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The rotation function represents the sum of a point-by-point product of two different Patterson func- 
tions rotated with respect to one another. The magnitude of the rotation function can be plotted in a 
three-dimensional space where the three coordinates are measures of the three angular rotations. The 
space group of the rotation function expresses the relationship between equivalent rotations where 
identical magnitudes would be recorded. This symmetry depends upon the symmetry of the two original 
Patterson functions and the nature of the choice of the variables used to express the rotations. The 
rotation function need to be evaluated only over the asymmetric unit in rotation space. A simple method 
is described for obtaining the symmetry of the rotation functions in terms of Eulerian angles. The latter 
are shown to have considerable advantages over other choices of variables. 

Introduction 

The rotation function was derived by Rossmann & 
Blow (RB) in 1962. It has been used in determining the 
orientation of a known or unknown group with res- 
pect to another identical group either in the same or in 
a different crystal. The method bears much resemblance 
to the method used so successfully by Nordman & 
Nakatsu (1963), and much of the content of this paper 
will be equally true for their techniques. In both cases 
the amount of computing required is formidable. It is 
therefore essential to be able to calculate a priori the 
range of angles which needs to be explored before all 
independent rotation operations have been considered. 
A method for calculating the range of angles required 
is discussed in this paper. This method is general and 
easy to apply in contrast to the special and somewhat 
arbitrary procedure of RB. 

The rotation space group 

Let us rewrite the rotation function in the form 

R= IJE(Xz)Px(X1)dX1 (1) 

where we are comparing the Patterson function P1 at 
Xx with the Patterson function Pz at X2. The position 
vectors X1 and X2 are referred to a common ortho- 
gonal coordinate system in real space, and satisfy the 
relationship. 

Xz=[Q]X1 (2) 

for all points within the volume U. The matrix [4] 
describes the rotation which transforms Xl into X 2. The 
Patterson functions P1 and P2 may be the same func- 
tions, or may be different when derived from two differ- 
ent crystalline forms of the same molecular species. 

* On leave of absence from Carnegie Laboratory of Physics, 
University of St. Andrews, Queens College, Dundee, Scotland. 

The symmetry of the two functions PI and P2 within 
the volume U will fall into one of eleven Laue groups. 
In considering the symmetry of the rotation function, 
R, it is only necessary to consider the symmetry elem- 
ents of the Laue group which describe proper rotations, 
that is, rotations without inversion. Thus, for each of 
P2 and P1 a 'proper rotation group' can be written 
down. A proper rotation group contains all the proper 
rotations present in the corresponding Laue group, of 
which it is a sub-group. For example, 222 is the proper 
rotation group of Laue group mmm. 

If the symmetry operations of the proper rotation 
groups of P1 and Pz are described by the sets of matrices 
[T,] and [Tj], respectively, then 

will have the same value for all [Td and [Tj]. Note that 
[Td and [Tj] are symmetry operations applied to the 
orthogonal coordinates as listed by Patterson (1959, 
p. 63). Hence from (2) 

or 

[T4X2 = [QI[TdXl 
X,_ = [ T A - I [ ~ I [ T d X l  

= [TAT[oJETdX,  (4) 

where [Tj] T is the transpose of [Tj]. Equation (4) im- 
plies that R will have the same value for each rotation 
which leaves [T~]T[Q][Td unchanged for all values of i 
and j. The elements of the rotation matrix [0] are det- 
ermined by the three angles of rotation (cqc~2e3). If 
we consider plotting the magnitude of the rotation 
function in a three-dimensional space defined by these 
three angles, then a unit-cell translation is performed 
whenever one of the angles is increased by 2n. If the 
sets of angles associated with [Q'] and [Q] are (cq' e2' c~3') 
and (~1 c~z c~3), respectively, when [Q'] and [0] satisfy one 
of the sets of equations of the type 

[Q'] =[TAT[~][T4, (5) 
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then (el' t~2' 0~3') and (cq 0C 2 0C3) are equivalent sets of 
rotation angles. They represent equivalent positions in 
the space defined above. The combination of all the 
symmetry operations of this type forms the rotation 
space group, an example of which is given by RB. 

Let us define jSi as the symmetry operation which 
results from satisfying one of the equations (5). Further 
let S~ be the symmetry operator when [Tj]T=[1], that 
is, when the Patterson function P2 is of the Laue class T 
or proper rotation group 1. Similarly jS is the sym- 
metry operator when P~ is of the Laue class i. Thus S~ 
represents the symmetry operation that satisfies the 
equation 

[Od = [QI[Td. (6) 
It follows that 

[e ' ]  = [ T j ] ' v [ e d  
=[rAz[e][Td. (7) 

Now the symmetry operation jS satisfies (7). Thus the 
total symmetry operation which satisfies (4) is a 'prod- 
uct' of S~ and iS, where multiplication implies succes- 
sive application of S~ and iS. 

As there are only eleven proper rotation groups there 
will only be eleven different results for S~ and for iS. 
In general, therefore, to determine the rotation space 
group for any desired rotation function we need only 
look up S~ and ~S for the proper rotation groups of the 
Patterson functions P1 and P2 respectively. Multiplica- 
tion, in the sense defined above, of these two sets of 
symmetry operations leads to the complete set jS~ 
which describe the equivalent general positions of the 
rotation space group. 

The relationship between 
the symmetry operation iSi and iSj 

The order in which the Patterson functions are ar- 
ranged in equation (1) is important. We may ask what 
angular relationships there are between equivalent 
points if the order is reversed. 

Let 

RI = fuP2(X2)PI(X1)dX1 

corresponding to the relationship 

X2 = [e]X~ 

and rotation space group expressed by the symmetry 
operations ¢&. 

Let also R2= Ivl'C'--2(XI)PI(Xz)dX2 

corresponding to the relationship 

Xl = [Q']X2 

and rotation space group symmetry operations ,Sj. 
Then we may write X2=[Q']-IX1 and it follows that 

R2 = R1 when[a] = [e']-~ = [Q,]T. (8) 

Thus, reversal of the Patterson functions produces a 
different though related rotation function with a differ- 
ent rotation space group. All of the foregoing results 
can be applied to any set of angular variables used to 
describe the rotations. In the particular case of Eulerian 
variables, as defined by RB, inspection of the matrix 
[Q] shows that the relationship between the two rota- 
tion functions is 

Rl(OlO203)=R2(-03, -02,  - 0 1 ) .  (9) 

For all proper rotation groups, other than the cubic 
groups, jS~ takes the form 

R1(010203) -= R2(al + b101, a2 + b202, a3 + b303) (10) 

where the a's and b's are constants for a particular 
rotation group. Hence, from relationship (9), the ~Sj 
have the form 

R2(010203) = RE( -- a3 q- b301, - a2 + b202, - al  + b103) • 
(11) 

Thus, from (10) and (11) the ~Sj can be derived from 
the jSi. 

Tabulation of 
all possible symmetry operators iS and Si 

The Eulerian angles (010203) are particularly useful for 
describing the symmetry operation S~ as they take a 
simple form for all but cubic groups. Apart from these 
cases the S~ can be described by symmetry planes and 
axes in the Eulerian variable space, and hence a rota- 
tion space group can be written down. The cubic 
groups lead to symmetry relationships of a different 
type and these are discussed in the next section. 

Table 1 lists the eleven Laue groups, the correspond- 
ing proper rotation groups, the rotation axes with their 
directions relative to the Cartesian set X, and the Car- 
tesian unique set of axes required to define the proper 
rotation groups. Table 2 lists the forms of jS and S~ 
for each of the symmetry elements which can occur in 
the proper rotation groups apart from cubic groups. 
An example of the derivation of S~ is the case of a 
twofold axis along [010]. In this case 

0 0) 
[Td -- 1 0 

0 - 1  . 

We are now required to find a set of Eulerian angles 
0~ 02 0; which go to form the elements of the matrix 
[4'] identical with the elements of the matrix product 
[4] [Td (equation 6). Upon equating all nine elements 
of the Eulerian rotation matrix (RB) independently, 
we see that these nine equations are satisfied only when 

0 1 = n - - 0 1 ,  01=n- l -02 ,  0 ; = 0 3  ° 

Let us now take, as an example, the determination 
of the rotation space groups in Eulerian variables when 
P1 has symmetry Pmmm and P2 has symmetry P2/rn. 
Table 1 shows that mmm corresponds to the proper 
rotation group 222 which has two unique axes, parallel 

AC20-6  
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Table 1. Properties of  proper rotation groups 

Proper rotation Unique axes 
Lauegroup  group [001] [010] [100] [111] 

1 1 
2/m 2 2 

(b axis unique) 
2/m 2 2 

(c axis unique) 
mram 222 2 2 
4/m 4 4 
4/mmm 422 4 2 

3 3 
~m 321 3 2 
6/m 6 6 
6/mmm 622 6 2 
Cubic 
m3 23 2 3 
m3m 432 4 3 

to b and e, say. We also see that 2/m, in the usual mono- 
clinic setting, has one twofold rotation axis parallel 
to b. Inspection of Table 2 then shows: 

S~, the symmetry operators on P1, are: 

81 01 02 03 ~ ~7t-01, --02, ~-[-03 
(onefold axis*) 

S2 01 02 03 ~ - - 0 1 ,  ~-~-02 03 
(twofold axis parallel to b) 

83 01 02 03--~ 7/7-~-01, 02, 03 
(twofold axis parallel to e) 

iS, the symmetry operators o n  P2 are 

1 s 01 02 03 ~ 7~-~-01, --02, ~-1-03 
(onefold axis) 

2 S 01 02 03 --~ 01, ~ "a t- 02, n -  03 
(twofold axis parallel to b) 

The set of equivalent general positions obtained by 
combining these is 

0, 

0, 
4 ! ,- O- .......... I ........... 

,, 

i..O...!:..i .... :9. 
1. 

4 

4 ! 
4 2 ~  

1 

± 
' - - ' = = ' - - " ~  4 

4 

0 ! : i  .... : , 

Fig. 1. Rotation space group diagram for rotation function of a 
Pmmm Patterson function (P1) against a P2/m Patterson 
function (P2). The Eulerian angles 01, 02, 03 repeat themselves 
after an interval of 2zr. Heights above the plane are given in 
fractions of a revolution. 

symmetry operators S 1 and aS are n-glide planes in 
0x, 02, 03 space perpendicular to 02, 28 is a b-glide plane 
perpendicular to 03 and $3 divides the total cell into 
two identical parts along 01. The latter combined with 
$1 or 18 leads to a c-glide plane perpendicular to 02. 
The combination of these operations gives two cells 
each of space group Pbcb, keeping the order 010203 
(Fig. 1). 

The non-linear symmetry relationships 

If one attempts to develop the forms of Si for the cubic 
groups in terms of (080203) or for other proper rotation 
groups in terms of other angles, for example, the 
angles (tcNq~) defined by RB, one finds that the re- 

01, 02, 03 
01, ~ "q- 02, 717 -- 03 (28) 
0 1 ,  - -  0 2 ,  ~ "-]- 03 (83 • S1) 
01, i f --  02, -- 03 ( S 3 . 2  8 . S1) 

+ 01, 02, 03 ($3) 
-a t- 01, ~ -~- 02, ~ -- 03 (2 8 • 83) 
+ 01, -- 02, ~ -1- 03 ($1) 
d r- 01, ~ -- 02, -- 03 (2 8 • S1) 

- -  0 1 ,  - -  0 2 ,  - -  0 3  (2  8 • 8 2 .  S 1 )  

--01, i f--02,  7~ --~- 03 (82 .  Sl)  
- 01, 02, z -  03 ( $ 2  28. $3) 
- -  01, 72 dr- 02, 03 (83 . 82) 

- 01, - 02, - 03 ($3 .28 .  $2 S0 
-- 01, ~ -- 02, ~ -1" 03 (83 .  8 2 .  S1) 

re-  01, 02, re- 03 (28. $2) 
7~-- 01, if'l•" 02, 03 (82) 

where the operations to obtain these positions are given 
in brackets after them. Multiplication implies the ap- 
plication of the operators consecutively. Alternatively 
the space group can be found by recognizing that the 

* The necessity of considering this operation arises out of 
the peculiar property of Eulerian angles, namely that there are 
always two related sets of operations which produce the same 
orientation. Another peculiar property is that in the plane 
02 = 0 all magnitudes for which 01 + 03 is a constant are identi- 
cal. This leads to a twofold axis in this plane. 

lationship between (cq ct 2 %) and (~1 c~2 0~3)cannot be 
written down as a linear transformation, and hence 
cannot be exp~,essed as symmetry planes and axes in 
the appropriate variable space. An example of such 
non-linear symmetry operations is obtained when [0] 

(i i) is operated on by [Td= which represents a 
0 

threefold axis along I l l .  The relationship between 
(0~ 0; 0;) and (01 02 03) in this case is 
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Table 2. Symmetry elements Si and 5 Jbr all possible types of space group rotations 
Direction S~ jS  Axis 

1 
2 [010] 
2 [001] 
4 [001] 
3 [001] 
6 [001] 

*2 [110] 

(Tz-t-01, -02 ,  7z+03) (7~+01, -02 ,  ~q--03) 
(7~ - 01, 7~ + 02, 03) (01, 7t + 02, 7C -- 03) 
(7/;"}-01, 02, 03) (01, 02, 71;+03) 
( -  n/2 + 01, 02, 03) (01, 02, re/2 + 03) 
(-- 2rr/3 + 01, 02, 03) (01, 02, 2rc/3 + 03) 
( -  7r/3 + 01, 02, 03) (01, 02, zt/3 + 03) 
(3rt/2--01, zr-02, ~+03) (7/'+01, zr-02, -37r/2--03) 

* This axis is not unique (that is, it can always be generated by two other unique axes), but is included for completeness. 

0 '  0 '  COS 1 = -- COS 2 
• t 

sin 01 = - c o s  01 sin 02/sin 0 2 
sin 0 ~ - ( - s i n  01 c o s  0 2 sin 03+cos 01 COS 03)/sin 02 
cos 03=( - - s in  01 cos 02 cos 03--cos 01 sin 03)/sin 02 
cos 02= sin 01 sin 02 
sin 02 = + [sin 2 01 cos 2 02 + cos 2 0,] * • 

This is a threefold operation, in the sense that the 
application of this operation three times brings the 
original point back on itself. It is consistent with the 
infinite lattice in (0x 02 03) space and can combine with 
other linear or non-linear operations to form a group, 

although it cannot be described by one of the 230 space 
groups. 

This work was supported by NIH grant GM 10704- 
03 and NSF grant GB-02905. 

We thank Mrs Julia Parsons for assistance in the 
preparation of the manuscript. 
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Zachariasen's formula for the secondary-extinction correction has been successfully applied to a BeA1204 
crystal of irregular shape. An existing program for absorption correction of single-crystal diffraction 
data from arbitrarily shaped crystals could, after some minor modifications, be used for the necessary 
calculations. 

The procedure used is described in some detail. It is shown that secondary-extinction errors can 
affect not only the vibrational parameters but also the positional parameters. 

A re-examination of the Darwin formula for the secon- 
dary extinction correction (1922) was recently reported 
by Zachariasen (1963). It was shown that it contained 
an error in the X-ray diffraction case and a new formula 
was derived. This was tested on 'a perfect crystal sphere 
for which fir = 0.69'. 

The expression for the corrected structure factor 
derived by Zachariasen is 

Feorr" Fo[1 + c . lo. fl(20)1 (1) 
where 

2(1 +cos  4 20) A*'(20) 
f l ( 2 0 ) =  (1 +COS 2 20) 2 " A* ' (0 )  ' (2) 

Fo is the observed structure factor and Feorr is the 
former corrected for secondary extinction, both on the 
same scale, lo is the uncorrected observed integrated 
intensity on an arbitrary scale, and c is a scale factor 

to be adjusted. A* = A  -1 is the absorption factor for the 
reflexion and A*' is dA*/dlz, where/ t  is the linear ab- 
sorption coefficient. 

One of the present authors (Werner, 1964a, b) has 
constructed a program for the absorption correction 
of X-ray data from single crystals of arbitrary shape. 
It was found possible to make a slight change in the 
program so that the derivative A*', required in Zacha- 
riasen's formula, could be computed. Hitherto this 
change has been made only for the particular version 
of the absorption program handling single-crystal dif- 
fractometer data. The expression computed is 

m3 1 

~rl -V~o (r~ + r B) " exp [ - ( r~+rp ) / t ] .  A V 
A * ' =  ,,,3 1 2 (3) 

[ ~ --V-7o'eXp[-(r~'+r# )la]'AV] 

A C 20- 6" 


