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The method of structure-factor calculation by fast Fourier transform techniques

[Ten Eyck (1977). Acta Cryst. A33, 486±492] is here reviewed. It is found that the

recommended sampling of three times the highest index in each direction

[Lipson & Cochran (1966). The Determination of Crystal Structures, 3rd ed., pp.

94±102. Ithaca: Cornell University Press] is appropriate for any resolution,

provided an adequate Gaussian dampening factor is used. A rule is given to

determine this factor.

1. Introduction

In Ten Eyck's (1977) method for structure-factor calculation,

the Fourier transform of a model electron density is computed

using the fast Fourier transform algorithm (FFT). The model

electron density is the sum of atomic contributions obtained

by transforming the atomic scattering factors, usually

expressed as a sum of Gaussians. The atomic contributions can

then be recovered analytically and their values used to

compute the model electron density on a grid, which poses the

problem of sampling. This problem is solved by using a result

of Brillouin (1956), which relates the Fourier coef®cients,

F�H�, H integer, of a periodic function of period a with those,

C�H�, obtained by computing the discrete Fourier transform

of the function sampled at N equidistant points spaced out

by a=N:

C�H� � P1
n�ÿ1

F�H � nN�: �1�

If the contribution of the n 6� 0 terms is negligible, then C�H�
is close to F�H�. This is not in general the case for reasonable

values of N. The procedure proposed by Ten Eyck (1977) to

solve this problem consists in adding an ad hoc thermal

parameter B to all the atomic temperature factors. Then, F�H�
becomes F�H� exp�ÿ1

4BH2=a2� and (1) becomes

CB�H� �
P1

n�ÿ1
F�H � nN� exp�ÿ1

4B�H � nN�2=a2�: �2�

This gives, after multiplication by exp��1
4BH2=a2�,

CB�H� exp�14BH2=a2� � F�H� �P
n6�0

F�H � nN�

� exp�ÿ1
4BnN�nN � 2H�=a2�: �3�

Since 2jHj<N, as required by the discrete Fourier transform

algorithm, an appropriate choice of N and B can render the

exponentials in the right-hand member arbitrarily small, the

left-hand member thus approaching F�H�. To summarize: the

atomic scattering factors are ®rst multiplied by a Gaussian and

the resulting atomic electron densities are used to sample the

model density on a grid. This is fast Fourier transformed and

the calculated structure factors are divided by the Gaussian.

However, no rule to determine B or N was proposed. The

main result of this article is the establishment of such a rule.

2. Model electron density

The atomic scattering factor is usually given by a linear

combination of four Gaussians plus a constant term (Doyle &

Turner, 1968), which we write as

fatom�jsj� �
P4

n�0

an exp�ÿ1
4bns2� �4�

with b0 � 0. s is the scattering vector of resolution 1=jsj. The

values of the coef®cients an; bn for free atoms or ions are

compiled in International Tables for Crystallography (1992),

Vol. C . The values of bn present a great dispersion (see Fig. 1),

ranging from 0 to 214 for neutral atoms. The atomic electron

density is then a linear combination of Gaussians obtained by

analytical transformation of (4),

�atom�jrj� �
P4

n�0

an�4�=bn�3=2 exp�ÿ1
2�8�2=bn�r2�; �5�

and the model electron density

��r� � P
atom

�atom�jrÿ ratomj�; �6�

where ratom denotes an atomic position. The sum is taken over

the atoms in the unit cell. The advantage of (4) and (5) is

that they keep their forms after incorporating the atomic

(isotropic) temperature factors, Biso, and the thermal par-

ameter B. Indeed, this amounts to substituting bn by

bn � Biso � B in these equations.

The structure factors may be calculated either by direct

summation

F�s� � P
atom

fatom�jsj� exp�2�is � ratom� �7�

or by numerical integration of



F�s� � R ��r� exp�2�is � r� d3r: �8�
The last approach poses the problem of sampling of �.

According to (5) and (6), this can be reduced to the case of a

single Gaussian. In the following two sections, we will inves-

tigate the problem of sampling in one dimension.

3. Sampling of a Gaussian

We want to assess the error made when computing the Fourier

transform of a Gaussian

1

��2��1=2

Z 1
ÿ1

exp�ÿ1
2x

2=�2� exp�2�isx� dx

� exp�ÿ1
2�2��s�2� � G��s� �9�

by means of a discrete summation. The root-mean-square

deviation parameter, �, is related to the temperature B factor

by the relationship

� � �B=8�2�1=2: �10�
We ®rst divide the x axis into steps of width � and perform the

substitutions

dx! �; x! j� �11�
( j integer) in the right-hand member of (9), obtaining

C�s� � �

��2��1=2

X1
j�ÿ1

exp�ÿ1
2� j��2=�2� exp�2�i sj��: �12�

Brillouin's result [equation (1)] generalized to Fourier inte-

grals (a proof is given in Appendix A) gives

C�s� � P1
n�ÿ1

exp�ÿ1
2�2���2�s� n=��2�

� P1
n�ÿ1

exp�ÿ1
2�2��=��2�s�� n�2�: �13�

We note that the pertinent variables are the dimensionless

quantities

s0 � s�; �0 � �=�: �14�
It follows that G��s� � G��0s0�.

The theoretical relative error made when computing the

discrete sum instead of the integral is

E�theory���0; s0� � j1ÿ C�s�=G��0s0�j
� P

n 6�0

expfÿ1
2�2��0�2��s0 � n�2 ÿ s02�g

� P
n 6�0

exp�ÿ1
2�2��0�2n�n� 2s0��: �15�

E�theory� is an even function of s0; we will only consider the

region s0 � 0. It can be readily shown that

@E�theory�=@�0< 0; @E�theory�=@s0> 0: �16�
These inequalities imply that a curve of constant E�theory�

de®nes s0 as an increasing function of �0.
The center of the Gaussian may not coincide with a

sampling point [j � 0 in (12)] but lie somewhere within the

interval �. Its position may be written as ��, with 0 � � � 1.

The only change in (15) is that each term of the series is now

multiplied by exp�2�i�n�. The sum of their moduli is then the

same, so (15) is an upper bound of the relative error for any

position of the Gaussian.

In practice, C�s� is computed using a ®nite number of

sampling points. The experimental (numerical) relative error

of the discrete approximation is then

E�calc���0; s0; J� �
����1ÿ exp�12�2��0s0�2�

�0�2��1=2

�
XJ

j�ÿJ

exp�ÿ1
2 j2=�02� exp�2�i s0j�

����: �17�

The cutoff J, hence the number of sampling points, depends

on the cutoff for the Gaussian contributions. For example, if
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Figure 2
Upper limit of the scattering vectors, s0sup, as a function of �0,
for a Gaussian cutoff of 10ÿ6 and two values of the maximum relative
error, E�calc� � 10ÿp; p � 4; 2. The discontinuities are produced by
round-off errors. The increasing continuous curves correspond
to E�theory���0; s0� � 10ÿp, p � 4; 2 and the decreasing ones to
G��0s0� � 10ÿp, p � 4; 6.

Figure 1
Coef®cients bn of the 4-Gaussians-plus-constant ®t of the atomic
scattering factors, for neutral atoms, as a function of the atomic number.
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we want to keep only terms greater than 10ÿp, i.e.

exp�ÿ1
2 j2=�02� � 10ÿp, then the sum must be taken over the

integers that satisfy

jjj � J � �0�ln�100�p�1=2: �18�
It is important to identify the values of ��0; s0; J� that make

E�calc� smaller than a prescribed (attainable) value. It is found

that, for ®xed �0 and Gaussian cutoff, hence J, the inequality is

satis®ed by all s0 smaller than a maximum value s0sup, i.e.

E�calc���0; s0; J� � " for 0 � s0 � s0sup��0; J; "�; �19�
as shown in Fig. 2. As long as the value of G��0s0� is higher than

a certain limit related to " and the Gaussian cutoff, E�calc�

approximates quite well the corresponding theoretical value

E�theory�. This can be readily seen by plotting G��0s0sup� as a

function of �0, as shown in Fig. 3. A similar plot is shown in Fig.

4 for ®xed maximum relative error and different Gaussian

cutoffs. The computations were performed in double precision

(real**8) and using the Fortran compiler built-in functions

exp, sin, cos. It is known that round-off errors are then

somewhat greater than when using the FFT algorithm.

4. Structure-factor calculation

What is given in practice is the cell parameter a, which is also

the periodicity of the model electron density, and the coef®-

cients of the Gaussian. One has to determine the number

of sampling points N or, equivalently, the spacing � � a=N.

According to (17) and (18), the effective number of sampling

points for each particular Gaussian is 2J � 1. N is usually

greater than the maximum 2J.

Structure factors are usually computed up to a given reso-

lution dmin, related to a maximum Miller index Hmax,

jsj � 1=dmin � smax; Hmax � a=dmin: �20�
The FFT algorithm requires that 2Hmax � 1 � N. The quotient

between the actual and the minimum allowed number of

sampling points is called the Shannon rate. We shall de®ne it

as

R � N=2Hmax > 1: �21�

The smaller is R, the more economic is the computation. For

example, the Lipson & Cochran (1966) prescription is R � 1:5.

The maximum (dimensionless) length of the reciprocal vectors

whose structure factors have to be calculated is simply half the

inverse of the Shannon rate

s0max � smax� � �1=dmin��a=N� � Hmax=N � 1=2R: �22�

If the atomic scattering factors are represented by a unique

Gaussian of coef®cient b, or a constant term in the case of

point atoms (b � 0), and all atoms have the same temperature

factor Biso, then Fig. 2 suggests that the best choice of s0max is

the highest value (the smallest Shannon rate) compatible with

a chosen maximum relative error and Gaussian cutoff. The

associated �0min is determined using the corresponding curve of

Fig. 2. For a maximum relative error of 10ÿ4 and Gaussian

cutoff of 10ÿ6, s0max � 0:4 and �0min � 1:527. This corresponds

to the rather small Shannon rate R � 1:25. However, we must

also satisfy N> 2J. Using (18) and the preceding equations, we

have

N � �a=dmin�1=s0max > 2�0min�ln�100�p�1=2 �23�

or

�0mins0max < �a=dmin�=f2�ln�100�p�1=2g: �24�

This gives, with the above values, a=dmin > 6:42. If the

inequality is not satis®ed by the desired dmin, a smaller s0max

must be chosen, and its associated �0min, using Fig. 2 and Fig. 3.

With these values, N and B are obtained as functions of a, dmin

and b� Biso

Figure 3
Values of G��0s0sup�, in minus logarithmic scale, versus �0, for the
calculations shown in Fig. 2. The continuous curves correspond to the
theoretical values. The horizontal lines are drawn for reference.

Figure 4
Values of G��0s0sup�, in minus logarithmic scale, versus �0, for different
Gaussian cutoffs, 10ÿp, p � 6; 8; 10; 12; 14, and a maximum relative error
of 10ÿ4. The continuous curve corresponds to the theoretical values. The
horizontal lines are drawn for reference.



N � �a=dmin�1=s0max

�min � �0min� � �0mins0maxdmin

bmin � b� Biso

B � 8�2�2
min ÿ bmin:

�25�

In practice, not only each atom has its individual Biso but also

the atomic scattering factors are given by a sum of Gaussians

[equation (4)]. We may substitute bmin in (25) by the minimum

of bn � Biso over the set of all atoms. For neutral atoms, this is

simply the minimum atomic Biso because of the b0 � 0 term in

(4). But now we must check that all Gaussians contribute with

an acceptable error.

From Fig. 2, we see that the smaller is the resolution, the

wider is the range of allowed �0. Given the great dispersion of

the atomic bn and Biso, it is almost impossible to keep the

relative error of each contribution below a desired value.

However, the absolute error is roughly constant beyond the

upper limit of the allowed �0 region. This is because a rise in

relative error is compensated by a fall in contribution; the

drop in absolute error is thus proportional to the drop in

contribution.

It is then natural to choose �0min as the minimum allowed

value for a chosen maximum relative error E�theory� at the

highest resolution s0max. It helps to read Fig. 2 in a different

way: G��0s0� versus �2s0�ÿ1 (Fig. 5). Now we can directly

observe, for ®xed resolution, the drop in contribution between

the lower and the upper limits of the allowed �0 region. With

�2s0max�ÿ1 � R � 1:5, there is a drop of more than two orders

of magnitude. Little is gained beyond R � 2. The drop may be

increased by decreasing the Gaussian cutoff, as shown in Fig. 4.

In summary, the rule to determine N and B is:

(i) get bmin, the minimum of bn � Biso over the set of all

atoms;

(ii) select the Shannon rate R � �2smax�ÿ1 from Fig. 5 such

that the drop in Gaussian contribution at the farthest limit of

the allowed region for that R is of the desired order of

magnitude;

(iii) get the �0min corresponding to the selected value of

R � �2s0max�ÿ1 from Fig. 2. Check that inequality (24) is satis-

®ed;

(iv) determine N and B using (25).

The structure-factor calculation is then performed following

Ten Eyck's (1977) method as recalled in the Introduction.

5. The three-dimensional case

The results obtained in the preceding section can be readily

adapted to the real case of molecular scattering factor and

crystal structure-factor calculations. Now we have

�2��2�ÿ3=2
R

exp�ÿ1
2r

2=�2� exp�2�is � r� d3r � exp�ÿ1
2�2��s�2�;

�26�
and its discrete form version (see Appendix A)

c�s� � �x�y�z

�2��2�3=2

X1
j1;j2;j3�ÿ1

exp�ÿ1
2� j1�xa� j2�yb� j3�cc�2=�2

� exp�2�i� j1�xs � a� j2�ys � b� j3�zs � c��

�
X1

n1;n2;n3�ÿ1
exp ÿ1

2�2���2 s� n1

�x

a� � n2

�y

b� � n3

�z

c�
� �2

" #
�27�

where f�x;�y;�zg are the step widths along the cell axes

fa; b; cg. The Gaussian cutoff, i.e. exp�ÿ1
2r

2=�2� � 10ÿp,

restricts the sum to the points within the sphere of radius

��ln�100�p�1=2. For molecular scattering-factor calculation, i.e.

Fourier coef®cients corresponding to an isolated molecule,

this sphere must ®t into the unit cell. The step widths are

simply the inverse of the number of sampling points in each

direction,

��x;�y;�z� �
1

N1

;
1

N2

;
1

N3

� �
: �28�

The relative error is given by

E�theory���; s� � j1ÿ c�s�= exp�ÿ1
2�2��s�2�j

� P
�n1;n2;n3�6��0;0;0�

expfÿ1
2�2���2�n1N1a� � n2N2b�

� n3N3c����n1N1a� � n2N2b� � n3N3c�� � 2s�g:
�29�

Using a single Shannon rate, we substitute here the number of

sampling points by

�N1;N2;N3� � �a; b; c�2R=dmin; �30�
taking for example the nearest integer of the right-hand term,

and calculate the minimum � that satis®es E�theory���; s� � " for

all jsj � 1=dmin. In practice, it suf®ces to take a small number

of s vectors, those with length 1=dmin in the direction of

n1N1a� � n2N2b� � n3N3c�; �31�

Acta Cryst. (2002). A58, 568±573 Navaza � Structure factors by FFT 571

research papers

Figure 5
Values of G��0s0sup�, in minus logarithmic scale, versus 1=�2s0�, for the
calculations shown in Fig. 2. The continuous curves correspond to the
theoretical values. The abscissas can also be interpreted as Shannon rates.
The vertical line shows the points that correspond to a Shannon rate of
1.5.
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with n1; n2; n3 taking values ÿ1; 0; 1, excluding �n1; n2; n3� �
�0; 0; 0�. The sum in (29) may also be restricted to the same set

of integers. Having �min, we may obtain the B of the

dampening factor using the last of equations (25), with bmin

equal to the minimum of bn � Biso over the set of all atoms.

We applied the preceding rule to calculate structure factors

for VP6, the major capsid protein of Rotavirus (Mathieu et al.,

2001), which crystallizes in the cubic space group P4132 with a

unit-cell constant of 157.78 AÊ and only one monomer (3166

non-Hydrogen atoms) of the trimeric molecule in the asym-

metric unit. The computations were performed in single

precision (real**4) using subroutines of the AMoRe package

(Navaza, 1994), which uses the kernel of Ten Eyck's FFT

program (Ten Eyck, 1977). The Gaussian cutoff was set to

10ÿ5. The `exact' values of the Fourier coef®cients were

computed by direct summation [equation (7)].

In a ®rst test, crystal data were calculated to 4.5 AÊ resolu-

tion (4347 independent re¯ections) using a Shannon rate

equal to 1.5, which gives a grid spacing of 1.5 AÊ . The results for

different B factors are shown in Figs. 6 and 7. The last ®gure

also shows how critical the choice of a reasonable Gaussian

cutoff is. For example, very poor results are obtained when the

Gaussian contributions are restricted to values greater than

the often used limit of eÿ7 � 10ÿ3:04. For the dampening factor

B � 195 AÊ 2, which corresponds to E�theory� � 10ÿ3:5 [equation

(29)], the average relative error of the calculated complex

structure factors is 0.0068% and the average phase error is

0.0011�.
In a second test, the molecular scattering factors were

calculated up to 15 AÊ , a typical calculation when ®tting X-ray

Figure 6
Crystal structure factors of VP6 calculated up to 4.5 AÊ resolution using a
Shannon rate of 1.5 and a Gaussian cutoff of 10ÿ5. R factor (lower curve)
and average percent relative error, 100� hjFcalc ÿ Ftheoryj=jFtheoryji, as a
function of B. The estimated optimal B factor, solution of E�theory� � 10ÿ3:5

[equation (29)], is 195 AÊ 2.

Figure 7
Maximum percent relative error, 100�max�jFcalc ÿ Ftheoryj=jFtheoryj�, of
the calculated structure factors as a function of B for two different
Gaussian cutoffs, eÿ7 � 10ÿ3:04 (overall upper curve) and 10ÿ5. Same test
case as in Fig. 6.

Figure 9
Maximum percent relative error, 100�max�jFcalc ÿ Ftheoryj=jFtheoryj�, of
the calculated molecular scattering factors as a function of B. Same test
case as in Fig. 8.

Figure 8
Molecular scattering factors of VP6 calculated up to 15 AÊ resolution
using a Shannon rate of 1.5 and a Gaussian cutoff of 10ÿ5. R factor
(lower curve) and average percent relative error, 100� hjFcalc ÿ Ftheoryj=
jFtheoryji, as a function of B. The estimated optimal B factor
(E�theory� � 10ÿ3:5) is 1875 AÊ 2.



molecular models into electron-microscopy reconstructions.

The trimeric model was put in a box with cell parameters 418,

342 and 330 AÊ , which gives 29340 Fourier coef®cients. With

R � 1:5, the grid spacing is now 5 AÊ . The results for different

B factors are shown in Figs. 8 and 9. Equation (29) gives, for

E�theory� � 10ÿ3:5, B � 1875 AÊ 2. The average relative error of

the calculated Fourier coef®cients is 0.0045% and the average

phase error is 0.0006�. For the chosen Gaussian cutoff and B

factor, atoms contribute up to a radius of 23.7 AÊ .

6. Conclusions

The numerical results show that structure factors can indeed

be calculated by FFT with an acceptable precision using a

rather coarse grid ± the Lipson & Cochran prescription ± up to

any desired maximal resolution, provided that appropriate

Gaussian cutoff and B dampening factor are used. A point of

practical importance is that the value of B is obtained quite

simply by solving the analytical expression (29) equated to the

desired value of E�theory�.
Anisotropic thermal factors do not complicate the FFT

calculations, although the construction of the model electron

density becomes more intricate. In this case, the proposed rule

to determine the B factor also applies; it suf®ces to take Biso as

corresponding to the smallest sphere inscribed in the thermal

ellipsoid.

APPENDIX A

The Fourier transform of a function ��x� is de®ned by

f �s� � R1
ÿ1

��x� exp�2�isx� dx; �32�

from which ��x� can be recovered by means of the inverse

Fourier transform

��x� � R1
ÿ1

f �s� exp�ÿ2�isx� ds: �33�

We now divide the x axis into steps of width � and compute,

instead of the integral (32), the sum

c�s� � �
P1

j�ÿ1
��j�� exp�2�isj��: �34�

Replacing ��j�� by the Fourier integral (33), and using the

expressionP1
j�ÿ1

exp�2�i�uÿ u0�j� � P1
n�ÿ1

��uÿ u0 � n� �35�

of the periodic � distribution, we obtain

c�s� � �
P1

j�ÿ1

R1
ÿ1

f �s0� exp�ÿ2�is0j�� ds0 exp�2�isj��

� R1
ÿ1

f �s0� P1
j�ÿ1

exp�2�i�s�ÿ s0��j� d�s0��

� R1
ÿ1

f �s0� P1
n�ÿ1

��s� ÿ s0�� n� d�s0��

� P1
n�ÿ1

f �s� n=��: �36�

In three dimensions, we consider the general case of a skew

coordinate frame fa1; a2; a3g and its associated dual basis

fa�1; a�2; a�3g, which de®ne cells with volumes V and Vÿ1,

respectively. Vectors in this space are written in the form

r �P3

j�1

xj aj; s �P3

j�1

sj a�j �37�

with coef®cients that are dimensionless arbitrary real

numbers. Now we have

f �s1; s2; s3� � V
R R R1
ÿ1

��x1; x2; x3� exp 2�i
P3

j�1

sj xj

 !
dx1 dx2 dx3

�38�
and

��x1; x2; x3� � �1=V� R R R1
ÿ1

f �s1; s2; s3�

� exp ÿ2�i
P3

j�1

sjxj

 !
ds1 ds2 ds3: �39�

We divide the fx1; x2; x3g axes into steps of widths

f�1;�2;�3g and compute, instead of the integral (38), the

sum

c�s1; s2; s3� � V�1�2�3

P1
j1;j2;j3�ÿ1

�� j1�1; j2�2; j3�3�

� exp 2�i
X3

j�1

sj jj�j

 !
: �40�

Replacing � by the Fourier integral (39) and using the de®-

nition (35) of the periodic � distribution, we obtain

c�s1; s2; s3� �
P1

n1;n2;n3�ÿ1
f �s1 � n1=�1; s2 � n2=�2; s3 � n3=�3�:

�41�
� j1; j2; j3� and �n1; n2; n3� take integer values.
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