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The molecular-replacement method works well with good

models and simple unit cells, but often fails with more dif®cult

problems. Experience with likelihood in other areas of

crystallography suggests that it would improve performance

signi®cantly. For molecular replacement, the form of the

required likelihood function depends on whether there is

ambiguity in the relative phases of the contributions from

symmetry-related molecules (e.g. rotation versus translation

searches). Likelihood functions used in structure re®nement

are appropriate only for translation (or six-dimensional)

searches, where the correct translation will place all of the

atoms in the model approximately correctly. A new likelihood

function that allows for unknown relative phases is suitable for

rotation searches. It is shown that correlations between

sequence identity and coordinate error can be used to

calibrate parameters for model quality in the likelihood

functions. Multiple models of a molecule can be combined in a

statistically valid way by setting up the joint probability

distribution of the true and model structure factors as a

multivariate complex normal distribution, from which the

conditional distribution of the true structure factor given the

models can be derived. Tests in a new molecular-replacement

program, Beast, show that the likelihood-based targets are

more sensitive and more accurate than previous targets. The

new multiple-model likelihood function has a dramatic impact

on success.
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1. Introduction

Since the pioneering work by Rossmann & Blow (1962),

molecular replacement has grown to be one of the most

powerful tools of the macromolecular crystallographer. It will

become even more important as the emerging structural

genomics efforts generate structural models for an increasing

fraction of possible folds. However, there is a need for

methods to improve. Coverage of fold space would increase

substantially if lower homology models could be tolerated.

Even with good models, molecular replacement can be dif®-

cult if there are many copies in the unit cell. More sensitive

scores for judging molecular-replacement solutions would

help and likelihood is an excellent candidate.

The principle of maximum likelihood is quite simple: the

best model is most consistent with the observations. Consis-

tency is measured statistically by the probability that the

observations should have been made. If the model is changed

to make the observations more probable, the likelihood goes

up, indicating that the model is better. When the probability

distributions for the observations are Gaussian, maximum

likelihood is equivalent to least squares. Maximum likelihood
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has become prominent in protein crystallography because the

probability distributions of the observations are rarely

Gaussian so that least-squares methods are rarely justi®ed.

Indirectly, the phase problem underlies the importance of

likelihood. Many important probability distributions for

phased structure factors (complex numbers for acentric

structure factors, real numbers for centric) are indeed Gaus-

sian, but we measure only amplitudes or intensities. The

change of variables and integration to eliminate the unknown

phase changes the form of the distributions.

Likelihood has been used for some time in macromolecular

crystallography. The program SIGMAA (Read, 1986)

computes model phase probabilities using �A parameters

optimized by maximizing a likelihood function; Lunin &

Urzhumtsev (1984) ®rst suggested estimating phase prob-

abilities by maximizing a similar likelihood function. In

structure re®nement, likelihood has been demonstrated to be

much better than the traditional least-squares target (Pannu &

Read, 1996; Murshudov et al., 1997; Bricogne & Irwin, 1996).

The improvement is even more striking if experimental phase

information is exploited (Pannu et al., 1998). (The unphased

re®nement likelihood target is essentially identical to the

SIGMAA likelihood target, if one ignores the small effect of

observation errors.) The introduction of likelihood into

experimental phasing by isomorphous replacement or anom-

alous dispersion, implemented in the program SHARP (de La

Fortelle & Bricogne, 1997), has improved both the quality of

phases and the estimates of their accuracy.

Molecular replacement can be considered as a hypothesis-

testing problem, in which different hypotheses about the

orientation, position and (possibly) quality of the search

model are tested against the data. As Bricogne (1997) has

pointed out in this and other crystallographic contexts, like-

lihood is an ideal criterion for hypothesis testing. Bricogne

(1992, 1997) ®rst suggested applying likelihood to molecular

replacement, but did not deal with the speci®c problems of a

rotation likelihood function or of multiple models discussed

below and had not reported any details of implementation at

the time this work was carried out. Some of the ideas

described here have been tested through a preliminary

implementation (Read, 1999) in a modi®ed version of BRUTE

(Fujinaga & Read, 1987). To test new ideas, such as a multiple-

model likelihood function, and to improve performance and

ease of use, a new program, Beast, has now been written and is

described here.

2. Likelihood functions for molecular replacement

Although the principle of maximum likelihood is simple, it can

be dif®cult to derive appropriate probability distributions on

which to base the likelihood targets. Complications often arise

because of ambiguities: unknown phase angles or (as discussed

below) unknown relative phase angles between contributions

from symmetry-related molecules. What is needed is the

probability distribution of the measurements, given as a

function of model parameters and sources of error. The

sources of error include errors in measuring the diffraction

data, but for crystallographic applications the effects of errors

in the atomic model are usually much larger. For this reason,

measurement errors have been neglected in this work. A

variety of types of error in the model can be shown to give rise

to a Gaussian probability distribution for the true structure

factor (Read, 1990, 1997), but it is important to note that these

Gaussian distributions apply to the phased structure factor,

not to its amplitude.

2.1. Likelihood function for translation or six-dimensional
search

Traditionally, molecular replacement has been carried out

with a divide-and-conquer approach, in which the dimen-

sionality of the problem is reduced by separating the search

for one molecule into two separate three-dimensional sear-

ches: a rotation search for orientation and a translation search

for position (Rossmann, 1972). With modern computers, a six-

dimensional search can now be applied if necessary, either as a

grid search (Sheriff et al., 1999) or using stochastic methods

(Chang & Lewis, 1997; Kissinger et al., 1999; Glykos &

Kokkinidis, 2000). A full six-dimensional search can be

thought of as testing a series of hypotheses about the orien-

tation and position of the model. Similarly, for a translation

search one is testing a series of hypotheses about the position

of the model for a given orientation. The same likelihood

function is appropriate for both searches, where the best

solution will place all the atoms of the model in approximately

the correct position and the calculated structure factor will be

a reasonable approximation of the true structure factor.

In these cases, the likelihood function used in SIGMAA or

in maximum-likelihood structure re®nement is the appro-

priate choice. This likelihood function is based on the

structure-factor probability distributions given in (1), where pa

in (1a) describes the two-dimensional Gaussian distribution

for acentric structure factors and pc in (1b) describes the one-

dimensional Gaussian distribution for centric structure

factors,

pa�FO; FC� �
1

�"�2
�

exp ÿ jFO ÿDFCj2
"�2

�

� �
�1a�

pc�FO; FC� �
1

�2�"�2
��1=2

exp ÿ jFO ÿDFCj2
2"�2

�

� �
; �1b�

where �2
� = �N ÿ D2�P, �N = hF2

O="i, �P = hF2
C="i, " is the

expected intensity factor and D is the Luzzati (1952) weighting

factor.

Fig. 1 presents a schematic illustration of (1a) as applied to a

translation search. In (1), the effect of measurement error is

neglected and the measured amplitude, FO, is assumed to be

equal to the true amplitude. Measurement error generally has

much less impact than the effect of model errors, particularly

for dif®cult molecular-replacement problems, and it will be

ignored in what follows. Nonetheless, the effect of measure-

ment error could be included by using likelihood targets such

as MLF1 and MLF2 (Pannu & Read, 1996) or by incrementing

the variances (Murshudov et al., 1997; Bricogne & Irwin,



1996). Note that uncertainty is increased by either incomple-

teness of the model (difference between �N and �P) or errors

in the model (leading to lower values of D).

It is often convenient to work with normalized structure

factors or E values because the probability distributions can

then be expressed in terms of a single parameter �A instead of

the two parameters �� and D,

pa�EO; EC� �
1

��1ÿ �2
A�

exp ÿ jEO ÿ �AECj2
1ÿ �2

A

� �
�2a�

pc�EO; EC� �
1

�2��1ÿ �2
A��1=2

exp ÿ jEO ÿ �AECj2
2�1ÿ �2

A�
� �

; �2b�

where EO = FO=("�N)1/2, EC = FC=("�P)1/2 and

�A = D(�P/�N)1/2.

The likelihood functions require probabilities of amplitudes

or intensities, so the unknown phase angle must be eliminated

by integrating it out (acentric case) or summing over the two

possible phase choices (centric case), giving

pa�EO; EC� �
2EO

1ÿ �2
A

exp ÿE2
O � �2

AE2
C

1ÿ �2
A

� �
I0

2EO�AEC

1ÿ �2
A

� �
�3a�

pc�EO; EC� �
2

��1ÿ �2
A�

� �1=2

exp ÿE2
O � �2

AE2
C

2�1ÿ �2
A�

� �
� cosh

EO�AEC

1ÿ �2
A

� �
: �3b�

2.2. Rotation likelihood function

Compared with a translation search, a rotation search

differs in that the position of the molecule is considered to be

unknown, so that the relative phases of the symmetry-related

contributions of each molecule to the total structure factor are

unknown. Given a trial orientation, we only have an estimate

of the amplitudes of the molecular-transform contributions.

The hypothesis we are testing, for each orientation, is that the

set of observed structure factors could be obtained by adding

up the molecular-transform contributions with some set of

unknown relative phases, possibly with an additional contri-

bution from unmodeled structure.

This is a random-walk problem like that of the Wilson

(1949) distribution. In the rotation likelihood function, the

symmetry-related molecular transforms (which vary in

magnitude with orientation) play the role of the atomic scat-

tering factors in the Wilson distribution. One signi®cant

difference is that each molecular-transform contribution has

an associated uncertainty arising from model errors. The

molecular-transform contribution of a single copy of a single

molecule can be considered as a structure factor in P1, for

which the distribution in (1a) applies. The effect of model

errors is to downweight the contribution by the factor D for

that molecule and to increase the variances by a factor of

(1 ÿ D2) times the total scattering power of the molecule

(Read, 1990). Note that because the molecular transform has

P1 symmetry, symmetry-related contributions to the structure

factor lack the crystal symmetry and are in general indepen-

dent. (Corrections using the expected intensity factor " must

be made in zones of the reciprocal lattice where contributions

of symmetry-related molecules are constrained to be equal.)

The random-walk problem of the rotation likelihood func-

tion can be treated at various levels of approximation. At the

crudest level, we could assume that the central limit theorem

applies to obtain a Wilson-like approximation to the rotation

likelihood function, illustrated schematically in Fig. 2(a) and

de®ned by

pa�FO; fFjkg� �
1

�"�W

exp ÿ F2
O

"�W

� �
; �4�

where {Fjk} is the set of contributions of symmetry copies k of

molecules j,

�W � �N ÿ
P

j

P
k

D2
j �j

" #
�P

j

P
k

D2
j jFjkj2

and �j = hF2
jki for each of the symmetry copies k.

The component of �W in square braces is the random error

arising from model incompleteness and model errors. (4)

allows for the possibility of more than one molecule in the
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Figure 1
Schematic illustration of translation likelihood function for acentric
structure factors. As a molecule is translated, the molecular-transform
contributions from the symmetry-related copies (four in this example)
will change in phase but not in amplitude. For the correct translation, the
true structure factor will be found within a two-dimensional Gaussian
distribution (shown as grey shading) centered on the total calculated
structure factor, scaled by the factor D to obtain the centroid of the
distribution (Read, 1990). The contribution of a single structure factor to
the likelihood function is obtained by integrating around a circle with a
radius given by the observed amplitude, FO, so the likelihood will be high
when this circle intersects regions of high probability in the two-
dimensional Gaussian. For a combined rotation/translation search, both
the amplitudes and phases of the molecular-transform contributions will
vary.
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asymmetric unit of the crystal. Only the acentric unnormalized

case is given, but the centric case follows easily by analogy and

normalization requires only a simple change of variables, as

above. The likelihood function requires the probability of the

amplitude (or intensity), obtained by integrating out the

unknown phase,

pa�FO; fFjkg� �
2FO

"�W

exp ÿ F2
O

"�W

� �
: �5�

For this to be a good approximation, the assumptions of the

central limit theorem must apply, i.e. there must be a suf®cient

number of contributions to the sum and none may dominate.

However, the number of molecular-transform contributions is

often small. Interestingly, the Wilson-like approximation tends

to become more valid as molecular-replacement problems

become more dif®cult, either because there is a larger number

of molecules in the unit cell (combination of non-crystallo-

graphic and crystallographic symmetry) or because the model

is poorer or less complete (the Gaussian noise contribution

becomes proportionately greater, so that the overall distri-

bution is better modeled as Gaussian). For easier molecular-

replacement problems, it may not matter that the approx-

imation is poorer. An advantage of the Wilson-like approx-

imation (compared with the Sim-like approximation discussed

below) is that it is continuously differentiable and may lend

itself to rapid approximations that can be computed by FFT

methods.

Nonetheless, it is possible to derive better approximations.

Shmueli and coworkers have addressed the question of

structure-factor probability distributions in situations where

the central limit theorem approximation is poorly justi®ed, i.e.

for small numbers of atoms or heterogeneous compositions

(Shmueli & Weiss, 1995). They have derived probability

distributions as Fourier±Bessel series, effectively by

performing the convolution of the probability distributions of

individual atomic contributions. The atomic distributions, for

acentric structure factors, are non-zero on circles in the

complex plane. The distribution for sums of molecular trans-

forms can be derived by analogy, with the additional consid-

eration that the Gaussian noise contribution from model error

adds an additional convolution step, which introduces an

exponential falloff term. Carrying this factor through, the

probability distribution for acentric structure factors is

pa�FO� �
2FO

F2
max

P1
m�1

DmJ0

mFO

Fmax

� �
for 0 < FO < Fmax; �6�

where Fmax is the maximum possible FO, m is the mth zero of

the J0 Bessel function,

Dm �
1

J2
1�m�

exp ÿ 
2
m�

2
�

4F2
max

� �Y
j

J0

mDFj

Fmax

� �
and Fj is the contribution from symmetry copy j.

Numerical simulations support this form of the probability

distribution, but it can take a large number of terms (up to

m = 100) to converge and is relatively expensive to compute.

However, there is an intermediate level of approximation,

Figure 2
Schematic illustration of rotation likelihood functions for acentric
structure factors. (a) In the Wilson-like approximation, the distribution
is assumed to be a two-dimensional Gaussian arising from the sum of
molecular-transform contributions with unknown phase angles, together
with random errors resulting from model incompleteness and model
error. (b) In the Sim-like approximation, the contribution from the single
largest molecular transform (Fbig) has an arbitrary phase and the
distribution is assumed to be a two-dimensional Gaussian arising from the
sum of the remaining molecular-transform contributions (Frem) with
unknown phase angles relative to the phase of Fbig, together with random
errors resulting from model incompleteness and model error.



analogous to a suggestion of Shmueli et al. (1984). They found

that for heterogeneous compositions with a single heavy atom,

the Sim (1959) distribution is a good approximation, with the

heaviest atom forming the partial structure and the remaining

atoms comprising the missing structure. The Sim distribution

has the same functional form as (1a), with the centric case (1b)

corresponding to the Woolfson (1956) distribution. A Sim-like

approximation to the rotation likelihood function is de®ned in

(7), in which the single largest molecular-transform contribu-

tion plays the role of FC in (1a) and the variance term is

incremented by the sum of the squares of the remaining

molecular-transform contributions,

pa�FO; fFjkg� �
1

�"�S

exp ÿ FO ÿ Fbig

�� ��2
"�S

 !
; �7�

where Fbig = max{DjFjk} is the biggest molecular transform

contribution,

�S � �N ÿ
P

j

P
k

D2
j �j

" #
�P

j

P
k

D2
j jFjkj2 ÿ F2

big

� �W ÿ F2
big

and Fbig = |Fbig|.

This distribution is illustrated schematically in Fig. 2(b).

Integration over the unknown phase angle gives

pa�FO; fFjkg� �
2FO

"�S

exp ÿF2
O � F2

big

"�S

� �
I0

2FOFbig

"�S

� �
: �8�

Numerical simulations comparing the two approximations to

the more exact form in (6) verify that the Sim-like approx-

imation de®ned by (8) is better than the Wilson-like approx-

imation de®ned by (5). However, as the parameters are

adjusted to re¯ect dif®cult molecular-replacement problems

(poor models and/or many molecules in the unit cell) the two

approximations converge more closely to the exact form of the

distribution. In the program and tests described below, the

Sim-like approximation (and its centric analogue) are used for

the rotation likelihood function.

2.3. Likelihood functions with partial ambiguity

Apart from the rotation problem, there are other cases in

which there will be at least partial ambiguity of the relative

phases of the contributions of different molecules. For

complexes or crystals with non-crystallographic symmetry, the

orientation and/or position of a subset of the molecules may

be known and it would be helpful to use this information in

computing rotation or translation functions for the remaining

molecules. If only the orientation of a ®xed molecule is known,

then the individual symmetry-related molecular transforms all

have unknown relative phases.

It may also be useful to de®ne only part of the position

vector, leaving the rest undetermined and thereby reducing

the dimensionality of the translation search. For example, in

the space group P622 each molecule takes 12 symmetry-

related orientations and positions. If one searches in the xy

plane, the relative positions of each set of six molecules

related by the sixfold axis (and thus their relative phases) are

de®ned. The z component of the translation only changes the

relative position (and phase) of the two sets of six molecules.

This is illustrated schematically in Fig. 3.

Finally, there will be ambiguities arising from coarseness of

the search grids, which can be accounted for by using expected

values and incrementing the variances (Bricogne, 1997). If the

translation search is carried out on a coarse grid, there will be

partial ambiguity of the relative phases of the contributions of

symmetry-related molecules. This can be dealt with in the

same way as positional uncertainty of individual atoms (Read,

1990) by reducing the expected value of the molecular-

transform contribution and incrementing the variance corre-

spondingly. A coarser rotation grid could also be used,

accounting for the increased uncertainty in the orientation by

averaging the molecular transform over the rotational un-

certainty and incrementing the variances.

Searches with intermediate dimensionality (e.g. ®ve-

dimensional search of orientation and position in a plane for

P622) may be important for improving signal-to-noise in

dif®cult cases. This will be particularly true when the mole-

cules in the crystal take on many orientations, through the

combination of crystallographic and non-crystallographic

symmetry. In such a case, the rotation likelihood function will

have many molecular-transform terms of comparable weight.

Each molecular-transform term is itself drawn from a Wilson

distribution: the more terms there are, the more the overall
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Figure 3
Schematic illustration of likelihood function for partial translational
ambiguity. This example illustrates the uncertainty in an acentric
structure factor in space group P622 when a translation search is
conducted over the xy plane, leaving the z coordinate unde®ned. For any
particular xy combination, varying z will change the phases of two groups
of six molecular transforms in concert. At the correct xy translation, the
uncertainty in z corresponds to uncertainty in the relative phase angle
between the two sums of six molecular transforms, shown as heavy
arrows. This uncertainty is modeled as a Sim-like probability distribution,
similar to that shown in Fig. 2(b).
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likelihood distribution will tend towards the same mean for all

re¯ections, thus losing sensitivity. Increasing the dimension-

ality to (for instance) ®ve in P622 reduces the number of

separately phased contributions by a factor of six, greatly

reducing the averaging effect that dilutes out the signal in the

likelihood function. More generally, when the hypothesis is

made more speci®c by reducing ambiguity, the probability

distributions become sharper and the likelihood functions

become more informative. This can be understood by

comparing the schematic illustrations presented in Figs. 1

and 2.

3. Calibrating the likelihood functions

The likelihood functions depend on the values assumed for �A

as a function of resolution. In principle, for each trial rotation

and translation the �A curve could be adjusted to maximize

the likelihood function, but this would be computationally

very demanding. Nonetheless, �A values should be re®ned

with the SIGMAA (Read, 1986) algorithm as part of the ®nal

scoring of potential solutions. During the search, a good a

priori estimate of �A values can be made, with this forming

part of the hypothesis to be tested.

The a priori estimates of �A are based on strong correlations

between sequence identity and r.m.s. coordinate error

(Chothia & Lesk, 1986). With a number of simplifying

assumptions, the variation of �A as a function of resolution can

be expressed as a function of the Fourier transform of the

coordinate-error probability distribution. This behaviour is

complicated by the effect of unmodelled or poorly modelled

bulk solvent, which causes �A to fall off at low resolution. The

behaviour of �A as a function of resolution can be modeled by

the four-parameter functional form used in REFMAC

(Murshudov et al., 1997),

�A � ffp�1ÿ fsol exp�ÿBsol sin2 �=�2��g1=2

� exp ÿ 8�2

3
�2

r sin2 �=�2

� �
; �9�

where fsol and Bsol describe the low-resolution solvent-related

falloff, fp is the fraction of ordered structure comprised by the

model and �r is the r.m.s. coordinate error of the model. The

two solvent-related terms affect a minority of data and stan-

dard values can be chosen. Inspection of �A curves suggests

that suitable values for fsol range from 0.8 to 0.95 and for Bsol

from 100 to 250 AÊ 2. The current program defaults are 0.95 and

150, whereas the tests described below used values of 0.8 and

100. As expected, the choice of these parameters has only a

small impact on the quality of results. The completeness of the

model is generally known before molecular replacement is

carried out and the r.m.s. coordinate error can be estimated

using an equation derived by Chothia & Lesk (1986),

�r � 0:40 exp�1:87�1ÿ s��; �10�
where s is the fractional sequence identity.

Although (10) was derived by ®tting data for r.m.s. devia-

tion of main-chain atoms only, it works well in tests such as

those described below. It would be preferable to choose the

parameters in such an equation by optimizing likelihood

functions; work is in progress to do this by comparing struc-

ture factors from related structures (R. B. Dodd & R. J. Read,

unpublished work). Still better would be to estimate coordi-

nate errors varying over the molecule as a function of local

sequence identity and (perhaps) surface exposure. Such esti-

mates could be used to weight the relative contributions of

different atoms by adjusting their B factors (Read, 1990) and

to compute better �A estimates.

4. Multivariate distributions for multiple models

As the database of known protein structures expands, one

often has several choices of molecular-replacement model and

the number of choices increases as the threshold for accep-

table sequence identity levels is relaxed. In a number of cases,

dif®cult molecular-replacement structures have been solved

by using averaged electron density computed from several

models that individually were not good enough (e.g. the test

case discussed below of Pieper et al., 1998). However, using

multiple models in a likelihood function requires deriving the

probability of the true structure factor given a collection of

calculated structure factors. This must account for correlations

between pairs of models. Two highly correlated models will

provide less independent information than two uncorrelated

models. The statistical framework that considers factors such

as this is based on the complex multivariate normal distribu-

tion.

It is only necessary to consider the acentric case because the

molecular transforms are computed in space group P1. The

acentric structure-factor distribution in (1a) can be considered

either as a bivariate normal distribution of the real and

imaginary parts of the structure factor, with equal variances

and zero covariances, or as a complex normal distribution.

Such a complex normal distribution can be generalized to the

multivariate case (Wooding, 1956), with properties similar to

those of the real multivariate normal distribution. Since

acentric structure factors for proteins are sums of large

numbers of complex atomic contributions, it is reasonable to

assume that the central limit theorem applies. As Tsoucaris

(1970) points out, such an assumption is supported by general

results by Klug (1958) on multivariate structure-factor distri-

butions.

In a multivariate normal distribution applied to real

numbers (such as centric structure factors), the variance term

found in the univariate normal distribution is replaced by a

covariance matrix which is symmetric. The diagonal terms are

variances and the off-diagonal terms are covariances de®ned

for variables xi and xj with means �i and �j as

�ij � h�xi ÿ �i��xj ÿ �j�i: �11�
In the complex multivariate normal distribution, the co-

variance matrix is in general Hermitian (meaning that rji is the

complex conjugate of rij or that the matrix is equal to its

Hermitian transpose). The covariance terms for complex

variables zi and zj with means li and lj are de®ned as



rij � h�zi ÿ li��zj ÿ lj��i: �12�
The joint probability distribution is de®ned in terms of the

covariance matrix R as

p�z� � 1

j�Rj exp�ÿ�zÿ l�H�ÿ1�zÿ l��; �13�

where (z ÿ l) is a column vector and superscript H indicates

its Hermitian transpose (a row vector of complex conjugates)

and vertical bars indicate the determinant of the matrix.

To obtain the probability distribution of the true molecular-

transform contribution for a particular molecule, we start with

the joint distribution of the molecular transforms for the true

structure and all the models. The structures (and hence the

structure factors) are related, but before the models are ®xed

the positions of the atoms are considered unknown, so that the

structure factors all have expected values of zero. The terms in

the covariance matrix are then given by

rij � hFiF
�
j i: �14�

If we normalize the structure factors so that their mean-square

values (complex variances) are one, the covariance matrix

becomes a correlation matrix, with diagonal elements equal to

one and off-diagonal elements given by

�ij � hEiE
�
j i: �15�

In other applications of multivariate complex normal distri-

butions to crystallography, the off-diagonal elements will have

an imaginary component. However, in the case of multiple

models there is no reason to expect a signi®cant imaginary

component unless the models are translationally misaligned,

leading to a systematic phase shift. The off-diagonal terms of

the correlation matrix are therefore real and are equivalent to

�A values between pairs of models. Such an interpretation of

�A in terms of a real correlation of structure factors has been

proposed by Srinivasan & Chandrasekaran (1966). In practice,

(15) is used to compute elements of the correlation matrix

between structure factors from models for which both phases

are known. Because the correlations will vary with resolution,

separate correlation matrices are computed for resolution

shells. Values of �A computed from the functional form given

in (9) are used for the correlation terms between the true

(numbered 0 in the following) and model (numbered 1 to n)

molecular transforms.

Standard manipulations allow one to derive a conditional

probability distribution from a multivariate normal distribu-

tion when some of the variables are known (Johnson &

Wichern, 1998). The new distribution is also normal and has a

new mean and covariance/correlation matrix derived from a

partitioning of the original matrix. For the case of multiple

models, where all but one of the variables is ®xed, the corre-

lation matrix is partitioned as follows

P � 1 P01

P10 P11

� �
; �16�

where P01 is a row vector of �A values between the true and

model molecular transforms, P10 is its transpose and P11 is the

correlation matrix involving only models. The conditional

probability distribution is obtained as

p�E0; fEig� �
1

��2�E0�
exp ÿ jE0 ÿ hE0ij2

�2�E0�
� �

�17�

where �2(E0) = 1 ÿ P01Pÿ1
11 P10, hE0i = P01Pÿ1

11 E and E is the

vector of model Ei values. It is easy to verify that for the case

of one model this equation reduces to (2a).

5. Implementation of likelihood-based molecular
replacement

A preliminary implementation (Read, 1999) of the rotation

and translation likelihood functions (lacking the treatment of

multiple models) was carried out in a modi®ed version of

BRUTE (Fujinaga & Read, 1987). These likelihood functions

and the multiple-model likelihood function have now been

reimplemented in a new program, Beast, which is faster, easier

to use and designed to form part of the CCP4 (Collaborative

Computational Project, 1994) program suite. The name `Beast'

is an acronym for `brute-force molecular replacement with

ensemble-average statistics'. For convenience, Beast computes

the log of the likelihood. This is placed on an absolute scale by

subtracting the log-likelihood for the uninformative Wilson

(1949) distribution, giving the log-likelihood gain (LLG). Like

BRUTE, Beast uses a brute-force search of possible

molecular-replacement solutions, which are scored individu-

ally. In principle, approximations could be devised to allow

rapid calculations with FFTs (Bricogne, 1992), but it seemed

more important at this point to develop a `gold standard'

against which such approximations could be judged.

Structure factors are interpolated in Beast from ®nely

sampled molecular transforms, as performed for instance in

AMoRe (Navaza, 1994). If multiple models are available, a

statistically weighted ensemble average molecular transform is

computed as described above and then used in further

calculations. For ef®ciency, searches are carried out on a

hexagonal close-packed grid as performed in FFFEAR (Kevin

Cowtan, personal communication) using the locally ortho-

gonal Lattman angles (Lattman, 1972) for orientation searches

and an orthogonal search space for translation searches. For

multiple-molecule searches, known molecules can be ®xed in

orientation and, optionally, in position.

6. Test cases

6.1. Streptomyces griseus trypsin

The structure of S. griseus trypsin (SGT) was solved, with

some dif®culty, using bovine trypsin (Chambers & Stroud,

1979) as a search model. It was dif®cult in part because of

inaccuracy of rotation parameters determined with the fast

rotation function (Crowther, 1972). Most attempts to solve the

translation problem used an orientation obtained from a

rotation function computed with data to 2.8 AÊ resolution that

turned out to be 6.9� in error compared with the ®nal

molecular-replacement solution (Read & James, 1988). In
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contrast, a rotation function computed using data to only

3.5 AÊ resolution gave a more accurate orientation, with an

error of only 3.4�. As shown in Table 1, both signal-to-noise

and accuracy improve dramatically in the likelihood-based

rotation function. In the likelihood approach, it is not neces-

sary to choose the correct resolution range because data at

high resolution are automatically downweighted if necessary.

In the initial structure solution, translation searches were

carried out in BRUTE (Fujinaga & Read, 1987) using as a

score the correlation between E2 values from 4 to 8 AÊ reso-

lution. These searches failed with the orientation that erred by

6.9�. Eventually, the structure was solved using a limited six-

dimensional search in which the orientation was varied for a

series of translation searches (Read & James, 1988). As shown

in Table 2, the likelihood-based translation function succeeds

even with the worst orientation. [Note that the log-likelihood

gain is barely positive, implying that the model is barely more

informative than the Wilson (1949) distribution. This occurs

because the presumed r.m.s. error of 1.4 AÊ , deduced using (10)

from the sequence identity of 32%, is a severe underestimate

when the orientation is so much in error.] As the orientation

of the model improves, the likelihood score and the discri-

mination from incorrect translations both improve signi®-

cantly.

6.2. Haloferax volcanii dihydrofolate reductase

The structure of H. volcanii dihydrofolate reductase

(DHFR) was solved by Pieper et al. (1998) using AMoRe

(Navaza, 1994), but only when they used a composite model

comprised of seven different DHFR structures. One of the

biggest dif®culties they faced was determining the orientations

of the two molecules in the asymmetric unit. With the single

best model (molecule B from the Escherichia coli DHFR in

PDB ®le 4dfr or model 4dfr_B), the correct orientations

showed up as peaks 7 and 16 in the AMoRe rotation search.

Even though a subsequent translation search with all the

orientations brings these orientations to the top of the list, the

discrimination from noise is very poor. As the results in

Tables 3 and 4 show, Beast displays much better signal-to-noise

in this problem, particularly for the rotation search (Table 3)

where 4dfr_B comes up as peaks 2 and 5.

Adding information from more models improves the results

for both programs, but has greater effect with Beast. With

AMoRe, the correct orientations were never at the top of the

list, even with up to seven models. However, they are at the

top of the list with the likelihood-based rotation function, even

with just three models (Table 3). The translation searches are

successful with both programs (Table 4); as the number of

models increases, the discrimination improves, particularly for

Beast.

It is interesting that adding multiple models of the same

E. coli protein (albeit in different ligation states) improves the

signal-to-noise ratio. To the extent that these models resemble

each other (as measured by high correlations in the correla-

tion matrix), they will be downweighted in the statistical

average, so adding multiple copies of similar models will not

dilute the signal that comes from other less similar models.

6.3. Other results

Test versions of Beast and the earlier implementation in

BRUTE have been distributed to a number of laboratories,

some of which have reported success in solving structures that

could not be solved otherwise. Two such structures have been

Table 1
Rotation-function results for S. griseus trypsin.

Algorithm
Resolution
range (AÊ )

Correct
peak²

Orientation
error³ (�)

Crowther 10.0±2.8 5.32 6.9
Crowther 10.0±3.5 5.62 3.4
Likelihood 25.0±2.8 7.80 0.8

² Peak height expressed in terms of r.m.s. deviations from the mean. ³ Compared with
®nal orientation from molecular replacement after rigid-body re®nement.

Table 4
Translation-function results for H. volcanii dihydrofolate reductase.

AMoRe correlation² Beast LLG

No. of
models³ Molecule 1 Molecule 2 Noise Molecule 1 Molecule 2 Noise§

1 0.158 0.169 0.156 23.9 26.8 24.4
3 Ð Ð Ð 38.2 31.4 19.7
5 0.181 0.179 0.150 32.2 36.6 20.4
7 0.189 0.187 0.154 42.5 36.9 15.6

³ As for Table 3. ² Results of Pieper et al. (1998) computed in AMoRe (Navaza, 1994).
No result was given for the three models. § Highest translation peak for an incorrect
orientation.

Table 3
Rotation-function results with H. volcanii dihydrofolate reductase.

AMoRe peak number² Likelihood peak number³

No. of
models§ Molecule 1 Molecule 2 Molecule 1 Molecule 2

1} 7 16 2 5
3²² ± ± 1 2
5³³ 6 9 1 2
7§§ 3 13 1 2

§ Models were chosen from a set of ®ve E. coli DHFR structures (PDB codes 4dfr_A,
4dfr_B, 5dfr, 6dfr and 7dfr) with 32% sequence identity, one Lactobacillus casei DHFR
structure (3dfr) with 23% sequence identity and one chicken liver DHFR (8dfr) with
25% sequence identity. ² Results of Pieper et al. (1998), computed in AMoRe (Navaza,
1994). Multiple models were superimposed into a common orientation and their density
averaged for the molecular-replacement calculation. No result was given for the three
models. ³ Computed in Beast using data from 3±25 AÊ resolution. } Single E. coli
DHFR model: 4dfr_B. ²² One representative of each of three species: E. coli 4dfr_B,

Table 2
Translation-function results for S. griseus trypsin.

Orientation
error (�)

Correct
peak²

Highest
noise peak²

Mean of
search²

R.m.s. from
mean²

6.9 2.3 ÿ0.7 ÿ43.9 9.5
3.4 84.6 32.0 ÿ27.0 10.4
0.8 128.1 49.2 ÿ16.7 10.5

² Scores are expressed in terms of log-likelihood gain.



published, both using the modi®ed version of BRUTE:

Sulfolobus solfataricus cytochrome P450 (Yano et al., 2000)

and a hexitol nucleic acid (Declercq, 2000).

7. Conclusions

The introduction of likelihood-based scores has increased the

sensitivity of molecular-replacement searches compared with

more traditional methods. The introduction of multivariate

statistics allows the optimal use of multiple models. As the

database of known structures expands, it will be more and

more common to have several possible models to choose from.

Apart from the increase in sensitivity, a great advantage to

the likelihood-based targets is the reduction of adjustable

parameters. It is common in molecular-replacement trials to

experiment with the integration radii for the rotation function,

resolution limits, degree of sharpening of the data and choice

of model. Often, several models are constructed by trimming

off different amounts of the least-conserved portions. Like the

Patterson correlation searches in BRUTE (Fujinaga & Read,

1987), X-PLOR (BruÈ nger, 1992) and CNS (Brunger et al.,

1998), the likelihood-based approach avoids integration radii,

as the structure factors are always referred to the crystal cell.

If the model quality is estimated correctly, data to too high

resolution will effectively be ignored, so resolution limits are

not necessary. The way in which variances in the probability

distributions vary with resolution is controlled as well by the

model quality parameters; the resulting variation in the extent

to which data at different resolutions are consulted is what the

sharpening parameters attempt to mimick. In Beast, it is not

necessary to choose among several possible models; in fact,

they should all be used. Finally, instead of trimming the least-

conserved portions of the model, it would be better to

downweight their in¯uence by increasing their B factors

according to their expected r.m.s. error (Read, 1990).

7.1. Other applications of molecular-replacement likelihood
functions

The rotation likelihood function could be used to re®ne

incomplete molecular-replacement solutions before the

translation vector had been completely de®ned. For instance,

the relative orientations of domains or elements of secondary

structure could be re®ned; in favourable cases, it may even be

possible to re®ne ®ner details of the structure. This approach

has been successful using Patterson correlation re®nement in

X-PLOR (BruÈ nger, 1992) and CNS (Brunger et al., 1998) and

should be even more powerful using likelihood targets.

The multiple-model likelihood function could be applied in

other circumstances where more than one atomic model is

available. If a structure were solved with multiple molecular-

replacement models, the combined probability distribution for

the true structure factor could be used to de®ne better phase-

probability distributions and SIGMAA map coef®cients

(Read, 1986), replacing DFC by the expected value of FO given

the multiple models and �2
� by the conditional variance in a

manner similar to that shown in (17). The multiple-model

likelihood function could also be used for re®nement. One

intriguing possibility is to save the model before simulated-

annealing re®nement as a ®xed model, the information from

which would be used while re®ning the moving model. This

might be useful because in the course of simulated-annealing

re®nement, the model temporarily becomes worse. It has been

found that when combining simulated annealing with like-

lihood, it is necessary to freeze the �A values during the

annealing run (Adams et al., 1997); if they are updated to

lower values, pressure to ®t the diffraction data is reduced and

the re®nement diverges. Keeping the initial model information

would allow the re®nement to `remember' what was known

about the true phases initially, which would restrain such

divergence.

7.2. Future directions

In the most dif®cult molecular-replacement problems there

are a large number of molecules in the unit cell, which reduces

tremendously the signal in a rotation search. For such cases,

the problem is not so much with the scoring function as the

dimensionality of the search problem; once the answer has

been found it is often clearly correct.

Stochastic search methods, such as Monte Carlo and genetic

algorithms, are often very effective in such high-dimension

problems. This can be seen, for instance, in the ligand-docking

problem (Read et al., 1995). Some success has already been

achieved by such algorithms for molecular replacement

(Chang & Lewis, 1997; Kissinger et al., 1999; Glykos &

Kokkinidis, 2000). The combination of these improved search

methods with likelihood targets should make even more

dif®cult problems tractable. This approach is presently being

implemented (A. J. McCoy, N. S. Pannu & R. J. Read,

unpublished work) within a new general phasing program

under development in my laboratory.

An exciting possibility that will be explored is to gradually

increase the dimensionality of the search space during opti-

mization with a genetic algorithm. The initial search could

de®ne only the orientations of the molecules, scored by the

rotation likelihood function. Two translation directions could

be added, de®ning the positions of the molecules relative to

the axis with highest rotational symmetry; ®nally, the last

translation direction could be added. The effective size of the

search space could be decreased and the convergence radius

increased by allowing for uncertainty in the parameters. This

would be performed by averaging the probability distributions

over the uncertainty and incrementing the variances, as

discussed in the context of coarse search grids. In the course of

the search, the uncertainties would be gradually reduced to

sharpen the score function.

Finally, in many molecular-replacement problems one has

prior knowledge of the non-crystallographic symmetry

operators, obtained from self-rotation and native Patterson

functions (Navaza et al., 1998). This information should also be

exploited by coupling the parameters of copies of the search

models.
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Beast will be submitted for inclusion in the CCP4 (Colla-

borative Computational Project, Number 4, 1994) program

suite after implementation and testing of the most important

remaining options has been completed. In the meantime, it is

available by request from the author.
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speed of the translation search substantially. Osnat Herzberg

kindly provided the dihydrofolate reductase test data. This
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from the Wellcome Trust, UK.
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