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Fourier transform of t(r) is T(R) and, using Cartesian 
coordinates, T(X, Y, Z )=  T(X, Y)T(Z) .  This is a 
simplification in the computation of the diffraction 
intensity I(~:, l). One can write, after omitting the 
weight factors, the Fourier transform T(X, Y) as 

T(X, Y) = sinc ¢rAX sinc 7ryo Y, (29) 

and T(/), Z = l~ c, is given by 

T(1) -- sinc 7rzol/c. (30) 

The Fourier transform T(X, Y) in cylindrical co- 
ordinates ~, • is 

T(~, ~ )  = sinc 7r)t~: cos • sinc ¢ryo~: sin qb. (31) 

The averaged transform Um(~:) for the pillar of uni- 
form density can be computed using (31) and (26). 

Discussion 

A new formula for the diffracted intensity I(~:, I) for 
a helical array of subunits has been derived. This 
formula is exact. It may have computational advan- 
tages in fiber diffraction but further study is required. 
The present formulation allows the examination of 
the effects of helical disorders. The treatment of dis- 

order in the case of the elementary helix was described 
in paper I. 

The electron density of each subunit is defined 
relative to its own origin independent of the helical 
parameters. This straightforward application of the 
Fourier transform of the subunit may prove to be 
useful in molecular model-building studies of biologi- 
cal helical structures and in a variety of disorder 
problems relating to helical structure. A long-term 
aim of this work is eventually to study the dynamics 
of biological structures. 

I thank Professor G. F. Elliott for discussions and 
his helpful comments on the manuscript. 
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Abstract 

It frequently occurs that a biological assembly in a 
crystallographic asymmetric unit has more than one 
noncrystallographic symmetry operator. For instance, 
a tetramer might have the point group 222 or a 
spherical virus will have the point group 532. A self- 
rotation function searches for the direction and angle 
of rotation of the individual noncrystallographic sym- 
metry operations, while a cross-rotation function 
searches for the relationship of a structure in one unit 
cell with similar structures in another cell. The power 
of the rotation function can be greatly enhanced by 
searching for all noncrystallographic symmetry 
operators simultaneously. The procedure described 
previously [Rossmann, Ford, Watson & Banaszak 
(1972). J. Mol. Biol. 64, 237-249] has been general- 
ized. The increased power of this 'locked' rotation 
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function permits a good determination of the orienta- 
tion of an icosahedral virus in the presence of less 
than 1% of the possible diffraction data to 7/~ resol- 
ution. In addition, the peak-to-noise ratio is substan- 
tially improved. 

Introduction 

The rotation function (Rossmann & Blow, 1962; 
Hoppe, 1957) determines the direction and angle of 
rotation of noncrystallographic symmetry operators 
in a crystal lattice. The latter is any operator that is 
valid within a local volume (as opposed to infinite 
volume) of the crystal lattice. In many cases, biologi- 
cal assemblies contain point groups of fairly high 
symmetry. When crystals are available, the rotation 
function can be used to determine the point group 
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of the assembly. For instance, glyceraldehyde 3-phos- 
phate dehydrogenase (GAPDH) was shown to be 
a tetramer with 222 symmetry (Rossmann, Ford, 
Watson & Banaszak, 1972). More recently, the rota- 
tion function has been used routinely to find the 
orientation of icosahedral viruses (point group 532) 
in their crystal lattice, as well as for many other 
applications. 

If the point group of an assembly is known or can 
be assumed, then it is often possible to determine the 
orientation of the particle when the rotation-function 
peaks are otherwise hidden in noise. One example 
was in the analysis of GAPDH where the rotation 
function had numerous peaks in the K = 180 ° plane 
(a search for twofold axes). However, there was only 
one combination of three twofold peaks which were 
orthogonal to each other within less than 1 ° (Ross- 
mann e t  a l . ,  1972). Alternatively, the requirement for 
there to be rotation-function peaks with given angular 
relationships to each other, as in the case of GAPDH, 
makes it possible to increase the precision of the 
determination of the orientation of the whole sym- 
metrical object. This process has been used to advan- 
tage in the determination of the orientation of 
icosahedral viruses [e.g. for human rhinovirus 14 
(HRV14; Arnold, Erickson, Fout, Frankenberger, 
Hecht, Luo, Rossmann & Rueckert, 1984) and 
poliovirus type 1 (Hogle, Chow & Filman, 1985)] 
where there are many twofold, threefold and fivefold 

axes at precisely known angles to each other. This 
constraint on the rotation function has been called a 
'locked' rotation function (Rossmann e t  a l . ,  1972). 

Previously, the search for the existence of simul- 
taneous peaks in the rotation function was done either 
clumsily (Rossmann e t  a l . ,  1972) or in special cases 
only. In the case of HRV14, the virus sat on a crys- 
tallographic threefold axis. Hence, it was only 
necessary to rotate the icosahedron about the body 
diagonal of the cubic cell and sample the rotation 
function at the end of the various icosahedral sym- 
metry operators. The sum of the rotation-function 
values was taken as a measure of the locked function. 
In this way it was possible to obtain an orientation 
that was later found to be accurate to 0.05 ° using 5 
data. However, a general locked rotation function has 
never been considered. 

The locked self-rotation function: rotation of  a point 
group into an unknown cell 

Let us consider a point group defined with respect to 
a set of orthogonal axes. This we shall call the 'stan- 
dard' orientation. For an icosahedron it might be 
defined as in Fig. 1. Let [I~] be a rotation about the 
ith symmetry element (i = 1, 2 , . . . ,  n) of the point 
group relative to this set of axes. The operations [I~] 
leave the point group unchanged. Our task is to rotate 
the point group ( e . g .  Fig. 1) into the 'unknown' cell 
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Fig. 1. Icosahedral 532 point group in the stan- 
dard orientation relative to the orthogonal axes 
X, Y, Z plotted as a stereographic projection. 
The polar coordinates ~s, ~o are defined as given 
by Rossmann & Blow (1962). 
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and to sample the rotation function for each of the 
n elements [I~]. Rotation of the point group into the 
unknown cell can be defined, in general, by three 
angles (e.g. polar or Eulerian angles) unless one or 
more of the point-group symmetry elements is made 
to be coincident with crystallographic symmetry 
operators. Let [E]  be the rotation matrix which per- 
forms such a rotation. 

Let a position vector within the point-group system 
be defined by U1. If U~ is the position of the vector 
after being operated on by [I~], then 

U,=[I,]U1. (1) 

Now if a position vector in the orthogonalized system 
of the crystal lattice is represented by X, then by 
definition 

X , = [ E ] U ,  (2) 

or similarly 

Xi = [E]Ui  

since the rotation [E]  takes all equivalent points of 
the point-group system U to points that are also 
equivalent in the crystal system. Hence, from (1), 

X,=[E][I,]U, 

and, from (2), 

However, 

= [ E][ I~][ E-1]X,. (3) 

X, = [p,]X1, (4) 

where [pi] is a rotation which takes X1 to Xi in the 
unknown crystal lattice. By comparison of (3) and 
(4) we see that 

[p,] = [ E][ / i ] [  E-a] • (5) 

The self-rotation function tests the degree of the 
superposition of the Patterson of the unknown struc- 
ture on itself after a rotation by [p]. This requires the 
computation of the matrix [C]  which is (following 
Rossmann & Blow, 1962) 

[ C] = [ a ][p][/3 ]. (6) 

Here [a]  deorthogonalizes and converts to fractional 
coordinates and [/3] orthogonalizes from the frac- 
tional coordinate system in the crystal ( [a]  -1= [/3] 
in this case). Thus, from (5) and (6), 

[ C,] = [a ] [  E][  I,][ E-1][/3 ]. (7) 

Here [C~] would be the rotation matrix in the 
unknown cell necessary to test the ith symmetry ele- 
ment of the point group after it has been rotated into 
the unknown cell by the matrix [E].  If Ri is the 
self-rotation-function value corresponding to the 
rotation [ C~], then the locked rotation-function value 

Table 1. Examples of types of symmetry operators 
required for different point groups 

An icosahedron  with 532 symmetry  

Number  o f  Total  n u m b e r  
Axes N u m b e r  opera t ions /ax is  o f  opera tors  

Fivefold 6 4 24 
Threefold 10 2 20 
Twofold 15 1 15 

Total 31 59 

Tet ramer  with 222 symmetry  

N u m b e r  of  Total  number  
Axes N u m b e r  opera t ions /ax is  o f  opera tors  

Twofold 3 1 3 

Total 3 3 

Note: Each operator is represented by a matrix [li] in the text. 

Rt. will be given by 

(8) 

The locked rotation function can be explored in 
terms of the three angles that define the rotation 
matrix [El .  This function, much like the ordinary 
rotation function, will have considerable symmetry 
depending on the symmetry of the unknown Patterson 
and the assumed point group of the local symmetry 
elements. The noise of the locked rotation function 
can be expected to be n -1/2 of the noise of the ordinary 
rotation function in which the position of each of the 
n point-group symmetry elements is separately 
derived. The [/~] (i = 1, 2 , . . . ,  n) symmetry elements 
of the assumed point group can be determined from 
the minimal number of symmetry elements necessary 
to generate the different symmetry operators in the 
standard setting (Table 1). 

The locked cross-rotation function 

A cross-rotation function can be used to compare the 
orientation of a molecule in one crystal cell with that 
of a similar molecule in another crystal cell. This 
procedure is useful if the structure of a 'known' 
molecule is to be utilized to solve the structure of a 
related molecule in an unknown cell. If, however, the 
unknown cell has more than one molecule per asym- 
metric unit, then the cross-rotation function should 
show a fit to each of the orientations in the unknown 
cell. Very often a self-rotation function has already 
established the relationship between the various 
molecules in the unknown cell. This then determines 
the relationship between the acceptable peaks in the 
cross-rotation function. Only those peaks can be 
accepted which are consistent with both the self- 
rotation function of the unknown cell and the cross- 
rotation function between the known molecule and 
the unknown crystal structure. This permits the 



786 THE LOCKED ROTATION FUNCTION 

computation of a 'locked cross-rotation function' 
by sampling simultaneously only those points in the 
cross-rotation function that are consistent with the 
self-rotation function of the unknown cell. 

Let U be a position vector in the cell containing 
the known molecular structure and let X be a position 
vector in the unknown cell containing a number of 
copies of the molecule per crystallographic asym- 
metric unit. Then 

XI=[E]U (9) 

where [E] is a rotation matrix that relates the 
molecule in the known cell with the first molecule i:n 
the unknown cell. Now if [/3 u ] is an orthogonalization 
matrix in the known cell, [c~x] is a deorthogonaliz- 
ation matrix in the unknown cell and lower-case 
characters denote fractional coordinate vectors, then 

x, = [ a~x][ E][flu]U. (10) 

Within the unknown cell there exist [Ii] (i= 
1 , 2 , . . . ,  n) relationships between the various 
molecular copies in the asymmetric unit such that 

Xi = [Ii]Xl 

o r  

x, = [ O~x ][ I, ][fix ]x,. (I I) 

From combination of (10) and (11) it follows that 

x, = [ ~ x  ][ I, ][#× ][ ~x  ][ E ] [ #,., ]u 

o r  

xi = [ ax][ I,][ E][/3u]U. (12) 

Thus, the locked cross-rotation function RL can be 
defined as before in (8) by using 

[ Ci] = [ax][  I,][ E][fu ] (13) 

to evaluate the i rotation-function values R~ and then 
summing 

Symmetry of the locked rotation function 

Since the order of e~aluation of the n values of the 
ordinary rotation function R~ that go into the compu- 
tation of the locked rotation function is irrelevant, 
the locked rotation function has higher symmetry 
than the ordinary rotation function. An intuitive con- 
sideration shows that there are n symmetry-related 
asymmetric units in a plot of the locked rotation 
function within the asymmetric unit of the ordinary 
rotation function. The time of calculation of the 
locked rotation function will be n times that of the 
ordinary rotation function at each grid point. 
However, as the symmetry is n times as high, the time 

of calculation of the locked rotation function should 
be expected to be the same as the ordinary function 
provided the limits of the asymmetric unit of the 
locked rotation function can be determined in 
advance. Furthermore, the computation of the locked 
rotation function can be speeded up considerably 
because fewer 'large terms' are required for the calcu- 
lation (see next section). 

Consider the rotation [EA] that is applied to the 
ith symmetry operator [Ii] of the standard point 
group. Then from (5) 

[p] = [EA][/i][ E~']. (14) 

Similarly, consider the rotation [EB] that produces 
the same set of local symmetry operators by rotating 
the jth symmetry operator [I j] into the same position 
previously occupied by [I~]. Then 

[p] = [Es][6][E~ ' ] .  (15) 

Comparison of (14) and (15) shows that 

[E~][Ij][E-B1]=[EA][I~][EA']. (16) 

Thus, the locked rotation function will have 
equivalent values for angles OA (corresponding to the 
matrix [EA]) and 0B (corresponding to the matrix 
[EB]) which satisfy (16) for all combinations of i and 
j. The above derivation has omitted the possibility of 
superimposing the standard point group onto crystal- 
lographically related orientations in the unknown 
cell. If the mth and nth crystallographic symmetry 
operations are given by [Tm] and [T,,], then (16) 
expands to 

[ En ][/j ][ E ~'] = {[ a- ' ] [  T. ][ a ]} {[ EA][ I, ][ E A' ]} 

x {[fl ][ T,. ][#- ']}. (17) 

The symmetry of the locked cross-rotation function 
can be similarly derived. It can be shown that in this 
case 

[/~ ][ EB ] = {[ a- ' ] [  T,, ][ o~ ]} {[ I,][ EA]} 

X {[fl][ Tm][fl-']}. (18) 

Given a set of angles OA, (18) can be solved analyti- 
cally for the symmetry-related angles 0n. Equation 
(17) can be solved by a search through a predefined 
region of 0B because an analytical solution is difficult 
to obtain. However, this is time consuming and, 
hence, a geometric approach is more useful. Below 
is shown an example for an icosahedral point group. 

Let us define the standard icosahedron with a 
fivefold axis along Z (Fig. 2). This is convenient in 
defining Eulerian angles that determine [E]. The first 
rotation in Eulerian space is 01 about Z. A rotation 
of 72 ° will superimpose the icosahedron onto itself. 
Hence, the locked rotation function will repeat itself 
every 72 ° in 01. The second rotation (02) is about the 
direction of the new X axis. This rotation will tilt the 
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fivefold axis away from the Z axis. However, there 
are already fivefold axes that are tilted by 63.4 ° from 
the Z axis, which suggests that the rotation by 02 
need not exceed 63.4 ° . Since it is anticipated that 
there are 60 asymmetric units in the locked rotation 
function, it follows that the final angle 03 need only 
be explored from 0 to 90 ° if the three Eulerian rota- 
tions are not correlated. 

T h e  c o m p u t e r  p r o g r a m  

The program has been written in standard Fortran 
and is available for distribution upon request. The 
input commands to the program are all free formatted 
and keyword based. The program has been tested 
extensively on a Cyber 205 and a VAX/VMS 8550. 

The program has been written to perform general 
rotation searches, permitting the calculation of 
ordinary rotation functions. In the case of locked 
rotation searches, minimal information is needed to 
specify the point-group symmetry of the particle. For 
example, to designate the 532 point-group symmetry 
of icosahedral viruses, only a fivefold and a non- 
perpendicular twofold axis (or a three- and a twofold 
axis etc.) need to be specified. The program can then 
generate all the 60 symmetry operations of the 
icosahedron. 

Many different conventions exist in the literature 
as to the orthogonalization of the crystallographic 

unit cell, and for the definition of Eulerian and polar 
angles (Rossmann & Blow, 1962; Machin, 1985). The 
program has been coded to be able to support all of 
these conventions. The user of the program can 
choose among the supported conventions or insert 
new ones. 

The 'slow' rotation function (Rossmann & Blow, 
1962; Tollin & Rossmann, 1966) has been employed 
in the program due to the need to sample the rotation 
function at precise sets of angles when evaluating the 
locked rotation function. In order to speed up the 
calculation, the program keeps only the strongest 
reflections in the data set that is being rotated (Tollin 
& Rossmann, 1966). These reflections, also known as 
'large terms', are selected based on the criterion that 
I > (cut-off x Iavg), where the average intensity (Iavg) 
has been calculated in shells of resolution. A cut-off 
value which selects about 5% of the possible data in 
each shell is a useful guide for calculating ordinary 
rotation functions. 

T e s t i n g  the  l o c k e d  s e l f - r o t a t i o n  f u n c t i o n  

The locked self-rotation function has been extensively 
tested with diffraction data from four icosahedral 
virus crystals (Table 2) - ~oX 174 (Willingmann, Krish- 
naswamy, McKenna, Smith, Olson, Rossmann, Stow 
& Incardona, 1990; and unpublished results), tetrago- 
nal canine parvovirus (CPV; Luo, Tsao, Rossmann, 

Y 

Fig. 2. Icosahedral 532 point group with a 
fivefold axis along Z. Rotation about Z by the 
Eulerian angle 0~ through 72 ° will superimpose 
the figure onto itself. A subsequent rotation of 
02 -- 63"4 ° will also superimpose the figure onto 
itself. Thus, limits of the asymmetric unit in 
the locked rotation function are 0 < 01 < 72 °, 
0 < 02 < 63.4 °. 
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Table 2. Results of  locked self-rotation function test cases 

Virus  c rys ta l*  ~0X174 T e t r a g o n a l  C P V  M e n g o  v i rus  H R V 1 4  

a (A) 306.0 257.5 441.4 445-1 
b (A) 361-1 257.5 427.3 445-1 
c (A) 299.7 807-0 421.9 445.1 
/3 (°) 92.91 
Space group P21 P41212 P212121 P213 

In i t i a l  F i n a l  In i t i a l  F i n a l  In i t i a l  F i n a l  In i t i a l  F i n a l  

Resolution (/~,) 30-15 10-7 30-16 12-8 30-15 10-7"* 30-15 10-7 
Number of  observed reflections 2971 21 001 2093 13 300 6980 54 832 4191 29 548 
Number of  possible reflections 9000 66 000 3000 20 000 11 000 80 000 4500 30 000 
Cut ofl~ 5.0 2.0 4.5 2.8 6.0 3.5 4-0 3.5 
Number of  large terms 12 2452 11 486 34 1362 33 729 
% observed reflections 0.40 11.68 0.53 3.65 0.49 2.48 0.79 2-47 
Search interval (°) 8.0 0.1 5.0 0.1 8.0 0.1 8.0 0.1 
Search grid 1 2 x 1 2 x 1 2  3 x 3 x 3  1 0 x l 0 x l 0  l x 3 x 3  1 2 x 1 2 x 1 2  3 x 3 x 3  4 x 4 x 4  l x l x 9  

01 82.00 82-15 0.00 0.00 0-00 0.00"* 0.00 -45 .00  
Peak position~: 02 92.00 92-35 25.00 25.80 88-00 90.00** 0.00 54.74 

03 82.00 81.65 15.00 16.30 40.00 39.85** 0.00 113-95 
Peak height§ 70 79 50 73 65 190 125 123 
Peak/tr¶ 8.3 11 4-8 10 5-2 27 5-2 6 
Next peak height 44 - -  43 - -  53 - -  56 - -  
Next peak/ t r  5.0 - -  4.0 - -  4-1 - -  1.3 - -  
Cyber 205 CPU (min) 11 42 22 11 50 49 8 31 

* Radius of  integration was chosen as 150 A in each case. Diameter of particles is about 260 A for ¢X174 and CPV, and 300 A for Mengo virus and HRV14. 
t Cut off implies that reflections greater than (cut offx lavg) were used as large terms. 
~t Eulerian angles are defined as in Rossmann & Blow (1962). Polar angles (¢, ~b, K) (Rossmann & Blow, 1962) are given in the case of HRV14 where 

the particle is situated on a crystallographic threefold axis. The angles are applied to the standard orientation as defined in Fig. 1. 
§ Peak heights are normalized so that the origin peak is 1000. 
¶ For the initial solution, peak/ t r  shows the peak height above mean height divided by the r.m.s, deviation from the mean. For the final solution, peak/ t r  

shows the ratio of  the peak height over the estimated average background. 
** On increasing the resolution of the data to 5 .~, the ordinary rotation-function peaks split into two parts because an icosahedral twofold axis is about 

1 ° away from being parallel to the crystal b axis (Luo et al., 1989). 

Basak & Compans, 1988; and unpublished results), 
Mengo virus (Luo, Vriend, Kamer, Minor, Arnold, 
Rossmann, Boege, Scraba, Duke & Palmenberg, 
1987; Luo, Vriend, Kamer & Rossmann, 1989) and 
HRV14 (Rossmann, Arnold, Erickson, Franken- 
berger, Griffith, Hecht, Johnson, Kamer, Luo, 
Mosser, Rueckert, Sherry & Vriend, 1985; Arnold, 
Vriend, Luo, Griffith, Kamer, Erickson, Johnson & 
Rossmann, 1987). There is one icosahedral virus par- 
ticle per crystallographic asymmetric unit for ~pX 174 
and Mengo virus crystals. In HRV14 the particle is 
sitting on a crystallographic threefold axis, thus 
allowing only one degree of rotational freedom, 
which is the rotation about the cell body diagonal. 
Similarly, in CPV the particle is situated on a twofold 
axis. 

An initial rough search using a coarse grid and 
relatively few large terms at low resolution yielded 
an approximate position in each case. Subsequent 
searches with progressively finer grids, more large 
terms and higher-resolution reflection data gave the 
precise orientation of the virus particle in the unit 
cell. These results were compared with those from 
the ordinary rotation function for ~X174 and CPV, 
where no structure is yet available, or with the results 
of the atomic resolution structure for Mengo virus 
and HRV14. The ~X174 results will be described in 
greater detail here (Table 2). 

The ~pX174 crystals have space group P21 with 
a =306.0, b=361.1,  c = 2 9 9 . 7 A  and /3=92 .9  °. The 
reflection data set available at the time the tests were 
conducted contained only 30% of the total possible 
reflections to 7 ,~ resolution, although the diffraction 
patterns could be observed to at least 2-8 A resolution. 
All functions were scaled so that the ordinary rotation 
function had a value of 1000 at its origin, correspond- 
ing to the superposition of the Patterson onto itself 
without rotation. 

The initial coarse search was conducted for data 
between 30 and 15 A resolution with 2971 observed 
reflections. From these, 12 terms were selected that 
were larger than five times the mean intensity of all 
the observed reflections in the resolution shell. The 
successful selection of such a small number of terms 
may depend critically on their uniform distribution 
in reciprocal space. The initial search was carried out 
in Eulerian space (defined as in Rossmann & Blow, 
1962) between 0 and 88 ° in all three angles, using 8 ° 
intervals, and took 11 CPU rain on a Cyber 205. The 
highest peak in the map was located at 24, 8, 72 ° with 
a height of 70 and was 8.3o" above the background. 
The next lower peak had a height of 44 and was 5.0o- 
above background. Subsequent searches were con- 
ducted about the symmetry-related position at 82, 92, 
82 °. [The peaks at 24, 8, 72 ° and 82, 92, 82 ° are related 
by (17).] Reflection data between 15 and 9 and 
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Table 3. Reduction of  noise level in the locked rotation function for ~pX174 

Large term selection Locked rotation function Ordinary rotation function 

Cut-off Number % of observed Peak (Peak Noise 
value of terms data height bgd* o-(bgd) S~ Nt height) (bgd) (o'(bgd)) (S/N) reductionS: 

3.0 772 3.7 78.9 6.5 1.4 51-7 79-5 6.8 9.1 8.0 4.9 
5.0 83 0.4 75.0 5.8 1.4 49.4 76.0 6.0 13.5 5.2 9-6 
6-5 17 0.08 59.9 5.5 2.0 27.2 60.8 7.1 22.6 2-4 11-3 

* bgd gives the mean function height away from the peak position. 
"~ S~ N means signal-to-noise ratio which is given by [(peak height-bgd)/~r(bgd)]. 
~: Noise reduction of the locked rotation function is given by [tr(bgd) for the ordinary rotation function/tr(bgd) for the locked rotation function]. 

then 10 and  7/~ resolution were used for the finer 
searches. At 10-7 A resolution, a cut-off value of  2.0 
resulted in 2452 reflections (11.7% of  the observed 
data) being saved as large terms. Successive search 
intervals of  2.0, 0.5, 0.2 and 0.1 ° were used around 
the posit ion 82, 92, 82 °. The final search, with a 0.1 ° 
interval, localized the peak to 82.15, 92.35, 81.65 ° . 

The orientat ion of  the icosahedral  particle in 
q~X174 was previously de termined using the ordinary  
rotation function.  This involved the determinat ion of 
the location of  the 31 rotation axes (Table 1) and 
their superposi t ion onto an ideal icosahedron.  Similar  
reflection data were used in both the ordinary  and  
the locked rotat ion-funct ion searches. The two results 
differ by a rotation of  less than 0.05 ° for the s tandard  
icosahedron.  The ordinary  rotat ion-function results 

showed a r.m.s, deviat ion of  0.15 ° between the 
observed axial  or ientat ion and  an ideal icosahedron.  

The locked rotat ion-funct ion search is a s implif ied 
process involving only the location of  a single peak 
as compared  to the location of each of  the 31 axes 
in the ordinary  rotation function. Moreover,  the 
locked rotat ion-funct ion map  has less background  
variat ion as compared  to the ordinary rotation func- 
tion (Table 3). 

The results for o r thorhombic  Mengo virus, whose 
structure has been  de termined (Luo et al., 1987, 1989), 
also show good correspondence.  Fig. 3 shows the 
orientat ion of  one of  the four particles in the Mengo 
unit  cell as output  directly from the locked-rotat ion- 
function program,  using 10-7/k  resolution data. One 
of the icosahedral  twofold axes is only 1 ° off paral lel  

8 g 

Fig. 3. Stereographic projection of the orienta- 
tion of one Mengo virus icosahedral particle 
in the P212121 crystal cell. This plot is obtained 
directly from the locked rotation-function 
program. 
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from the crystallographic b axis (Luo et al., 1989). 
This tilt can only be recognized by 5 A resolution or 
better data. 

Parameter dependence of the locked self-rotation 
function 

The computation of an ordinary rotation function or 
a locked rotation function is dependent on the choice 
of a variety of parameters, some of which are deter- 
mined by the nature of the problem and others which 
can be selected to arbitrate between speed of calcula- 
tion and quality of the result. Some of the parameters 
that determine a rotation function are: (1) symmetry 
of the Laue group associated with the two Pattersons 
that are being compared; (2) symmetry of the point 
group of the molecule in the asymmetric unit; (3) 
percentage of data available for each of the two crystal 
forms; (4) percentage of data selected as large terms 
from the available observations; (5) resolution limits 
of the selected data; and (6) radius of integration. 

Usually a higher-symmetry space group reduces 
the quality of a rotation function because the self- 
vectors around the origin are a sum of those derived 
from the different particles in the various asymmetric 
units of the cell. The locked rotation function helps 
to alleviate this problem by checking the value of the 
rotation function at various points simultaneously. 
Table 2 shows that, in general, taking into account 
the percentage of data available, the peak-to-back- 
ground ratio is best for lower-symmetry space groups. 

Tests to determine the effect of changing the per- 
centage of selected large terms used in computing the 
locked rotation function were performed with the 
~oX174 data. while these tests were being conducted, 
there was available only 30% of the theoretically 
possible data. Presumably, as the percentage of 
observed data increases, so the number of large terms 
could be reduced even further. The width and height 

above background of the current peak were used as 
criteria for these tests. 

A series of cut-off values, between 2.0 and 7.0, was 
used to select the large terms. A 01 scan was then 
made in 1 ° intervals, for each cut-off value, across 
the correct peak of the locked rotation function (Fig. 
4). The peak profile looked similar, independent of 
whether 11.7% (2452 reflections) or only 0.13% (28 
reflections) of the observed data were used as large 
terms. When even fewer reflections were used (a cut- 
off of 6.5 or 7.0 yielding 16 or 7 reflections, respec- 
tively), there was only a slight decrease in the peak 
height and peak width relative to the original peak. 
Similar results were obtained in scans of 02 and 03 
across the same peak. It can, therefore, be assumed 
that using only 0.5% of the observed data as large 
terms in the presence of 60-fold redundancy and a 
monoclinic space group is, in general, sufficient to 
locate the correct locked rotation-function peak. 

The ordinary rotation function is much more sensi- 
tive than the locked rotation function to the percen- 
tage of reflections that are used as large terms (Table 
3). The major difference between the ordinary and 
locked rotation functions lies in the background noise 
level, tr(bgd). Whereas the noise level in the locked 
rotation function was only slightly affected by reduc- 
ing the number of large terms from 3.7 to 0-08% 
(Table 3), that in the ordinary rotation function more 
than doubled. Consistent with the earlier discussion, 
the amount of noise reduction was found to be 
roughly proportional to n 1/2, or 7.7 for 60-fold redun- 
dancy. 

Three different ranges (10-7, 20-10 and 30-15 A) 
were used to investigate the resolution dependence 
of the locked self-rotation function. Two separate 
cases were tested, one using about 4% of the observed 
data as large terms and the other using 1%. In both 
cases, the peak progressively widened as the resol- 
ution of the data was decreased (Fig. 5). At 30-15/~ 
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Fig. 4. Section through the correct locked rotation-function peak 
in 01 to assess the effect of the number of large terms included 
in the calculation. The resolution range used was 10-7 ~ and 
the radius of integration was 150 :k for ~X174 diffraction data. 
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Fig. 5. Section through correct locked rotation-function peak in 
01 to assess the effect o f  resolution range. The percentage of 
large terms was 1% of the observed ~X174 diffTaction data and 
the radius of integration was 150/~. 
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Ordinary 
rotation 
function 

Locked 
rotation 
function A§ 

Locked 
rotation 
function B 

Peakt  

1 
2 
3 
4 
5 

1 
2 

1 
2 
3 
4 
5 

The correct solutions are: 

Table 4. Locked cross-rotation function for monellin 

All  atoms 
02 03 H e i g h t  ~ P e a k  01 

41 54 100 4.0*A 1 26 
61 56 58 2.3 2 0 
83 50 50 2.0*A 3 26 
13 58 49 2-0 4 4 
15 48 28 I . I*B 5 36 

40 55 100 2.9* 1 27 
20 67 65 1.9 2 15 

3 5 

16 44 100 2.3* 1 - 4  
16 48 86 2.0 2 - 1 6  
24 28 82 1.9 3 4 
12 68 71 1.6 4 - 4  

- 6  66 50 1.2 5 - 6  

Main-chain atoms only 
02 03 H e i g h t  tr¢ 

43 60 100 3.7"A 
121 46 49 1.8"B 
79 54 47 1.8"A 

107 52 46 1.7 
13 54 41 1.5 

44 59 100 2"6* 
38 73 80 2-1 
60 75 40 1"1 

14 50 100 2"1" 
10 64 95 2.0 
- 6  50 74 1"6 
- 4  56 74 1-6 
- 6  60 74 1'6 

Peak 0 t 02 03 

Ordinary rotation function 1 27 42 55 A 
2 30 83 50 A 
3 0 14 48 B 
4 0 120 47 B 

Locked rotation function A 1 27 42 55 A 

Locked rotation function B 1 0 14 48 B 

* The correct peaks are marked by an asterisk and are identified by the corresponding dimer A or B. 
t Peak positions are given in descending order of height. 
~: tr designates the number of standard deviations above background. 
§ Locked rotation functions A and B correspond to assuming the orientation of the twofold axis in dimer A or in dimer B. 

resolution, the half-width of the peak was 8 ° , suggest- 
ing that a locked-rotation-function search can be initi- 
ated by using 30-15 /~  reflection data for particles 
around 300 ~ in diameter and using 5-8 ° as the search 
interval. 

Testing the locked cross-rotation function with data 
from monellin 

Crystals of monellin (a sweet protein) belong to space 
group P2~ with a = 39.84, b = 87.20, c = 72.06/~ and 
3' = 107"3°. There are four molecules in the asym- 
metric unit consisting of two independent dimers 
(Ogata, Hatada, Tomlinson, Shin & Kim, 1987). The 
refined atomic structure for one of the four molecules 
was used as the search model. The model was rotated 
by Eulerian angles 125, 42, 153 ° and placed in a 
triclinic cell with a = b =  c = 9 0 ~  and a =/3 = y =  
90 °. Structure factors were calculated to 3 . 5 A  
resolution using an overall temperature factor of 
30 A 2. 

An ordinary cross-rotation function was calculated 
using 2 ° intervals and 8 -3 .5 /~  resolution reflection 
data. The cut-off value was set at 2.0, giving 12.6% 
of the observed reflections as large terms (Table 4). 
Two different search models were used - one with all 
the atoms and the other with only the main-chain 
atoms. Although peaks corresponding to three out of 
the four molecules are among the top five peaks in 
this map, the peak heights are mostly indistinguish- 
able from the background. 

The locked rotation function used exactly the same 
reflection data. Two separate locked rotation func- 
tions were computed because the local noncrystallo- 
graphic twofold axes are not related to each other in 
a simple manner. In both searches, using either all 
the atoms or main-chain atoms only, the highest peak 
in the maps corresponded to the correct solution and, 
in three of the four cases, there was a clear separation 
between the top peak and the second peak. Each 
search took between 2 and 4 CPU h on a VAX/VMS 
8550. 

Discussion 

The locked rotation function is extremely useful in 
determining the orientation of icosahedral virus parti- 
cles in their unit cell. The calculation time, as well 
as the amount of manual intervention, can be sig- 
nificantly reduced when compared to the ordinary 
rotation function. With the solution of the rotation 
problem, the translation problem can then be tackled 
using a homologous structure, an electron microscopy 
image or the isomorphous replacement method. The 
abundance of local symmetry can also be employed 
to improve and extend the initial phases by molecular 
averaging (Rossmann, 1990). For proteins, the non- 
crystallographic symmetry is, in general, of lower 
symmetry. Nevertheless, the locked cross-rotation 
function appears to be a powerful aid even in the 
presence of only a single local twofold axis. The 
calculation of the locked rotation function requires 
considerably fewer large terms than the ordinary 
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rotation function to attain interpretable results and, 
thus, provides a significant saving of computation 
time. Furthermore, an accurate solution can be 
obtained from a reasonably small number of strong 
reflections using relatively low-resolution data. 

Dr S. Krishnaswamy carded out initial tests on a 
locked rotation function generated by point-group- 
specific modifications to the laboratory's standard 
program. These he showed to be highly successful on 
HRV14 and Mengo virus and provided the incentive 
for the study reported here. We are most grateful for 
and encouraged by his initial work. We thank Robert 
McKenna and Peter Willingmann for providing the 
tpX174 diffraction data before publication, Walter 
Keller and Kathy Smith for the tetragonal CPV data 
and Sung-Hou Kim for permission to use the monellin 
data and coordinates. We also thank Helene Prongay 
and Sharon Wilder for help in the preparation of this 
manuscript. The work was supported by grants to 
MGR from the National Science Foundation and the 
National Institutes of Health. 
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Abstract 
A general diffraction theory is presented for the 
diffuse scattering by correlated microdomains within 
a disordered structure. The theory applies to crystals 
with several atoms per unit cell and several types of 
different microdomains. An analytical expression is 
given for an assumed distribution function of the 
microdomains within the disordered matrix of the 
host. Since the analytical Fourier transform of this 
distribution function is also given, very fast calcula- 
tion of the diffuse intensity is possible. 

0108-7673/90/100792-07503.00 

Introduction 
Quantitative interpretations of diffuse scattering are 
frequently done on the basis of the Warren short- 
range-order (SRO) parameters. In the case of simple 
alloy structures, good agreement of calculated and 
observed intensities is obtained. Hayakawa & Cohen 
(1975) presented a generalized solution for structures 
with several sublattices. Any description by SRO 
parameters, however, will not yield information on 
the actual distribution of the defects. Extended 
defects cannot be described. In particular, if the distri- 
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