that are proportional to the square of the integral:∫

ψ∗
k′Ĥpertψk dr.

So, if this integral were to vanish, transitions between ψk and ψk′ would not occur, and would be referred to
as ‘forbidden’. Whether such integrals vanish or not often is determined by symmetry. For example, if ψk

were of odd symmetry under a plane of symmetry σv of the molecule, while ψk′ were even under σv , then the
integral would vanish unless one or more of the three Cartesian components of the dot product rj · E were
odd under σv . The general idea is that for the integral not to vanish, the direct product of the symmetries of ψk

and of ψk′ must match the symmetry of at least one of the symmetry components present in Ĥpert. Professor
Poul Jørgensen [13] has been involved in developing such so-called response theories for perturbations that
may be time dependent (e.g. as in the interaction of light’s electromagnetic radiation).

B3.1.1.4 Summary

In summary, computational ab initioquantum chemistry attempts to solve the electronic Schrödinger equation
for the Ek(R) energy surfaces and wavefunctions ψk(r;R) on a ‘grid’ of values for the ‘clamped’ nuclear
positions. Because the Schrödinger equation produces wavefunctions, it has a great deal of predictive power.
Wavefunctions contain all the information needed to compute dipole moments, polarizability, etc and transition
properties such as the electric dipole transition strengths among states. They also permit the evaluation of
system responses with respect to external perturbations such as geometrical distortions [9], which provides
information on vibrational frequencies and reaction paths.

B3.1.2 Why is it so difficult to calculate electronic energies and wavefunctions with reasonable accu-
racy?

As a scientific tool, ab initio quantum chemistry is not yet as accurate as modern laser spectroscopic measure-
ments, for example. Moreover, it is difficult to estimate the accuracies with which various methods predict
bond energies and lengths, excitation energies and the like. In the opinion of the author, chemists who rely
on the results of quantum chemistry calculations must better understand what underlies the concepts and
methods of this field. Only by so doing will they be able to judge for themselves the value of given quantum
chemistry data to their own research. There exist a variety of sources of further information on the ‘jargon’,
underlying theory, methodologies, and current strengths and weaknesses of ab initio quantum chemistry. In
1996, Head-Gordon [14] produced a nice overview entitled ‘Quantum chemistry and molecular processes’,
Schaefer et al [15] offered a very good discussion in 1995; Simons [16] offered a somewhat earlier perspective
in 1991. The present chapter includes many of the ideas contained in these and other earlier descriptions of
this field’s impacts, but also attempts to extend the perspective to include more recent developments.

Returning now to the issue of the accuracy of various electronic structure predictions, it is natural to
ask why it is so difficult to achieve reasonable accuracy (i.e. ca. 1 kcal mol−1 in computed bond energies
or activation energies) even with the most sophisticated and computer-resource-intensive quantum chemistry
calculations. The reasons include the following.

(A) Many-body problems withR−1 potentials are notoriously difficult.It is well known that the Coulomb
potential falls off so slowly with distance that mathematical difficulties can arise. The 4πR2 dependence
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of the integration volume element, combined with the R−1 dependence of the potential, produce ill-
defined interaction integrals unless attractive and repulsive interactions are properly combined. The
classical or quantum treatment of ionic melts [17], many-body gravitational dynamics [18] and Madelung
sums [19] for ionic crystals are all plagued by such difficulties.

(B) The electrons require quantal treatment and they are indistinguishable.The electron’s small mass
produces local de Broglie wavelengths that are long compared to atomic ‘sizes’, thus necessitating
quantum treatment. Their indistinguishability requires that permutational symmetry be imposed on
solutions of the Schrödinger equation.

(C) All mean-field models of electronic structure require large corrections.Essentially all ab initio quantum
chemistry approaches introduce a ‘mean field’ potential Vmf that embodies the average interactions among
the N electrons. The difference between the mean-field potential and the true Coulombic potential is
termed [20] the ‘fluctuation potential’. The solutions {�k, Ek} to the true electronic Schrödinger equation
are then approximated in terms of solutions {�0

k , E0
k } to the model Schrödinger equation in which Vmf

is used. Improvements to the solutions of the model problem are made using perturbation theory or the
variational method. Such approaches are expected to work when the difference between the starting
model and the final goal is small in some sense.

The most elementary mean-field models of electronic structure introduce a potential that an electron at
r1 would experience if it were interacting with a spatially averagedelectrostatic charge density arising from
the N − 1 remaining electrons:

Vmf(r1) =
∫

ρN−1(r′)
e2

|r1 − r′| dr′.

Here ρN−1(r′) represents the probability density for finding the N − 1 electrons at r′, and e2/|r1 − r′| is the
mutual Coulomb repulsion between electron density at r1 and r′.

The magnitude and ‘shape’ of such a mean-field potential is shown below [21] in figure B3.1.4 for the two
1s electrons of a beryllium atom. The Be nucleus is at the origin, and one electron is held fixed 0.13 Å from
the nucleus, the maximum of the 1s orbital’s radial probability density. The Coulomb potential experienced
by the second electron is then a function of the second electron’s position along the x-axis (connecting the
Be nucleus and the first electron) and its distance perpendicular to the x-axis. For simplicity, this second
electron is arbitrarily constrained to lie on the x-axis. Along this direction, the Coulomb potential is singular,
and hence the overall interactions are very large.

On the ordinate, two quantities are plotted: (i) the mean-field potential between the second electron and
the other 1s electron computed, via the self-consistent field (SCF) process (described later), as the interaction
of the second electron with a spherical |1s|2 charge density centred on the Be nucleus; and (ii) the fluctuation
potential (F ) of this average (mean-field) interaction.

As a function of the inter-electron distance, the fluctuation potential decays to zero more rapidly than
does the mean-field potential. However, the magnitude of F is quite large and remains so over an appreciable
range of inter-electron distances. The corrections to the mean-field picture are therefore quite large when
measured in kcal mol−1. For example, the differences (called pair correlation energies) &E between the
true (state-of-the-art quantum chemical calculation as discussed later) energies of the interaction among the
four electrons in the Be atom and the mean-field estimates of these interactions are given in table B3.1.1 in
electronvolts (1 eV = 23.06 kcal mol−1).

Another example of the difficulty is offered in figure B3.1.5. Here we display on the ordinate, for helium’s
1S (1s2) state, the probability of finding an electron whose distance from the He nucleus is 0.13 Å (the peak
of the 1s orbital’s density) and whose angular coordinate relative to that of the other electron is plotted on the
abscissa. The He nucleus is at the origin and the second electron also has a radial coordinate of 0.13 Å. As
the relative angular coordinate varies away from 0◦, the electrons move apart; near 0◦, the electrons approach
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Figure B3.1.4. Fluctuation and mean-field SCF potentials for a 2s electron in Be.

Table B3.1.1. Pair correlation energies for the four electrons in Be.

Orbital pair 1sα1sβ 1sα2sα 1sα2sβ 1sβ2sα 1sβ2sβ 2sα2sβ
&E (eV) 1.126 0.022 0.058 0.058 0.022 1.234

one another. Since both electrons have opposite spin in this state, their mutual Coulomb repulsion alone acts
to keep them apart.

What figure B3.1.5 shows is that, for a highly accurate wavefunction (one constructed using so-called
Hylleraas functions [23] that depend explicitly on the coordinates of the two electrons as well as on their
interparticle distance coordinate), one finds a ‘cusp’ in the probability density for finding one electron in the
neighbourhood of another electron with the same spin. The probability plot for the Hylleraas function is
the lower bold curve in figure B3.1.5. The line above the Hylleraas plot was extracted from a configuration
interaction wavefunction for He obtained using a rather large atomic orbital (AO) basis set [22]. Even for such
a sophisticated wavefunction (of the type used in many state-of-the-art ab initio calculations), the cusp in the
relative probability distribution is, clearly, not well represented. Finally, the Hartree–Fock (HF) probability,
which is not even displayed above, would, if plotted, be flat as a function of the angle shown above and thus
clearly very much in error.

B3.1.2.1 Summary

The above evidence shows why an ab initio solution of the Schrödinger equation is a very demanding task
if high accuracy is desired. The HF potential takes care of ‘most’ of the interactions among the N electrons
(which interact via long-range Coulomb forces and whose dynamics requires the application of quantum
physics and permutational symmetry). However, the residual fluctuation potential is large enough to cause
significant corrections to the HF picture. The reality is that electrons in atoms and molecules undergo
dynamical motions in which their Coulomb repulsions cause them to ‘avoid’ one another at every instant
of time, not only in the average-repulsion manner that the mean-field models embody. The inclusion of
instantaneous spatial correlations (usually called dynamical correlations) among electrons is necessary to
achieve a more accurate description of the atomic and molecular electronic structure.
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Figure B3.1.5. Probability (as a function of angle) for finding the second electron in He when both electrons are located
at the maximum in the 1s orbital’s probability density. The bottom line is that obtained using a Hylleraas-type function,
and the other related to a highly-correlated multiconfigurational wavefunction. After [22].

B3.1.3 What are the essential concepts of ab initio quantum chemistry?

The mean-field potential and the need to improve it to achieve reasonably accurate solutions to the true
electronic Schrödinger equation introduce three constructs that characterize essentially all ab initio quantum
chemical methods: orbitals, configurationsand electron correlation.

B3.1.3.1 Orbitals and configurations—what are they (really)?

(a) How the mean-field model leads to orbitals and configurations

The mean-field potentials that have proven most useful are all one-electron additive: Vmf(r) = ∑
j Vmf(rj ).

Since the electronic kinetic energy T̂ = ∑
j T̂j operator is also one-electron additive, so is the mean-field

Hamiltonian Ĥ 0 = T̂ + V̂mf . The additivity of Ĥ 0 implies that the mean-field energies {E0
k } are additive

and the wavefunctions {�0
k } can be formed in terms of products of functions {φk} of the coordinates of the

individual electrons.
Thus, it is the ansatzthat Vmf is separable that leads to the concept of orbitals, which are the one-electron

functions {φj } found by solving the one-electron Schrödinger equations: (T̂1 + V̂mf(r1))φj (r1) = εj φj (r1);
the eigenvalues {εj } are called orbital energies.

Given the complete set of solutions to this one-electron equation, a complete set of N -electron mean-field
wavefunctions can be written. Each �0

k is constructed by forming a product of N orbitals chosen from the
set of {φj }, allowing each orbital in the list to be a function of the coordinates of one of the N electrons (e.g.
�0

k = |φk1(r1)φk2(r2)φk3(r3) . . . φkN−1(rN−1)φkN (rN )|, as above). The corresponding mean-field energy is
evaluated as the sum over those orbitals that appear in �0

k : E0
k = ∑

j=1,N εkj .



What are the essential concepts of ab initio quantum chemistry? 1915

Because of the indistinguishability of the N electrons, the antisymmetric component of any such orbital
product must be formed to obtain the proper mean-field wavefunction. To do so, one applies the so-called
antisymmetrizer operator [24] Â = ∑

P (−1)P P̂ , where the permutation operator P̂ runs over all N ! per-
mutations of the N electrons. Application of Â to a product function does not alter the occupancy of the
functions {φkj } in �0

k , it simply scrambles the order which the electrons occupy the {φkj } and it causes the re-
sultant function (which is often denoted |φk1(r1)φk2(r2)φk3(r3) . . . φkN−1(rN−1)φkN (rN )| and called a Slater
determinant) to obey the Pauli exclusion principle.

Because the electrons also possess intrinsic spin, the one-electron functions {φj } used in this construction
are taken to be eigenfunctions of (T̂1 + V̂mf(r1)) multiplied by either an α or β spin function. This set of
functions is called the set of mean-field spin orbitals.

By choosing to place N electrons into N specific spin orbitals, one specifies a configuration. By
making other choices of which Nφj to occupy, one describes other configurations. Just as the one-electron
mean-field Schrödinger equation has a complete set of spin–orbital solutions {φj and εj }, the N -electron
mean-field Schrödinger equation has a complete set of antisymmetric N -electron Slater determinants. When
these determinants are combined to generate functions that are eigenfunctions of the total S2 and Sz and
eigenfunctions of the molecule’s point group symmetry (or L̂2 and L̂z for atoms), one has what are called
configuration state functions(CSFs) �0

k whose mean-field energies are also given by E0
k = ∑

j=1,N εkj .

(b) The self-consistent mean-field (SCF) potential

The one-electron additivity of the mean-field Hamiltonian Ĥ 0 gives rise to the concept of spin orbitals for any
additive V̂mf(r). In fact, there is no singlemean-field potential; different scientists have put forth different
suggestions for V̂mf over the years. Each gives rise to spin orbitals and configurations that are specific to the
particular V̂mf . However, if the difference between any particular mean-field model and the full electronic
Hamiltonian is fully treated, corrections to all mean-field results should converge to the same set of exact
states. In practice, one is never able to treat all corrections to any mean-field model. Thus, it is important
to seek particular mean-field potentials for which the corrections are as small and straightforward to treat as
possible.

In the most commonly employed mean-field models [25] of electronic structure theory, the configuration
specified for study plays a central role in defining the mean-field potential. For example, the mean-field
Coulomb potential felt by a 2px orbital’s electron at a point r in the 1s22s22px2py configuration description
of the carbon atom is:

V̂mf(r) = 2
∫

|1s(r′)|2e2/|r − r′| dr′ + 2
∫

|2s(r′)|2e2/|r − r′| dr′ +
∫

|2py(r′)|2e2/|r − r′| dr′.

The above mean-field potential is used to find the 2px orbital of the carbon atom, which is then used to
define the mean-field potential experienced by, for example, an electron in the 2s orbital:

V̂mf(r) = 2
∫

|1s(r′)|2e2/|r − r′| dr′ +
∫

|2s(r′)|2e2/|r − r′| dr′ +
∫

|2py(r′)|2e2/|r − r′| dr′

+
∫

|2px(r′)|2e2/|r − r′| dr′.

Notice that the orbitals occupied in the configuration under study appear in the mean-field potential.
However, it is V̂mf that, through the one-electron Schrödinger equation, determines the orbitals. For these
reasons, the solution of these equations must be carried out in a so-called SCF manner. One begins with
an approximate description of the orbitals in �0

k . These orbitals then define V̂mf , and the equations (T̂1 +
V̂mf(r1))φj (r1) = εj φj (r1) are solved for ‘new’ spin orbitals. These orbitals are then be used to define
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an improved V̂mf , which gives another set of solutions to (T̂1 + V̂mf(r1))φj (r1) = εj φj (r1). This iterative
process is continued until the orbitals used to define V̂mf are identical to those that result as solutions of
(T̂1 + V̂mf(r1))φj (r1) = εj φj (r1). When this condition is reached, one has achieved ‘self-consistency’.

B3.1.3.2 What is electron correlation?

By expressing the mean-field interaction of an electron at r with the N − 1 other electrons in terms of a
probability density ρN−1(r′) that is independent of the fact that another electron resides at r, the mean-field
models ignore spatial correlationsamong the electrons. In reality, as shown in figure B3.1.5, the conditional
probability density for finding one of N − 1 electrons at r′, given that one electron is at r depends on r′. The
absence of a spatial correlation is a direct consequence of the spin–orbital product natureof the mean-field
wavefunctions {�0

k }.
To improve upon the mean-field picture of electronic structure, one must move beyond the single-

configuration approximation. It is essential to do so to achieve higher accuracy, but it is also important to
do so to achieve a conceptuallycorrect view of the chemical electronic structure. Although the picture of
configurations in which N electrons occupy N spin orbitals may be familiar and useful for systematizing the
electronic states of atoms and molecules, these constructs are approximations to the true states of the system.
They were introduced when the mean-field approximation was made, and neither orbitals nor configurations
can be claimed to describe the proper eigenstates {�k, Ek}. It is thus inconsistent to insist that the carbon
atom be thought of as 1s22s22p2 while insisting on a description of this atom accurate to ±1 kcal mol−1.

B3.1.3.3 Summary

The SCF mean-field potential takes care of ‘most’ of the interactions among the N electrons. However,
for all mean-field potentials proposed to date, the residual or fluctuation potential is large enough to require
significant corrections to the mean-field picture. This, in turn, necessitates the use of more sophisticated and
computationally taxing techniques (e.g., high-order perturbation theory or large variational expansion spaces)
to reach the desired chemical accuracy.

For electronic structures of atoms and molecules, the SCF model requires quite substantial corrections
to bring its predictions in line with experimental fact. Electrons in atoms and molecules undergo dynamical
motions in which their Coulomb repulsions cause them to ‘avoid’ one another at every instant of time, not
only in the average-repulsion manner of mean-field models. The inclusion of dynamical correlationsamong
electrons is necessary to achieve a more accurate description of atomic and molecular electronic structure. No
single spin–orbital product wavefunction is capable of treating electron correlation to anyextent; its product
nature renders it incapable of doing so.

B3.1.4 How to introduce electron correlation via configuration mixing

B3.1.4.1 The multi-configuration wavefunction

In most of the commonly used ab initio quantum chemical methods [26], one forms a set of configurations
by placing N electrons into spin orbitals in a manner that produces the spatial, spin and angular momentum
symmetry of the electronic state of interest. The correct wavefunction � is then written as a linear combination
of the mean-field configuration functions {�k}: � = ∑

k Ck�0
k . For example, to describe the ground 1S state

of the Be atom, the 1s22s2 configuration is augmented by including other configurations such as 1s23s2, 1s22p2,
1s23p2, 1s22s3s, 3s22s2, 2p22s2, etc, all of which have overall 1S spin and angular momentum symmetry.
The various methods of electronic structure theory differ primarily in how they determine the {Ck} expansion
coefficients and how they extract the energy E corresponding to this �.
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Figure B3.1.6. Polarized orbital pairs involving 2s and 2pz orbitals.

B3.1.4.2 The physical meaning of mixing in ‘excited’ configurations

When considering the ground 1S state of the Be atom, the following four antisymmetrized spin–orbital products
are found to have the largest Ck amplitudes:

� ∼= C1|1s22s2| − C2[|1s22p2
x | + |1s22p2

y | + |1s22p2
z |].

The fact that the latter three terms possess the same amplitude C2 is a result of the requirement that a state of
1S symmetry is desired. It can be shown [27] that this function is equivalent to

� ∼= 1
6 C1|1sα1sβ{[(2s − a2px)α(2s + a2px)β − (2s − a2px)β(2s + a2px)α]

+ [(2s − a2py)α(2s + a2py)β − (2s − a2py)β(2s + a2py)α]

+ [(2s − a2pz)α(2s + a2pz)β − (2s − a2pz)β(2s + a2pz)α]}|
where a = √

3C2/C1.
Here two electrons occupy the 1s orbital (with opposite, α and β spins) while the other electron pair resides

in 2s−2p polarized orbitals in a manner that instantaneously correlates their motions. These polarized orbital
pairs (2s ± a2px,y or z) are formed by combining the 2s orbital with the 2px,y or z orbital in a ratio determined
by C2/C1. This way of viewing an electron pair correlation forms the basis of the generalized valence bond
(GVB) method that Professor Bill Goddard [28] pioneered.

This ratio C2/C1 can be shown to be proportional to the magnitude of the coupling 〈1s22s2|Ĥ |1s22p2〉 be-
tween the two configurations involved and inversely proportional to the energy difference (〈1s22s2Ĥ |1s22s2〉−
〈1s22p2|Ĥ |1s22p2〉) between these configurations. In general, configurations that have similar Hamiltonian
expectation values and that are coupled strongly give rise to strongly mixed (i.e. with large |C2/C1| ratios)
polarized orbital pairs.

A set of polarized orbital pairs is described pictorially in figure B3.1.6. In each of the three equivalent
terms in the above wavefunction, one of the valence electrons moves in a 2s + a2p orbital polarized in one
direction while the other valence electron moves in the 2s − a2p orbital polarized in the opposite direction.
For example, the first term (2s − a2px)α(2s + a2px)β − (2s − a2px)β(2s + a2px)α describes one electron
occupying a 2s−a2px polarized orbital while the other electron occupies the 2s + a2px orbital. The electrons
thus reduce their Coulomb repulsion by occupying differentregions of space; in the SCF picture 1s22s2, both
electrons reside in the same 2s region of space. In this particular example, the electrons undergo angular
correlation to ‘avoid’ one another.

Let us consider another example. In describing the π2 electron pair of an olefin, it is important to mix in
‘doubly excited’ configurations of the form (π∗)2. The physical importance of such configurations can again
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Figure B3.1.7. Left- and right-polarized orbital pairs involving π and π∗ orbitals.

be made clear by using the identity

C1|. . .φαφβ. . .| − C2|. . .φ′αφ′β. . .| = C1/2{|. . .(φ − xφ′)α(φ + xφ′)β. . .| − |. . .(φ − xφ′)β(φ + xφ′)α. . .|}

where x = (C2/C1)1/2.
In this example, the two non-orthogonal ‘polarized orbital pairs’ involve mixing the π and π∗ orbitals

to produce two left–right polarized orbitals as depicted in figure B3.1.7. Here one says that the π2 electron
pair undergoes left–right correlation when the (π∗)2 configuration is introduced.

B3.1.4.3 Are polarized orbital pairs hybrid orbitals?

It should be stressed that these polarized orbital pairs are not the same as hybrid orbitals. The latter are used
to describe directed bonding, but polarized orbital pairs are each a ‘mixture’ of two mean-field orbitals with
amplitude x = (C2/C1)1/2 and with a single electronin each, thereby allowing the electrons to be spatially
correlated and to ‘avoid’ one another. In addition, polarized orbital pairs are not generally orthogonalto one
another; hybrid orbital sets are.

B3.1.4.4 Relationship to the generalized valence bond picture

In these examples, the analysis allows one to interpret the combination of pairs of configurations that differ
from one another by a ‘double excitation’ from one orbital (φ) to another (φ′) as equivalent to a singlet coupling
of two polarized orbitals (φ − aφ′) and (φ + aφ′). As mentioned earlier, this picture is closely related to the
GVB model that Goddard [28] and Goddard and Harding [29] developed. In the simplest embodiment of the
GVB model, each electron pair in the atom or molecule is correlated by mixing in a configuration in which
that pair is ‘doubly excited’ to a correlating orbital. The direct product of all such pair correlations generates
the simplest GVB-type wavefunction.

In most ab initioquantum chemical methods, the correlation calculation is actually carried out by forming
a linear combination of the mean-field configuration state functions and determining the {Ck} amplitudes by
some procedure. The identities discussed in some detail above are then introduced merely to permit one
to interpret the presence of configurations that are ‘doubly excited’ relative to the dominant mean-field
configuration in terms of polarized orbital pairs.
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B3.1.4.5 Summary

The dynamical interactions among electrons give rise to instantaneous spatial correlations that must be handled
to arrive at an accurate picture of the atomic and molecular structure. The single-configuration picture provided
by the mean-field model is a useful starting point, but it is incapableof describing electron correlations.
Therefore, improvements are needed. The use of doubly-excited configurations is a mechanism by which �

can place electron pairs, which in the mean-field picture occupy the same orbital, into different regions of
space thereby lowering their mutual Coulombic repulsions. Such electron correlation effects are referred to as
dynamical electron correlation; they are extremely important to include if one expects to achieve chemically
meaningful accuracy.

B3.1.5 The single-configuration picture and the HF approximation

Given a set of N -electron space- and spin-symmetry-adapted configuration state functions {1J } in terms of
which � is to be expanded as � = ∑

J CJ 1J , two primary questions arise: (1) how to determine the {CJ }
coefficients and the energy E and (2) how to find the ‘best’ spin orbitals {φj }? Let us first consider the case
where a single configuration is used so only the question of determining the spin orbitals exists.

B3.1.5.1 The single-determinant wavefunction

(a) The canonical SCF equations

The simplest trial function employed in ab initio quantum chemistry is the single Slater determinant function
in which N spin orbitals are occupied by N electrons:

� = |φ1φ2φ3 . . . φN |.

For such a function, variational optimization of the spin orbitals to make the expectation value 〈�|Ĥ |�〉
stationary produces [30] the canonical HF equations

F̂ φi = εiφi

where the so-called Fock operator F̂ is given by

F̂ φi = ĥφi +
∑

j(occupied)

[Ĵj − K̂j ]φi.

The Coulomb (Ĵj ) and exchange (K̂j ) operators are defined by the relations

Ĵj φi =
∫

φ∗
j (r ′)φj (r ′)/|r − r ′| dτ ′ φi(r)

and

K̂j φi =
∫

φ∗
j (r ′)φi(r

′)/|r − r ′| dτ ′ φj (r)

the symbol ĥ denotes the sum of the electronic kinetic energy, and electron–nuclear Coulomb attraction
operators. The dτ implies integration over the spin variables associated with the φj (and, for the exchange
operator, φi), as a result of which the exchange integral vanishes unless the spin function of φj is the same as
that of φi ; the Coulomb integral is non-vanishing no matter what the spin functions of φj and φi .
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(b) The equations have orbital solutions for occupied and unoccupied orbitals

The HF [31] equations F̂ φi = εiφi possess solutions for the spin orbitals in � (the occupiedspin orbitals) as
well as for orbitals not occupied in � (the virtual spin orbitals) because the F̂ operator is Hermitian. Only
the φi occupied in � appear in the Coulomb and exchange potentials of the Fock operator.

(c) The spin-impurity problem

As formulated above, the HF equations yield orbitals that do not guarantee that � has proper spin symmetry.
To illustrate, consider an open-shell system such as the lithium atom. If 1sα, 1sβ, and 2sα spin orbitals are
chosen to appear in �, the Fock operator will be

F̂ = ĥ + Ĵ1sα + Ĵ1sβ + Ĵ2sα − [K̂1sα + K̂1sβ + K̂2sα].

Acting on an α spin orbital φkα with F and carrying out the spin integrations, one obtains

F̂ φkα = ĥφkα + (2Ĵ1s + Ĵ2s)φkα − (K̂1s + K̂2s)φkα.

In contrast, when acting on a β spin orbital, one obtains

F̂ φkβ = ĥφkβ + (2Ĵ1s + Ĵ2s)φkβ − (K̂1s)φkβ.

Spin orbitals of α and β type do not experience the same exchange potential in this model because �

contains two α spin orbitals and only one β spin orbital. A consequence is that the optimal 1sα and 1sβ spin
orbitals, which are themselves solutions of F̂ φi = εiφi , do not have identical orbital energies (i.e. ε1sα �= ε1sβ)
and are not spatially identical. This resultant spin polarization of the orbitals gives rise to spin impuritiesin
�. The determinant |1sα1s′β2sα| is not a pure doublet spin eigenfunction, although it is an Sz eigenfunction
with Ms = 1/2; it contains both S = 1/2 and S = 3/2 components. If the 1sα and 1s′β spin orbitals were
spatially identical, then |1sα1s′β2sα| would be a pure spin eigenfunction with S = 1/2.

The above single-determinant wavefunction is referred to as being of the unrestricted Hartree–Fock
(UHF) type because no restrictions are placed on the spatial nature of the orbitals in �. In general, UHF
wavefunctions are not of pure spin symmetry for any open-shell system or for closed-shell systems far from
their equilibrium geometries (e.g. for H2 or N2 at long bond lengths) These are significant drawbacks of
methods based on a UHF starting point. Such a UHF treatment forms the basis of the widely used and highly
successful Gaussian 70 through Gaussian-9X series of electronic structure computer codes [32] which derive
from Pople [32] and co-workers.

To overcome some of the problems inherent in the UHF method, it is possible to derive SCF equations
based on minimizing the energy of a wavefunction formed by spin projecting a single Slater determinant
starting function (e.g. using {|1sα2sβ|−|1sβ2sα|}/21/2 for the singlet excited state of He rather than |1sα2sβ|).
It is also possible for a trial wavefunction of the form |1sα1sβ2sα| to constrain the 1sα and 1sβ orbitals to
have exactly the same spatial form. In both cases, one then is able to carry out what are called restricted
Hartree–Fock (RHF) calculations.

B3.1.5.2 The linear combinations of atomic orbitals to form molecular orbitals expansion of the spin orbitals

The HF equations must be solved iteratively because the Ji and Ki operators in F depend on the orbitals φi

for which solutions are sought. Typical iterative schemes begin with a ‘guess’ for those φi that appear in
�, which then allows F̂ to be formed. Solutions to F̂ φi = εiφi are then found, and those φi which possess
the space and spin symmetry of the occupied orbitals of � and which have the proper energies and nodal
character are used to generate a new F̂ operator (i.e. new Ĵi and K̂i operators). This iterative HF SCF process
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is continued until the φi and εi do not vary significantly from one iteration to the next, at which time one says
that the process has converged.

In practice, solution of F̂ φi = εiφi as an integro-differential equation can be carried out only for
atoms [34] and linear molecules [35] for which the angular parts of the φi can be exactly separated from
the radial because of axial- or full-rotation group symmetry (e.g. φi = Yl,m(θ, φ)Rn,l(r) for an atom and
φi = exp(imφ)Rn,l,m(ρ, z) for a linear molecule).

In the procedures most commonly applied to nonlinear molecules, the φi are expanded in a basisχµ

according to the linear combinations of AOs to form molecular orbitals (LCAO–MO) [36] procedure:

φi =
∑

µ

Cµ,iχµ.

This reduces F̂ φi = εiφi to a matrix eigenvalue-type equation:
∑

ν

Fµ,νCν,i = εi

∑
ν

Sµ,νCν,i

where Sµ,ν = 〈χµ|χν〉 is the overlap matrix among the AOs and

Fµ,ν = 〈χµ|ĥ|χν〉 +
∑
δ,κ

[γδ,κ〈χµχδ|ĝ|χνχκ〉 − γ ex
δ,κ〈χµχδ|ĝ|χκχν〉]

is the matrix representation of the Fock operator in the AO basis. Here and elsewhere, the symbol ĝ is used
to represent the electron–electron Coulomb potential e2/|r − r′|.

The charge- and exchange-density matrix elements in the AO basis are:

γδ,κ =
∑

i(occupied)

Cδ,iCκ,i

and
γ ex

δ,κ =
∑

i(occupied and same spin)

Cδ,iCκ,i

where the sum in γ ex
δ,κ runs over those occupied spin orbitals whose ms value is equal to that for which the

Fock matrix is being formed (for a closed-shell species, γ ex
δ,κ = 1/2γδ,κ ).

It should be noted that by moving to a matrix problem, one does not remove the need for an iterative
solution; the Fµ,ν matrix elements depend on the Cν,i LCAO–MO coefficients which are, in turn, solutions
of the so-called Roothaan [30] matrix HF equations:

∑
v Fµ,νCν,i = εi

∑
v Sµ,νCν,i . One should also note

that, just as F̂ φi = εiφi possesses a complete set of eigenfunctions, the matrix Fµ,ν , whose dimension M is
equal to the number of atomic basis orbitals, has M eigenvalues εi and M eigenvectors whose elements are
the Cν,i . Thus, there are occupied and virtualMOs each of which is described in the LCAO–MO form with
the Cν,i coefficients obtained via solution of

∑
ν Fµ,νCν,i = εi

∑
ν Sµ,νCν,i .

B3.1.5.3 AO basis sets

(a) Slater-type orbitals and Gaussian-type orbitals

The basis orbitals commonly used in the LCAO–MO process fall into two primary classes:

(1) Slater-type orbitals (STOs) χn,l,m(r, θ, φ) = Nn,l,m,ζ Yl,m(θ, φ)rn−1 exp(−ζ r), are characterized by the
quantum numbers n, l and m and the exponent (which characterizes the ‘size’) ζ . The symbol Nn,l,m,ζ

denotes the normalization constant.
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(2) Cartesian Gaussian-type orbitals (GTOs) χa,b,c(r, θ, φ) = N ′
a,b,c,αxaybzc exp(−αr2), are characterized

by the quantum numbers a, b and c, which detail the angular shape and direction of the orbital, and the
exponent α which governs the radial ‘size’.

For both types of orbitals, the coordinates r , θ and φ refer to the position of the electron relative to a set
of axes attached to the centre on which the basis orbital is located. Although STOs have the proper ‘cusp’
behaviour near the nuclei, they are used primarily for atomic- and linear-molecule calculations because the
multi-centre integrals which arise in polyatomic-molecule calculations cannot efficiently be performed when
STOs are employed. In contrast, such integrals can routinely be done when GTOs are used. This fundamental
advantage of GTOs has led to the dominance of these functions in molecular quantum chemistry.

To overcome the primary weakness of GTO functions (i.e. their radial derivatives vanish at the nucleus
whereas the derivatives of STOs are non-zero), it is common to combine two, three, or more GTOs, with
combination coefficients which are fixed and not treated as LCAO–MO parameters, into new functions
called contractedGTOs or CGTOs. Typically, a series of tight, medium, and loose GTOs are multiplied by
contraction coefficientsand summed to produce a CGTO, which approximates the proper ‘cusp’ at the nuclear
centre.

Although most calculations on molecules are now performed using Gaussian orbitals (STOs are still
commonly employed in atomic calculations), it should be noted that other basis sets can be used as long as
they span enough of the region of space (radial and angular) where significant electron density resides. In fact,
it is possible to use plane wave orbitals [37] of the form χ(r, θ, φ) = N exp[i(kxr sin θ cos φ +kyr sin θ sin φ +
kzr cos θ)], where N is a normalization constant and kx , ky and kz are the quantum numbers detailing the
momenta of the orbital along the x, y and z Cartesian directions. The advantage to using such ‘simple’ orbitals
is that the integrals one must perform are much easier to handle with such functions; the disadvantage is that
one must use many such functions to accurately describe sharply peaked charge distributions of, for example,
inner-shell core orbitals.

(b) Basis set libraries

Much effort has been devoted to developing sets of STO or GTO basis orbitals for main-group elements and
the lighter transition metals. This ongoing effort is aimed at providing standard basis set libraries which:

(1) yield predictable chemical accuracy in the resultant energies;

(2) are cost effective to use in practical calculations;

(3) are relatively transferable so that a given atom’s basis is flexible enough to be used for that atom in
various bonding environments.

The fundamental core and valence basis.In constructing an AO basis, one can choose from among several
classes of functions. First, the size and nature of the primary core and valence basis must be specified. Within
this category, the following choices are common.

(1) A minimal basisin which the number of STO or CGTO orbitals is equal to the number of core and
valence AOs in the atom.

(2) A double-zeta(DZ) basis in which twice as many STOs or CGTOs are used as there are core and valence
AOs. The use of more basis functions is motivated by a desire to provide additional variational flexibility
so the LCAO–MO process can generate MOs of variable diffuseness as the local electronegativity of the
atom varies.

(3) A triple-zeta(TZ) basis in which three times as many STOs or CGTOs are used as the number of core
and valence AOs (and, yes, there now are quadruple-zeta (QZ) and higher-zeta basis sets appearing in
the literature).
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(4) Dunning and Dunning and Hay [38] developed CGTO bases which range from approximately DZ to
substantially beyond QZ quality. These bases involve contractions of primitive uncontracted GTO bases
which Huzinaga [39] had earlier optimized. These Dunning bases are commonly denoted as follows
for first-row atoms: (10s,6p/5s,4p), which means that 10 s-type primitive GTOs have been contracted
to produce five separate s-type CGTOs and that six primitive p-type GTOs were contracted into four
separate p-type CGTOs in each of the x, y and z directions.

(5) Even-tempered basis sets [40] consist of GTOs in which the orbital exponents αk belonging to series of
orbitals consist of geometrical progressions: αk = aβk , where a and β characterize the particular set of
GTOs.

(6) STO-3G bases [41] were employed some years ago, but have recently become less popular. These bases
are constructed by least-squares fitting GTOs to STOs which have been optimized for various electronic
states of the atom. When three GTOs are employed to fit each STO, a STO-3G basis is formed.

(7) 4-31G, 5-31G and 6-31G bases [42] employ a single CGTO of contraction length 4, 5, or 6 to describe
the core orbital. The valence space is described at the DZ level with the first CGTO constructed from
three primitive GTOs and the second CGTO built from a single primitive GTO.

(8) More recently, the Dunning group has focused on developing basis sets that are optimal not for use
in SCF-level calculations on atoms and molecules, but that have been optimized for use in correlated
calculations. These so-called correlation-consistent bases [43] are now widely used because more and
more ab initio calculations are being performed at a correlated level.

(9) Atomic natural orbital (ANO) basis sets [44] are formed by contracting Gaussian functions so as to
reproduce the natural orbitals obtained from correlated (usually using a configuration interaction with
single and double excitation (CISD) level wavefunction) calculations on atoms.

Optimization of the orbital exponents(ζ s or αs) and the GTO-to-CGTO contraction coefficientsfor the
kind of bases described above have undergone explosive growth in recent years. As a result, it is not possible
to provide a single or even a few literature references from which one can obtain the most up-to-date bases.
However, the theory group at the Pacific Northwest National Laboratories (PNNL) offer a webpage [45]
from which one can find (and even download in a form prepared for input to any of several commonly used
electronic structure codes) a wide variety of Gaussian atomic basis sets.

Polarization functions. One usually enhances any core and valence functions with a set of so-called
polarization functions. They are functions of one higher angular momentum than appears in the atom’s
valence orbital space (e.g. d-functions for C, N and O and p-functions for H), and they have exponents
(ζ or α) which cause their radial sizes to be similar to the sizes of the valence orbitals (i.e. the polarization
p orbitals of the H atom are similar in size to the 1s orbital). Thus, they are not orbitals which describe the
atom’s valence orbital with one higher l value; such higher-l valence orbitals would be radially more diffuse.

The primary purpose of the polarization functions is to give additional angular flexibility to the LCAO–
MO process in forming the valence MOs. This is illustrated below in figure B3.1.8 where polarization dπ

orbitals are seen to contribute to formation of the bonding π orbital of a carbonyl group by allowing polarization
of the carbon atom’s pπ orbital toward the right and of the oxygen atom’s pπ orbital toward the left.

The polarization functions are essential in strained ring compounds because they provide the angular
flexibility needed to direct the electron density into the regions between the bonded atoms.

Functions with higher l values and with ‘sizes’ like those of lower-l valence orbitals are also used to
introduce additional angular correlation by permitting angularly polarized orbital pairs to be formed. Optimal
polarization functions for first- and second-row atoms have been tabulated and are included in the PNNL
Gaussian orbital web site data base [45].
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Figure B3.1.8. The role of d-polarization functions in the π bond between C and O.

Diffuse functions. When dealing with anions or Rydberg states, one must further augmentthe basis set by
adding so-called diffuse basis orbitals. The valence and polarization functions described above do not provide
enough radial flexibility to adequately describe either of these cases. Once again, the PNNL web site data
base [45] offers a good source for obtaining diffuse functions appropriate to a variety of atoms.

Once one has specified an AO basis for each atom in the molecule, the LCAO–MO procedure can be
used to determine the Cν,i coefficients that describe the occupied and virtual orbitals. It is important to keep
in mind that the basis orbitals are not themselves the SCF orbitals of the isolated atoms; even the proper AOs
are combinations (with atomic values for the Cν,i coefficients) of the basis functions. The LCAO–MO–SCF
process itself determines the magnitudes and signs of the Cν,i ; alternations in the signs of these coefficients
allow radial nodes to form.

B3.1.5.4 The physical meaning of orbital energies

The HF–SCF equations F̂ φi = εiφi imply that εi can be written as

εi = 〈φi |F̂ |φi〉 = 〈φi |ĥ|φi〉 +
∑

j(occupied)

〈φi |Ĵj − K̂j |φi〉 = 〈φi |ĥ|φi〉 +
∑

j(occupied)

[Ji,j − Ki,j ].

Thus εi is the average value of the kinetic energy plus the Coulombic attraction to the nuclei for an electron
in φi plus the sum over all of the spin orbitals occupied in � of the Coulomb minus exchange interactions.

If φi is an occupied spin orbital, the term [Ji,i −Ki,i] disappears and the latter sum represents the Coulomb
minus exchange interaction of φi with all of the N − 1 other occupied spin orbitals. If φi is a virtual spin
orbital, this cancellation does not occur, and one obtains the Coulomb minus exchange interaction of φi with
all N of the occupied spin orbitals.

Hence the orbital energies of occupiedorbitals pertain to interactions appropriate to a total of N electrons,
while the orbital energies of virtual orbitals pertain to a system with N + 1 electrons. This usually makes SCF
virtual orbitals not very good for use in subsequent correlation calculations or for use in interpreting electronic
excitation processes. To correlate a pair of electrons that occupy a valence orbital requires double excitations
into a virtual orbital of similar size; the SCF virtual orbitals are too diffuse. For this reason, significant effort
has been devoted to developing methods that produce so-called ‘improved virtual orbitals’ (IVOs) [46] that
are of more utility in performing correlated calculations.

(a) Koopmans’ theorem

Let us consider a model of the vertical (i.e. at fixed molecular geometry) detachment or attachment of an
electron to an N -electron molecule.
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(1) In this model, boththe parent molecule and the species generated by adding or removing an electron are
treated at the single-determinant level.

(2) The HF orbitals of the parent molecule are used to describe both species. It is said that such a model ne-
glects ‘orbital relaxation’ (i.e. the reoptimization of the spin orbitals to allow them to become appropriate
to the daughter species).
Within this model, the energy difference between the daughter and the parent can be written as follows
(φk represents the particular spin orbital that is added or removed):

(1) For electron detachment
EN−1 − EN = −εk.

(2) For electron attachment
EN − EN+1 = −εk.

So, within the limitations of the single-determinant, frozen-orbital model, the ionization potentials (IPs)
and electron affinities (EAs) are given as the negative of the occupied and virtual spin–orbital energies,
respectively. This statement is referred to as Koopmans’ theorem[47]; it is used extensively in quantum
chemical calculations as a means for estimating IPs and EAs and often yields results that are qualitatively
correct (i.e., ±0.5 eV).

(b) Orbital energies and the total energy

The total SCF electronic energy can be written as

E =
∑

i(occupied)

〈φi |ĥ|φi〉 +
∑

i>j(occupied)

[Ji,j − Ki,j ]

and the sum of the orbital energies of the occupied spin orbitals is given by
∑

i(occupied)

εi =
∑

i(occupied)

〈φi |ĥ|φi〉 +
∑

i,j(occupied)

[Ji,j − Ki,j ].

These two expressions differ in a very important way; the sum of occupied orbital energies double counts the
Coulomb minus exchange interaction energies. Thus, within the HF approximation, the sum of the occupied
orbital energies is not equal to the total energy.

B3.1.5.5 Solving the Roothaan SCF equations

Before moving on to discuss methods that go beyond the single-configuration mean-field model, it is important
to examine some of the computational effort that goes into carrying out an SCF calculation.

Once atomic basis sets have been chosen for each atom, the one- and two-electron integralsappearing in
Fµ,ν must be evaluated. There are numerous, highly-efficient computer codes [48] which allow such integrals
to be computed for s, p, d, f and even g, h and i basis functions. After executing one of these ‘integral
packages’ for a basis with a total of P functions, one has available (usually on the computer’s hard disk) of
the order of P 2/2 one-electron (〈χµ|ĥ|χν〉 and 〈χµ|χν〉) and P 4/8 two-electron (〈χµχδ|ĝ|χνχκ〉) integrals.
When treating extremely large AO basis sets (e.g. 1000 or more basis functions), modern computer programs
[49] calculate the requisite integrals, but never store them on the disk. Instead, their contributions to Fµ,ν

are accumulated ‘on the fly’ after which the integrals are discarded. Recently, much progress has been made
towards achieving an evaluation of the non-vanishing (i.e. numerically significant) integrals [48] as well as
solving the subsequent SCF equations in a manner whose effort scales linearly[50] with the number of basis
functions for large P .
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After the requisite integrals are available or are being computed on the fly, to begin the SCF process
one must input into the computer routine which computes Fµ,ν the initial ‘guesses’for the Cν,i values
corresponding to the occupied orbitals. These initial guesses are typically made as follows.

(1) If one has available the Cν,i values for the system from a calculation performed at a nearby geometry,
one can use these Cν,i values.

(2) If one has Cν,i values appropriate to fragments of the system (e.g. for C and O atoms if the CO molecule
is under study or for CH2 and O if H2CO is being studied), one can use these.

(3) If one has no other information available, one can carry out one iteration of the SCF process in which
the two-electron contributions to Fµ,ν are ignored (i.e. take Fµ,ν = 〈χµ|h|χν〉) and use the resultant
solutions to

∑
ν Fµ,νCν,i = εi

∑
ν Sµ,νCν,i as initial guesses.

Once the initial guesses have been made for the Cν,i of the occupied orbitals, the fullFµ,ν matrix is formed
and new εi and Cν,i values are obtained by solving

∑
ν Fµ,νCν,i = εi

∑
ν Sµ,νCν,i . These new orbitals are

then used to form a new Fµ,ν matrix from which new εi and Cν,i are obtained. This iterative process is carried
on until the εi and Cν,i do not vary (within specified tolerances) from iteration to iteration, at which time the
SCF process has reached self-consistency.

B3.1.6 Methods for treating electron correlation

B3.1.6.1 An overview of various approaches

There are numerous procedures currently in use for determining the ‘best’ wavefunction of the form

� =
∑

I

CIΦI

where ΦI is a spin- and space-symmetry-adapted CSF consisting of determinants |φI1φI2φI3 . . . φIN | (see [14,
16, 26]). In all such wavefunctions there are two kinds of parameters that need to be determined—the CI and
the LCAO–MO coefficients describing the φIk . The most commonly employed methods used to determine
these parameters include the following.

(a) The multiconfigurational self-consistent field method

In this approach [51], the expectation value 〈�|Ĥ |�〉/〈�|�〉 is treated variationally and made stationary
with respect to variations in the CI and Cν,i coefficients. The energy functional is a quadratic function of the
CI coefficients, and so one can express the stationary conditions for these variables in the secular form

∑
J

HI,JCJ = ECI .

However, E is a quartic function of the Cν,is because HI,J involves two-electron integrals 〈φiφj |ĝ|φkφl〉 that
depend quartically on these coefficients.

It is well known that minimization of the function (E) of several nonlinear parameters (the Cν,i) is a
difficult task that can suffer from poor convergence and may locate local rather than global minima. In a
multiconfigurational self-consistent field (MCSCF) wavefunction containing many CSFs, the energy is only
weakly dependent on the orbitals that appear in CSFs with small CI values; in contrast, E is strongly dependent
on those orbitals that appear in the CSFs with larger CI values. One is therefore faced with minimizing a
function of many variables that depends strongly on several of the variables and weakly on many others.

For these reasons, in the MCSCF method the number of CSFs is usually kept to a small to moderate
number (e.g. a few to several thousand) chosen to describe essential correlations(i.e. configuration crossings,
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near degeneracies, proper dissociation, etc, all of which are often termed non-dynamical correlations) and
important dynamical correlations (those electron-pair correlations of angular, radial, left–right, etc nature that
are important when low-lying ‘virtual’ orbitals are present).

(b) The configuration interaction method

In this approach [52], the LCAO–MO coefficients are determined first via a single-configuration SCF cal-
culation or an MCSCF calculation using a small number of CSFs. The CI coefficients are subsequently
determined by making the expectation value 〈�|Ĥ |�〉/〈�|�〉 stationary.

The CI wavefunction is most commonly constructed from CSFs of 1J that include:

(1) all of the CSFs in the SCF or MCSCF wavefunction used to generate the molecular orbitals φi . These
are referred to as the ‘reference’ CSFs;

(2) CSFs generated by carrying out single-, double-, triple-, etc, level ‘excitations’ (i.e. orbital replacements)
relative to reference CSFs. CI wavefunctions limited to include contributions through various levels of
excitation are denoted S (singly), D (doubly), SD (singly and doubly), SDT (singly, doubly, and triply)
excited.

The orbitals from which electrons are removed can be restricted to focus attention on the correlations
among certain orbitals. For example, if the excitations from the core electrons are excluded, one computes
the total energy that contains no core correlation energy. The number of CSFs included in the CI calculation
can be far in excess of the number considered in typical MCSCF calculations. CI wavefunctions including
5000 to 50 000 CSFs are routine, and functions with one to several billion CSFs are within the realm of
practicality [53].

The need for such large CSF expansions should not be surprising considering (i) that each electron pair
requires at leasttwo CSFs to form polarized orbital pairs, (ii) there are of the order of N(N − 1)/2 = X

electron pairs for N electrons, hence (iii) the number of terms in the CI wavefunction scales as 2X. For a
molecule containing ten electrons, there could be 245 = 3.5×1013 terms in the CI expansion. This may be an
overestimate of the number of CSFs needed, but it demonstrates how rapidly the number of CSFs can grow
with the number of electrons.

The HI,J matrices are, in practice, evaluated in terms of one- and two-electron integrals over the MOs
using the Slater–Condon rules [54] or their equivalent. Prior to forming the HI,J matrix elements, the one-
and two-electron integrals, which can be computed only for the atomic (e.g. STO or GTO) basis, must be
transformed [55] to the MO basis. This transformation step requires computer resources proportional to
the fifth power of the number of basis functions, and thus is one of the more troublesome steps in most
configuration interaction calculations.

For large CI calculations, the full HI,J matrix is not formed and stored in the computer’s memory
or on disk; rather, ‘direct CI’ methods [56] identify and compute non-zero HI,J and immediately add up
contributions to the sum

∑
J HI,JCJ . Iterative methods [57], in which approximate values for the CJ

coefficients are refined through sequential application of
∑

J HI,J to the preceding estimate of the CJ vector,
are employed to solve these large eigenvalue problems.

(c) The Møller–Plesset perturbation method

This method [58] uses the single-configuration SCF process to determine a set of orbitals {φi}. Then, using an
unperturbed Hamiltonian equal to the sum of the N electrons’ Fock operators Ĥ 0 = ∑

i=1,N F̂ (i), perturbation
theory is used to determine the CI amplitudes for the CSFs. The MPPT procedure [59] is a special case of many-
body perturbation theory (MBPT) in which the UHF Fock operator is used to define Ĥ 0. The amplitude for the
referenceCSF is taken as unity and the other CSFs’ amplitudes are determined by the Rayleigh–Schrödinger
perturbation using Ĥ − Ĥ 0 as the perturbation.
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In the MPPT/MBPT method, once the reference CSF is chosen and the SCF orbitals belonging to this
CSF are determined, the wavefunction � and energy E are determined in an order-by-order manner. The
perturbation equations determinewhat CSFs to include and their particular order. This is one of the primary
strengths of this technique; it does not require one to make further choices, in contrast to the MCSCF and CI

treatments where one needs to choose which CSFs to include.
For example, the first-order wavefunction correction �1 is

�1 = −
∑

i<j,m<n

[〈i, j |ĝ|m, n〉 − 〈i, j |ĝ|n, m〉][εm − εi + εn − εj ]−1 | 1
m,n
i,j 〉

where the SCF orbital energies are denoted εk and 1
m,n
i,j represents a CSF that is doubly excited(φi and φj are

replaced by φm and φn) relative to 1. Only doubly-excited CSFs contribute to the first-order wavefunction; the
fact that the contributions from singly-excited configurations vanish in 11 is known as the Brillouin theorem
[60].

The energy E is given through second order as

E = ESCF −
∑

i<j,m<n

|〈i, j |ĝ|m, n〉 − 〈i, j |ĝ|n, m〉|2/[εm − εi + εn − εj ].

Both � and E are expressed in terms of two-electron integrals 〈i, j |ĝ|m, n〉 coupling the virtual spin orbitals
φm and φn to the spin orbitals from which the electrons were excited φi and φj as well as the orbital energy
differences [εm−εi+εn−εj ] accompanying such excitations. Clearly, the major contributions to the correlation
energy are made by double excitations into virtual orbitals φmφn with large 〈i, j |ĝ|m, n〉 integrals and small
orbital energy gaps [εm − εi + εn − εj ]. In higher-order corrections, contributions from CSFs that are singly,
triply, etc excited relative to 1 appear, and additional contributions from the doubly-excited CSFs also enter.

(d) The coupled-cluster method

In the coupled-cluster (CC) method [61], one expresses the wavefunction in a somewhat different manner:

� = exp(T )1

where 1 is a single CSF (usually the UHF determinant) used in the SCF process to generate a set of spin
orbitals. The operator T̂ is expressed in terms of operators that achieve spin–orbital excitations as follows:

T =
∑
i,m

tm
i m̂+ î +

m,n∑
i,j

t
m,n
i,j m̂+n̂+ĵ î + · · ·

where the combination of operators m̂+ î denotes the creationof an electron in the virtual spin orbital φm and
the removalof an electron from the occupied spin orbital φi to generate a single excitation. The operation
m̂+n̂+ĵ î therefore represents a double excitation from φiφj to φmφn.

The amplitudes tm
i , t

m,n
i,j , etc, which play the role of the CI coefficients in CC theory, are determined

through the set of equations generated by projecting the Schrödinger equation in the form

exp(−T )Ĥ exp(T )1 = E1

against CSFs which are single, double, etc, excitations relative to 1:

〈1m
i |Ĥ + [Ĥ, T ] + 1

2 [ ̂[H, T ], T ] + 1
6 [ ̂[[H, T ], T ], T ] + 1

24 [ ̂[[[H, T ], T ], T ], T ]|1〉 = 0

〈1m,n
i,j |Ĥ + [Ĥ, T ] + 1

2 [ ̂[H, T ], T ] + 1
6 [ ̂[[H, T ], T ], T ] + 1

24 [ ̂[[[H, T ], T ], T ], T ]|1〉 = 0

〈1m,n,p

i,j,k |Ĥ + [Ĥ, T ] + 1
2 [ ̂[H, T ], T ] + 1

6 [ ̂[[H, T ], T ], T ] + 1
24 [ ̂[[[H, T ], T ], T ], T ]|1〉 = 0

and so on for higher-order excited CSFs.
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It can be shown [62] that the expansion of the exponential operators truncates exactly at the fourth power
in T . As a result, the exact CC equations are quartic equationsfor the tm

i , t
m,n
i,j , etc amplitudes. The matrix

elements appearing in the CC equations can be expressed in terms of one- and two-electron integrals over the
spin orbitals including those occupied in 1 and the virtual orbitals not in 1.

These quartic equations are solved in an iterative manner and, as such, are susceptible to convergence
difficulties. In any such iterative process, it is important to start with an approximation reasonably close to
the final result. In CC theory, this is often achieved by neglecting all of the terms that are nonlinear in the
t amplitudes (because the ts are assumed to be less than unity in magnitude) and ignoring factors that couple
different doubly-excited CSFs (i.e. the sum over i ′, j ′, m′ and n′). This gives t amplitudes that are equal to
the amplitudes of the first-order MPPT/MBPT wavefunction:

t
m,n
i,j = −〈i, j |ĝ|m, n〉′/[εm − εi + εn − εj ].

As Bartlett [63] and Pople have both demonstrated [64], there is a close relationship between the MPPT/MBPT
and CC methods when the CC equations are solved iteratively starting with such an MPPT/MBPT-like initial
‘guess’ for these double-excitation amplitudes.

(e) Density functional theories

These approaches provide alternatives to the conventional tools of quantum chemistry. The CI, MCSCF,
MPPT/MBPT, and CC methods move beyond the single-configuration picture by adding to the wavefunction
more configurations whose amplitudes they each determine in their own way. This can lead to a very large
number of CSFs in the correlated wavefunction and, as a result, a need for extraordinary computer resources.

The density functional approaches are different [65]. Here one solves a set of orbital-level equations[
−h̄2/2me∇2 −

∑
A

ZAe2/|r − RA| +
∫

ρ(r′)e2/|r − r′| dr′ + U(r)

]
φi = εiφi

in which the orbitals {φi} ‘feel’ potentials due to the nuclear centres (having charges ZA), Coulombic interac-
tion with the total electron density ρ(r′) and a so-called exchange-correlationpotential denoted U(r′). The
particular electronic state for which the calculation is being performed is specified by forming a corresponding
density ρ(r′). Before going further in describing how density functional theory (DFT) calculations are carried
out, let us examine the origins underlying this theory.

The so-called Hohenberg–Kohn [66] theorem states that the ground-stateelectron density ρ(r) describing
an N -electron system uniquely determines the potential V (r) in the Hamiltonian

Ĥ =
∑

j

{
− h̄2/2me∇2

j + V (rj ) +
1

2

∑
k �=j

e2/rj,k

}

and, because Ĥ determines the ground-state energy and wavefunction of the system, the ground-state density
ρ(r) determines the ground-state properties of the system. The proof of this theorem proceeds as follows.

(a) ρ(r) determines N because
∫

ρ(r) d3r = N .
(b) Assume that there are two distinct potentials (aside from an additive constant that simply shifts the zero

of total energy) V (r) and V ′(r) which, when used in Ĥ and Ĥ ′, respectively, to solve for a ground
state produce E0, �(r) and E′

0, � ′(r) that have the same one-electron density:
∫ |�|2 dr2 dr3 . . . drN =

ρ(r) = ∫ |� ′|2 dr2 dr3 . . . drN .

(c) If we think of � ′ as trial variational wavefunction for the Hamiltonian Ĥ , we know that

E0 < 〈� ′|Ĥ |� ′〉 = 〈� ′|Ĥ ′|� ′〉 +
∫

ρ(r)[V (r) − V ′(r)] d3r = E′
0 +

∫
ρ(r)[V (r) − V ′(r)] d3r.
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(d) Similarly, taking � as a trial function for the H ′ Hamiltonian, one finds that

E′
0 < E0 +

∫
ρ(r)[V ′(r) − V (r)] d3r.

(e) Adding the equations in (c) and (d) gives

E0 + E′
0 < E0 + E′

0.

A clear contradiction.
Hence, there cannot be two distinct potentials V and V ′ that give the same ground-state ρ(r). So, the

ground-state density ρ(r) uniquely determines N and V , and thus Ĥ , and therefore � and E0. Furthermore,
because � determines all the properties of the ground state, then ρ(r), in principle, determines all such
properties. This means that even the kinetic energy and the electron–electron interaction energy of the ground
state are determined by ρ(r). It is easy to see that

∫
ρ(r)V (r) d3r = V [ρ] gives the average value of

the electron–nuclear (plus any additional one-electron additive potential) interaction in terms of the ground-
state density ρ(r), but how are the kinetic energy T [ρ] and the electron–electron interaction Vee[ρ] energy
expressed in terms of ρ?

The main difficulty with DFTs is that the Hohenberg–Kohn theorem shows that the ground-statevalues
of T , Vee, V , etc are all unique functionals of the ground-stateρ (i.e. that they can, in principle, be determined
once ρ is given), but it does not tell us what these functional relations are.

To see how it might make sense that a property such as the kinetic energy, whose operator (−h̄2/2me)∇2

involves derivatives, can be related to the electron density, consider a simple system of N non-interacting
electrons moving in a three-dimensional cubic ‘box’ potential. The energy states of such electrons are known
to be

E = (h2/8meL
2)(n2

x + n2
y + n2

z)

where L is the length of the box along the three axes and nx , ny and nz are the quantum numbers describing
the state. We can view n2

x + n2
y + n2

z = R2 as defining the squared radius of a sphere in three dimensions, and
we realize that the density of quantum states in this space is one state per unit volume in the nx , ny and nz

space. Because nx , ny and nz must be positive integers, the volume covering all states with energy less than
or equal to a specified energy E = (h2/2meL

2)R2 is one-eighth the volume of the sphere of radius R:

1(E) = 1
8 (4π/3)R3 = (π/6)(8meL

2E/h2)3/2.

Since there is one state per unit of such volume, 1(E) is also the number of states with energy less than or
equal to E, and is called the integrated density of states. The number of states g(E) dE with energy between
E and E + dE, the density of states, is the derivative of 1:

g(E) = d1/dE = (π/4)(8meL
2/h2)3/2E1/2.

If we calculate the total energy for N electrons, with the states having energies up to the so-called Fermi
energy(EF) (i.e. the energy of the highest occupied molecular orbital HOMO) doubly occupied, we obtain
the ground-state energy:

E0 = 2
∫ EF

0
g(E)E dE = (8π/5)(2me/h2)3/2L3E

5/2
F .

The total number of electrons N can be expressed as

N = 2
∫ EF

0
g(E) dE = (8π/3)(2me/h2)3/2L3E

3/2
F
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which can be solved for EF in terms of N to then express E0 in terms of N instead of EF:

E0 = (3h2/10me)(3/8π)2/3L3(N/L3)5/3.

This gives the total energy, which is also the kinetic energy in this case because the potential energy is zero
within the ‘box’, in terms of the electron density ρ (x, y, z) = (N/L3). It therefore may be plausible to
express kinetic energies in terms of electron densities ρ(r), but it is by no means clear how to do so for ‘real’
atoms and molecules with electron–nuclear and electron–electron interactions operative.

In one of the earliest DFT models, the Thomas–Fermitheory, the kinetic energy of an atom or a molecule
is approximated using the above type of treatment on a ‘local’ level. That is, for each volume element in r

space, one assumes the expression given above to be valid, and then one integrates over all r to compute the
total kinetic energy:

TTF[ρ] =
∫

(3h2/10me)(3/8π)2/3[ρ(r)]5/3 d3r = CF

∫
[ρ(r)]5/3 d3r

where the last equality simply defines the CF constant (which is 2.8712 in atomic units). Ignoring the
correlation and exchange contributions to the total energy, this T is combined with the electron–nuclear V

and Coulombic electron–electron potential energies to give the Thomas–Fermi total energy:

E0,TF[ρ] = CF

∫
[ρ(r)]5/3 d3r +

∫
V (r)ρ(r) d3r + e2/2

∫
ρ(r)ρ(r′)/|r − r′| d3r d3r ′.

This expression is an example of how E0 is given as a local density functional approximation(LDA). The
term local means that the energy is given as a functional (i.e. a function of ρ) which depends only on ρ(r) at
the points in space, but not on ρ(r) at more than one point in space.

Unfortunately, the Thomas–Fermi energy functional does not produce results that are of sufficiently high
accuracy to be of great use in chemistry. What is missing in this theory are the exchange energy and the
correlation energy; moreover, the kinetic energy is treated only in the approximate manner described.

In the book by Parr and Yang [67], it is shown how Dirac was able to address the exchange energy for the
‘uniform electron gas’ (N Coulomb interactingelectrons moving in a uniform positive background charge
whose magnitude balances the charge of the N electrons). If the exact expression for the exchange energy
of the uniform electron gas is applied on a local level, one obtains the commonly used Dirac local density
approximation to the exchange energy:

Eex,Dirac[ρ] = −Cx

∫
[ρ(r)]4/3 d3r

with Cx = (3/4)(3/π)1/3 = 0.7386 in atomic units. Adding this exchange energy to the Thomas–Fermi total
energy E0,TF[ρ] gives the so-called Thomas–Fermi–Dirac (TFD) energy functional.

Because electron densities vary rather strongly spatially near the nuclei, corrections to the above ap-
proximations to T [ρ] and Eex,Dirac are needed. One of the more commonly used so-called gradient-corrected
approximations is that invented by Becke [68], and referred to as the Becke88 exchange functional:

Eex(Becke88) = Eex,Dirac[ρ] − γ

∫
x2ρ4/3(1 + 6γ x sinh−1(x))−1 dr

where x = ρ−4/3|∇ρ|, and γ is a parameter chosen so that the above exchange energy can best reproduce the
known exchange energies of specific electronic states of the inert gas atoms (Becke finds γ to equal 0.0042).
A common gradient correction to the earlier T [ρ] is called the Weizsacker correction and is given by

δTWeizsacker = (1/72)(h̄/me)

∫
|∇ρ(r)|2/ρ(r) dr.
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Although the above discussion suggests how one might compute the ground-state energy once the ground-
state density ρ(r) is given, one still needs to know how to obtain ρ. Kohn and Sham [69] (KS) introduced a
set of so-called KS orbitals obeying the following equation:

{
−(h̄2/2me)∇2 + V (r) + e2/2

∫
ρ(r′)/|r − r′| dr′ + Uxc(r)

}
φj = εj φj

where the so-called exchange-correlation potential Uxc(r) = δExc[ρ]/δρ(r) could be obtained by functional
differentiation if the exchange-correlation energy functional Exc[ρ] were known. KS also showed that the
KS orbitals {φj } could be used to compute the density ρ by simply adding up the orbital densities multiplied
by orbital occupancies nj :

ρ(r) =
∑

j

nj |φj (r)|2.

Here nj = 0, 1 or 2 is the occupation number of the orbital φj in the state being studied. The kinetic energy
should be calculated as

T =
∑

j

nj 〈φj (r)|−(h̄2/2me)∇2|φj (r)〉.

The same investigations of the idealized ‘uniform electron gas’ that identified the Dirac exchange func-
tional, found that the correlation energy (per electron) could also be written exactly as a functionof the electron
density ρ of the system, but only in two limiting cases—the high-density limit (large ρ) and the low-density
limit. There still exists no exact expression for the correlation energy even for the uniform electron gas that
is valid at arbitrary values of ρ. Therefore, much work has been devoted to creating efficient and accurate
interpolation formulae connecting the low- and high-density uniform electron gas expressions (see appendix E
in [67] for further details). One such expression is

EC[ρ] =
∫

ρ(r)εc(ρ) dr

where

εc(ρ)=A/2{ln(x/X)+2b/Q tan−1(Q/(2x+b))−bx0/X0[ln((x−x0)2/X)+2(b+2x0)/Q tan−1(Q/(2x+b))]}

is the correlation energy per electron. Here x = r
1/2
s , X = x2 +bx +c, X0 = x2

0 +bx0 +c and Q = (4c−b2)1/2,
A = 0.062 1814, x0 = −0.409 286, b = 13.0720, and c = 42.7198. The parameter rs is how the density ρ

enters since 4
3 πr3

s is equal to 1/ρ; that is, rs is the radius of a sphere whose volume is the effective volume
occupied by one electron. A reasonable approximation to the full Exc[ρ] would contain the Dirac (and perhaps
gradient corrected) exchange functional plus the above EC[ρ], but there are many alternative approximations
to the exchange-correlation energy functional [68]. Currently, many workers are doing their best to ‘cook
up’ functionals for the correlation and exchange energies, but no one has yet invented functionals that are so
reliable that most workers agree to use them.

To summarize, in implementing any DFT, one usually proceeds as follows.

(1) An AO basis is chosen in terms of which the KS orbitals are to be expanded.

(2) Some initial guess is made for the LCAO–KS expansion coefficients Cj,a: φj = ∑
a Cj,aχa .

(3) The density is computed as ρ(r) = ∑
j nj |φj (r)|2. Often, ρ(r) is expanded in an AO basis, which need

not be the same as the basis used for the φj , and the expansion coefficients of ρ are computed in terms
of those of the φj . It is also common to use an AO basis to expand ρ1/3(r) which, together with ρ, is
needed to evaluate the exchange-correlation functional’s contribution to E0.
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(4) The current iteration’s density is used in the KS equations to determine the Hamiltonian {−1/2∇2 +
V (r) + e2/2

∫
ρ(r′)/|r − r′| dr′ + Uxc(r)} whose ‘new’ eigenfunctions {φj } and eigenvalues {εj } are

found by solving the KS equations.
(5) These new φj are used to compute a new density, which, in turn, is used to solve a new set of KS

equations. This process is continued until convergence is reached (i.e. until the φj used to determine the
current iteration’s ρ are the same φj that arise as solutions on the next iteration).

(6) Once the converged ρ(r) is determined, the energy can be computed using the earlier expression

E[ρ] =
∑

j

nj 〈φj (r)|−(h̄2/2me)∇2|φj (r)〉+
∫

V (r)ρ(r) dr+e2/2
∫

ρ(r)ρ(r′)/|r−r′| dr dr′+Exc[ρ].

In closing this section, it should once again be emphasized that this area is currently undergoing explosive
growth and much scrutiny [70]. As a result, it is nearly certain that many of the specific functionals discussed
above will be replaced in the near future by improved and more rigorously justified versions. It is also
likely that extensions of DFTs to excited states (many workers are actively pursuing this) will be placed on
more solid ground and made applicable to molecular systems. Because the computational effort involved in
these approaches scales much less strongly [71] with the basis set size than for conventional (MCSCF, CI,
etc) methods, density functional methods offer great promise and are likely to contribute much to quantum
chemistry in the next decade.

(f) Efficient and widely distributed computer programs exist for carrying out electronic structure calculations

The development of electronic structure theory has been ongoing since the 1940s. At first, only a few scientists
had access to computers, and they began to develop numerical methods for solving the requisite equations
(e.g. the HF equations for orbitals and orbital energies, the configuration interaction equations for electronic
state energies and wavefunctions). By the late 1960s, several research groups had developed reasonably
efficient computer codes (written primarily in Fortran with selected subroutines that needed to be written
especially efficiently in machine language), and the explosive expansion of this discipline was underway. By
the 1980s and through the 1990s, these electronic structure programs began to be used by practicing ‘bench
chemists’ both because they became easier to use and because their efficiency and the computers’ speed grew
to the point where modest to large molecules could be studied.

Web page links [72] to many of the more widely used programs offer convenient access. At present, more
electronic structure calculations are performed by non-theorists than by practicing theoretical chemists, largely
because of the proliferation of such programs. This does not mean that all that needs to be done in electronic
structure theory is done. The rates at which improvements are being made in the numerical algorithms used
to solve the problems as well as at which new models are being created remain as high as ever. For example,
Professor Rich Friesner [73] has developed and Professor Emily Carter [74] has implemented, for correlated
methods, a highly efficient way to replace the list of two-electron integrals (φiφj |1/r1,2|φkφl), which number
N4, where N is the number of AO basis functions, by a much smaller list (φiφj |g) from which the original
integrals can be rewritten as

(φiφj |1/r1,2|φkφl) =
∑

g

(φi(g)φj (g))

∫
dr φk(r)φl(r)/|r − g|.

This tool, which they call pseudospectral methods, promises to reduce the CPU, memory and disk stor-
age requirements for many electronic structure calculations, thus permitting their application to much larger
molecular systems. In addition to ongoing developments in the underlying theory and computer implemen-
tation, the range of phenomena and the kinds of physical properties that one needs electronic structure theory
to address is growing rapidly. There is every reason to believe that this sub-discipline of theoretical chemistry
is continuing to blossom.
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B3.1.6.2 Computational requirements, strengths and weaknesses of various methods

(a) Computational steps

Essentially all of the techniques discussed above require the evaluation of one- and two-electron integrals
over the N AO basis functions: 〈χa|f̂ |χb〉 and 〈χaχb|ĝ|χcχd〉. As mentioned earlier, there are of the order
of N4/8 such two-electron integrals that must be computed (and perhaps stored on disk); their computation
and storage is a major consideration in performing conventional ab initio calculations. Much current research
is being devoted to reducing the number of such integrals that must be evaluated using either the pseudo-
spectral methods discussed earlier or methods that approximate integrals between product distributions (one
such distribution is χaχc and another is χbχd when the integral 〈χaχb|ĝ|χcχd〉 is treated) whenever the
distributions involve orbitals on sites that are distant from one another.

Another step that is common to most, if not all, approaches that compute orbitals of one form or another
is the solution of matrix eigenvalue problems of the form∑

ν

Fµ,νCν,i = εi

∑
ν

Sµ,νCν,i .

The solution of any such eigenvalue problem requires a number of computer operations that scales as the
dimension of the Fµ,n matrix to the third power. Since the indices on the Fµ,n matrix label AOs, this means
that the task of finding all eigenvalues and eigenvectors scales as the cube of the number of AOs (N3).

The DFT approaches involve basis expansions of orbitals φi = ∑
ν Ci,ν χν and of the density ρ (or various

fractional powers of ρ), which is a quadratic function of the orbitals (ρ = ∑
i ni |φi |2). These steps require

computational effort scaling only as N2, which is one of the most important advantages of these schemes. No
cumbersome large CSF expansion and associated large secular eigenvalue problem arise, which is another
advantage.

The more conventional quantum chemistry methods provide their working equations and energy ex-
pressions in terms of one- and two-electron integrals over the final MOs: 〈φi |f̂ |φj 〉 and 〈φiφj |ĝ|φkφl〉. The
MO-based integrals can only be evaluated by transformingthe AO-based integrals [55]. Clearly, the N5 scal-
ing of the integral transformation process makes it an even more time-consuming step than the (N4) atomic
integral evaluation and a severe bottleneckto applying ab initio methods to larger systems. Much effort has
been devoted to expressing the working equations of various correlated methods in a manner that does not
involve the fully-transformed MO-based integrals.

Once the requisite one- and two-electron integrals are available in the MO basis, the multiconfigurational
wavefunction and energy calculation can begin. Each of these methods has its own approach to describing
the configurations {1J } included in the calculation and how the {CJ } amplitudes and the total energy E are
to be determined.

The number of configurations(NC) varies greatly among the methods and is an important factor to
keep in mind. Under certain circumstances (e.g. when studying reactions where an avoided crossing of two
configurations produces an activation barrier), it may be essentialto use more than one electronic configuration.
Sometimes, one configuration (e.g. the SCF model) is adequate to capture the qualitative essence of the
electronic structure. In all cases, many configurations will be needed if a highly accurate treatment of
electron–electron correlations are desired.

The value of NC determines how much computer time and memory is needed to solve the NC-dimensional∑
J HI,J CJ = ECI secular problem in the CI and MCSCF methods. Solution of these matrix eigenvalue

equations requires computer time that scales as N2
C (if few eigenvalues are computed) to N3

C (if most eigenvalues
are obtained).

So-called complete active space(CAS) methods form all CSFs that can be created by distributing
N valence electrons among P valence orbitals. For example, the eight non-core electrons of H2O might be
distributed, in a manner that gives MS = 0, among six valence orbitals (e.g. two lone-pair orbitals, two OH
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σ -bonding orbitals and two OH σ ∗-antibonding orbitals). The number of configurations thereby created is
225. If the same eight electrons were distributed among ten valence orbitals 44 100 configurations result; for
20 and 30 valence orbitals, 23 474 025 and 751 034 025 configurations arise, respectively. Clearly, practical
considerations dictate that CAS-based approaches be limited to situations in which a few electrons are to be
correlated using a few valence orbitals.

(b) Variational methods provide upper bounds to energies

Methods that are based on making the functional 〈�|Ĥ |�〉/〈�|�〉 stationary yield upper boundsto the
lowest energy state having the symmetry of the CSFs in �. The CI and MCSCF methods are of this type.
They also provide approximate excited-state energies and wavefunctions in the form of other solutions of the
secular equation [75]

∑
J HI,J CJ = ECI . Excited-state energies obtained in this manner obey the so-called

bracketing theorem; that is, between any two approximate energies obtained in the variational calculation,
there exists at least one true eigenvalue. These are strong attributes of the variational methods, as is the
long and rich history of developments of analytical and computational tools for efficiently implementing such
methods.

(c) Variational methods are not size-extensive

Variational techniques suffer from a serious drawback, however: they are not necessarily size extensive[76].
The energy computed using these tools cannot be trusted to scale with the size of the system. For example,
a calculation performed on two CH3 species at large separation may not yield an energy equal to twice the
energy obtained by performing the samekind of calculation on a single CH3 species. Lack of size extensivity
precludes these methods from use in extended systems (e.g. polymers and solids) where errors due to improper
size scaling of the energy produce nonsensical results.

By carefully adjusting the variational wavefunction used, it is possibleto circumvent size-extensivity
problems for selected species. For example, the CI calculation on Be2 using all 1 ∑

g CSFs formed by placing
the four valence electrons into the 2σg, 2σu, 3σg, 3σu, 1πu, and 1πg orbitals can yield an energy equal to twice
that of the Be atom described by CSFs in which the two valence electrons of the Be atom are placed into the
2s and 2p orbitals in all ways consistent with a 1S symmetry. Such CAS-space MCSCF or CI calculations
[77] are size extensive, but it is impractical to extend such an approach to larger systems.

(d) Most perturbation and CC methods are size-extensive, but do not provide upper bounds and they assume
that one CSF dominates

In contrast to variational methods, perturbation theory and CC methods achieve their energies by projecting
the Schrödinger equation against a reference function 〈1| to obtain [78] a transition formula〈1|Ĥ |�〉,
rather than from an expectation value 〈�|Ĥ |�〉. It can be shown that this difference allows non-variational
techniques to yield size-extensive energies.

This can be seen by considering the second-order MPPT energy of two non-interacting Be atoms. The
reference CSF is 1 = |1s2

a2s2
a1s2

b2s2
b|; as discussed earlier, only doubly-excited CSFs contribute to the

correlation energy through second order. These ‘excitations’ can involve atom a, atom b, or both atoms.
However, CSFs that involve excitations on both atoms (e.g. |1s2

a2sa2pa1s2
b2sb2pb|) give rise to one- and two-

electron integrals over orbitals on both atoms (e.g. 〈2sa2pa|ĝ|2sb2pb〉) that vanish if the atoms are far apart, so
contributions due to such CSFs vanish. Hence, only CSFs that are excited on one or the other atom contribute
to the energy. This, in turn, results in a second-order energy that is additive as required by any size-extensive
method. In general, a method will be size extensive if its energy formula is additive and the equations that
determine the CJ amplitudes are themselves separable. The MPPT/MBPT and CC methods possess these
characteristics.
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However, size-extensive methods have two serious weaknesses. Their energies do not provide upper
bounds to the true energies of the system (because their energy functional is not of the expectation-value form
for which the upper bound property has been proven). Moreover, they express the correct wavefunction in
terms of corrections to a (presumed dominant) reference function which is usually taken to be a single CSF
(although efforts have been made to extend the MPPT/MBPT and CC methods to allow for multiconfigurational
reference functions, this is not yet standard practice). For situations in which two CSFs ‘cross’ along a reaction
path, the single-dominant-CSF assumption breaks down, and these methods can have difficulty.

B3.1.7 There are methods that calculate energy differences rather than energies

In addition to the myriad of methods discussed above for treating the energies and wavefunctions as solutions
to the electronic Schrödinger equation, there exists a family of tools that allow one to compute energy
differences ‘directly’ rather than by first finding the energies of pairs of states and subsequently subtracting
them. Various energy differences can be so computed: differences between two electronic states of the same
molecule (i.e. electronic excitation energies &E), differences between energy states of a molecule and the
cation or anion formed by removing or adding an electron (i.e. IPs and EAs).

Because of space limitations, we will not be able to elaborate much further on these methods. However,
it is important to stress that:

(1) these so-called Greens functionor propagatormethods [71] utilize essentially the same input information
(e.g. AO basis sets) and perform many of the same computational steps (e.g. evaluation of one- and two-
electron integrals, formation of a set of mean-field MOs, transformation of integrals to the MO basis,
etc) as do the other techniques discussed earlier;

(2) these methods are now rather routinely used when &E, IP, or EA information is sought. In fact, the 1998
version of the Gaussian program includes an electron propagator option.

The basic ideas underlying most, if not all, of the energy-difference methods follow

(1) One forms a reference wavefunction� (this can be of the SCF, MPn, CC, etc variety); the energy
differences are computed relative to the energy of this function.

(2) One expresses the final-state wavefunction� ′ (i.e. describing the excited, cation, or anion state) in terms
of an operator J acting on the reference �: � ′ = J� Clearly, the J operator must be one that removes
or adds an electron when one is attempting to compute IPs or EAs, respectively.

(3) One writes equations which � and � ′ are expected to obey. For example, in the early development
of these methods [80], the Schrödinger equation itself was assumed to be obeyed, so Ĥ� = E� and
Ĥ ′� ′ = E′� ′ are the two equations (note that, in the IP and EA cases, the latter equation, and the
associated Hamiltonian Ĥ ′, refer to one fewer and one more electrons than does the reference equation
Ĥ� = E�).

(4) One combines J� = � ′ with the equations that � and � ′ obey to obtain an equation that J must
obey. In the above example, one: (a) uses J� = � ′ in the Schrödinger equation for � ′, (b) allows J

to act from the left on the Schrödinger equation for � and (c) subtracts the resulting two equations to
achieve (Ĥ ′Ĵ − ĴĤ )� = (E′ − E)J� or, in commutator form [Ĥ , Ĵ]� = &EĴ�. By expressing
the Hamiltonian in the second-quantization form, only one Ĥ appears in this final so-called equation of
motion(EOM) [Ĥ , Ĵ]� = &EĴ� (i.e. in the second-quantized form, Ĥ ′ and Ĥ are one and the same).

(5) One can, for example, express � in terms of a superposition of configurations � = ∑
J CJ 1J whose

amplitudes CJ have been determined from an MCSCF, CI or MPn calculation and express J in terms
of second-quantization operators {OK} that cause single-, double-, etc, level excitations (for the IP (EA)
cases, J is given in terms of operators that remove (add), remove and singly excite (add and singly
excite) electrons): J = ∑

K DKÔK .
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(6) Substituting the expansions for � and for Ĵ into the EOM [H, Ĵ]� = &EĴ�, and then projecting
the resulting equation on the left against a set of functions (e.g. {ÔK ′ |�〉} or {ÔK ′ |10〉, where 10 is the
dominant component of �), gives a matrix eigenvalue–eigenvector equation:

∑
K

〈ÔK ′�|[Ĥ , ÔK ]�〉DK = &E
∑

K

〈ÔK ′�|ÔK�〉D̂K

to be solved for the D̂K operator coefficients and the excitation energies &E. Such are the working
equations of the EOM (or Greens function or propagator) methods.

In recent years, these methods have been greatly expanded and have reached a degree of reliability where
they now offer some of the most accurate tools for studying excited and ionized states. In particular, the use
of time-dependent variational principles have allowed the much more rigorous development of equations for
energy differences and nonlinear response properties [81]. In addition, the extension of the EOM theory to
include coupled-cluster reference functions [82] now allows one to compute excitation and ionization energies
using some of the most accurate ab initio tools.

B3.1.8 Summary of ab initio methods

At this time, it may not be possible to say which method is preferred for applications where all are practical.
Nor is it possible to assess, in a way that is applicable to most chemical species, the accuracies with which
various methods predict bond lengths and energies or other properties. However, there are reasons to recom-
mend some methods over others in specific cases. For example, certain applications require a size-extensive
energy (e.g. extended systems that consist of a large or macroscopic number of units or studies of weak
intermolecular interactions), so MBPT/MPPT-, CC- or CAS-based MCSCF are preferred. Moreover, many
chemical reactions and bond-breaking events require two or more ‘essential’ electronic configurations. For
them, single-configuration-based methods such as conventional CC and MBTP/MPPT should be used only
with caution; MCSCF or CI calculations are preferred. Very large molecules, in which thousands of AO basis
functions are required, may be impossible to treat by methods whose effort scales as N4 or higher; density
functional methods would be the only choice then.

For all calculations, the choice of AO basis set must be made carefully, keeping in mind the N4 scaling of
the two-electron integral evaluation step and the N5 scaling of the two-electron integral transformation step.
Of course, basis functions that describe the essence of the states to be studied are essential (e.g. Rydberg or
anion states require diffuse functions and strained rings require polarization functions).

As larger atomic basis sets are employed, the size of the CSF list used to treat a dynamic correlation
increases rapidly. For example, many of the above methods use singly- and doubly-excited CSFs for this
purpose. For large basis sets, the number of such CSFs (NC) scales as the number of electrons squared n2

e
times the number of basis functions squared N2. Since the effort needed to solve the CI secular problem
varies as N2

C or N3
C (the latter being to find all eigenvalues and vectors), a dependence as strong as n6

eN6 can
result. To handle such large CSF spaces, all of the multiconfigurational techniques mentioned in this paper
have been developed to the extent that calculations involving of the order of 100–5000 CSFs are routinely
performed and calculations using even several billion CSFs are possible [53].

Some of the most significant advances that have been made recently in expanding the applicability of
the ab initio methods to larger systems are based on recognizing that many of the two-electron integrals and
one- and two-electron density matrix elements arising in the pertinent working equations vanish if expressed
in terms of localized (atomic or molecular) orbitals. For example, in a polymer consisting of P monomer
units (or a crystal composed of P unit cells), the integrals and density matrix elements indexed by monomer
units far distant from one another are negligible. Thus, if a method whose effort scales as the kth power of
the number of AOs (N) per monomer (or unit cell) is applied to a system having P units, the effort should
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Table B3.1.2. Properties of commonly used methods.

Method Variational/size extensive Computational scaling

HF Yes/Yes N4 integrals; N 3 eigenvalues; P 1

GVB Yes/Yes N4 integrals
N4 (per electron pair) GVB equations

DFT No/Yes N3 eigenvalues; N 2 integrals; P 1

N 3 orbital orthogonalization; P 1

MP2 No/Yes N5; P 2

CI Yes/No N5 transformed integrals;
N 2

C to solve for oneCI energy and eigenvector
CISD Yes/No N5 transformed integrals;

n2N 4 to solve for one CI energy and eigenvector
CAS-MCSCF Yes/Yes N5 transformed integrals;

N 2
C to solve for CI energy; many iterations also needed

CCS No/Yes N4

CCSD No/Yes N6

CCSDT No/Yes N8

CCSD(T) No/Yes N7

N is the number of atomic basis functions, which usually is proportional to the number of electrons n. NC is the
number of configurations; in CI calculations, NC is usually at least as large as the number of electrons squared
times the number of orbitals squared n2

eN2; in MCSCF calculations, NC is usually much smaller than n2
eN2. P is

explained in section B3.1.8.

not scale as (P N)k but, hopefully, as P Nk . Indeed, for the DFT (k = 3), SCF (k = 4) and MP2 (k = 5)

methods, specialized techniques [50] have allowed for the implementation of codes scaling linearly (or nearly
so for MP2) with the system ‘size’ P (i.e. the number of units).

Other methods, most of which can be viewed as derivatives of the techniques introduced above, have
been and are still being developed; stimulated by the explosive growth in computer power and changes in
computer architecture realized in recent years. All indications are that this growth pattern will continue; so
ab initio quantum chemistry is likely to have an even larger impact on future chemistry research and education
(through new insights and concepts). For many of the most commonly employed ab initio quantum chemistry
tools, the computational efforts, as characterized by how they scale with the system size P (i.e. the number
of units), with basis set size N and with the number of electronic configurations NC, as well their variational
nature and size extensivity are summarized in table B3.1.2.

Figure B3.1.9 [83] displays the errors (in picometres compared to experimental findings) in the equilib-
rium bond lengths for a series of 28 molecules obtained at the HF, MP2-4, CCSD, CCSD(T), and CISD levels
of theory using three polarized correlation-consistent basis sets (valence DZ through to QZ).

Clearly, the HF method, independent of basis, systematically underestimates the bond lengths over a
broad percentage range. The CISD method is neither systematic nor narrowly distributed in its errors, but the
MP2 and MP4 (but not MP3) methods are reasonably accurate and have narrow error distributions if valence
TZ or QZ bases are used. The CCSD(T), but not the CCSD, method can be quite reliable if valence TZ or
QZ bases are used.

In closing this section and this chapter, I wish to remind the reader that my discussion has been limited
to ab initio techniques; that is, to methods that begin with the electronic Schrödinger equation attempt to
solve it without explicitly introducing any experimental data or any numerical results from another calcu-
lation. There exists a whole family of alternative approaches called semi-empirical methods[84] in which
(a) overlaps between pairs of orbitals distant from one another are neglected, (b) many of the two-electron
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Figure B3.1.9. Distribution in errors (picometres) in calculated bond lengths for 28 test molecules.
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integrals appearing in ab initio methods are neglected (because they are ‘small’ in some sense) and (c) certain
combinations of one- and two-electron integrals that can be (approximately) related to orbital energies of a
constituent atom are not computed explicitly but are replaced by experimental data (or data from an ab initio
calculation) on that atom. Interested readers in these approaches to electronic structure are referred to the
articles given in [84].
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