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In the original work by Blow and Crick, experimental phasing

was formulated as a least-squares problem. For good data on

good derivatives this approach works reasonably well, but we

now attempt to extract more information from poorer data

than in the past. As in many other crystallographic problems,

the assumptions underlying the use of least squares for

phasing are not satis®ed, particularly for poor derivatives. The

introduction of maximum likelihood (and more powerful

computers) has led to substantial improvements. For compu-

tational convenience, these new methods still make many

assumptions about the independence of different measure-

ments and sources of error. A more general formulation for

the probability distributions underlying likelihood-based

methods for both experimental phasing and molecular-

replacement phasing is reviewed. In the new formulation, all

the structure factors associated with a particular hkl are

considered to be related by a complex multivariate normal

distribution. When it is assumed that certain errors are

independent, the general formulation reduces to current

likelihood targets. However, the new formulation makes the

necessary assumptions more explicit and points the way to

improving phasing using both isomorphous and anomalous

differences.
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1. Experimental phasing before likelihood

The history of experimental phasing in macromolecular crys-

tallography goes back over 40 years. In the 1950s, Perutz and

colleagues realised that the isomorphous replacement method

that had been used for some time to determine phases in

small-molecule crystallography could also be applied to

proteins (Green et al., 1954; Perutz, 1956). It was quickly

apparent that the errors would be comparable to the signals

and that a statistical treatment would be required. Blow &

Crick (1959) proposed a least-squares treatment for the

determination of phases and argued that the combined effect

of heavy-atom model errors and measurement errors for both

native (FP) and the derivative (FPH) structure-factor ampli-

tudes could be approximated by attributing the combined

error to the measurement of FPH. In retrospect, this is a

reasonable approximation for the case of single isomorphous

replacement (SIR). For practical reasons, severe approxima-

tions were initially applied in practice: the combined error

(called the lack-of-closure error) was estimated at only the

single best phase angle, without taking phase ambiguity into

account, and the SIR treatment was generalized by pairing

each derivative in turn with the native measurement and then

treating the resultant phase probabilities as independent.



CCP4 study weekend

1892 Read � Experimental phasing Acta Cryst. (2003). D59, 1891±1902

As new statistical ideas have been introduced into

crystallography and computers have become more powerful,

approaches to experimental phasing have become more

sophisticated. Raiz & Andreeva (1970) showed that phases

could be estimated more accurately if the native amplitude

was just treated as another observation and not paired with

each derivative. Einstein (1977) pointed out that the practice

of combining phase information from different derivatives by

multiplying SIR phase-probability distributions gave too much

weight to the measurement of the native amplitude. Otwi-

nowski (1991) showed that it was important to average the

lack-of-closure error over all possible phase angles during

phasing and re®nement of heavy-atom positions. As shown

below, all of these considerations plus more are satis®ed when

experimental phasing is carried out by maximum-likelihood

methods (Bricogne, 1991; Read, 1991, 1994; de La Fortelle &

Bricogne, 1997).

2. The principle of maximum likelihood

Whenever we ®t a model to data, we want the model to

account as well as possible for the data. In maximum like-

lihood, the consistency of the model with the data is assessed

by the likelihood function, de®ned as the probability of

making the set of measurements given the model. The basic

concept of likelihood is fairly intuitive, as McCoy (2002)

illustrates with a simple thought experiment using dice.

Likelihood can be justi®ed in terms of Bayes' theorem,

which tells us that the probability of the model given the data

(what we really want to measure) is proportional to the

probability of the data given the model (i.e. the likelihood

function) multiplied by the prior probability of the model.

According to this interpretation, Bayesian reasoning justi®es

the use in structure re®nement of geometric restraints, which

re¯ect the plausibility (prior probability) of the atomic model.

Strictly, the likelihood function should be the joint prob-

ability distribution for the entire set of observations. It is often

possible to assume that the observations are independent, so

that the likelihood function becomes the product of all the

probabilities of the individual observations. This is the case for

likelihood-based structure re®nement (Pannu & Read, 1996;

Bricogne & Irwin, 1996; Murshudov et al., 1997). For experi-

mental phasing, the phase information comes from correla-

tions among the structure factors with the same hkl from

different crystals, at different wavelengths or with opposite

hand, so it is necessary to consider the joint distributions of

these structure factors. Correlations are much weaker among

re¯ections with different hkl indices, so they are still assumed

to be independent in experimental phasing. Nonetheless, these

weak correlations are the basis of phase improvement by

density-modi®cation methods (reviewed by Kleywegt & Read,

1997) and could in principle be exploited directly in more

sophisticated phasing strategies (Bricogne, 1993).

2.1. Probabilistic background: structure-factor probabilities

The likelihood function is the probability distribution for

the observations, which are intensities or structure-factor

amplitudes in crystallography. To de®ne a likelihood function,

it is necessary to understand the sources of error in predicting

the observations from the model and how they propagate. To

be of practical use, a likelihood function must also be de®ned

in a form that can be computed effectively.

Crystallographic phasing methods all turn out to involve

essential steps where related structure factors are compared:

model with observed, native with derivative or derivative with

calculated heavy-atom contribution. Information about one

structure factor comes from its correlations with another

structure factor. This information is statistical, so that it is

necessary to consider the underlying probability distributions.

As outlined in previous publications (reviewed in Read, 1997),

the correlation between two structure factors will depend on

the size of the common substructure (how many atoms the

structures share) and the size of the coordinate differences

between the substructures.

We are often interested in the conditional distribution of

one structure factor (say F1) given another (F2). A proportion

(D) of F2 will be correlated to F1, so that DF2 is the expected

value of F1 given F2. D will tend to decrease with resolution, as

coordinate differences become larger relative to the Bragg

spacing. For differences between structure factors that are the

sums of large numbers of atomic contributions, the central

limit theorem will apply and we can assume that the distri-

bution of F1 is a complex Gaussian or, equivalently, a

symmetric two-dimensional Gaussian in the complex plane for

an acentric structure factor or a one-dimensional Gaussian for

a centric structure factor (Read, 1990). (For simplicity, the

discussion below will concentrate on acentric structure factors.

Similar reasoning applies to centric structure factors.) The

conditional distribution for an acentric structure factor is

given by

p�F1; F2� �
1

�"�2
�

exp ÿ jF1 ÿDF2j2
"�2

�

� �
: �1�

In this equation, �2
� is the complex variance term that accounts

for the combined effects of missing atoms and differences in

the common substructure and " accounts for the statistical

effects of symmetry on expected intensities. (A complex

variance is the expected value of the square of the magnitude

of the deviation in the complex plane; it is equivalent to the

sum of the variances for the real and imaginary components of

a complex number, assuming that the real and imaginary

components are independent and have equal variances.)

Fig. 1(a) shows a schematic representation of the distribution

in (1). This distribution applies, of course, to the phased

structure factor, whereas the observations are unphased

amplitudes.

To obtain the probability distribution of the amplitudes, it is

necessary to integrate over the unknown phase angle to obtain

(2), known as the Rice distribution in statistical literature, but

also occurring frequently in crystallographic literature (e.g.

Sim, 1959),



p�jF1j; F2� �
2jF1j
"�2

�

exp ÿ jF1j2 �D2jF2j2
"�2

�

� �
I0

2jF1jDjF2j
"�2

�

� �
:

�2�

As discussed below, the considerations that apply to pairs of

structure factors can be generalized to collections of structure

factors. This will be required for the most general possible

treatments of phasing by isomorphous replacement and

anomalous dispersion.

2.2. Other applications of likelihood in crystallography

One early use of likelihood in crystallography was to esti-

mate the �A parameter of phase-probability distributions

(Lunin & Urzhumtsev, 1984; Read, 1986), adjusting the value

of �A for each resolution shell to maximize the likelihood of

observing the structure-factor amplitudes in that shell given

the structure factors calculated from a model. The probability

distributions can be used to combine phase information from

different sources or to compute maps that reduce model bias

(Read, 1986, 1997). Essentially, the same likelihood function is

used in the maximum-likelihood re®nement of protein struc-

tures (Pannu & Read, 1996; Bricogne & Irwin, 1996;

Murshudov et al., 1997). Recently, I have followed up on a

suggestion by Bricogne (1992) to use likelihood as a target for

molecular replacement, implementing a new rotation like-

lihood function and using multivariate statistics (as discussed

below) to allow for multiple models (Read, 2001). Experiences

with the initial implementation in the program Beast con®rm

that likelihood is a more sensitive target than Patterson

overlap or correlation scores for dif®cult molecular-replace-

ment problems (Read, 2003).

3. Current likelihood-based approaches to
experimental phasing

The theoretical background for the application of likelihood

to experimental phasing was outlined in the early 1990s

(Bricogne, 1991; Read, 1991, 1994), leading to the develop-

ment of the program SHARP (de La Fortelle & Bricogne,

1997). Although the likelihood functions used for phasing by

isomorphous replacement initially appear daunting, we will

see that they have an intuitive relationship to the familiar

Harker (1956) construction.

A likelihood function should be the joint probability

distribution for the entire set of measurements as a function of

the parameters being optimized. In the case of isomorphous

replacement phasing, the observations are structure-factor

amplitudes for all crystals and there are parameters describing

the heavy-atom substructures (coordinates and B factors) as

well as the lack-of-isomorphism errors. As discussed above, we

can assume to a good approximation that structure factors for

different hkls are independent, but the phase information

comes from correlations among structure factors with the

same hkl from native and derivative crystals. The required

likelihood function is thus a product over all hkl indices of

joint distributions for structure-factor amplitudes from all N

crystals, which is obtained by integrating over all possible

phases of phased structure factors,

L �Q
hkl

p�jF0j; jF1j . . . jFNj; H0;H1 . . . HN�

�Q
hkl

R2�
0

. . .
R2�
0

R2�
0

p�jF0j; �0; jF1j; �1 . . . jFNj; �N;

H0;H1 . . . HN� d�0 d�1 . . . d�N: �3�

In (3), the index zero refers to the native crystal. In principle,

all crystals may have associated heavy-atom models, from

which structure factors Hj can be computed, but we will
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Figure 1
Schematic representation of conditional probability distributions of
structure factors. (a) Probability distribution (represented by grey
shading) of structure factor F1 given a related structure factor F2. The
distribution, given in (1), is centred on DF2, where D represents the
fraction of F2 that is correlated with F1. The width of the distribution is
described by the parameter ��. (b) Probability distribution (represented
by grey shading) of Fj (structure factor for derivative j) given an assumed
true native structure factor F and the structure-factor contribution Hj

computed from a heavy-atom model. The distribution, given in (5), is
centered on DjF + Hj. The width of the distribution includes contributions
from lack of isomorphism, errors in the heavy-atom model and
measurement error.
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assume for now that there is no heavy-atom model associated

with the native crystal, so that H0 is zero.

Because the native and derivative crystals share their

protein components, the native and derivative structure

factors (and their phases) are highly correlated, which makes

it extremely dif®cult to integrate over the multiple phases.

Fortunately, it is often possible to remove the correlations, at

the expense of introducing a dummy variable that must be

eliminated by integration. It turns out that the conditional

probabilities of the structure factors are independent if we

make a number of reasonable assumptions. Firstly, we assume

that we know the true value of the native structure factor. (In

fact, its assumed value is the dummy variable that must later

be eliminated.) Given the native and heavy-atom structure-

factor contributions, the uncertainties in predicting the various

structure factors come from errors in the heavy-atom models,

lack of isomorphism and measurement error. If these sources

of error are independent, the conditional probabilities of the

individual structure factors are independent. Each phase can

then be integrated out from the independent distribution, as

performed for (2).

The dummy variable F, which can be interpreted as the true

value of the native structure factor, is introduced into an

expanded joint probability distribution. (In fact, if H0 were not

zero, F would be interpreted as the part of the native structure

factor not accounted for by H0.) The original joint probability

distribution of observed structure factors is then a marginal

distribution that can be obtained by integrating over all

possible values of F in the expanded distribution. The

expanded distribution can in turn be expressed as the product

of the prior distribution of F (a Wilson distribution; Wilson,

1949) and the distribution of the observed structure factors

conditional on F. Because the conditional distributions of the

individual structure factors are independent, this becomes a

product of conditional distributions,

p�F0;F1 . . . FN; H0;H1 . . . HN�
� R p�F;F0;F1 . . . FN; H0;H1 . . . HN� dF

� R p�F�p�F0;F1 . . . FN; F;H0;H1 . . . HN� dF

� R p�F�QN
j�0

p�Fj; F;Hj� dF: �4�

In (4), each derivative structure factor is the sum of a protein

component and a heavy-atom component. Because of lack of

isomorphism, only a proportion (Dj) of the native structure

factor will be correlated with the protein component of the

derivative structure factor, as discussed for equation (1). A

similar factor is required in principle to account for the

proportion of the calculated heavy-atom structure factor that

is correlated with the true heavy-atom contribution, but we

can assume that the variation of this factor with resolution will

be modelled by the maximum-likelihood re®nement of heavy-

atom occupancies and B factors (Read, 1991). The distribution

of Fj will thus be centred on (DjF + Hj) and the variance of this

probability distribution will include contributions from lack-

of-isomorphism errors and heavy-atom model errors. To a

good approximation, error in the measurement of the ampli-

tude |Fj| can be accounted for by increasing the complex

variance (Green, 1979; Murshudov et al., 1997; de La Fortelle

& Bricogne, 1997), giving

p�Fj; F;Hj� �
1

��"�2
� � �2

j �
exp ÿ jFj ÿ �DjF�Hj�j2

"�2
� � �2

j

" #
: �5�

Fig. 1(b) shows a schematic representation of the distribution

in (5). To obtain the probability distribution of the measured

amplitude, required for (3), the unknown phase is integrated

out, giving

p�jFjj; F;Hj� �
2jFjj

"�2
� � �2

j

exp ÿ jFjj2 � jDjF�Hjj2
"�2

� � �2
j

 !

� I0

2jFjjjDjF�Hjj
"�2

� � �2
j

 !
: �6�

(3), (4) and (6) are combined to obtain

L � Q
hkl

R
p�F�QN

j�0

p�jFjj; F;Hj� dF: �7�

Finally, we note that the log of the likelihood has its maximum

at the same point as the likelihood itself. Since it is much more

convenient to deal with a sum than a product of small

numbers, we maximize the log of the likelihood,

LL � ln L �P
hkl

ln
R

p�F�QN
j�0

p�jFjj; F;Hj� dF

" #
: �8�

(7) and (8) can be understood intuitively in terms of the

Harker (1956) construction. In the Harker construction, each

circle represents complex values of the native structure factor

that are consistent with one of the observed amplitudes.

Derivative circles are offset from the origin by the negative of

the heavy-atom structure-factor contribution, because the

derivative structure factor should be the sum of the heavy-

atom contribution plus the native protein contribution. If

there are no errors, all circles intersect uniquely at the native

structure factor. Similarly, each of the conditional probability

distributions in the product in (8) is a function of the assumed

native structure factor. Plotted on an Argand diagram, they

are circularly symmetric distributions offset from the origin by

a vector related to the negative of the heavy-atom contribu-

tion (Fig. 2). The width of each distribution re¯ects the

combined effect of measurement error, lack of isomorphism

and errors in the heavy-atom model. When the distributions

are multiplied together, peaks in the resulting function

represent plausible values for the native structure factor.

The likelihood function is the integral over F, which is the

volume under the surface de®ned by the product of the

circular distributions and the prior distribution for F. The

effect of the prior distribution is neglected by de La Fortelle &

Bricogne (1997). Although this is not strictly correct, p(F)

varies slowly over regions of interest so it will have relatively

little impact (Read, 1991). However, if the native crystal were

known to contain atoms with signi®cant scattering at the

positions of heavy atoms in the derivative crystals, the infor-



mation from this should be re¯ected in the prior distribution

of F, which should be offset from the origin. Depending on the

relative scattering of these atoms, the effect could be signi®-

cant.

It is interesting to consider what happens as the likelihood

function is maximized as a function of the parameters. The

heavy-atom parameters will change the values of Hj, which

will move the centres of the circular distributions. The like-

lihood will be maximized when these circular distributions

overlap optimally, as shown in Fig. 3. In the presence of errors,

however, not all of the circles for all re¯ections can be made to

overlap. The lack-of-isomorphism variance will broaden the
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Figure 2
Schematic representation of the interpretation of (7) as a probabilistic version of the Harker (1956) construction. Each panel shows a contour plot of a
probability distribution. (a) shows the probability distribution for the observed native amplitude as a function of possible values for the true native
structure factor. The width of this distribution represents the estimated error in measurement of the native amplitude. (b) shows the probability
distribution for the observed amplitude for derivative 1, again as a function of possible values for the true native structure factor. Because the derivative
structure factor must be the sum of the heavy-atom contribution and the protein contribution, the centre of the circularly symmetric distribution is offset
by minus the heavy-atom contribution. (c) overlays the ®rst two distributions, as well as the distribution for a second derivative, and (d) shows the
product of all three distributions as a function of the assumed true native structure factor. The combined distribution has signi®cant values where the
circles from the Harker construction come close to intersecting.
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distributions to the degree required to make them overlap

signi®cantly. Fig. 4 shows how the likelihood varies with the

lack-of-isomorphism variance for a derivative. Animated

versions of Figs. 3 and 4 have been deposited as supplemen-

tary material.1

As noted above, the maximum-likelihood treatment of MIR

re®nement and phasing circumvents the problems of earlier

treatments. The measurement of the native amplitude is just

treated as another measurement and no longer plays a privi-

leged role and the estimation of the lack-of-isomorphism

error automatically considers all possible choices for the true

phase.

Figure 3
Representation of likelihood as function of heavy-atom contribution to the structure factor for one derivative. The panels on the left show three possible
choices of the heavy-atom contribution. Since a change in the heavy-atom contribution shifts the centre of the probability distribution for the derivative
amplitude (see Fig. 2), it changes the amount of overlap of the distributions from different crystals. The combined distribution from the native and two
derivative amplitudes (multiplied by the prior probability of the true structure factor, as in equation 7) is shown as a surface plot in the three middle
panels. The likelihood is the volume under this surface and the panel on the right shows the likelihood as a function of the size of the heavy-atom
contribution, with dots highlighting the values corresponding to the three pairs of plots to the left. An animated version of this ®gure is available as
supplementary material1.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: ba5044). Services for accessing this material are described at the
back of the journal.



4. A new view: multivariate structure-factor
distributions
In the derivation of a likelihood function for isomorphous

replacement above, multivariate distributions are avoided by

casting the expression in terms of a product of independent

conditional univariate distributions. However, it is possible to

obtain the same likelihood function starting from a multi-

variate distribution (Pannu et al., 2003). This approach has the

advantage of making the necessary assumptions clearer. It also

points the way towards new likelihood targets that require

fewer assumptions.

Complex normal distributions of single variables, such as

the distribution of a single structure factor in (1), can be

generalized to the multivariate case (Wooding, 1956). The

central limit theorem justi®es applying such distributions to

collections of structure factors that are sums of many small

atomic contributions (Tsoucaris, 1970). The parameters of a

multivariate complex normal distribution of structure factors
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Figure 4
Representation of likelihood as a function of assumed lack-of-isomorphism error for one derivative. The panels on the left show probability distributions
for three possible choices of lack-of-isomorphism error for the derivative, which changes the width of the distributions. The combined distribution from
the native and two derivative amplitudes (multiplied by the prior probability of the true structure factor, as in equation 7) is shown as a surface plot in the
three middle panels. The likelihood is the volume under this surface and the panel on the right shows the likelihood as a function of the lack-of-
isomorphism error, with dots highlighting the values corresponding to the three pairs of plots to the left. Likelihood is maximized when the distribution is
just broad enough to overlap with the other distributions. An animated version of this ®gure is available as supplementary material.
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F are their expected values, Fh i, and the elements �ij of the

covariance matrix R,

p�F� � 1

j�Rj exp�ÿ�Fÿ hFi�HRÿ1�Fÿ hFi��
�ij � �Fi ÿ hFii��Fj ÿ hFji��


 �
: �9�

In this equation, (F ÿ hFi) is a column vector and the super-

script H indicates its Hermitian transpose (a row vector of

complex conjugates). Note that �ij in this notation refers to a

covariance element and not to a standard deviation.

As shown in the context of molecular replacement (Read,

2001), it can be useful to start from an extended joint distri-

bution of observed and calculated structure factors. In this

case, nothing is yet known about the structure factors, so that

their expected values are zero and the covariance elements are

given by �ij = hFiF
�
j i. When the calculated structure factors are

®xed, the information they provide is re¯ected in non-zero

expected values and reduced covariance elements.

The covariance elements will be dominated by contribu-

tions from atoms shared between the crystals, because terms

relating unmatched atoms will tend to cancel (Read, 1990),

Fi �
PNA

k�1

fik exp�2�ih � xik�

hFiF
�
j i '

P
common atoms

fikfjkhexp�2�ih � �xik ÿ xjk��i: �10�

Note that the covariances can be complex in general, but will

be assumed to be real in the case of isomorphous replacement,

where the scattering factors are real and there is no reason to

expect a systematic phase shift. In the case of anomalous

dispersion, the scattering factors are complex and the presence

of an imaginary component will lead to imaginary terms in the

off-diagonal covariance elements (Pannu et al., 2003). The

expected value of the phase-shift term (the exponential in

equation 10) is like a ®gure of merit, so it will typically be less

than one. For convenience, we will de®ne D values below to

describe the overall effective value of this phase-shift term and

express the covariances in terms of the Wilson distribution

parameter for the shared atoms. When the atomic scattering

factors from corresponding atoms in the two crystals are

identical, these D values are related to the Fourier transform

of coordinate differences (Read, 1990).

If we assume that the crystals have independent lack-of-

isomorphism errors, that there are no sites in common among

derivatives and that there are no signi®cant scatterers occu-

pying the same position in the native crystal as in the heavy-

atom sites (i.e. isomorphous addition rather than isomorphous

replacement), then we ®nd that when the heavy-atom contri-

butions are ®xed, the new conditional covariance matrix has

no off-diagonal elements (Pannu et al., 2003). This means that

the joint distribution of observed structure factors (condi-

tional on the heavy-atom model contributions) can be

factored into a product of independent distributions of single

structure factors, giving the same result as obtained above.

In fact, it is not necessary to make such stringent assump-

tions in order to obtain such a simple result. We still obtain a

product of independent conditional distributions (or, equiva-

lently, a diagonal covariance matrix) as long as the errors in

the models are independent, regardless of whether there are

common sites or heavy atoms replacing signi®cant scatterers

in the native crystal. In the following, we will see that the

assumption of independent errors implies relationships among

the elements of the covariance matrix for the observed and

calculated structure factors. De®ning these relationships will

force us to be explicit about which errors are independent, but

will then allow us to factor out common submatrices and

drastically simplify the covariance matrix for the conditional

distribution of observed structure factors.

We start from a joint distribution of the observed structure

factors, the dummy structure factor and the calculated heavy-

atom structure factors, p(F0, F1 . . . FN, F, H0, H1 . . . HN). In this

joint distribution, there is no prior information before ®xing

the heavy-atom models, so all expected values are zero. The

covariance matrix is given by (11), where it is partitioned into

submatrices that will be manipulated when the conditional

variables are ®xed (Johnson & Wichern, 1998),

R � R11 R12

R21 R22

� �
; �11a�

R11 �

hF0F�0i hF0F�1i � � � hF0F�Ni
hF1F�0i hF1F�1i � � � hF1F�Ni

..

. ..
. . .

. ..
.

hFNF�0i hFNF�1i � � � hFNF�Ni

0BBBB@
1CCCCA; �11b�

R12 �

hF0F�i hF0H�0i hF0H�1i � � � hF0H�Ni
hF1F�i hF1H�0i hF1H�1i � � � hF1H�Ni

..

. ..
. ..

. . .
. ..

.

hFNF�i hFNH�0i hFNH�1i � � � hFNH�Ni

0BBBB@
1CCCCA;

R21 � RH
12 � RT

12; �11c�

R22 �

hFF�i hFH�0i hFH�1i � � � hFH�Ni
hH0F�i hH0H�0i hH0H�1i � � � hH0H�Ni
hH1F�i hH1H�0i hH1H�1i � � � hH1H�Ni

..

. ..
. ..

. . .
. ..

.

hHNF�i hHNH�0i hHNH�1i � � � hHNH�Ni

0BBBBBBB@

1CCCCCCCA: �11d�

To clarify the relationships involving the crystals and their

corresponding heavy-atom models, we use f and g to represent

atomic scattering factors and x and y to represent coordinates

for the corresponding crystals and models, so that the

observed and calculated structure factors are de®ned as

Fi �
PNA

k�1

fik exp�2�ih � xik�;

Hi �
PNA

k�1

gik exp�2�ih � yik�: �12�

For simplicity, each crystal or model is considered to contain

all the atoms that are present in any crystal or model, but

assigning zero scattering factors to atoms that do not exist in

that crystal or model. The dummy structure factor F is inter-



preted as the true native structure factor, minus the contri-

bution of any atoms represented by H0. If we number the

atoms from 1 to NL for the `light' atoms that are not present in

any of the heavy-atom models, then from NL + 1 to NA for

atoms in the heavy-atom models, we obtain

F � PNL

k�1

f0k exp�2�ih � x0k�;

hFF�i � PNL

k�1

f 2
0k � �NL

: �13�

(For simplicity, the expected intensity factor " that should

appear in all covariance elements is omitted in equation 13

and subsequent equations.)

We will assume that heavy-atom model 0 contains all atoms

in any of the heavy-atom models that replace atoms with

signi®cant scattering in the native crystal. F will then be

uncorrelated to any of the heavy-atom models, so that the off-

diagonal elements in the ®rst column and row of R22 will all be

zero. Off-diagonal elements of this submatrix relating heavy-

atom models will be given by (14). In this and subsequent

equations it is assumed that differences in heavy-atom posi-

tions are uncorrelated with differences in their scattering

factors.

hHiH
�
j i �

PNA

k�NL�1

gikgjkhexp�2�ih � �yik ÿ yjk��i

� DHij

PNA

k�NL�1

gikgjk

� DHij
�Hij

: �14�

In (14), the sum runs over all atoms present in any heavy-atom

model, but only common sites contribute because atoms that

are not present in a particular model are assigned an atomic

scattering factor of zero. The parameter DHij
is the effective

overall value of the phase shift term arising from coordinate

differences between common sites in the heavy-atom models

and �Hij
accounts for the extent of overlap between heavy-

atom models. If there are no common sites, then �Hij
will be

zero. For the diagonal elements, DHii
= 1 and we use �Hi

to

represent �Hii
. A symbolic expression for R22 is given in (15),

summarizing the results above,

R22 �
�NL

0

0 T22

� �
;

T22 �

�H0
DH01

�H01
� � � DH0N

�H0N

DH01
�H01

�H1
� � � DH1N

�H1N

..

. ..
. . .

. ..
.

DH0N
�H0N

DH1N
�H1N

� � � �HN

0BBBBB@

1CCCCCA: �15�

The submatrix R12 contains cross-terms relating the observed

structure factors to the structure factors that will be ®xed in

the conditional distribution. Cross-terms involving the dummy

structure factor F are simple,

hFiF
�i � PNL

k�1

fikf0khexp�2�ih � �xik ÿ x0k��i

� Di�NL
: �16�

Since F is considered to be the unmodelled part of the true

native structure factor, D0 is equal to one. Di values for other

crystals provide an overall effective value for the phase-shift

term, absorbing any systematic differences in scale factor or

overall B factor.

Cross-terms involving the heavy-atom structure factors are

given by (17), where it is assumed that errors in the heavy-

atom coordinates for one derivative are uncorrelated with

differences in the position of the corresponding atoms in other

heavy-atom models.

hFiH
�
j i �

PNA

k�NL�1

fikgjkhexp�2�ih � �xik ÿ yjk��i

� PNA

k�NL�1

fikgjkhexp�2�ih � �xik ÿ yik � yik ÿ yjk��i

� PNA

k�NL�1

fikgjkhexp�2�ih � �xik ÿ yik��i

�hexp�2�ih � �yik ÿ yjk��i

� DHij

PNA

k�NL�1

fikgjkhexp�2�ih � �xik ÿ yik��i

� DHij
DHi

�Hij
: �17�

As in (14), DHij
is de®ned as the effective overall value of the

phase-shift term arising from differences in atomic coordi-

nates in the models. DHi
is de®ned similarly as the effective

overall value of the phase-shift term arising from heavy-atom

model errors, but absorbing any systematic difference in the

scale of the f and g atomic scattering factors. In fact, when the

heavy-atom occupancies and B factors are re®ned by

maximum likelihood, the resulting gjk values should be

approximately equal to fjkhexp[2�ih�(xik ÿ yik)]i (Read, 1990,

1991), in which case the phase-shift component of DHi
will

cancel the scale component and DHi
will be equal to one.

Comparing (14) and (17), we see that the terms relating

observed and model structure factors differ from the model±

model terms only by the factor DHi
. This means that we can

de®ne a column vector D and a diagonal matrix DH, then

specify R12 in terms of the earlier matrix T22,

D �

1

D1

..

.

DN

0BBBB@
1CCCCA;

DH �

DH0
0 � � � 0

0 DH1
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � DHN

0BBBBB@

1CCCCCA; �18�
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R12 � �D�NL
DHT22 �: �19�

In the conditional distribution, the equations for the updated

mean and covariance matrix both include the expression

R12R
ÿ1
22 . With the assumptions we have made about indepen-

dence of errors, this expression assumes the simple form

R12Rÿ1
22 � �D�NL

DHT22 �
1=�NL

0

0 Tÿ1
22

 !

� D DH

ÿ �
: �20�

The mean for the conditional distribution is given by (21),

where we see that even though there may be correlations

among the heavy-atom models, as long as the errors are

independent each heavy-atom model only contributes to the

expected value of the corresponding observed structure

factor,

� �

hF0i
hF1i

..

.

hFNi

0BBBB@
1CCCCA � R12Rÿ1

22

F

H0

H1

..

.

HN

0BBBBBBB@

1CCCCCCCA

� �D DH �

F

H0

H1

..

.

HN

0BBBBBBB@

1CCCCCCCA �
F�DH0

H0

D1F�DH1
H1

..

.

DNF�DHN
HN

0BBBBB@

1CCCCCA: �21�

As noted above, the DHi
values will be equal to one if the

heavy-atom occupancies and B factors are allowed to re®ne to

maximize the likelihood target, so the expected values of the

structure factors agree with the result in (5).

The matrix R11 contains terms relating the observed struc-

ture factors, which may be expressed as in (22). In addition to

our earlier assumption that the errors in the heavy-atom

model were not correlated with differences in common heavy-

atom positions in pairs of models, we now assume that errors

in pairs of models are uncorrelated. Again, the factors DHi
and

DHj
incorporate the effect of overall differences in scale

between the heavy-atom scattering factors in the crystals and

the models,

hFiF
�
j i �

PNA

k�1

fikfjkhexp�2�ih � �xik ÿ xjk��i

� PNL

k�1

fikfjkhexp�2�ih � �xik ÿ xk � xk ÿ xjk�i

� PNA

k�NL�1

fikfjkhexp�2�ih � �xik ÿ yik � yik

ÿ yjk � yjk ÿ xjk��i

� PNL

k�1

fikfjkhexp�2�ih � �xik ÿ xk��ihexp�2�ih � �xk ÿ xjk��i

� PNA

k�NL�1

fikfjkhexp�2�ih � �xik ÿ yik��i

� hexp�2�ih � �yik ÿ yjk��ihexp�2�ih � �yjk ÿ xjk��i

� DiDj�NL
�DHij

PNatom

k�NL�1

fikfjkhexp�2�ih � �xik ÿ yik��i

� hexp�2�ih � �yjk ÿ xjk��i
� DiDj�NL

�DHij
DHi

DHj
�Hij

: �22�

The last thing we need to compute the conditional covariance

matrix is the submatrix R21,

R21 � RT
12 � �NL

DT

T22DH

� �
: �23�

The expression for the conditional covariance matrix is given

in (24), where results from (20), (22) and (23) are incorpo-

rated,

R � R11 ÿ R12Rÿ1
22 R21

� R11 ÿ �D DH �
�NL

DT

T22DH

� �

� R11 ÿ �NL

D2
0 D0D1 � � � D0DN

D0D1 D2
1 � � � D1DN

..

. ..
. . .

. ..
.

D0DN D1DN � � � D2
N

0BBBB@
1CCCCA�DHT22DH

266664
377775

�

�2
�0 0 � � � 0

0 �2
�1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � �2
�N

0BBBB@
1CCCCA;

where �2
�i � �i ÿD2

i �NL
ÿD2

Hi
�Hi
� �2

i �24�

Because the covariance matrix is diagonal, the joint condi-

tional distribution can be factored into a product of univariate

distributions of the form given in (5). Because the distribu-

tions are independent, the phases can each be integrated

analytically, giving a product of distributions of the form given

in (6). When the expected intensity factor " omitted from (13)

to (24) is reintroduced, the variance term is seen to be

equivalent to that given in (6). As in (7), this product must be

multiplied by the prior distribution of the dummy variable F

before integrating over F to obtain the likelihood target, which

is the conditional distribution of the observed amplitudes.



The integrand in (7) is the joint distribution of the dummy

structure factor F and the observed amplitudes. The posterior

distribution of F can be obtained by ®xing the observed

amplitudes and renormalizing, so we see that the expected

value of F is the centre of mass of the likelihood target before

integration over F. Note that if there is a model associated with

crystal 0 (the `native' crystal), the dummy F represents what is

unexplained by H0, so the expected value of the native

structure factor itself will not be given by the expected value

of F, but rather by hFi + DH0
H0.

Although the multivariate derivation has given the same

result as the earlier derivations based on independent condi-

tional distributions of single structure factors (Bricogne, 1991;

Read, 1991, 1994; de La Fortelle & Bricogne, 1997), this

approach forces one to be more explicit about the assumptions

that are made. In addition to assuming that the lack of

isomorphism for different derivative crystals is independent,

we have also assumed that all the errors in positions of atoms

in the heavy-atom models are independent. This assumption

may be violated by common practice in heavy-atom re®ne-

ment to constrain the positions of common sites among deri-

vatives (de La Fortelle & Bricogne, 1997). If, in fact,

corresponding heavy atoms differ somewhat in position in two

derivatives, constrained re®nement will place them in an

average position. We saw in (22) and (24) that it is necessary to

assume that the positional errors xik ÿ yik and yjk ÿ xjk are

independent in order for the off-diagonal elements to be

eliminated from the conditional covariance matrix. However,

these errors will be highly correlated when the positions yik

and yjk are constrained to be identical.

Another potential concern is whether re®nement will

proceed to eliminate correlated errors when it is assumed in

the target that there are no correlations. For instance, if

common heavy-atom sites are put into re®nement with the

same starting coordinates, will the assumption that their errors

are independent hinder their re®nement to slightly different

positions?

5. New approaches to experimental phasing

The multivariate statistical analysis of experimental phasing

gives us a deeper understanding of the assumptions that are

made in current methods about the independence of sources

of error. It also points the way to new approaches in which

these assumptions can be relaxed.

Firstly, the analysis of multiple isomorphous replacement

above shows that it is not necessary to interpret the dummy

variable that is introduced in current approaches (Bricogne,

1991; Read, 1991, 1994; de La Fortelle & Bricogne, 1997) as

the true value of one of the observed structure factors. It can

be given any interpretation that eliminates (or at least mini-

mizes) the off-diagonal covariance elements in the conditional

covariance matrix, so that only two-dimensional numerical

integration over the dummy variable is required. As shown

above, one possible interpretation of the dummy variable is

the `light-atom' substructure of a native crystal that shares

atomic sites with at least one derivative. We are exploring the

implications of other interpretations of the dummy variable.

Secondly, when it is not possible to eliminate the covariance

elements, the multivariate approach shows how to deal with

remaining correlations. One source of correlation is in the

lack-of-isomorphism errors, which have been assumed to be

independent but may be similar among derivatives. This is

particularly likely to arise when there are common sites among

derivatives, introducing common perturbations of the protein

structure. Another source of correlation is anomalous

dispersion, in which the effects of errors in the model of

anomalous scatterers are necessarily correlated among the

Friedel mates for different wavelengths. In principle, the

likelihood function could be computed by taking the distri-

bution of all the observed structure factors conditional on

models of heavy atoms and anomalous scatterers (but with no

dummy variable) and integrating over all the observed phases.

Only one such integral can easily be carried out analytically,

although Bricogne (2000) has proposed a solution to the

multiple integral in terms of `generalized Bessel functions'.

In at least one special case, the approach of integrating over

the observed phases is straightforward. If there are only two

observations, one phase integral can be carried out analyti-

cally, with the second leaving only a one-dimensional numer-

ical integration. There are a number of cases where we have

two observations, such as the joint re®nement of native and

liganded crystals, single isomorphous replacement and single-

wavelength anomalous dispersion (SAD). We have imple-

mented a SAD likelihood target and applied it to a number of

test cases (Pannu & Read, 2003). Initial results suggest that

this approach will work very well and, given the renaissance of

SAD phasing (Dauter et al., 2002), may ®nd signi®cant

application. In parallel work, Garib Murshudov (personal

communication) has been exploring the use of a similar

function to exploit the signal from intrinsic anomalous scat-

terers in the re®nement of protein structures.

This review draws on the work of and discussions with past

and present members of my group, particularly Airlie McCoy,

Raj Pannu, Laurent Storoni and Hamsapriye. Comments by

GeÂrard Bricogne and questions from Hamsapriye prompted a

closer examination of the necessary assumptions of indepen-

dence. Our research is supported by the Wellcome Trust (UK)

and by NIH/NIGMS under grant No. 1P01GM063210.
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