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I have decided to change notation for the relativistic chemical potential from µR

to µ̃. I apologize that I did not do so in Chapters 2 and 3; I will do so henceforth.

— Kip

4.1 Overview

In Chap. 3, we introduced the concept of statistical equilibrium and studied, briefly, some
of the properties of equilibrated systems. In this chapter we shall develop the theory of
statistical equilibrium in a more thorough way. The title of this chapter, “Statistical Ther-
modynamics,” emphasizes two aspects of the theory of statistical equilibrium. The term
“thermodynamics” is an ancient one that predates statistical mechanics. It refers to a study
of the macroscopic attributes of systems that are in or near equilibrium, such as their
energy and entropy. Despite paying no attention to the microphysics, classical thermody-
namics is a very powerful theory for deriving general relationships between these attributes.
However, microphysics influences macroscopic properties in a statistical manner and so, in
the late nineteenth century, Willard Gibbs and others developed statistical mechanics and
showed that it provides a powerful conceptual underpinning for classical thermodynamics.
The resultant synthesis, statistical thermodynamics, adds greater power to thermodynamics
by augmenting to it the statistical tools of ensembles and distribution functions.

In our study of statistical thermodynamics we shall restrict attention to an ensemble of
large systems that are in statistical equilibrium. By “large” is meant a system that can
be broken into a large number Nss of subsystems that are all macroscopically identical to
the full system except for having 1/Nss as many particles, 1/Nss as much volume, 1/Nss as
much energy, 1/Nss as much entropy, . . . . (Note that this constrains the energy of interaction
between the subsystems to be negligible.) Examples are one kilogram of plasma in the center
of the sun and a one kilogram sapphire crystal.
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The equilibrium thermodynamics of any type of large system (e.g. a monatomic gas)
can be derived using any one of the statistical equilibrium ensembles of the last chapter
(microcanonical, canonical, grand canonical, Gibbs). For example, each of these ensembles
will predict the same equation of state P = (N/V )kT for an ideal monatomic gas, even
though in one ensemble each system’s number of particles N is precisely fixed, while in
another ensemble N can fluctuate so that strictly speaking one should write the equation
of state as P = (N̄/V )kT with N̄ the ensemble average of N . (Here and throughout this
chapter, for compactness we use bars rather than brackets to denote ensemble averages, i.e.
N̄ rather than 〈N〉)

The equations of state are the same to very high accuracy because the fractional fluctua-
tions of N are so extremely small, ∆N/N ∼ 1/

√
N̄ ; cf Ex. 3.8. Although the thermodynamic

properties are independent of the equilibrium ensemble, specific properties are often derived
most quickly, and the most insight usually accrues, from that ensemble which most closely
matches the physical situation being studied.

In Sec. 3.8 we used the grand canonical ensemble, and in Secs. 4.2, 4.3, and 4.4 we shall
use the microcanonical, canonical and Gibbs ensembles to derive many useful results from
both classical and statistical thermodynamics: equations of state, Maxwell relations, Euler’s
equation, sum-over-states methods for computing fundamental potentials, applications of
fundamental potentials, ... . Table 4.2 summarizes those statistical-equilibrium results and
some generalizations of them. Readers may wish to delay studying this table until they have
read further into the chapter.

As we saw in Chap. 3, when systems are out of statistical equilibrium, their evolution
toward equilibrium is driven by the law of entropy increase—the second law of thermo-
dynamics. In Sec. 4.4 we formulate the fundamental potential (Gibbs potential) for an
out-of-equilibrium ensemble that interacts with a heat and volume bath, we discover a sim-
ple relationship between that fundamental potential and the entropy of system plus bath,
and from that relationship we learn that the second law, in this case, is equivalent to a
law of decrease of the Gibbs potential. As an application, we learn how chemical potentials
drive chemical reactions and also drive phase transitions. In Sec. 4.5 we study spontaneous
fluctuations of a system away from equilibrium, when it is coupled to a heat and particle
bath, and discover how the fundamental potential (in this case Gibbs potential) can be used
to compute the probabilities of such fluctuations. These out-of-equilibrium aspects of statis-
tical mechanics (evolution toward equilibrium and fluctuations away from equilibrium) are
summarized in Table 4.2, not just for heat and volume baths, but for a wide variety of other
baths. Again, readers may wish to delay studying the table until they have read further into
the chapter.

Although the conceptual basis of statistical thermodynamics should be quite clear, de-
riving quantitative results for real systems can be formidably difficult. In a macroscopic
sample, there is a huge number of possible microscopic arrangements (quantum states) and
these all have to be taken into consideration via statistical sums if we want to understand the
macroscopic properties of the most frequently occuring configurations. Direct summation
over states is hopelessly impractical for real systems. However, in recent years a number of
powerful approximation techniques have been devised for performing the statistical sums. In
Secs. 4.6 and 4.7 we give the reader the flavor of two of these techniques: the renormalization
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group and Monte Carlo methods. We illustrate and compare these techniques by using them
to study a phase transition in a simple model for Ferromagnetism called the Ising model.

4.2 Microcanonical Ensemble and the Energy Repre-

sentation of Thermodynamics

Consider a microcanonical ensemble of large, closed systems that have attained statistical
equilibrium. We can describe the ensemble macroscopically using a set of thermodynamic
variables. As we saw in Chap. 3, these variables can be divided into two classes: extensive

variables which double if one doubles the size (volume, mass, . . .) of the system, and intensive

variables whose magnitudes are independent of the system’s size. Examples of extensive
variables are a system’s total energy E , entropy S, volume V , magnetization M, and its
number of conserved particles of various species NI . Examples of intensive variables are
temperature T , pressure P , the magnetic field strength H imposed on the system from the
outside, and the chemical potentials µ̃I for various species of particles.

The particle species I must only include those species whose particles are conserved on
the timescales of interest. For example, if photons can be emitted and absorbed, then one
must not specify Nγ , the number of photons; rather, Nγ will come to an equilibrium value
that is governed by the values of the other extensive variables. Also, one must omit from the
set {I} any conserved particle species whose numbers are automatically determined by the
numbers of other, included species. For example, gas inside the sun is always charge neutral
to very high precision, and therefore the number of electrons Ne in a sample of gas is always
determined by the number of protons Np and the number of Helium nuclei (alpha particles)
Nα: Ne = Np + 2Nα. Therefore, one includes Np and Nα in one’s complete set of extensive
variables, but one omits Ne.

As in Chapter 3, we shall formulate the theory relativistically correctly, but shall formu-
late it solely in the mean rest frames of the systems and baths being studied. Correspond-
ingly, in our formulation we shall generally include the particle rest masses mI in the total
energy E and in the chemical potentials µ̃I. For highly nonrelativistic systems, however, we
shall usually replace E by the nonrelativistic energy E ≡ E − ∑

I NImIc
2, and µ̃I by the

nonrelativistic chemical potential µI ≡ µ̃I − mIc
2 (though, as we shall see in Sec. 4.4 when

studying chemical reactions, the identification of the appropriate rest mass mI to subtract
is occasionally a delicate issue.)

Let us now specialize to a microcanonical ensemble of one-species systems, which all
have identically the same values of the energy E ,1 number of particles N , and volume V .
Suppose that the microscopic nature of the systems in the ensemble is known. Then, at
least in principle and often in practice, one can identify from that microscopic nature the
quantum states that are available to the system (given its constrained values of E , N , and V );
one can count those quantum states; and from their total number Nstates one can compute
the ensemble’s total entropy S = k ln Nstates [cf Eq. (3.42)]. The resulting entropy can be

1In practice, as was illustrated in Ex. 3.9, one must allow E to fall in some tiny but finite range δE rather
than constraining it precisely, and one must then check to be sure that the results of one’s analysis are
independent of δE .
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regarded as a function of the complete set of extensive variables,

S = S(E , N, V ) , (4.1)

and this equation can then be inverted to give the total energy in terms of the entropy and
the other extensive variables

E = E(S, N, V ) . (4.2)

We call the energy E , viewed as a function of S, N , and V , the fundamental thermodynamic

potential for the microcanonical ensemble. From it, one can deduce all other thermodynamic
properties of the system.

In Sec. 3.4.1, we used kinetic theory considerations to identify the thermodynamic tem-
perature T of the canonical ensemble [Eq. (3.18)]. It is instructive to discuss how this
temperature arises in the microcanonical ensemble. Our discussion makes use of an idealized
thermometer consisting of an idealized atom that has only two states, |0〉 and |1〉 with en-
ergies E0 and E1 = E0 + ∆E . The atom, initially in its ground state, is brought into thermal
contact with one of the large systems of our microcanonical ensemble and then monitored
over time as it is stochastically excited and de-excited. The ergodic hypothesis (Sec. 3.6)
guarantees that the atom traces out a history of excitation and deexcitation that is governed
statistically by the canonical ensemble for a collection of such atoms exchanging energy (heat)
with our large system (the heat bath). More specifically, if T is the (unknown) temperature
of our system, then the fraction of the time the atom spends in its excited state, divided
by the fraction spent in its ground state, is equal to the canonical distribution’s probability
ratio

ρ1

ρ0

=
e−E1/kT

e−E0/kT
= e−∆E/kT . (4.3a)

This ratio can also be computed from the properties of the full system augmented by the
two-state atom. This augmented system is microcanonical with a total energy E + E0, since
the atom was in the ground state when first attached to the full system. Of all the quantum
states available to this augmented system, the ones in which the atom is in the ground state
constitute a total number N0 = eS(E ,N,V )/k; and those with the atom in the excited state
constitute a total number N1 = eS(E−∆E ,N,V )/k. Here we have used the fact that the number
of states available to the augmented system is equal to that of the original, huge system
(since the atom, in each of the two cases, is forced to be in a unique state); and we have
expressed that number of states of the original system, for each of the two cases, in terms of
the original system’s entropy function, Eq. (4.1). The ratio of the number of states N1/N0

is (by the ergodic hypothesis) the ratio of the time that the augmented system spends with
the atom excited, to the time spent with the atom in its ground state; i.e., it is equal to
ρ1/ρ0

ρ1

ρ0

=
N1

N0

=
eS(E−∆E ,N,V )/k

eS(E ,N,V )/k
= exp

[

−∆E
k

(

∂S

∂E

)

N,V

]

. (4.3b)

By equating Eqs. (4.3a) and (4.3b), we obtain an expression for the original system’s temper-
ature T in terms of the partial derivative (∂E/∂S)N,V of its fundamental potential E(S, N, V )

T =
1

(∂S/∂E)N,V
=

(

∂E
∂S

)

N,V

, (4.3c)
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Box 4.1

Box Two Useful Relations between Partial Derivatives

Expand a differential increment in the energy E(S, N, V ) in terms of differentials of
its arguments S, N, V

dE(S, N, V ) =

(

∂E
∂S

)

N,V

dS +

(

∂E
∂N

)

V,S

dN +

(

∂E
∂V

)

S,N

dV . (1)

Next expand the entropy S(E , N, V ) similarly and substitute the resulting expression for
dS into the above equation to obtain

dE =

(

∂E
∂S

)

N,V

(

∂S

∂E

)

N,V

dE +

[

(

∂E
∂S

)

N,V

(

∂S

∂N

)

E,V

+

(

∂E
∂N

)

S,V

]

dN

+

[

(

∂E
∂S

)

N,V

(

∂S

∂V

)

N,E

+

(

∂E
∂V

)

S,N

]

dV , (2)

Noting that this relation must be satisfied for all values of dE , dN , and dV , we conclude
that

(

∂E
∂S

)

N,V

=
1

(∂S/∂E)N,V
, (3)

(

∂E
∂N

)

S,V

= −
(

∂E
∂S

)

N,V

(

∂S

∂N

)

E ,V

, (4)

etc.; and similar for other pairs and triples of partial derivatives.

These equations, and their generalization to other variables, are useful in manipu-
lations of thermodynamic equations.

where we have used Eq. (1) of Box 4.1.
A similar thought experiment, using a highly idealized measuring device that can ex-

change one particle ∆N = 1 with the system but cannot exchange any energy with it, gives
for the fraction of the time spent with the extra particle in the measuring device (“state 1”)
and in the system (“state 0”):

ρ1

ρ0

= eµ̃∆N/kT

=
eS(E ,N−∆N,V )/k

eS(E ,N,V )/k
= exp

[

−∆N

k

(

∂S

∂N

)

E ,V

]

, (4.4a)

Here the first expression is computed from the viewpoint of the measuring device’s grand
canonical ensemble, and the second from the viewpoint of the combined system’s micro-
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canonical ensemble. Equating these two expressions, we obtain

µ̃ = −T

(

∂S

∂N

)

E ,V

=

(

∂E
∂N

)

S,V

. (4.4b)

In the last step we have used Eq. (4.3c) and Eq. (4) of Box 4.1. The reader should be able
to construct a similar thought experiment involving an idealized pressure transducer, which
yields the following expression for the system’s pressure:

P = −
(

∂E
∂V

)

S,N

. (4.5)

Having identifed the three intensive variables T , µ̃, and P as partial derivatives [Eqs. (4.3c),
(4.4b), (4.5)], we now see that the fundamental potential’s differential relation

dE(S, N, V ) =

(

∂E
∂S

)

N,V

dS +

(

∂E
∂N

)

V,S

dN +

(

∂E
∂V

)

S,N

dV . (4.6)

is nothing more nor less than the ordinary first law of thermodynamics

dE = TdS + µ̃dN − PdV . (4.7)

Notice the “pairing” of intensive and extensive variables in this first law: Temperature
T is paired with entropy S; chemical potential µ̃ is paired with number of particles N ; and
pressure P is paired with volume V . We can think of each intensive variable as a “generalized
force” acting upon its corresponding extensive variable to change the energy of the system.
We can add additional pairs of intensive and extensive variables if appropriate, calling them
XA, YA (for example the externally imposed magnetic field H and the magnetization M). We
can also generalize to a multi-component system, i.e. one that has several types of conserved
particles with numbers NI and associated chemical potentials µ̃I . We can also convert to
nonrelativistic language by subtracting off the rest-mass contributions (switching from E to
E ≡ E − ∑

NImIc
2 and from µ̃I to µI = µ̃I − mIc

2). The result is the nonrelativistic,
extended first law

dE = TdS +
∑

I

µIdNI − PdV +
∑

A

XAdYA . (4.8)

(e.g., Sec. 18 of Kittel 1958).
We can integrate the differential form of the first law to obtain a remarkable, though

essentially trivial relation known as Euler’s equation. More specifically, we decompose our
system into a large number of subsystems in equilibrium with each other. As they are
in equilibrium, they will all have the same values of the intensive variables T, µ̃, P ; and
therefore, if we add up all their energies dE to obtain E , their entropies dS to obtain S, etc.,
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we obtain from the first law (4.7) 2

E = TS + µ̃N − PV . (4.9a)

Since the energy E is itself extensive, Euler’s equation (4.9a) must be expressible in the
functional form

E = Nf(V/N, S/N) (4.9b)

for some function f . For example, for a monatomic ideal gas, the non-relativistic version of
Eq. (4.9b) is

E(V, S, N) = N

(

3h2

4πm

) (

V

N

)−2/3

exp

(

2

3k

S

N
− 5

3

)

; (4.9c)

cf Eq. (3.63). Here m is the mass of an atom and h is Planck’s constant.
There is no need to memorize a lot of thermodynamic relations; most all relations can be

deduced almost trivially from the fundamental potential plus the first law. For example, if
one remembers only that the nonrelativistic fundamental relation expresses E as a function
of the other extensive variables S, N , V , then by writing out the differential relation (4.8)
and comparing with the first law dE = TdS + µdN − PdV , one can immediately read off
the intensive variables in terms of partial derivatives of the fundamental potential:

T =

(

∂E

∂S

)

V,N

, µ =

(

∂E

∂N

)

V,S

, P = −
(

∂E

∂V

)

S,N

. (4.10a)

One can then go on to notice that the resulting P (V, S, N), T (V, S, N), and µ(V, S, N) are not
all independent. The equality of mixed partial derivatives (e.g., ∂2E/∂V ∂S = ∂2E/∂S∂V )
together with Eqs. (4.10a) implies that they must satisfy the following Maxwell relations:

(

∂T

∂N

)

S,V

=

(

∂µ

∂S

)

N,V

, −
(

∂P

∂S

)

V,N

=

(

∂T

∂V

)

S,N

,

(

∂µ

∂V

)

N,S

= −
(

∂P

∂N

)

V,S

.

(4.10b)
Additional relations can be generated using the types of identities proved in Box 4.1 —
or they can be generated more easily by applying the above procedure to the fundamental
potentials associated with other ensembles; see, e.g., Secs. 3.8, 4.3 and 4.4. All equations of

state, i.e. all relations between intensive and extensive variables, must satisfy the Maxwell
relations. For our simple example of a nonrelativistic, monatomic gas we can substitute our
fundamental potential E [Eq. (4.9c)] into Eqs. (4.10a) to obtain

2There are a few (very few!) systems for which some of the thermodynamic laws, including Euler’s
equation, take on forms different from those presented in this chapter. A black hole is an example (cf Sec.
3.9.2). A black hole cannot be divided up into subsystems, so the above derivation of Euler’s equation fails.
Instead of increasing linearly with the mass MH of the hole, the hole’s extensive variables SH = (entropy)
and JH = (spin angular momentum) increase quadratically with M ; and instead of being independent of the
hole’s mass, the intensive variables TH = (temperature) and ΩH = (angular velocity) scale as 1/M . (See,
e.g., Tranah & Landsberg 1980.)
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P (V, S, N) =

(

h2

2πm

) (

N

V

)5/3

exp

(

2S

3kN
− 5

3

)

,

T (V, S, N) =

(

h2

2πmk

) (

N

V

)2/3

exp

(

2S

3kN
− 5

3

)

,

µ(V, S, N) =

(

h2

4πm

) (

N

V

)2/3 (

5 − 2
S

kN

)

exp

(

2S

3kN
− 5

3

)

. (4.11)

These clearly do satisfy the Maxwell relations.
Turn, now, from formalism to a simple thought experiment that gives insight into entropy.

Consider a single, large, closed system (not an ensemble), which has evolved for a time far
longer than τint and thereby has reached statistical equilibrium. Let T (V, S, N) be the
temperature that characterizes this system’s grand-canonically-distributed subsystems. Now
add a small amount ∆Q of thermal energy (heat) to the system, without changing its volume
V or its number of conserved particles N . The added heat, being on an equal footing with
any other kind of energy in the law of energy conservation, must appear in the first law as
a ∆E = ∆Q; and correspondingly, according to the first law (4.7), the added heat must
increase the system’s entropy by an amount

∆S =
∆Q

T
. (4.12)

This can be generalized: The energy need not be inserted into the system in the form of
heat. Rather, one can add the energy mechanically, e.g., if the system is a liquid by stirring
it; or one can add it optically by shining a laser beam into it and letting a few of the system’s
atoms absorb the laser light. In either case the system, immediately after energy insertion,
will be far from statistical equilibrium; i.e., its macroscopic properties such as the number of
atoms with energies far higher than the mean (i.e. it’s macrostate) will be highly improbable
according to the microcanonical distribution.3 However, if one waits long enough (∆t � τint)
after the energy addition, the system will thermalize; i.e., it will evolve into a macrostate
that is rather probable according to the microcanonical distribution, and thereafter it will
wander ergodically through system quantum states that correspond, more or less, to this
macrostate. This final, thermalized macrostate and the initial macrostate, before energy
insertion, both have the same volume V and the same number of conserved particles N ; but
they differ in energy by the amount ∆E that was inserted. Correspondingly, they also differ
in entropy by

∆S =
∆E
T

. (4.13)

Where did this entropy come from? Suppose that the energy was injected by a laser. Then
initially the energy went into those specific atoms that absorbed the photons. Subsequently,
however, those atoms randomly exchanged and shared the energy with other atoms. This

3We use the word “macrostate” to distinguish clearly from the quantum states available to the system as
a whole, which in equilibrium are all equally likely. The probability for a macrostate is proportional to the
number of system quantum states that correspond to it.
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Representation Distribution

& Ensemble First Law Bath Function ρ
Energy & Microcanonical dE = TdS + µ̃dN − PdV none const = e−S/k

E const in δE
Enthalpy dH = TdS + µ̃dN + V dP V & E const = e−S/k

(see Exs. 4.3 and 4.8) dE = −PdV Hconst in δH
Free-Energy & Canonical dF = −SdT + µ̃dN − PdV E e(F−E)/kT

Gibbs dG = −SdT + µ̃dN + V dP E & V e(G−E−PV )/kT

Grand Canonical dΩ = −SdT − Ndµ̃ − PdV E & N e(Ω−E+µ̃N)/kT

Table 4.1: Representations and Ensembles for Statistical Equilibrium; cf. Table 4.2.

exchange and sharing is a variant of the phase mixing of Sec. 3.7, and it is responsible for
the thermal equilibration and the entropy increase.

The treatment of thermodynamics given in this section is called the energy representation

because it is based on the fundamental potential E(S, V, N) in which the energy is expressed
as a function of the complete set of extensive variables {S, V, N}. This energy representation
is intimately related to the microcanonical ensemble, as the discussion near the beginning
of this section shows. In Sec. 3.8 of the last chapter we met a grand-potential representation

for thermodynamics, which was based on the grand potential Ω(T, µ̃, V ) and was intimately
related to the grand canonical ensemble for systems of volume V in equilibrium with a heat
and particle bath that has temperature T and chemical potential µ̃. In the next two sections
we shall meet the two representations of thermodynamics that are intimately related to the
canonical and Gibbs ensembles, and shall discover their special power at handling certain
special issues.

****************************

EXERCISES

Exercise 4.1 Problem: Pressure-Measuring Device

For the microcanonical ensemble considered in Sec. 4.2, derive Eq. (4.5) for the pressure
using a thought experiment involving a pressure-measuring device.

Exercise 4.2 Derivation: Energy Representation for a Nonrelativistic Monatomic Gas

(a) Use the fundamental potential E(V, S, N) for the nonrelativistic, monatomic gas to
derive Eq. (4.11) for the the pressure, temperature, and chemical potential.

(b) Show that these equations of state satisfy the Maxwell relations (4.10b).

(c) Combine these equations of state to obtain the perfect-gas equation of state

P =
N

V
kT . (4.14)

Note that this is the same equation as we obtained using the grand canonical ensemble,
Eq. (3.57c except that the average pressure and particle number are replaced by their
exact microcanonical equivalents. As we discussed in Sec. 4.1, this is no coincidence.
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****************************

4.3 Canonical Ensemble and the Free-Energy Repre-

sentation of Thermodynamics

In this section we focus attention on an ensemble of systems that can exchange energy but
nothing else with a heat bath at temperature T . The systems thus have variable total
energy E , but they all have the same, fixed values of the two remaining extensive variables
N and V . (Once again generalization to additional particle species and additional means
of performing work on the system is straightforward.) We presume that the ensemble has
reached statistical equilibrium, so it is canonical with distribution function (probability of
occupying any quantum state of energy E) given by Eq. (3.18)

ρ =
1

z
e−E/kT ≡ e(F−E)/kT . (4.15)

Here, as in the grand canonical ensemble [Eq. (3.48)], we have introduced special notations
for the normalization constant: 1/z = eF/kT , where z (the partition function) and F (the
physical free energy or Helmholtz free energy) are functions of the systems’ fixed N and V
and the bath’s temperature T . Once the microscopic configurations (quantum states |n〉) of
fixed N and V but variable E have been identified, the functions z(N, V, T ) and F (N, V, T )
can be computed from the normalization relation

∑

n ρn = 1:

e−F/kT ≡ z(T, N, V ) =
∑

n

e−En/kT =

∫
[

e−E(q,p)/kT

]

dW qdWp

MhW
, (4.16)

Having evaluated z(T, N, V ) or equivalently F (T, N, V ), one can then proceed as follows to
determine other thermodynamic properties of the ensemble’s systems.

The entropy S can be computed from the standard expression S = −kln ρ, together with
Eq. (4.15) for ρ:

S =
Ē − F

T
, (4.17a)

It is helpful to rewrite Eq. (4.17a) as an equation for the free energy F

F = Ē − TS . (4.17b)

Suppose, now, that the canonical ensemble’s parameters T, N, V are changed slightly. By
how much will the free energy change? Equation (4.17b) tells us that

dF = dĒ − TdS − SdT . (4.17c)

Because macroscopic thermodynamics is independent of the statistical ensemble being stud-
ied, we can evaluate dĒ using the first law of thermodynamics (4.7) with the microcanonical
exact energy E replaced by the canonical mean energy Ē . The result is

dF = −SdT + µ̃dN − PdV . (4.18)
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Piston
GasHeat

Bath

Fig. 4.1: Origin of the name “physical free energy” for F (V, T,N).

Equation (4.18) contains the same information as the first law of thermodynamics and
can be thought of as the first law rewritten in a new mathematical representation, the free-

energy representation. In the original energy representation we regarded E(S, N, V ) as the
fundamental potential, and the first law described how E changes when its independent
variables S, N , V are changed. In the free-energy representation we regard F (T, N, V )
as the fundamental potential, and the first law (4.18) describes how F changes when its
independent variables T , N , V change. Because the microcanonical ensemble deals with
systems of fixed E , N , V , it is the foundation that underlies the energy representation.
Because the canonical ensemble deals with systems of fixed T , N , V , it is the foundation that
underlies the free-energy representation. Eq. (4.17b), which leads mathematically from the
energy representation to the free-energy representation, is called a Legendre transformation

and is a common tool (e.g. in classical mechanics4) for switching from one set of independent
variables to another.

The independent variables in the free-energy representation are the differentials on the
right hand side of the first law (4.18), namely T , N , V . The “generalized forces” paired
with these independent variables, −S, µ̃, −P respectively, are the coefficients of the first-law
changes. The corresponding Euler equation can be inferred from the first law by thinking of
building up the full system, piece-by-piece, with the extensive variables growing in unison
and the intensive variables held fixed; the result is

F = −PV + µ̃N . (4.19)

Note that the temperature is present in this relation only implicitly, through the dependence
of F , P , and µ̃ on the representation’s independent variables T, N, V .

We can use the free-energy form of the first law to read off equations of state for the
generalized forces,

−P =

(

∂F

∂V

)

T,N

, −S =

(

∂F

∂T

)

V,N

, µ̃ =

(

∂F

∂N

)

V,T

; (4.20)

Finally, Maxwell relations can be derived from the equality of mixed partial derivatives, as
in the energy representation; for example, (∂P/∂T )V,N = (∂S/∂V )T,N .

The name “physical free energy” for F can be understood using the idealized experiment
shown in Fig. 4.1. Gas is placed in a chamber, one wall of which is a piston; and the chamber
comes into thermal equilibrium with a heat bath, with which it can exchange heat but not
particles. The volume of the chamber has some initial value Vi; and correspondingly, the gas

4For example, Goldstein (1980).
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has some initial physical free energy F (Vi, T, N). The gas is then allowed to push the piston
to the right sufficiently slowly for the gas to remain always in thermal equilibrium with the
heat bath, at the bath’s temperature T . When the chamber has reached its final volume Vf ,
the total work done on the piston by the gas, i.e., the total energy extracted by the piston
from this “engine”, is

Eextracted =

∫ Vf

Vi

−PdV . (4.21a)

Using the first law dF = −SdT + µ̃dN − PdV and remembering that T and N are kept
constant, Eq. (4.21a) becomes

Eextracted = F (Vf , T, N) − F (Vi, T, N) ≡ ∆F . (4.21b)

Thus, F is the energy that is “free to be extracted” in an isothermal, physical expansion of
the gas.

If the expansion had been done in a chamber that was perfectly thermally insulated, so
no heat could flow in or out of it, Eq. (4.12) tells us that there would have been no entropy
change. Correspondingly, with S and N held fixed but V changing during the expansion,
the natural way to analyze the expansion would have been in the energy representation; and
that representation’s first law dE = −PdV + TdS + µ̃dN would have told us that the total
energy extracted,

∫

−PdV , was the change ∆E of the gas’s total energy. Such a process,
which occurs without any heat flow or entropy increase, is called adiabatic. Thus, the energy
E (or in the nonrelativistic regime E) measures the amount of energy that can be extracted
from an adiabatic engine, by contrast with F which measures the energy extracted from an
isothermal engine.

****************************

EXERCISES

Exercise 4.3 Example: The Enthalpy Representation of Thermodynamics

(a) Enthalpy H is a macroscopic thermodynamic variable defined by

H = E + PV . (4.22)

Show that this definition can be regarded as a Legendre transformation that converts
from the energy representation of thermodynamics with E(V, S, N) as the fundamental
potential, to an enthalpy representation with H(P, S, N) as the fundamental potential.
More specifically, show that the first law, reexpressed in terms of H, takes the form

dH = V dP + TdS + µ̃dN ; (4.23)

and then explain why this first law dictates that H(P, S, N) be taken as the funda-
mental potential.
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(b) There is an equilibrium statistical mechanics ensemble associated with the enthalpy
representation. What extensive quantities do the systems of this ensemble exchange
with their surrounding bath? Describe a physical situation that could produce this
ensemble.

(c) What equations of state can be read off from the enthalpy first law? What are the
Maxwell relations between these equations of state?

(d) What is the Euler equation for H in terms of a sum of products of extensive and
intensive variables?

(e) Show that the system’s enthalpy is equal to its total inertial mass (multiplied by the
speed of light squared); cf Exs. ?? and 1.23.

(f) As another interpretation of the enthalpy, think of the system as enclosed in an imper-
meable box of volume V . You are asked to inject into the box a “sample” of additional
material of the same sort as is already there. (It may be helpful to think of the material
as a gas.) The sample is to be put into the same thermodynamic state, i.e. macrostate,
as that of the box’s material; i.e., it is to be given the same values of temperature T ,
pressure P , and chemical potential µ̃. Thus, the sample’s material is indistinguishable
in its thermodynamic properties from the material already in the box, except that its
extensive variables (denoted by ∆’s) are far smaller: ∆V/V = ∆E/E = ∆S/S � 1.
Perform the injection by opening up a hole in one of the box’s walls, pushing aside
the box’s material enough to make a little cavity of volume ∆V equal to that of the
sample, inserting the sample into the cavity, and then closing the hole in the wall.
The box now has the same volume V as before, but its energy has changed. Show
that the energy change, i.e., the energy required to create the sample and perform the
injection, is equal to the enthalpy ∆H of the sample. Thus, enthalpy has the physical

interpretation of “energy of injection at fixed volume V ”.

****************************

4.4 The Gibbs Representation of Thermodynamics; Phase

Transitions and Chemical Reactions

Turn attention, next, to the most important of the various representations of thermodynam-
ics: the one appropriate to systems in which the temperature T and pressure P are both
being controlled by an external environment (bath) and thus are treated as independent vari-
ables in the fundamental potential. This is the situation in most laboratory experiments.
This representation can be obtained from the energy representation using a Legendre trans-
formation

G ≡ E − TS + PV . (4.24)
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We call the quantity G the Gibbs potential (it is also known as the chemical free-energy or
the Gibbs free-energy), and we call the representation of thermodynamics based on it the
Gibbs representation.

Differentiating Eq. (4.24) and combining with the energy representation’s first law (4.7),
we obtain the first law in the Gibbs representation:

dG = V dP − SdT + µ̃dN . (4.25)

From this first law we read out the independent variables of the Gibbs representation, namely
{P, T, N} and the equations of state:

V =

(

∂G

∂P

)

T,N

, S = −
(

∂G

∂T

)

P,N

µ̃ =

(

∂G

∂N

)

P,T

; (4.26)

and from the equality of mixed partial derivatives, we read off Maxwell relations. By imag-
ining building up a large system from many tiny subsystems (all with the same, fixed P and
T ) and applying the first law (4.25) to this buildup, we obtain the Euler relation

G = µ̃N . (4.27)

The energy representation (Sec. 4.2) is intimately associated with the microcanonical
ensemble, the physical-free-energy representation (Sec. 4.3) is intimately associated with the
canonical ensemble, and the grand-potential representation (Sec. 3.8) is intimately associated
with the grand-canonical ensemble. What, by analogy, is the ensemble associated with the
Gibbs representation? In general, those independent variables of a representation that are
intensive are properties of the bath with which the ensemble’s systems interact, the extensive
variables paired with those independent intensive variables are the quantitites exchanged
with the bath, and the independent extensive variables are the quantities held fixed in the
ensemble’s systems. For the Gibbs representation the independent intensive variables are
pressure P and temperature T , and therefore the bath must be characterized by fixed P
and T . Paired with P and T are the extensive variables V and E , and therefore the systems
exchange volume and energy with the bath. The only independent extensive variable is N ,
and thus the systems in the ensemble must have fixed N .

A little thought then leads to the following conclusion: The bath can be regarded (for
pedagogical purposes) as an enormous, closed system, of fixed volume, fixed energy and fixed
number of particles. Each system in our ensemble can be thought of as immersed in this bath
(or in a separate but identical bath). The system’s particles are prevented from escaping
into the bath and the bath’s particles are prevented from entering the system. We can
achieve this by mentally identifying a huge set of particles that we regard as the system and
placing an imaginary interface between them and the bath. Alternatively, we can imagine
a membrane separating the system from the bath — a membrane impermeable to particles,
but through which heat can pass, and with negligible surface tension so the system and the
bath can buffet each other freely. The system’s volume will then fluctuate stochastically
as its boundary membrane is buffeted by fluctuating forces from particles hitting it; and
the system’s energy will fluctuate stochastically as heat stochastically flows back and forth
through the membrane between bath and system. Correspondingly, we can think of the
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bath as a “heat and volume bath”; it freely exchanges heat and volume with the system,
and exchanges nothing else.

In Chap. 3 we showed that an ensemble of systems in equilibrium with such a heat
and volume bath (a Gibbs ensemble) is described by the distribution function ρ = const ×
e−E/kT e−PV/kT . By analogy with Eq. (4.15) for the canonical ensemble’s distribution function
and (3.48) for the grand canonical ensemble’s distribution function, it is reasonable to expect
the normalization constant to be the exponential of the Gibbs potential G(P, T, N); i.e.,

ρ = eG/kT e−(E+PV )/kT , (4.28)

where T and P are the temperature and pressure of the bath, and E and V are the energy
and volume of a specific system in the Gibbs ensemble. We can verify this by computing the
entropy S = −kln ρ using expression (4.28) for ρ, and getting S = −(G− Ē −P V̄ )/T , which
agrees with the definition (4.24) of G when we identify the ensemble-averaged energy Ē with
the “precise” energy E and the ensemble-averaged volume V̄ with the “precise” volume V .

While this Gibbs ensemble is conceptually interesting, it is not terribly useful for com-
puting the fundamental potential G(T, P, N), because evaluating the normalization sum

e−G/kT =
∑

n

e−(En+PVn)/kT (4.29)

is much more difficult than computing the physical free energy F (T, V, N) from the sum
over states (4.16), or than computing the grand potential Ω(T, V, µ̃) from the sum over
states (3.49). Correspondingly, in most statistical mechanics textbooks there is little or no
discussion of the Gibbs ensemble.

Despite its lack of usefulness in computing G, the Gibbs ensemble plays an important
conceptual role in a “minimum principle” for the Gibbs potential, which we shall now derive.

Consider an ensemble of systems, each of which is immersed in an identical heat and
volume bath, and assume that the ensemble begins with some arbitrary distribution function,
one that is not in equilibrium with the baths. As time passes each system will interact with
its bath and will evolve in response to that interaction; and correspondingly the ensemble’s
distribution function ρ will evolve. At any moment of time the ensemble’s systems will have
some mean (ensemble-averaged) energy Ē ≡ ∑

n ρnEn and volume V̄ ≡ ∑

n ρnVn, and the
ensemble will have some entropy S = −k

∑

n ρn ln ρn. From these quantities (which are
well defined even though the ensemble may be very far from statistical equilibrium), we
can compute a Gibbs potential G for the ensemble. This G is defined by the analog of the
equilibrium definition (4.28)

G ≡ Ē + P V̄ − TS , (4.30)

where P and T are the pressure and temperature of the identical baths with which the
ensemble’s systems are interacting.5 Now, as the evolution proceeds, the total entropy of

5Notice that, because the number N of particles in the system is fixed as is the bath temperature T , the
evolving Gibbs potential is proportional to

g ≡ G

NkT
=

Ē

NkT
+

P V̄

NkT
− S

Nk
.

This quantity is dimensionless and generally of order unity. Note that the last term is the dimensionless
entropy per particle [Eq. (3.58) and associated discussion].



16

the baths’ ensemble plus the systems’ ensemble will continually increase, until equilibrium is
reached. Suppose that during a short stretch of evolution the systems’ mean energy changes
by ∆Ē , their mean volume changes by ∆V̄ , and the entropy of the ensemble changes by
∆S. Then, by conservation of energy and volume, the baths’ mean energy and volume must
change by

∆Ēbath = −∆Ē , ∆V̄bath = −∆V̄ . (4.31a)

Because the baths (by contrast with the systems) are in statistical equilibrium, we can apply
to them the first law of thermodynamics for equilibrated systems

∆Ēbath = −P∆V̄bath + T∆Sbath + µ̃∆Nbath . (4.31b)

Since Nbath is not changing (the systems cannot exchange particles with their baths) and
since the changes of bath energy and volume are given by Eq. (4.31a), Eq. (4.31b) tells us
that the baths’ entropy changes by

∆Sbath =
−∆Ē − P∆V̄

T
. (4.31c)

Correspondingly, the sum of the baths’ entropy and the systems’ entropy changes by the
following amount, which cannot be negative:

∆Sbath + ∆S =
−∆Ē − P∆V̄ + T∆S

T
≥ 0 . (4.31d)

Because the baths’ pressure P and temperature T are not changing (the systems are so tiny
compared to the baths that the energy and volume they exchange with the baths cannot have
any significant effect on the baths’ intensive variables), the numerator of expression (4.31d)
is equal to the evolutionary change in the ensemble’s Gibbs potential (4.30):

∆Sbath + ∆S =
−∆G

T
≥ 0 . (4.32)

Thus, the second law of thermodynamics for an ensemble of arbitrary systems in contact

with identical heat and volume baths is equivalent to the law that the systems’ Gibbs

potential can never increase. As the evolution proceeds and the entropy of baths plus
systems continually increases, the Gibbs potential G will be driven smaller and smaller, until
ultimately, when statistical equilibrium with the baths is reached, G will stop at its final,
minimum value.

The ergodic hypothesis guarantees that this minimum principle applies not only to an
ensemble of systems, but also to a single, individual system when that system is averaged
over times long compared to its internal timescales τint (but times that may be very short
compared to the timescale for interaction with the heat and volume bath): The system’s
time-averaged energy Ē and volume V̄ , and its entropy S (as computed, e.g., by examining the
temporal wandering of its state on timescales ∼ τint), combine with the bath’s temperature
T and pressure P to give a Gibbs function G = Ē + P V̄ − TS. This G evolves on times
long compared to the averaging time used to define it; and that evolution must be one of
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Fig. 4.2: The Gibbs potential G(T, P,N) for H2O as a function of temperature T with fixed P
and N , near the freezing point 273K. The solid curves correspond to the actual path traversed by
the H2O if the phase transition is allowed to go. The dotted curves correspond to superheated solid
ice and supercooled liquid water that are unstable against the phase transition because their Gibbs
functions are higher than those of the other phase. Note that G tends to decrease with increasing
temperature. This is caused by the −TS term in G = E + PV − TS.

continually decreasing G. Ultimately, when the system reaches equilibrium with the bath,
G achieves its minimum value.

At this point we might ask about the other thermodynamic potentials. Not surpris-
ingly, associated with each of them there is an extremum principle analogous to “minimum
G”: (i) For the energy potential E(V, S, N), one focuses on closed systems and switches to
S(V, E , N); and the extremum principle is then the standard second law of thermodynamics:
An ensemble of closed systems of fixed E , V , N must evolve always toward increasing entropy
S; and when it ultimately reaches equilibrium, the ensemble will be microcanonical and will
have maximum entropy. (ii) For the physical free energy F (V, T, N) one can derive, in a
manner perfectly analogous to the Gibbs derivation, the following minimum principle: For
an ensemble of systems interacting with a heat bath the physical free energy F will always
decrease, ultimately reaching a minimum when the ensemble reaches its final, equilibrium,
canonical distribution. (iii) The grand-potential Ω(V, T, µ̃) (Sec. 3.8) satisfies the analogous
minimum principle: For an ensemble of systems interacting with a heat and particle bath the
grand potential Ω will always decrease, ultimately reaching a minimum when the ensemble
reaches its final, equilibrium, grand-canonical distribution. (iv) For the enthalpy H(P, S, N)
(Ex. 4.3) the analogous minimum principle should be obvious: For an ensemble of systems
interacting with a volume bath the enthalpy H will always decrease, ultimately reaching a
minimum when the ensemble reaches its final equilibrium distribution.

4.4.1 Phase Transitions

The minimum principle for the Gibbs potential G is a powerful tool in understanding phase

transitions: “Phase” in the phrase “phase transitions” refers to a specific pattern into which
the atoms or molecules of a substance organize themselves. For the substance H2O there are
three familiar phases: water vapor, liquid water, and solid ice. Over one range of pressure P
and temperature T , the H2O molecules prefer to organize themselves into the vapor phase;
over another, the liquid phase; and over another, the solid ice phase. It is the Gibbs potential
that governs their preference.

To understand this role of the Gibbs potential, consider a cup of water in a refrigerator
(and because the water molecules are highly norelativistic, adopt the nonrelativistic view-
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Fig. 4.3: The changes of volume (plotted rightward) with increasing Gibbs function (plotted
upward) at fixed P and N for a first-order phase transition [diagram (a)] and a second-order phase
transition [diagram (b)]. Gc is the critical value of the Gibbs potential at which the transition
occurs.

point with the molecules’ rest masses removed from their energy E and chemical potential
µH2O and also from their Gibbs potential). The refrigerator’s air forms a heat and volume
bath for the water in the cup (the system). There is no membrane between the air and the
water, but none is needed. Gravity, together with the density difference between water and
air, serves to keep the water molecules in the cup and the air above the water’s surface.
Allow the water to reach thermal and pressure equilibrium with the refrigerator’s air; then
turn down the refrigerator’s temperature slightly and wait for the water to reach equilibrium
again; and then repeat the process. Pretend that you are clever enough to compute from
first-principles the Gibbs potential G for the H2O at each step of the cooling, using two
alternative assumptions: that the H2O molecules organize themselves into the liquid water
phase; and that they organize themselves into the solid ice phase. Your calculations will
produce curves for G as a function of temperature T at fixed (atmospheric) pressure that
are shown in Fig. 4.2. At temperatures T > 273K the liquid phase has the lower Gibbs
potential G; and at T < 273K the solid phase has the lower G. Correspondingly, when the
cup’s temperature sinks slightly below 273K, the H2O molecules have a statistical preference
for reorganizing themselves into the solid phase. The water freezes, forming ice.

It is a familiar fact that ice floats on water, i.e. ice is less dense than water, even when they
are both precisely at the phase-transition temperature of 273K. Correspondingly, when our
sample of water freezes, its volume increases discontinuously by some amount ∆V ; i.e., when
viewed as a function of the Gibbs potential G, the volume V of the statistically preferred
phase is discontinous at the phase-transition point; see Fig. 4.3 (a). It is also a familiar
fact that when water freezes, it releases heat into its surroundings. This is why the freezing
requires a moderately long time: the solidifying water can remain at or below its freezing
point and continue to solidify only if the surroundings carry away the released heat, and
the surroundings typically cannot carry it away quickly. The heat ∆Q released during the
freezing (the latent heat) and the volume change ∆V are related to each other in a simple
way; see Ex. 4.4, which focuses on the latent heat per unit mass ∆q and the density change
∆ρ instead of on ∆Q and ∆V .

Phase transitions with finite volume jumps ∆V 6= 0 and finite latent heat ∆Q 6= 0 are
called first-order. Less familiar, but also important, are second-order phase transitions. In
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Fig. 4.4: (a) The unit cell for a BaTiO3 crystal at relatively high temperatures. (b) The dis-
placements of the titanium and oxygen ions relative to the corners of the unit cell, that occur
in this crystal with falling temperature when it undergoes its second-order phase transition. The
magnitudes of the displacements are proportional to the amount Tc − T by which the temperature
T drops below the critical temperature Tc, for small Tc − T .

such transitions the volumes V of the two phases are the same at the transition point, but
their rates of change with decreasing G are different (and this is so whether one holds P
fixed as G decreases or holds T fixed or holds some combination of P and T fixed); see
Fig. 4.3 (b).

Crystals provide examples of both first-order and second-order phase transition. A crys-
tal can be characterized as a 3-dimensional repetition of a “unit cell”, in which ions are
distributed in some fixed way. For example, Fig. 4.4 shows the unit cell for a BaTiO3 crystal
at relatively high temperatures. This unit cell has a cubic symmetry. The full crystal can be
regarded as made up of such cells stacked side by side and one upon another. A first-order
phase transition occurs when, with decreasing temperature, the Gibbs potential G of some
other ionic arrangement, with a distinctly different unit cell, drops below the G of the orig-
inal arrangement. Then the crystal can spontaneously rearrange itself, converting from the
old unit cell to the new one with some accompanying release of heat and some discontinuous
change in volume.

BaTiO3 does not behave in this way. Rather, as the temperature falls a bit below a critical
value, all the Titanium and Oxygen ions get displaced a bit in their unit cells parallel to
one of the original crystal axes; see Fig. 4.4 (b). If the temperature is only a tiny bit below
critical, they are displaced by only a tiny amount. When the temperature falls further, their
displacements increase. If the temperature is raised back up above critical, the ions return
to the standard, rigidly fixed positions shown in Fig. 4.4 (a). The result is a discontinuity,
at the critical temperature, in the rate of change of volume dV/dG [Fig. 4.2 (b)], but no
discontinuous jump of volume and no latent heat.

This BaTiO3 example illustrates a frequent feature of phase transitions: When the transi-
tion occurs, i.e., when the titanium and oxygen atoms start to move, the cubic symmetry gets
broken. The crystal switches, discontinuously, to a “lower” type of symmetry, a “tetragonal”
one. Such symmetry breaking is a common occurence in phase transitions.

Bose-Einstein condensation of a bosonic atomic gas in a magnetic trap is another example
of a second-order phase transition; see Sec. 3.5). As we saw in Ex. ex:3SpecificHeatJump,
the specific heat of the atoms changes discontinuously (in the limit of an arbitrarily large
number of atoms) at the critical temperature.
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4.4.2 Chemical Reactions

A second important application of the Gibbs potential is to the study of chemical reactions.
Under the term “chemical reactions” we include any change in the constituent particles of
the material being studied, including the joining of atoms to make molecules, the liberation
of electrons from atoms in an ionization process, the joining of two atomic nuclei to make a
third kind of nucleus, the decay of a free neutron to produce an electron and a proton, ... .
In other words, the “chemical” of chemical reactions encompasses the reactions studied by
nuclear physicists and elementary particle physicists as well as those studied by chemists.
The Gibbs representation is the appropriate one for discussing chemical reactions, because
such reactions generally occur in an environment (“bath”) of fixed temperature and pressure.

As a specific example, consider in the earth’s atmosphere the breakup of two molecules
of water vapor to form two hydrogen molecules and one oxygen molecule, 2H2O → 2H2 +O2.
The inverse reaction 2H2+O2 → 2H2O also occurs in the atmosphere, and it is conventional
to write down the two reactions simultaneously in the form

2H2O ↔ 2H2 + O2 . (4.33)

A chosen (but arbitrary) portion of the atmosphere, with idealized walls to keep all its
molecules in, can be regarded as a “system”. (The walls are unimportant in practice, but
are pedagogically useful.) The kinetic motions of this system’s molecules reach and maintain
statistical equilibrium, at fixed temperature T and pressure P , far more rapidly than chemical
reactions can occur. Accordingly, if we view this system on timescales short compared to
that τreact for the reactions (4.33) but long compared to the kinetic relaxation time, then we
can regard the system as in statistical equilibrium with fixed numbers of water molecules
NH2O, hydrogen molecules NH2

, oxygen molecules NO2
, and nitrogen molecules NN2

, and
with a Gibbs potential whose value is given by the Euler relation (4.27) generalized to a
system with several conserved species: G =

∑

I µ̃INI , i.e.

G = µ̃H2ONH2O + µ̃H2
NH2

+ µ̃O2
NO2

+ µ̃N2
NN2

. (4.34)

(Here, even though the Earth’s atmosphere is highly nonrelativistic, we include rest masses
in the chemical potentials and in the Gibbs potential; the reason will become evident at the
end of this section.) When one views the sample over a longer timescale, ∆t ∼ τreact, one
discovers that these molecules are not inviolate; they can change into one another via the
reactions (4.33), thereby changing the value of the Gibbs potential (4.34). The changes of
G are more readily computed from the Gibbs representation of the first law dG = V dP −
SdT +

∑

I µ̃IdNI than from the Euler relation (4.34); taking account of the constancy of
P and T and the fact that the reactions entail transforming two water molecules into two
hydrogen molecules and one oxygen molecule (or conversely) so

dNH2
= −dNH2O , dNO2

= −1

2
dNH2O , (4.35a)

we obtain

dG = (2µ̃H2O − 2µ̃H2
− µ̃O2

)
1

2
dNH2O . (4.35b)
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The reactions (4.33) proceed in both directions, but statistically there is a preference for
one direction over the other. The preferred direction, of course, is the one that reduces the
Gibbs potential. Thus, if 2µ̃H2O is larger than 2µ̃H2

+µ̃O2
, then water molecules preferentially

break up to form hydrogen plus oxygen; but if 2µ̃H2O is less than 2µ̃H2
+ µ̃O2

, then oxygen
and hydrogen preferentially combine to form water. As the reactions proceed, the changing
N ’s produce changes in the chemical potentials µ̃I . [Recall from Eq. (3.57c) the intimate
connection

NI =
(2πmIkT )3/2

h3
eµI/kT V (4.36)

between µI = µ̃I − mIc
2 and NI for a gas in the nonrelativistic regime]. These changes in

the NI ’s and µ̃I’s lead ultimately to a macrostate (thermodynamic state) of minimum Gibbs
potential G—a state in which the reactions (4.33) can no longer reduce G. In this final,
equilibrium macrostate the dG of expression (4.35b) must be zero; and correspondingly, the
combination of chemical potentials appearing in it must vanish:

2µ̃H2O = 2µ̃H2
+ µ̃O2

. (4.37)

The above analysis shows that the “driving force” for the chemical reactions is the com-
bination of chemical potentials in the dG of Eq. (4.35b). Notice that this combination has
coefficients in front of the µ̃I ’s that are identical to the coefficients in the reactions (4.33)
themselves; and the equilibrium relation (4.37) also has the same coefficients as the reac-
tions (4.35b). It is easy to convince oneself that this is true in general:

Consider any chemical reaction. Write the reaction in the form

∑

j

νL
j AL

j ↔
∑

j

νR
j AR

j . (4.38)

Here the superscripts L and R denote the “left” and “right” sides of the reaction, the Aj’s
are the names of the species of particle or atomic nucleus or atom or molecule involved in
the reaction, and the νj’s are the number of such particles (or nuclei or atoms or molecules)
involved. Suppose that this reaction is occuring in an environment of fixed temperature and
pressure. Then to determine the direction in which the reaction preferentially goes, examine
the chemical-potential sums for the two sides of the reaction,

∑

j

νL
j µ̃L

j ,
∑

j

νR
j µ̃R

j . (4.39)

The reaction will proceed from the side with the larger chemical-potential sum to the side
with the smaller; and ultimately the reaction will bring the two sides into equality. That final
equality is the state of statistical equilibrium. Exercises 4.5 and 4.6 illustrate this analysis
of chemical equilibrium.

When dealing with chemical reactions between highly nonrelativistic molecules and atoms—
e.g. water formation and destruction in the Earth’s atmosphere—one might wish to omit rest
masses from the chemical potentials. If one does so, and if one wishes to preserve the crite-
rion that the reaction goes in the direction of decreasing dG = (2µH2O − 2µH2

−µO2
)1

2
dNH2O

[Eq. (4.35b) with tildes removed], then one must choose as the “rest masses” to be subtracted
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Fig. 4.5: Phase diagram for H2O.

values that do not include chemical binding energies; i.e. one must define the rest masses
in such a way that 2mH2O = 2mH2

+ mO2
. One can avoid this delicacy by simply using the

relativistic chemical potentials. The derivation of the Saha equation (Ex. 4.6) is an example.

****************************

EXERCISES

Exercise 4.4 Example: Latent Heat and the Clausius-Clapeyron Equation

(a) Consider H2O in contact with a heat and volume bath of temperature T and pressure
P . For certain values of T and P the H2O will be water; for others, ice; for others,
water vapor—and for certain values it may be a two- or three-phase mixture of water,
ice, and/or vapor. Show, using the Gibbs potential, that if two phases a and b are

present and in statistical equilibrium with each other, then their chemical potentials

must be equal : µa = µb. Explain why, for any phase a, µa is a unique function of T and
P . Explain why the condition µa = µb for two phases to be present implies that the
two-phase regions of the T − P plane are lines and the three-phase regions are points;
see Fig.4.5. The three-phase region is called the “triple point”. The volume V of the
two- or three-phase system will vary depending on how much of each phase is present,
since the density of each phase (at fixed T and P ) is different.

(b) Show that the slope of the ice-water interface curve in Fig. 4.5 (the “melting curve”)
is given by the “Clausius-Clapeyron equation”

(

dP

dT

)

melt

=
∆qmelt

T

(

ρice ρwater

ρice − ρwater

)

, (4.40a)

where ρ is density (mass per unit volume) and ∆qmelt is the latent heat per unit mass
for melting (or freezing), i.e., the amount of heat required to melt a unit mass of ice, or
the amount released when a unit mass of water freezes. Notice that, because ice is less
dense than water, the slope of the melting curve is negative. [Hint : compute dP/dT
by differentiating µa = µb, and then use the thermodynamic properties of Ga = µaNa

and Gb = µbNb.]

(c) Suppose that a small amount of water is put into a closed container of much larger
volume than the water. Initially there is vacuum above the water’s surface, but as
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time passes some of the H2O evaporates to give vapor-water equilibrium. The vapor
pressure will vary with temperature in accord with the Clausius-Clapeyron equation

dPvapor

dT
=

∆qevaporate

T

(

ρwater ρvapor

ρwater − ρvapor

)

. (4.40b)

Now, suppose that a foreign gas (not water vapor) is slowly injected into the container.
Assume that this gas does not dissolve in the liquid water. Show that, as the pressure
Pgas of the foreign gas gradually increases, it does not squeeze water vapor into the
water, but rather it induces more water to vaporize:

(

dPvapor

dPtotal

)

T fixed

=
ρvapor

ρwater
> 0 , (4.40c)

where Ptotal = Pvapor + Pgas.

Exercise 4.5 Example: Electron-Positron Equilibrium at “Low” Temperatures

Consider hydrogen gas in statistical equilibrium at a temperature T � mec
2/k '

6 × 109 K. Electrons at the high-energy end of the Boltzmann energy distribution can
produce electron-positron pairs by scattering off protons

e− + p → e− + p + e− + e+ . (4.41)

[There are many other ways of producing pairs, but in analyzing statistical equilibrium
we get all the information we need (a relation among the chemical potentials) by
considering just one way.]

(a) In statistical equilibrium the above reaction and its inverse must proceed at the same
rate, on average. What does this imply about the relative magnitudes of the electron
and positron chemical potentials µ̃− and µ̃+ (where the rest mass-energies are included
in the µ̃’s)?

(b) Although these reactions require an e− that is relativistic in energy, almost all the
electrons and positrons will have kinetic energies of magnitude E − mc2 ∼ kT � mc2,
and thus will have E ' mc2 + p2/2m. What are the densities in phase space N± =
dN±/d3xd3p for positrons and electrons in terms of p, µ̃±, and T ? Explain why for a
hydrogen gas we must have µ̃− > 0 and µ̃+ < 0.

(c) Assume that the gas is very dilute so that η � 1 for both electrons and positrons.
Then integrate over momenta to obtain the following formula for the number densities
in physical space of electrons and positrons

n± =
2

h3
(2πmkT )3/2 exp

(

µ̃± − mc2

kT

)

. (4.42)

In cgs units, what does the dilute-gas assumption η � 1 correspond to in terms of n±?
What region of hydrogen mass density ρ and temperature T is the dilute-gas region?
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Fig. 4.6: The temperature Tp at which electron-positron pairs form in a dilute hydrogen plasma,
plotted as a function of density ρ. This is the correct upper limit (upper dashed curve in Fig. 2.5)
on the region where the plasma can be considered fully nonrelativistic. Above this curve, although
kT may be � mec

2 ' 6 × 109 K, a proliferation of electron-positron pairs radically changes the
properties of the plasma.

(d) Let n be the number density of protons. Then by charge neutrality n = n− − n+

will also be the number density of “ionization electrons” (i.e., of electrons that have
been ionized off of hydrogen). Show that the ratio of positrons (and hence of pairs) to
ionization electrons is given by

n+

n
=

1

2y[y + (1 + y2)
1
2 ]

(4.43a)

where

y ≡ 1

4
nλ3emc2/kT , and λ ≡ h√

2πmkT
(4.43b)

is the thermal deBroglie wavelength of the electrons. Fig. 4.6 shows the temperature
Tp at which, according to this formula, n+ = n (and y = 0.354), as a function of mass
density ρ ' mprotonn. This Tp can be thought of as the “temperature at which pairs
form” in a dilute plasma. Somewhat below Tp there are hardly any pairs; somewhat
above, the pairs are profuse.

(e) Note that at low densities pairs form at temperatures T ∼ 108 K ' 0.02mec
2/k. Explain

in terms of “available phase space” why the formation temperature is so low.

Exercise 4.6 Example: Saha Equation for Ionization Equilibrium

Consider an optically thick hydrogen gas in statistical equilibrium at temperature T .
(By “optically thick” is meant that photons can travel only a distance small compared
to the size of the system before being absorbed, so they are confined by the hydrogen
and kept in statistical equilibrium with it.) Among the reactions that are in statistical
equilibrium are H + γ ↔ e + p [ionization and recombination of Hydrogen H, with
the H in its ground state] and e + p ↔ e + p + γ [emission and absorption of photons
by “bremsstrahlung”, i.e., by the coulomb-force-induced acceleration of electrons as
they fly past protons]. Let µ̃γ , µ̃H, µ̃e, and µ̃p be the chemical potentials including

rest mass-energies; let mH, me, mp be the rest masses; denote by I ≡ (13.6 electron
volts) the ionization energy of hydrogen, so that mHc2 = mec

2 + mpc
2 − I; denote

µj ≡ µ̃j − mjc
2; and assume that T � mec

2/k ' 6 × 109 K, and that the density
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Fundamental Total Entropy Second Fluctuational

Bath Potential S + Sb Law Probability

None S(ρ) with E const S+ const dS ≥ 0 ∝ eS/k

V & E S(P ; ρ) S+ const dS ≥ 0 ∝ eS/k

dE = −PdV with H = E + PV const (see Ex. 4.8)
Heat F (T ; ρ) = Ē − TS −F/T + const dF ≤ 0 ∝ e−F/kT

Heat & Volume G(T, P ; ρ) = Ē + P V̄ − TS −G/T+ const dG ≤ 0 ∝ e−G/kT

Heat & Particle Ω(T, µ̃, ρ) = Ē − µ̃N̄ − TS −Ω/T + const dΩ ≤ 0 ∝ e−Ω/kT

Table 4.2: Deviations from Statistical Equilibrium; cf. Table 4.1.

is low enough that the electrons, protons, and Hydrogen atoms can be regarded as
nondegenerate (i.e., as distinguishable, classical particles).

(a) What relationships hold between the chemical potentials µ̃γ, µ̃H, µ̃e, and µ̃p?

(b) What are the number densities nH, ne, and np expressed in terms of T and µ̃H, µ̃e,
µ̃p—taking account of the fact that the electron and proton both have spin 1

2
, and

including in H all possible electron and nuclear spin states?

(c) Derive the Saha equation for ionization equilibrium

nenp

nH
=

(2πmekT )3/2

h3
e−I/kT . (4.44)

This equation is widely used in astrophysics and elsewhere.

****************************

4.5 Fluctuations of Systems in Statistical Equilibrium

As we saw in Chap. 3, statistical mechanics is built on a distribution function ρ, which is equal
to the probability of finding a chosen system in a quantum state at some chosen location in the
system’s phase space. For systems in statistical equilibrium this probability is given by the
microcanonical or canonical or grand canonical or Gibbs or . . . distribution, depending on the
nature of the interaction of the system with its surroundings. Classical thermodynamics, as
studied in this chapter, makes use of only a tiny portion of the information in this probability
distribution: the mean values of a few macroscopic parameters (energy, volume, pressure,
. . .) and the entropy. Also contained in the distribution function, but ignored by classical
thermodynamics, is detailed information about fluctuations of a system away from its mean
values.

We studied a simple example of this in Ex. 3.8: fluctuations in the number of particles
in some chosen volume V of a dilute, nonrelativistic gas. The chosen volume, regarded as
a system, was described by the grand canonical ensemble because it could freely exchange
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heat and particles with its surroundings (i.e. it had imaginary walls); and from the grand-
canonical probability distribution we found that the number of particles in the volume V
was described by a Poisson distribution

pN = e−N̄ N̄N

N !
. (4.45)

The mean N̄ of this distribution is equal to the number predicted by thermodynamics
[Eq. (3.50)], and the root-mean-square deviation from the mean, σN , is equal to

√
N̄ .

When N̄ is huge, as it is for all the systems studied in this chapter, the Poisson distribu-
tion (4.45) is extremely well approximated by a Gaussian. To convert to that Gaussian, take
the logarithm of Eq. (4.45), use Stirling’s formula N ! '

√
2πN(N/e)N , and expand in powers

of N − N̄ keeping only terms up through quadratic order. The result, after exponentiating,
is

pN =
1√
2πN̄

exp

[

−(N − N̄)2

2N̄

]

. (4.46)

In the next chapter (Sec. 5.2) we shall learn that the probability distribution (4.45) had to

be very nearly Gaussian: Any probability distribution that is produced by a superposition of
the influences of many independent, random variables (in this case the independent, random
motions of many gas particles) must be Gaussian to very high precision.

In this section we shall sketch the general theory of fluctuations of large systems in
statistical equilibrium—a theory of which the above example is a special case. We begin by
confining attention to a second specific case, and we then shall generalize.

Our second specific case is a microcanonical ensemble of boxes, each with volume V
and each containing precisely N identical, dilute (η � 1), nonrelativistic gas particles and
containing energy (excluding rest mass) between E and E+δE, where δE � E. (Remember
the “kludge” that was necessary in Ex. 3.9). Focus attention on a set of quantities yj which
characterize these boxes of gas and which are not fixed by the set E, V, N . For example,
y1 might be the total number n of particles in the right half of a box, and y2 might be the
total energy ε in the right half. We seek a joint probability distribution for these yj’s.

If the yj’s can take on only discrete values (e.g., y1 = n), then the total number of
quantum states that correspond to specific values of the yj’s is related to the entropy S by
the standard microcanonical relation

Nstates(yj; E, V, N) = exp[S(yj; E, V, N)/k] ; (4.47)

and correspondingly, since all states are equally probable in the microcanonical ensemble,
the probability of finding a system of the ensemble to have the specific values yj is

p(yj; E, V, N) =
Nstates(yj; E, V, N)

∑

yj
Nstates(yj; E, V, N)

= const × exp

[

S(yj; E, V, N)

k

]

. (4.48a)

Similarly, if the yj take on a continuous range of values (e.g., y2 = ε), then the probability
of finding yj in some tiny, fixed range dyj is proportional to exp[S(yj; E, V, N)/k], and
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correspondingly the probability per unit yj interval of finding a system to have specific
values is

dp(yj; E, V, N)

dy1dy2 . . . dyr

= const × exp

[

S(yj; E, V, N)

k

]

. (4.48b)

In expressions (4.48a) and (4.48b), the entropy S(yj; E, V, N) is to be computed via statistical
mechanics (or, when possible, via thermodynamics) not for the original ensemble of boxes
in which the yj were allowed to vary, but rather for an ensemble in which the yj’s are fixed
at the chosen values.

The probability distributions (4.48a) and (4.48b) though “exact,” are not terribly in-
structive. To get better insight we expand S in powers of the deviation of yj from its mean.
Denote by ȳj the value of yj that maximizes the entropy (this will turn out also to be the
mean of the distribution). Then for small |yj − ȳj|, Eq. (4.48b) becomes

dp(yj; E, V, N)

dy1dy2 . . . dyr
= const × exp

[

1

2k

(

∂2S

∂yj∂yk

)

(yj − ȳj)(yk − ȳk)

]

(4.48c)

and similarly for Eq. (4.48a). Here the second partial derivative of the entropy is to be
evaluated at the maximum-entropy location, where yj = ȳj for all j. Expression (4.48c)
is a (multidimensional) Gaussian probability distribution, as expected. Moreover, for this
distribution the values ȳj that were defined to give maximal entropy (i.e., the “most probable”
values) are also the means.

For the specific example where y1 ≡ n =(number of particles in right half of box) and
y2 ≡ ε =(amount of energy in right half of box), we can infer S(n, ε; N, E, V ) from Eq. (3.63)
as applied to the two halves of the box and then added:

S(n, ε; N, E, V ) = kn ln

[(

4πm

3h2

)3/2

e5/2 V

2

ε3/2

n5/2

]

+ k(N − n) ln

[(

4πm

3h2

)3/2

e5/2 V

2

(E − ε)3/2

(N − n)5/2

]

. (4.49a)

It is straightforward to compute from expression (4.49a) the values ε̄ and n̄ of ε and n that
maximize the entropy:

ε̄ =
E

2
, n̄ =

N

2
. (4.49b)

Thus, in agreement with intuition, the mean values of the energy and particle number in
the right half box are equal to half of the box’s total energy and particle number. It is
also straightforward to compute from expression (4.49a) the second partial derivatives of the
entropy with respect to ε and n, evaluate them at ε = ε̄ and n = n̄, and plug them into the
probability distribution (4.48c). The result is

dpn

dε
= const × exp

(−(n − N/2)2

2(N/4)
+

−[(ε − E/2) − (E/N)(n − N/2)]2

2(N/6)(E/N)2

)

. (4.49c)

[There is no dn in the denominator of the left side because n is a discrete variable; cf
Eqs. (4.48a) and (4.48b).] This Gaussian distribution has the following interpretation:
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(i) there is a correlation between the energy ε and the particle number n in the right half of
the box, as one might have expected: If there is an excess of particles in the right half, then
we must expect an excess of energy there as well. (ii) The quantity that is not correlated
with n is ε − (E/N)n, as one might have expected. (iii) For fixed n, dpn/dε is Gaussian
with mean ε̄ = E/2 + (E/N)(n − N/2) and with variance σε = (E/N)

√

N/6. (iv) After
integrating over ε we obtain

pn = const × exp

[−(n − N/2)2

2N/4

]

. (4.49d)

This is Gaussian with mean n̄ = N/2 and variance σn =
√

N/4. By contrast, if the right
half of the box had been in equilibrium with a bath far larger than itself, n would have had
a variance equal to the square root of its mean, σn =

√

N/2. The fact that the “companion”
of the right half has only the same size as the right half, rather than being far larger, has
reduced the variance of the number of particles in the right half from

√

N/2 to
√

N/4.
Notice that all the concrete probability distributions we have derived, Eqs. (4.45), (4.49c),

and (4.49d) are exceedingly sharply peaked about their means: Their variances (“half-
widths”) divided by their means, i.e., the magnitude of their fractional fluctuations, are

all of order 1/
√

N̄ , where N̄ is the mean number of particles in a system; and in realistic
situations N̄ is very large. (For example, N̄ is of order 1029 for a cubic meter of gas inside the
sun, and thus the fractional fluctuations of thermodynamic quantities are of order 10−14.)
It is this extremely sharp peaking that makes classical thermodynamics insensitive to the
choice of type of equilibrium ensemble—i.e., sensitive only to means and not to fluctuations
about the means.

How does the above, microcanonical, analysis generalize to ensembles of systems in equi-
librium with various kinds of baths? Consider, as a specific example, a Gibbs ensemble of
identical systems in equilibrium with a set of identical heat and volume baths. The systems
all contain the same number of particles N , but they have a spread of energies E and volumes
V , as well as a spread of some set of variables yi that interest us. (For example, one of the yi’s
might be the energy in the right half of a system.) For ease of notation and presentation we
shall assume that E and V are completely determined by the full set of chosen yi’s together
with N . Suppose that we pick a system at random from our equilibrium ensemble. We would
like to know the probability p(yi) that it has a specific set of values of its variables yi (or,
for those variables that can vary continuously, the probability it has the specific values yi in
a chosen, fixed, tiny range dyi). Because each system plus bath is closed, the systems plus
their baths are microcanonically distributed. Therefore, the probability p(yi) is proportional
to the total number of quantum states that a system plus its bath can have when the system
is constrained to the values yi in dyi, p(yi) ∝ Nstates; the total number of quantum states
in turn is related to the entropy of system plus bath by Nstates = e(Ssystem+Sbath)/k; and the
entropy of system plus bath in turn is related to the Gibbs potential of the system by

Ssystem + Sbath = −G/Tb + constant (4.50)

[Eq. (4.32)]. Thus,
p(yi; N, Tb, Pb) = const × e−G(yi,N,Tb,Pb)/kTb (4.51a)
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in the case of discrete yi, and similarly for continuous yi:

dp(yi; N, Tb, Pb)

dy1dy2 . . . dyr
= const × e−G(yi,N,Tb,Pb)/kTb (4.51b)

Here the Gibbs potential is not that of the equilibrium Gibbs ensemble; rather, in accord
with the derivation of Eq. (4.32), it is a potential constructed from the bath temperature
(denoted T in (4.32) but here and below denoted Tb), the bath pressure Pb, the energy
E(yi, N) of the system, the volume V (yi, N) of the system, and the entropy S(yi, N) of a
microcanonical subensemble of systems that have the specified values of the yi’s, and the
same value of N as all the systems in the original equilibrium ensemble:

G(yi, N, Tb, Pb) = E(yi, N) + PbV (yi, N) − TbS(yi, N) . (4.52)

As a specific example of the probability distribution (4.51a), consider a monatomic gas
and examine its fluctuations of temperature and volume. More specifically, inside a huge
bath of monatomic gas that is in statistical equilibrium pick out at random a small sample
containing precisely N atoms (with N >>> 1). That sample (the system) will have, because
of statistical fluctuations, a temperature T that differs slightly from Tb and a volume V that
differs slightly from the equilibrium value V̄ predicted by the Gibbs ensemble. We want to
know the probability that it will have specific values of T and V in specific ranges dT and
dV . The answer is given by Eq. (4.51a) with y1 = T and y2 = V . Expanding the G of that
answer in powers of V − V̄ and T − Tb, setting p(yi) = dp (a mere change of notation) and
dividing by dTdV , we obtain

dp

dTdV
= const× exp

[

− 1

2kTb

(

∂2G

∂V 2
(V − V̄ )2 +

∂2G

∂T 2
(T −Tb)

2 + 2
∂2G

∂T∂V
(V − V̄ )(T −Tb)

)]

.

(4.53a)
Here the Gibbs function to be differentiated is [cf the nonrelativistic version of Eq. (4.52)]

G = E(T, V, N) + PbV − TbS(T, V, N) , (4.53b)

with E(T, V, N) and S(T, V, N) being the energy and entropy of the system (gas cell with
N particles) at its specified values of T , V , and N ; and the derivatives are to be evaluated
at T = Tb and V = V̄ . The terms linear in V − V̄ and T − Tb in the expansion (4.53a) have
been omitted because (as we shall see) their coefficients ∂G/∂V and ∂G/∂T vanish when
V = V̄ and T = Tb.

By straightforwardly differentiating Eq. (4.53b) once with respect to T and V (while
holding N fixed) and invoking the first law of thermodynamics dE = −PdV + TdS + µdN ,
we obtain

(

∂G

∂T

)

V,N

= (T − Tb)

(

∂S

∂T

)

V,N

,

(

∂G

∂V

)

T,N

= (Pb − P ) + (T − Tb)

(

∂S

∂V

)

T,N

. (4.53c)

These quantities vanish when V = V̄ and T = Tb, as promised. Their vanishing, in fact, is
guaranteed by the statistical equilibrium of the bath. The second derivatives of G, evaluated
for V = V̄ and T = Tb, are readily computed from expressions (4.53c) to be

(

∂2G

∂T 2

)

V,N

=
CV

Tb
,

(

∂2G

∂V 2

)

T,N

=
1

κ
,

(

∂2G

∂T∂V

)

N

= 0 , (4.53d)
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where CV is the gas sample’s specific heat at fixed volume and κ is its compressibility at
fixed temperature:

CV ≡
(

∂E

∂T

)

V,N

, κ ≡ −
(

∂V

∂P

)

T,N

. (4.53e)

Inserting these relations into expression (4.53a) we obtain the final form of the probability
distribution for temperature and volume fluctuations in the monatomic gas:

dp

dTdV
= const × exp

(

−(V − V̄ )2

2kTbκ
− CV (T − Tb)

2

2kT 2
b

)

. (4.53f)

Notice that the root-mean-square fluctuations of the volume in this Gaussian probability
distribution are σV =

√
kTbκ, and those of the temperature are σT =

√

kT 2
b /CV . Since

CV and κ are proportional to the number of atoms, N , in the sample of gas, σT scales as
1/
√

N , and σV scales as
√

N , as one might expect. Because there are no cross terms, (V −
V̄ )(T −Tb), in the probability distribution (4.53f), the volume and temperature fluctuations
are uncorrelated.

It is straightforward to generalize the probability distribution (4.51a) to other kinds of
baths. In general, the quantity that replaces G in (4.51a) is the fundamental potential for
the chosen kind of bath: the physical free energy F in the case of a heat bath, the enthalpy
H in the case of a volume bath, and the grand potential Ω in the case of a heat and particle
bath.

****************************

EXERCISES

Exercise 4.7 Example: Fluctuations and Phase Transitions in a Van der Waals Gas

A real monatomic gas exhibits attractive forces between its atoms (or molecules) when
the atoms are moderately far apart, and repulsive forces when they are close together.
These forces modify expression (4.9c) for the gas’s nonrelativistic energy E in terms of
its volume V , entropy S, and number of atoms N . A simple analytic approximation
to these modifications is given by the van der Waals equation

E(V, S, N) = N
3h2

4πm

(

V

N
− b

)−2/3

exp

(

2

3k

S

N
− 5

3

)

− aN2

V
. (4.54)

Here b is the specific volume (volume per particle) at which the repulsion becomes so
strong that this approximation idealizes it as infinite. The term −aN 2/V is associated
with the attractive force at moderate distances, and a characteristic temperature below
which this attractive force is important is given by To ≡ a/bk.

(a) Derive the equation of state P = P (N, V, T ) for this gas, and compare it with that
of an ideal gas. Show that the equation of state has the form depicted in Fig. 4.7.
What is the critical temperature Tcrit below which the curve in Fig. 4.7 (a) has a local
maximum and a local minimum?
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Fig. 4.7: (a) The van der Waals equation of state P (N,V, T ) plotted as pressure P versus specific
volume V/N at fixed temperature T , for various values of the temperature T . (b) The route of a
phase transition in the van der Waals gas. The transition is a discontinuous jump from point A to
point B.

(b) Where along the curves in Fig. 4.7(a) is the gas stable against volume fluctuations,
and where is it unstable? For what range of T and P can there be two different phases
that are both stable against volume fluctuations?

(c) Let the temperature T be fixed at T < Tcrit, and gradually increase the density from
zero (decrease the volume from infinity). At low densities the gas will be vaporous, and
at high densities it will be liquid. The phase transition from vapor to liquid involves
a discontinuous jump from some point A in Fig. 4.7 (b) to another point B. Use the
principle of minimum Gibbs potential (Sec. 4.4) to prove that the straight line from
A to B in Fig. 4.7 (b) is horizontal and has a height such that the areas of the two
stippled regions are equal.

(d) At what values of the pressure P and specific volume V/N does the gas exhibit huge
volume fluctuations?

Exercise 4.8 Example: Fluctuations of Systems in Contact with a Volume Bath

Exercise 4.3 explored the enthalpy representation of thermodynamics for an equilibrium
ensemble of systems in contact with a volume bath. Here we extend that analysis to an
ensemble out of equilibrium. We denote by Pb the bath pressure.

(a) The systems are free to exchange volume with the bath but not heat or particles.
Explain why, even though the ensemble may be far from equilibrium, any system’s
volume change dV must be accompanied by an energy change dE = −PbdV . This
implies that the system’s enthalpy H = E + PbV is conserved. All systems in the
ensemble are assumed to have the same enthalpy H (within some very small range δH
analogous to that for energy in the microcanonical ensemble; Ex. 3.9) and all have the
same number of particles N .

(b) Using equilibrium considerations for the bath, show that interaction with a system

cannot change the bath’s entropy.
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(c) Show that the ensemble will always evolve toward increasing entropy S, and that
when the ensemble finally reaches statistical equilibrium with the bath, its distribution
function will be that of the enthalpy ensemble (Table 4.2): ρ = e−S/k = const for all
regions of phase space that have the specified particle number N and enthalpy H in
the small range δH.

(d) Show that fluctuations away from equilibrium are described by the probability distri-
butions (4.48a) and (4.48b), but with the system energy E replaced by the system
enthalpy H; cf. Table 4.2.

****************************

4.6 The Ising Model and Renormalization Group Meth-

ods

Having presented a thermodynamic description and classification of phase transitions, we
now seek microphysical insight into them. After a little contemplation, one discovers that
this is an extremely challenging problem because a phase change is an intrinsically non-
perturbative process. Perhaps for this reason, the statistical mechanics of phase transitions
has inspired the development of some of the most beautiful and broadly applicable methods
in modern theoretical physics. In this section and the next we shall give the flavor of these
developments by presenting simple examples of two methods of analysis: the renormalisation

group, and Monte Carlo techniques.6

We shall illustrate these methods using a simplified model of a second order ferromagnetic
phase transition, which involves spins arranged on a two dimensional square lattice. Each
spin s can take on the discrete values +1 (“up”) and −1 (“down”), and it is idealized as
interacting solely with each of its four nearest neighbors, with an interaction energy −Jss′

that is attractive if the spins are aligned and repulsive if they are opposite. (Note that we
do not explicitly include more distant interactions although these are surely present. As
we shall see, these are not essential to give us a model of a phase transition. However, as
we shall also see the “knock-on” effect from one spin to the next does introduce an indirect
long range organization which can propagate across the lattice as the temperature is reduced
below its critical value.) The proportionality constant in the interaction energy depends on
V/N , where N is the total number of spins and V is the lattice’s 2-dimensional volume (i.e.
its area). We assume that these are both held constant. (Recall from Sec. 4.4 that the
volume does not change at a second order phase transition.)

For ease of later notation, we shall write the interaction energy between two neighboring
spins as

−Jss′ = −kTKss′ , where K =
F(V/N)

kT
, (4.55)

6Our presentation is based in part on Maris and Kadanoff (1978) and in part on Chandler (1987).
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1

2 5 4
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Fig. 4.8: Partition of a square lattice into two interlaced square lattices (solid circles and open
circles). In the renormalisation group approach, the open-circle spins are removed from the lattice,
and all their interactions are replaced by modified interactions between the remaining solid-circle
spins. The new lattice is rotated by π/4 with respect to the original lattice and the lattice spacing
increases by a factor 21/2.

with F a function whose actual form will be unimportant. Note that K = F/kT is dimen-
sionless. As the interaction is attractive, K > 0. This is the Ising model after E. Ising who
first investigated it in 1925.

When the temperature is so high that J � kT , ie when K � 1, the spins will be almost
randomly aligned and the total interaction energy will be close to zero. Conversely, at low
temperatures, where K � 1, the strong coupling will make it energetically favorable for
most of the spins to be aligned over large volumes. In the limit, the total interaction energy
→ −2NJ . At some critical intermediate temperature Tc and corresponding value Kc of K,
there will be a phase transition. We shall compute the critical Kc and the dependence of
the lattice’s specific heat on T near Tc, using renormalization group methods in this section
and Monte Carlo methods in the next; and we shall examine the accuracy of these methods
by comparing our results with an exact solution for the Ising model, derived in a celebrated
1944 paper by Lars Onsager.

The key idea behind the renormalisation group approach is to try to replace the full
lattice by a sparser lattice that has similar thermodynamic properties and then to interate,
making the lattice more and more sparse; cf Fig. 4.8. In implementing this procedure, we
shall embody all the lattice’s thermodynamic properties in its physical free energy F (N, V, T )
(the appropriate fundamental potential for our situation of fixed N and V and interaction
with a heat bath); and we shall evaluate F using the canonical-ensemble sum over states
e−F/kT ≡ z =

∑

n e−En/kT . For our Ising model with its nearest-neighbor interaction energies,
Eq. (4.55), this sum becomes

z =
∑

{s1=±1,s2=±1,...}

eKΣ1sisj . (4.56a)

Here in the exponential Σ1 means a sum over all pairs of nearest neighbor sites {i, j}.
The first step in the renormalization group method is to rewrite Eq. (4.56a) so that each

of the open-circle spins of Fig. 4.8, e.g. s5, appears in only one term in the exponential, and
then explicitly sum each of those spins over ±1 so they no longer appear in the summations:
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z =
∑

{...,s4=±1,s5=±1,s6=±1,...}

· · · eK(s1+s2+s3+s4)s5 · · ·

=
∑

{...s4=±1,s6=±1...}

· · ·
[

eK(s1+s2+s3+s4) + e−K(s1+s2+s3+s4)
]

· · · . (4.56b)

(This rewriting of z is possible because each open-circle spin interacts only with solid-circle
spins.) The partition function is now a product of terms like those in the square brackets,
one for each open-circle lattice site that we have “removed”. We would like to rewrite
each square bracketed term in a form involving solely nearest-neighbor interactions of the
solid-circle spins, so that we can then iterate our procedure. Such a rewrite, however, is
not possible; after some experimentation, one can verify that the rewrite also requires next-
nearest-neighbor interactions and four-site interactions:

[

eK(s1+s2+s3+s4) + e−K(s1+s2+s3+s4)
]

= f(K)e
1
2
K1(s1s2+s2s3+s3s4+s4s1)+K2(s1s3+s2s4)+K3s1s2s3s4 (4.56c)

where we can determine the functions K1(K), K2(K), K3(K), f(K) by substituting each of
the three distinct combinations of {s1, s2, s3, s4} into Eq. (4.56b). The result is

K1 =
1

4
ln cosh(4K)

K2 =
1

8
ln cosh(4K)

K3 =
1

8
ln cosh(4K) − 1

2
ln cosh(2K)

f(K) = 2[cosh(2K)]1/2[cosh(4K)]1/8 (4.56d)

By inserting expression (4.56c) and the analogous expressions for the other terms into
Eq. (4.56b), we obtain the partition function for our original N -spin lattice of open and
closed circles, expressed as a sum over the N/2-spin lattice of closed circles:

z(N, K) = [f(K)]N/2
∑

e[K1Σ1sisj+K2Σ2sisj+K3Σ3sisjsksl] (4.56e)

Here the symbol Σ1 still represents a sum over all nearest neighbors but now in the N/2
lattice, Σ2 is a sum over the four next nearest neighbors and Σ3 is a sum over spins located
at the vertices of a unit cell. (The reason we defined K1 with the 1/2 in Eq. (4.56c) was
because each nearest neighbor interaction appears in two adjacent squares of the solid-circle
lattice, thereby converting the 1/2 to a 1 in Eq. (4.56e).)

So far, what we have done is exact. We now make two drastic approximations that are
designed to simplify the remainder of the calculation and thereby elucidate the renormaliza-
tion group method. First, in evaluating the partition function (4.56e), we drop completely
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the quadruple interaction (ie we set K3 = 0). This is likely to be decreasingly accurate as we
lower the temperature and the spins become more aligned. Second, we assume that near the
critical point, in some average sense, the degree of alignment of next nearest neighbors (of
which there are as many as nearest neighbors) is “similar” to that of the nearest neighbors,
so that we can set K2 = 0 but increase K1 to

K ′ = K1 + K2 =
3

8
ln cosh(4K). (4.57a)

(If we simply ignored K2 we would not get a phase transition.) This substitution ensures
that the energy of a lattice with N/2 aligned spins, and therefore N nearest neighbor and
N next nearest neighbor bonds, namely −(K1 + K2)NkT , is the same as that of a lattice in
which we just include the nearest neighbor bonds, but strengthen the interaction. Clearly
this will be unsatisfactory at high temperature.

These approximations bring the partition function (4.56e) into the form

z(N, K) = [f(K)]N/2z(N/2, K ′) , (4.57b)

which relates the partition function for our original Ising lattice of N spins and interaction
constant K to that of a similar lattice with N/2 spins and interaction constant K ′.

As the next key step in the renormalization procedure, we note that because the free
energy, F = −kT ln z, is an extensive variable, ln z must increase in direct proportion to the
number of spins; i.e, it must have the form

−F/kT ≡ ln z(N, K) = Ng(K) (4.58a)

defining the function g(K). By combining Eqs. (4.57b) and (4.58a) we obtain a relation for
the function g(K) in terms of the function f(K):

g(K ′) = 2g(K) − ln f(K) . (4.58b)

Here K ′ is given by Eq. (4.57a) and f(K) by Eq. (4.56d). Eq. (4.57a), (4.58b) are the
fundamental equations that allow us to calculate thermodynamic properties under this ap-
proximation. Let us examine them more carefully.

The iterative map (4.57a) which expresses the coupling constant K ′ for a lattice of size
N/2 in terms of K for a lattice of size N , has a fixed point which is obtained by setting
K ′ = K, or Kc = 3

8
ln cosh(4Kc); i.e.

Kc = 0.507 . (4.59)

This fixed point corresponds to the critical point for the lattice. We can make the identifica-
tion on physical grounds. Suppose that K is slightly smaller than Kc and we make successive
iterations. As dK/dK ′(Kc) < 1 the difference increases with each step - the fixed point is
unstable. What this means is that as we look on larger and larger scales, the lattice becomes
more disordered. Conversely, at low temperature, when K > Kc, the lattice become more
ordered with increasing scale. Only when K = Kc does the lattice appear to be comparably
disordered on all scales. It is here that the increase of order with length scale changes from
the inside out (high temperature) to the outside in (low temperature).
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To demonstrate that K = Kc is indeed the location of a phase transition, we shall
compute the lattice’s specific heat in the vicinity of Kc. The first step in the computation is
to compute the lattice’s entropy, S = −(∂F/∂T )V,N . Recalling that K ∝ 1/T at fixed V, N
[Eq. (4.55)] and using expression (4.58a) for F , we see that

S = −
(

∂F

∂T

)

V,N

= Nk

[

g − K

(

dg

dK

)]

. (4.60a)

The specific heat at constant volume is then, in turn, given by

CV = T

(

∂S

∂T

)

V,N

= NkK2 d2g

dK2
. (4.60b)

Next we note that, as the iteration Eq. (4.57a) is unstable near Kc, the inverse iteration

K =
1

4
cosh−1[exp(8K ′/3)] (4.60c)

is stable. The corresponding inverse transformation for the function g(K) is

g(K) =
1

2
g(K ′) +

1

2
ln{2 exp(2K ′/3)[cosh(4K ′/3)]1/4} (4.60d)

Now we know that at low temperature K >> Kc, all the spins are aligned and g(K) ' 2K.
Conversely, at high temperature, there is complete disorder and K → 0. This means that
every one of the 2N terms in the partition function is unity and g(K) ' ln 2. We can
therefore use the iterative map, Eq. (4.60c),(4.60d) to approach K = Kc from either side
starting with the high temperature and low temperature limits. This allows us to compute
thermodynamic quantities, Fig. 4.9. For each value of K, we evaluate g(K), g ′(K) and g′′(K)
numerically and use the results to compute F , S and CV using Eq. (4.58a),(4.60a),(4.60b).
Note that the specific heat diverges at Kc, as K → Kc, verifying that this is a second order
phase transition.

In order to calculate the form of this divergence, suppose that g(K) is a sum of an analytic
(infinitely differentiable) function and a non-analytic part, the latter being designated with
a ∼. Suppose that g̃(K) ∼ |K − Kc|2−α for some “critical exponent” α. This implies that
CV diverges ∝ |K − Kc|−α ∝ |T − Tc|−α, where Tc is the critical temperature. Now, from
Eq. (4.60d), we have that

|K ′ − Kc|2−α = 2|K − Kc|2−α, (4.61a)

or equivalently,
dK ′

dK
= 21/(2−α). (4.61b)

Evaluating the derivative at K = Kc from Eq. (4.60c), we obtain

α = 2 − ln 2

ln(dK ′/dK)c

= 0.131 (4.61c)

which is consistent with the numerical calculation. For comparison, the exact Onsager
analysis gives Kc = 0.441 and CV ∝ − ln |T − Tc|.
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Fig. 4.9: a. Iteration map K(K ′) in the vicinity of the critical point. b. Free energy per spin c.
Entropy per spin, d. Specific heat per spin.

This analysis appears to have a serious problem in that it gives a negative value for
the entropy in the vicinity of the critical point. This is surely unphysical. (The entropy
becomes positive on either side of the critical point.) This is an artificiality associated
with our particular ansatz which it does not seem easy to cure. For example, if we write
h(K) = ln f(K) in Eq. (4.58b), then the entropy at the critical point is given by

Sc =
Nkh(K)

2 − d lnK ′/d lnK

(

2 − d ln K ′

d lnK
− d lnh

d lnK

)

(4.62)

all evaluated at K = Kc. Simply multiplying K ′(K) and h(K) by different coefficients
cannot change the sign of Sc. Nonetheless this procedure does exhibit the physical essentials
of the renormalization group approach to critical phenomena.

Why did we bother to go through this cumbersome procedure when Onsager has given us
an exact analytical solution? The answer is that it is not possible to generalize the Onsager
solution to more complex and realistic problems. In particular, it has not even been possible
to find a three dimensional counterpart. However, once the machinery of the renormalization
group has been mastered, it can produce approximate answers, with an accuracy that can be
estimated, for a whole variety of problems. In the following section we shall look at a quite
different approach to the same 2D Ising problem with exactly the same motivation in mind.

****************************

EXERCISES

Exercise 4.9 Example: One Dimensional Ising Lattice

(a) Write down the partition function for a one dimensional Ising lattice as a sum over
terms describing all possible spin organisations.
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(b) Show that by separating into even and odd numbered spins, it is possible to factorize
the partition function and relate z(N, K) exactly to z(N/2, K ′). Specifically show that

z(N, K) = f(K)N/2z(N/2, K ′) (4.63)

where K ′ = ln[cosh(2K)]/2 and f(K) = 2[cosh(2K)]1/2.

(c) Use these relations to demonstrate that the one dimensional Ising lattice does not
exhibit a second order phase transition.

Exercise 4.10 Derivation: One Dimensional Ising Lattice

Derive Eq. 4.62 (or show that it is incorrect).

****************************

4.7 Monte Carlo Methods

We now turn to our second general method for approximately analyzing phase transitions
(and a much larger class of problems in statistical physics). This is the Monte Carlo ap-
proach.7 It will be instructive to tackle the same two dimensional Ising problem that we
discussed in the last section.

The approach is much more straightforward in principle. We set up a square lattice of
spins as in Sec. 4.6 and initialize the spins randomly. (This calculation will be performed nu-
merically and will need a (pseudo) random number generator. Most programming languages
now supply this utility which is mostly used uncritically, occasionally with unintended con-
sequences. Defining and testing randomness is an important topic which unfortunately, we
shall not address. See, for example, Press et al 1992.) We now imagine that this lattice is in
contact with a thermal bath with a fixed temperature T – it is one member of a canonical
ensemble of systems – and allow it to approach equilibrium by changing the orientiations of
the spins in a prescribed manner. Our goal is to compute thermodynamic quantities using
X̄ = z−1Σe−E/kT X where the sum is over all states. For example we can compute the specific
heat (at constant volume) from

CV =
dĒ

dT
=

∂

∂T

(

Σe−E/kT E

Σe−E/kT

)

=
E2 − E

2

kT 2
.

(Note how a singularity in the specific heat at a phase transition will be associated with
large fluctuations in the energy as we discussed in Sec. 4.5.)

In order to compute quantities like CV , we replace ensemble averages by averages over
successive configurations of the lattice. Clearly, we cannot visit every one of the 2N configu-
rations and so we must sample these fairly. How do we prescribe the rules for changing the
spins? It turns out that there are many answers to this question and we shall just give one of

7This is a laconic reference to the casino whose patrons believe that they will profit by exploiting random
processes.
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the simplest, due to Metropolis et al (1953). In order to understand this, we must appreciate
that we don’t need to understand the detailed dynamics through which a spin in a lattice
flips. All that is required is that the prescription we adopt should maintain thermodynamic
equilibrium.

Let us label a single lattice state, specified by a matrix whose entries are ±1, Si and let
its total energy be Ei. In addition, let us assign the probability of making a transition from
a state Si to a new state Si′ to be pii′ . Now, in a steady state,

Σi′ρi′pi′i = ρiΣi′pii′ (4.64a)

However, we know that in equilibrium,

ρi′ = ρi exp[(Ei − Ei′)/kT ] (4.64b)

The Metropolis rule is simple: if Ei > Ei′ , then pii′ = 1, but if Ei < Ei′, then pii′ =
exp[(Ei − Ei′)/kT ]. This will maintain thermodynamic equilibrium and, as can easily be
shown, drive an out of equilibrium system towards equilibrium.

The numerical expression of this procedure is to start with a random lattice and then
choose one spin, at random, to make a trial flip. If the new configuration has a lower energy,
we always accept the change. If it has a higher energy we only accept the change with a
probability given by exp[−∆E/kT ], where ∆E > 0 is the energy change. (Actually, there
is a small subtlety here. The probability of making a given transition is the product of
the probability of making the trial flip and of accepting the trial. However the probability
of making a trial flip from up to down is the same as that for down to up and these trial
probabilities cancel, so it is only the ratio of the probabilities of acceptance that matters.)
In this way, we choose a sequence of states that will ultimately have the equilibrium distri-
bution function, and we can perform our thermodynamic averages using this sequence in an
unweighted fashion. This is particularly convenient procedure for the Ising problem because,
by changing one spin at a time, ∆E can only take one of 5 values and it is possible to change
from one state to the next very quickly. (It also helps to store the two threshold probabilities
for making an energy-gaining transition and avoid evaluating exponentials every step.)

How big a lattice do we need and how many states should we consider? The lattice size
can be surprisingly small to get qualitatively correct results, if we adopt periodic boundary
conditions. That is to say, we imagine an infinite tiling of our actual lattice and every time
we need to know the spin at a site beyond the last column, we use the corresponding spin
in the first column, and so on. This device minimizes the effects of the boundary on the
final answer. Lattices as small as 32 × 32 can be useful. The length of the computation
depends upon the required accuracy. (In practice, this is usually implemented the other way
round. The time available on a computer of given speed determines the accuracy.) One
thing should be clear. It is necessary that we explore a reasonable volume of state space in
order to be able to sample it fairly and compute meaningful estimates of thermodynamic
quantities. The final lattice should exhibit no vestigial patterns from the configuration when
the computation was half complete. In practice, it is this consideration that limits the size
of the lattice and it is one drawback of the Metropolis algorithm that the step sizes are
necessarily small. There is a large bag of tricks used in Monte Carlo simulation that can
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Fig. 4.10: Typical Ising lattices for T = 1, 2, 3J/k.

be used for variance reduction and estimation but we only concern ourselves here with the
general method.

Returning to the Ising problem, we show typical equilibrium lattices for three temper-
atures (measured in units of J/k) in Fig. 4.10. Recall that the critical temperature is
Tc = J/kKc = 2.268J/k. Note the increasingly long range order as the temperature is
reduced.

We have concluded this chapter with an examination of a very simple system that
can approach equilibrium according to specified rules and which can exhibit strong fluc-
tuations. In the following chapter, we shall examine these matters more systematically.

****************************

EXERCISES

Exercise 4.11 Practice: Direct Computation of Thermodynamic Integrals

Estimate how long it would take a PC to compute the partition function for a 32× 32 Ising
lattice by evaluating every possible configuration.

Exercise 4.12 Example: Monte Carlo Approach to Phase Transition

Write a simple computer program to compute the energy and the specific heat of a 2 di-
mensional Ising lattice as described in the text. Examine the accuracy of your answers by
varying the size of the lattice and the number of states sampled. (You might also try to
compute a formal variance estimate.)

Exercise 4.13 Problem: Ising Lattice with an Applied Field

It is straightforward to generalize our approach to the problem of a lattice place in a uni-
form magnetic field B. This adds a term ∝ −Bs to the energy Eq. (4.55). Modify the
computer program from Ex (4.12) to include this term and compute the magnetization and
the magnetic susceptibility.

****************************
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