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We present an general algorithm for the evaluation of the nth derivatives (with respect to the nuclear Cartesian coordinates) 
of two-electron-repulsion integrals (ERIs) over Gaussian basis functions. The algorithm is a generalization of our recent 
synthesis of the McMurchie/Davidson and Head-Gordon/Pople methodologies for ERI generation. Any ERI nth derivative 
may be viewed as an inner product between a function (which we term a bra) of electron 1 and a function (which we term 
a ket) of electron 2. After defining bras and kets appropriately, we derive five recurrence relations that enable any bra to 
be constructed recursively from very simple bras which we call p-bras. We show how these recurrence relations (and their 
analogues for kets) may be used to compute ERI nth derivatives from easily calculated one-center Hermite integrals. The 
five recurrence relations are overcomplete in the sense that there is generally more than one path through them by which 
a given bra can be constructed. We have written a computer program that selects an efficient path to any necessary bra 
or ket. We present comparative FLOP counts and timings which demonstrate that, for calculations using contracted basis 
sets, the new methodology (the BRAKET algorithm) is very competitive, both theoretically and practically, with all previous 
approaches. 

Introduction 
Ever since Boys' introduction of Gaussian basis sets to quantum 

chemistry in 1950,' the calculation and handling of the notorious 
two-electron-repulsion integrals (ERIs) over Gaussian functions 
has been an important avenue of research for practicing compu- 
tational chemists. Indeed, the emergence of practically useful 
quantum chemistry computer programs such as the GAUSSIAN 
suites2 has been fueled in no small part by the development of 
sophisticated algorithms** to compute the very large number of 
ERIs that are involved in calculations on molecular systems of 
even modest size. 

In recent times, dramatic improvements in computer speed have 
paved the way for the introduction of the so-called 'direct" 
methods.*I5 Within this framework, rather than being computed 
once and then stored for subsequent use, ERIs (and, if necessary, 
their derivatives) are computed as often as they are needed and 
are then discarded. Although these approaches are obviously more 
expensive computationally than their conventional analogues, they 
permit much larger systems to be treated and do not require 
prohibitive amounts of disk space. Their practical usefulness is, 
however, predicated on the availability of highly efficient algor- 
ithms for ERI generation. 

An unnormalized primitive Cartesian Gaussian function 

centered a t  A and with exponent f f k  is uniquely defined by its 
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angular momentum vector a = (ax, a,,, az), by its position vector 
A and by its exponent (rk. Its angular momentum is defined as 
a = (a, + ay + az). For example, if a = (O,l,l), then %represents 
a dyz function. It is convenient to group such functions by their 
exponents. Thus, we will refer to a set of primitive functions with 
a given exponent and on a given center as a primitive shell. 

Primitive functions are often linearly combined to form a 
contracted Cartesian Gaussian function 

K 

k= I 
= XDlkcplk 

where the Dd are known as contraction coefficients and K is known 
as the degree of contraction of the contracted function. 

A primitive ERI over four primitive Gaussians is the integral 

[akbicmdnl = 1 1 ~ i k ( r l ) ~ / ( r l ) r 1 2 - ' ~ ~ m ( T Z ) R n ( l Z )  drl dr.2 (3) 

The left-hand subscripts are rarely of particular interest and it 
is common to denote the integral (3) by [ablcd]. 

Combining (2) and (3) leads to a contracted ERI 
KA KB KC KD 

(ablcd) = CCCCDlk*Dbk~DekcD~k~[ak~bk~ickcdk~l  (4) 
k~ k~ kc kv 

which we distinguish from a primitive ERI by the use of par- 
entheses instead of square brackets. 

A class of ERIs is defined as the set of all (ablcd) associated 
with a given shell quartet. For example, if each of the four shells 
were a p shell (which, of course, is composed of three functions: 
px, pY and pz), the associated class would contain 81 (=34) ERIs. 

It is useful to express, as a quadratic in @, the total number 
of FLOPS (FLoating-point Operations, viz., adds, subtracts, 
multiplies, and divides) N required by a given algorithm to com- 
pute a class of ERIs of a given type 

( 5 )  

where, for simplicity, each of the four shells involved is assumed 
to have the same degree of contraction K and neither the centers 
A and B nor the centers C and D are assumed to be coincident. 
The coefficients x, y ,  and z vary greatly from one algorithm to 
another and may be used to rationalize the relative performances 
of different approaches. 

In a recent paper,I6 we presented a preliminary discussion of 
a new methodology in which the best features of the McMur- 

N = xK4 + y @  -+ z p  
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