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because of the short wavelength. This fact at present 
limits the amount of detail available in the TDS 
profiles, and direct extraction of the elastic constants 
is not possible. The vertical resolution can be 
improved by the incorporation of horizontal Soller 
slits, such that the observed TDS profiles would fall 
off more quickly with q in both the transverse and 
longitudinal directions. If the counting-rate reduction 
were not too severe, this improvement would provide 
greater detail within the limits of the one-phonon 
model. 

In summary, the analysis of the resolution function 
for MSssbauer y-ray scattering presented here has 
led to a good understanding of the strengths and 
limitations of this experimental probe. This better 
understanding is crucial to the interpretation of TDS 
measurements and of direct measurements of inelastic 
and quasi-elastic scattering which are planned for the 
QUEGS instrument. 

The authors thank S. A. Werner for suggestions 
leading to a better understanding of the resolution 
function. 
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Abstract 

An analysis of the mathematical structure of the rota- 
tion function is presented. The effect of truncation of 
the expansions used in the fast rotation function is 
discussed and an alternative procedure of calculation 
which drastically reduces the errors is proposed. A 
method of sampling on spherical surfaces is 
developed. The rotation function can thus be obtained 
from the values it takes at the sampling points. The 
method can also be used to compute expansions in 
spherical harmonics of Patterson functions restricted 
to arbitrary domains. Topological properties of the 

0108-7673/87/050645-09501.50 

rotation group are used to obtain distortion-free plots 
of the different sections of the rotation function. 

Introduction 

In Crowther's formulation of the fast rotation func- 
tion, emphasis is placed on the expansion of the 
Patterson functions in terms of the spherical har- 
monies and.the spherical Bessel functions (Crowther, 
1972). These expansions lead to slowly convergent 
series and the relative errors of some contributions 
can exceed 100% for reflections corresponding to 
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646 THE FAST ROTATION FUNCTION 

certain resolutions, under the conditions of applica- 
tion of the current version of the program. It will be 
shown that these errors can be drastically reduced if 
the expansion in radial functions is replaced by a 
numerical integration rule. 

Patterson functions restricted to non-spherical 
domains will be discussed. In order to take full advan- 
tage of the properties of the rotation group these 
Patterson functions have to be expanded in spherical 
harmonics, but the coefficients of the expansions have 
now to be evaluated by numerical integration over 
the spherical surface. A method of sampling for func- 
tions defined on the spherical surface will thus be 
proposed. 

An extension of this method will allow us to recover 
the rotation function from the values it takes on a set 
of sampling points. 

Finally it will be shown that some topological 
properties of the rotation group lead, in a unique 
way, to the metric introduced by Burdina (1971) and 
Lattman (1972) in order to produce distortion-free 
plots of the rotation function. 

The rotation function 

The rotation function is defined as the integral over 
a spherical region 12 of the product of a given 
Patterson function P(~) with the rotated version of 
either itself or another Patterson function p(2) (Ross- 
mann & Blow, 1962). 

For any rotation ~ ,  the rotated version of p(2) is 
- ~ ( 2 )  the function T ( t b ) r  , defined as 

[ T(~)P(2)](r) = P(E)[g-~(tb)r], (1) 

R(~)  being the operator associated with ~ in a three- 
dimensional representation of the rotation group. 

With this definition the rotation function ~ is a 
functional of P(~) and p(2), 

~((k; pU), p(2))= 1 /v  ~ P(l)(r)[ T(~)P(E)](r) dar, 
12 

(2) 

which depends on ~ as a parameter (v is the volume 
of the spherical region 12). It can also be considered 
as a particular matrix element of the operator T(~),  

~ ( 6 ;  P('), P(2) )=(P( ' ) IT(6) IP(2) ) .  (3) 

It is then natural to expand the functions P(') (t = 1, 2) 
in terms of the spherical harmonics Ytm, since they 
are the standard basis of the irreducible representa- 
tions of the rotation group (Crowther, 1972). In this 
basis the matrix representing the operator T(~b) is 
block diagonal, the blocks being irreducible ones. 
Besides, as T((b) is already diagonal in the radial 
components of P('), it is not in principle necessary 
to expand them in any particular set of radial func- 
tions. 

The Patterson functions are represented by trun- 
cated Fourier series 

P( ')(r)= Y }F~)12exp(2crinr), (4) 
H ~  ~t°(t)  

~ ' )  being the set of the experimentally available 
reciprocal vectors of crystal t. Their expansions in 
spherical harmonics are of the form 

l = 0  m = - I  

where r = Irl and ~ = r/r. 
The radial functions "('~ ,.tin are determined by the 

formula 

c~2(r) = ~ PC°(r) Y*,,(~) d~, (6) 
~r r 

where O" r is the spherical surface of radius r. 
Even if the p(O are defined for all points in a 

three-dimensional space, we may be interested in the 
comparison of the Patterson functions restricted to 
particular regions 12(,). These regions are only used 
to obtain the radial functions c~2, and need not be 
spherical ones. 

For an arbitrary domain 12('), the integral (6) 
extends over the intersection of the spherical surface 
O" r with 12('), and has to be evaluated by numerical 
methods to be discussed later. In this case the 
expansion (5) represents in fact a new function, say 
/3(,), which coincides with P(') in 12(') and is zero 
outside it. 

In order to take full advantage of the properties of 
the rotation group, it is however necessary that 12, 
which enters the definition of the rotation function, 
is a spherical domain. 

If one recalls the transformation properties of the 
spherical harmonics (Landau & Lifschitz, 1972) 

1 

T(tb)  Yz,,, ,= ~. Y t , ,D~, , , (6) ,  (7) 
m = - - l  

the rotated Patterson function is easily obtained: 

oo I 

[ T(~)P(2)](r) = E E c~2)'(r) Y l m ( r ) D l m ' ( t ~ )  • 
I = 0  m,m '=- I  

(8) 
Dt(tb)  is the matrix associated with the rotation ~ in 
the /th canonical irreducible representation of the 
rotation group. 

The rotation function is then (Crowther, 1972) 

<P(')IT(+) P% 
co I 

= E E D~,,,'(tb) C'-mr,,',-(p('), p(2)), (9) 
1 = 0  m,m'=--I 

with 

Ct (/)(i) p(2)) (i/v) i (i)* (2) r 2 ,,,m',-- , = CZ,,, (r)ct,,,,(r) dr (10) 
0 
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Table 1. Maximum values o f  the arrays T t [equation 
(14)] 

l h Tt(h, h) x 10 -4 

2 4.034 248.64 
4 6.606 92.07 
6 9-008 47.57 
8 11.329 28"86 

10 13.601 19.28 
12 15.839 13.73 
14 18"053 10-24 
16 20"248 7"91 
18 22.427 6.28 
20 24-594 5.10 
22 26"751 4"21 
24 28"898 3"53 
26 31"038 3"00 

(a is the radius of the region O). We see that it can 
be interpreted as an expansion in terms of the com- 

Dram' (Wigner, plete orthogonal set of functions z 
1959). 

If the O (') are spherical regions, the radial functions 
are readily obtained when the expansion (Landau & 
Lifschitz, 1972) 

co l 
, ^ 

exp (ipr)=47r ~ ~ i~it(pr)Ylm(p)Yt,,(r) (11) 
l = 0  m = - - I  

(jr is the spherical Bessel function of order l) is 
substituted into (4), to give 

^ 
c~(r )  =47ri' ~, IF(~)12j,(2~rHr) Ylm(a). (12) 

He ~if(t) 

C r a m '  c a n  A closed expression for the coefficients 
now be obtained. With the dimensionless quantities 
h = 2"n'Ha and k = 27rKa, the result is 

C t CP(~) P(2))=127r E Z IF~)12ytm(~) mrrl ' \ ~ , 
H~ ~'(1) lKe ~rd'(2) 

× T ' ( h ,  k)lF  l 2 * ^ Ylm,(K), ( 1 3 )  

where (Watson, 1958) 

1 

T'( h, k)= ~ jz( hx) j l (kx)x  2 dx  
0 

{ [hjt_l(h)jt(k)-kjl-l(k)jt(h)]/(k2-h2), 
= i f h ~ k  

½[j2(h)- j ,_l(h) j ,+l(h)] ,  i fh  = k. (14) 

The two-dimensional array T ~ takes its maximum 
value on the diagonal h = k. This value is listed as a 
function of l in Table 1. The contour levels of the 
arrays T t, normalized to their maximum values, are 
shown in Fig. 1. 

On practical grounds it is, however, important that 
the summations on H and K be performed indepen- 
dently of each other, as was the case in the original 
equations [(10)-(12)]. This property can be restored 
in several ways. 

One possibility is to expand the C~'m ) in terms of 
functions fn (n = 1 , . . . ,  N) which are orthogonal in 

the interval (0, a), with m e a s u r e  r 2 dr. Furthermore, 
we have the possibility of choosing different 
expansion functions for different /'s because they 
refer to distinct irreducible representations of the 
rotation group. For example, Crowther (1972) 
chooses Fourier-Bessel expansions based on the jt's. 
The C t,,,m, will be given by an expression of the form 

N 
vmm'x--("~l (/::p(1), p(2)) -- ~ Ulmn"(1)*"(2)Ulm'n. (15) 

n = l  

Another possibility is the evaluation of .the integral 
in (10) by means of an approximation of the form 

M 
l ,~ (1 ) , (  (2) 2 Cmm,(p(1),p(2)) "-- Y~ t.l,,, .r,,)Ctm,(r.)r,,w., (16) 

n = l  

where w, is the weight associated with the sampling 
point rn. 

In both cases we are ultimately calculating T 1 in 
an approximate way. The confrontation with the exact 
result [(14)] will show the errors implied in any one 
of the approximations. 

Cram', which can some- Despite the errors in the / 
times be very important, and the subsequent errors 
in the rotation function [(9)], the results still have a 
full physical sense. The reason is that the effect of 
the approximation [(15) or (16)] on the rotation func- 
tion is strictly equivalent to that of some particular 
projection operator which projects the Patterson 
functions on a subspace spanned by functions labeled 

0 h 62 

% /=6 % 
l=lO l=12 

Fig. 1. Tt(h, k) [equat ion (14)] as a funct ion o f  h and k. The 
contour  levels are 10, 30 and 80% of  the max imum value for 
each l (see Table 1). 
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by the numbers (l, m, n). The important point is that 
the projection is correctly calculated. 

Qualitatively the situation is the same as if we 
computed an R factor using less reflections than 
available. 

This suggests that a selection of the /'s entering 
into (9) can be made on physical grounds. For 
example, the term l = 0  may be omitted not only 
because it simply adds a constant contribution to the 
rotation function, but also because it represents the 
contribution of the origin peaks of P ~  and p~2}. In 
fact, according to (6), C~Jo}(r) is the spherical average 
of P~'~ at distance r, so that the origin peak, which 
is normally spherical in shape, will be correctly 
described by this radial function. 

Assume now that a certain Patterson function is 
roughly ellipsoidal in shape. Then, if one recalls that 
the lit,, are intimately related to the homogeneous 
polynomials of degree I in x, y and z (Smirnov, 1972), 
the terms with l = 2 will dominate the expansion of 
that Patterson function in spherical harmonics. If we 
are looking for a finer structure, such terms should 
be omitted from (9). 

Inspection of Fig. 1 shows that the omission of 
small l's is somewhat equivalent to omitting low- 
resolution data in the computation of the Patterson 
functions, except that now high angular resolution is 
obtained without omitting any data. 

Approximate evaluation of T t 

( a ) Fourier- Bessel expansion 

We shall discuss exclusively the case (essentially 
the formulation of Crowther) in which jl(hx) is 
approximated by the truncated expansion 

N 

j t ( h x ) -  Y. b,,(h)jl(h,,,x). (17) 
n = l  

The Ai, are such that jt(hz,) = 0, i.e. they are the zeros 
of jr. The coefficients bz,, are (Watson, 1958) 

1 

bt,,(h) = 2 ~jt(hx)jl(kx)x 2 dx/jt_l(hl,) 2 
0 

=2j,(h)A,,,/[j,-~(Al,,)(h2-A2,,)], h #  At,,, 

(18) 
and, of course, bz,(Ai,)= 1. The array T I is now 
approximated by 

T'(h, k ) -  T~(h, k) 
N 

= ~, bl,~(h)btn(k)j~_,(Aln)/2 
n = l  

N 

=2jt(h)j,(k) E A~,~/[(h2-A~n)(k2-A~,,)]. 
n = l  

(19) 

This expansion has the advantage of giving the 
exact result whenever h or k coincides with one of 
the zeros of jr, provided it was included in the 
summation. 

When N tends to infinity this series converges 
because the large zeros of the Bessel functions behave 
as h t , , - (n+l /2 )~ .  For h and k < h m  the error is of 
the order of 

T ' ( h , k ) - T ~ ( h , k )  "-2j,(h)j,(k)(~rAm) -1 (20) 

For particular values of h and k we have exact 
summation rules which can be used to assess the error 
introduced by the truncation. In particular, if h and 
k are equal to two different zeros ofjl-~, say h = hl-~.p 
and k = ht_~,q, then T I vanishes because of (14) and 

oo 

h ~n/[(h~-l,p - h~,,)(h~_~,q - h~n)] = 0. (21) 
n = l  

Similarly, if h and k are both equal to a root of jr- 
or jl+~, say h = k = At±~.p, then 

4 ~ A  2 2 ln/(Al±l,p--A~n) 2= 1. (22) 
n = l  

In practical applications the value N at which the 
summations are truncated depends on ! and on the 
maximum value hmax taken by h or k. For example, 
the terms included in the fast rotation function are 
such that Al, < hmax (Crowther, 1972; Dodson, 1985). 
The relative errors 11 - T ~ / T  l introduced in this case 
are shown in Fig. 2. Similar calculations, but including 

0 h 20 

Fig. 2. Percentage errors of Tt(h, k) when evaluated under the 
conditions of the fast rotation function (Crowther, 1972), for 
hmax = 20 and ! = 2 . . . . .  12. The contour levels are 20 and 100%. 
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4 and 20 supplementary roots for each l, are shown 
in Figs. 3 and 4 respectively. 

( b ) Numerical integration 

Here again we have the possibility of choosing a 
special integration formula for each I and hmax.  Since 

the purpose of this presentation is not to find the best 
quadrature rule but rather to show its usefulness, we 
chose a unique M-point Legendre-Gauss integration 
formula 

M 

r'(h. k) "- r~(h,  k)= E J,(hx.)j,(kx.)x~.w.. (23) 
n = l  

The sampling points x, are the M positive roots of 
the Legendre polynomial of degree 2M. These values 
as well as their associated weights w,, have been 
tabulated by several authors (e.g. Abramowitz & 
Stegun, 1964). For a given accuracy, the number M 
of sampling points is certainly related to the number 
of oscillations of the integrand, which in turn depends 
on the order l of the Bessel function and hma x. The 
relative errors of T t for a 12-point integration formula 
are shown in Fig. 5. They clearly show the improve- 
ment in accuracy that can be expected when using 
numerical integration techniques. 

Sampling and numerical integration on 
spherical surfaces 

We have seen that the coefficients C t m m '  c a n  be 
calculated from the values of the radial functions 
c~  taken at selected radial points. When the domain 

Fig. 3. Same as Fig. 2 but including four supplementary roots for 
each /. The contour  levels are the same as in Fig. 2. 

h 20 

~ - . .  ~ "~. \ - ~ ~ . . ~  
/ = 6  

4o12 

Fig. 4. Same as Fig. 2 but including 20 .supplementary roots for 
each I. The contour  levels are the same as in Fig. 2. 

0 h 

/ = 2  

l = 8  

/ = 1 0  

20 

l=t t  

/=8 

/:12 

N,. 

0 

Fig. 5. Percentage errors of  T~(h, k) when evaluated by means of  
a 12-point Legendre-Gauss  integration formula,  with hma x the 
same as in Fig. 2. The contour  levels are now 0.1 and 1%. 
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of integration is the whole sphere, these values are 
given by analytical expressions [(12)], but for 
arbitrary regions I2 (') and selected radial points r, 
the quantities c~(r,)  have in general to be evaluat6d 
by numerical methods of integration. 

In general terms, our problem is to find points ~ 
on the surface of the unit sphere o-, and corresponding 
weights W, such that 

S 

5f(r)  * " * " Ytm(r) d~= X f(~,) Y,m(r,) W~ (24) 
or S = l  

is exact for a sufficiently large class of functions. 
The answer to this problem will depend on the 

prior knowledge we may have about the function f 
We shall assume that f can be faithfully represented 
by a limited expansion in spherical harmonics, 

L l 

f (~)=  Y. Y, AtmYtm(~). (25) 
I=0  m = - I  

Functions of this type (i.e. with Arm = 0 for l >  L) will 
be called belonging to class rot. 

Since the Yt,,, are orthogonal on the spherical sur- 
face and the product of two functions of classes cOL 
and c¢v is a function of class ~L+v, the coefficients 
At,,,(l < _ L) will be given by (24) if the approximate 
integration formula gives the correct result whenever 
the integrand is a Yt,, of order at most 2L, that is 

S 

I Y t m ( r )  d ~ =  E Yt..(r.)W,=(47r)'/23,o. l<-2L. 
or $=1 

(26/ 

One solution to this problem can be obtained by 
slightly modifying a result of Peirce (1957), concern- 
ing the integration of polynomials over the spherical 
shell. 

The result is the following: (26) is satisfied if the 
points $, = (0i, ~t)k) a r e  taken at all the intersections 
of the cones 0i (i = 1 , . . . ,  L + 1), with the half planes 
~Pk ( k =  1 , . . . , 2 L + 1 ) .  cos (0i) are the L + I  zeros of 
the Legendre polynomial of degree L+  1 and (Pk = 

2"n'k/(2L+ 1). The corresponding weights W, are of 
the product form Ws = AiBk, where Ai are the weights 
of the (L+ 1)-point Legendre-Gauss quadrature for- 
mula and the Bk are equal to 2rr / (2L+ 1). 

In fact, Ytm depends on ¢ through the exponential 
term exp (im ¢), so that its integral is exactly calcu- 
lated if the function is sampled according to Shan- 
non's theorem of sampling. What survives this first 
integration is a polynomial of degree I in cos 0, whose 
integral is correctly given by a Gaussian quadrature 
formula. 

Substituting for At,,, from (24) into (25) and using 
the addition theorem for spherical harmonics and the 
recurrence relationship of the Legendre polynomials 

Pz, we obtain 

S L t 
, ^ ^ 

f(~) = ~ f(~,) ~. ~ Yt,,(r,) Ytm(r) W~ 
s = !  1=0 m = - I  

S L 

y" f(~s) ~ [(21+l)/47r]Pt(~.~)W~ 
s = l  1=0 

S 

E 
s = l  

f(~,){[ P/.+,(~. r ) -  PL(rs. r)/(r~, r -  1)} 

x Ws(L+ 1)/47r. (27) 

We see that f can be recovered from its values 
taken on the set (~s, s = 1 , . . . ,  S). Other values of f 
taken on another set of points may also determine 
the function f, but it may not be possible or practical 
to reconstruct f starting from these values. As in 
Dodson & Silva (1985), a set of points which deter- 
mines f and allows a reconstruction of f in terms of 
its values on the set will be called a sampling set of 
f Then the abscissas of an approximate integration 
formula which gives the exact values for all spherical 
harmonics of order at most 2L are a sampling set of 
functions of class ~z. 

It must be noted that the number of independent 
complex coefficients for a function of class COL is 
( L ÷  1) 2, whereas the number of integration points is 
(2L+ 1)(L+ 1). A sampling set for which the number 
of independent coefficients and that of samples of 
the function are equal will be called an optimal 
sampling set. 

If the set (~q, q = 1 , . . . ,  Q) is an optimal one, the 
f(~q) are all independent values and (27) gives 

Q 

~, (21+l)Pt(~¢.~q)=47r/W¢6q,q. (28) 
/ = 0  

The first result is that the weights for this sampling, 
if it exists, are all equal to 47r / (Q+1) 2. A second 
result is that the angle Oq'q between any two different 
sampling points should satisfy the equation 

Q 

(21+l)Pt[cos(Oq,q)]=O, q '~q.  (29) 
/ = 0  

For a given Q, the roots of (29) give the cosines of 
all the possible angles. For Q = 0 there is no root so 
that the optimal sampling set is constituted by a single 
point. For Q = 1 there is a single root, cos (0¢q) = -~, 
which gives rise to a tetrahedron. For Q = 2, we have 
two possible angles, 73.15 and 133.62 °, which do not 
give any closed figure inscribed on the sphere. 

Hence, any rule of approximate integration [(26)] 
must in general involve more than the theoretical 
minimum number of points. This assertion does not 
mean that there is no optimal sampling set for func- 
tions of class %_, but rather that a sampling set 
obtained from an integration rule is not in general 
an optimal one. 
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The results of this paragraph can be applied to the 
rotation function [(9)] which, in all practical applica- 
tions, is also a limited expansion in terms of the 

Dram', orthogonal functions t 

L l 

= Dmr,,,(do)Cram,. (30) 
l----0 m,m'=--I 

Since Dmm', when written in terms of the Euler 
angles (o t , /3, 3"), depends on ot and 3' through the 
expression exp [i(mot + m'3')], and since for m' = 0 it 
is proportional to the spherical harmonic Ytra, a quad- 
rature rule can be obtained: 

2w 27r 
, !  

dot i d cos/3 ~ dy~L(ot,/3, 3")Dram'(ot,/3, 3') 
a = 0  /3 = 0  y = O  

U 
y~ .t  = 9~L(~bu)Dram,(~,,)W,, 

u=l 

= C~ra,8~'2/(2L+ I). (31) 

It follows that the set (t~u=(oti,/3j, 3"k); i , k =  
1 , . . . ,  2L+  1; j = 1 , . . . ,  L +  1), where ai and 3'k are 
regularly spaced in the interval (0, 27r) and cos/3j are 
the roots of PL+~, is a sampling set of ~L. The weights 
W, are again of the product form, derived from the 
Legendre-Gauss and Fourier quadrature rules. 

Plotting the rotation function 

Several authors have discussed different ways of plot- 
ting the rotation function in order to obtain undistor- 
ted maps (Burdina, 1971; Lattman, 1972). 

Distortion appears for example when ~ is evalu- 
ated and plotted on a grid with equal steps in the 
Euler angles; if /3 = 0 all rotations with a constant 
value of ot + 3' are the same. This situation is some- 
what analogous to that encountered when a function 
of the Cartesian variables (x, y, z) is computed on a 
regularly spaced grid in the spherical coordinates 
(r, 0, ~0): the value of the function is independent 
of ~o when 0 = 0 or 7r. 

This source of distortion can be avoided, to some 
extent, if we are able to define a metric, in order to 
give a sense to the notion of nearness of two elements 
of the group. This can be done because the rotation 
group is compact, so that a unique positive-definite 
invariant metric exists (up to a multiplicative con- 
stant) (Normand, 1971) 

ds2--½ Tr (dR  dR+), (32) 

dR being the variation of the matrix R associated 
with a rotation in a three-dimensional representation 
of the rotation group. 

This metric confers to the space of the parameters 
of the group the structure of a Riemannian variety, 
and cannot be reduced to a Cartesian metric. 

Expression (32) is an intrinsic one, i.e. independent 
of the parametrization of the group. When param- 
etrized in terms of the Euler angles, it gives 

ds2=dot2+2cos  (/3) dot d y + d y 2 + d / 3  2, (33) 

which, when written in the new variables 0± = ot ± y, 
coincides with the expression given by Lattman [ 1972, 
equation (7)], 

ds2=cos 2 (/3/Z) d02+ +sin 2 (/3/2) d02_ +d/3 2. (34) 

This metric shows that the topology of the surfaces 
of constant/3 is that of a plane. In fact, the change 
of variables 

u = c o s  (tiff/2)0+ 
(35) 

v = s i n  (/3/2)0_ 

gives the Euclidean metric d s 2 = d u Z + d v  2 all over 
any section. Distortion-free/3 sections of the rotation 
function can thus be obtained. 

Surfaces of constant 0± have instead the topology 
of a spherical surface. Therefore, to obtain distortion- 
free 0± sections the rotation function should be rep- 
resented on the surface of a sphere, with /3/2 and 
20± playing the role of the colatitude and longitude 
respectively. 

If the group is parametrized by (X, fi), fi being the 
unit vector along the axis of rotation and X the spin 
about it, the metric is 

ds 2 = dx2+ 2(1 - c o s  X) dfi2 (36) 

[Lattman, 1972, equation (9)]. 
The distance between any two rotations, defined 

as the integral of ds along a path joining them, is 
path dependent. In particular, since the parameters 
(Tr, fi) and (-Tr, fi) represent the same rotation, any 
path joining them is closed but it cannot be reduced, 
by means of a continuous deformation, to one of 
vanishingly small length. This implies that the rota- 
tion group is not simply connected. 

The important point is that these topological 
properties are intrinsic ones, and cannot be removed 
by any particular choice of parametrization of the 
group. 

Some numerical results 

A program was written which samples the function 
clra(r) [(12)] at different points r,. The quantities 
Wln/Zrnctm(rn) can thus be used as an input to the 
Crowther program, instead of the azm,, and the rota- 
tion function can be calculated. For a given l, the 
function j~(hx)j t(kx) vanishes at most twice in the 
interval between any two consecutive zeros of it. A 
good estimate of its integral can thus be obtained by 
sampling it at three points within such an interval. 
Crowther's method should then be faster than any 
simple integration method by at most a factor of three. 
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Actually, this ratio was two for the example here 
reported. 

Even if Figs. 1-5 give a clear idea of  the errors 
involved in either method,  we present here a test 
calculation using a model  gramicidine A structure 
(space group P2~2~21, a = 24.7, b = 32.3, c = 32.5 A,). 
Two identical model  monomers  consisting of  a poly- 
peptide helix with three t ryptophans  and tilted by 
arbitrary angles with respect to the c axis consti tuted 
the asymmetr ic  unit content.  The resulting structure 
showed a slight overlap of  some of the t ryptophans  
belonging to different molecules. 

The squared norms of  each l component  of  the 
expansion of  the Patterson function in spherical har- 
monics, 

l N 

E E la,=.l 2 
m = - l  n = l  

in Crowther ' s  method and 

l M 

E E ]Cl,,(r,,)l=r2,,w,, 
m = - I  n = l  

in the method  here presented,  should be essentially 
the same when a great number  of  n terms are included,  
so that the differences between them effectively show 
the relative errors involved in the procedures.  With 
2 A data,  an overall temperature  B factor of  6 A2 and 
an outer radius of  6.5 ~ ,  the relative difference in the 
squared norms was 18, 7, 11, 28, 34, 62 and 36% for 
l ranging from 2 to 14. 

a ¢ 220 
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=85 

Fig. 6. Contour maps of a cross rotation function as produced by 
the program written by Crowther (1972) and modified by Dodson 
(1985). GP1 and GP2 denote the true positions. The contour 
levels are 60 and 80% of the maximum value of the function. 

We then computed  a cross rotation function using 
a single monomer  to obtain the second Patterson 
function to be rotated. Both procedures of  calculation 
showed essentially the same features (Figs. 6 and 7) 
even if the values differed by 6-15% at the local 
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Fig. 7. Same as Fig. 6, but now the cross rotation function was 
computed using a 12-point Legendre-Gauss integration formula. 
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Fig. 8. Same as Fig. 7, but with the contributions of the terms with 
l = 2, 4 omitted from the calculation. 
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maxima. This result is not surprising because low l 
terms contribute a substantial portion of the whole 
Patterson function (after omitting the / = 0  term) 
under the conditions of the test. However, as dis- 
cussed in the article, these very low-/terms can hinder 
the true solution from showing up. This is clearly 
shown in Fig. 8, where the terms I = 2, 4 were omitted 
from the calculations. It is worth noticing that the 
two omitted terms contributed 86% of the Patterson 
squared norm. 
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Abstract 

The probability that the Bijvoet ratio X for the 
observed reflections of a given crystal is greater than 
any particular value Xo depends on space-group sym- 
metry, the number of anomalous scatterers per asym- 
metric unit and the parameters k and tr 2. Numerical 
values for this probability are obtained as a function 

2 for the triclinic, of Xo for different values of k and o-1 
monoclinic and orthorhombic crystals containing p 
(= 1, 2, 3 or 4) anomalous scatterers per asymmetric 
unit. These results are provided in the form of com- 
pact tables; Fortran programs that are useful in com- 
puting this probability for any given situation are also 
provided. 

1. Introduction 

The success of the anomalous-scattering method of 
structure determination strongly depends on the 
measurability of Bijvoet differences. The measurabil- 
ity is defined as the probability of the event {(X-> 
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0.1) n (Ymin ~ 0"3)} (Velmurugan & Parthasarathy, 
1984; VP, hereafter) where X is the Bijvoet ratio and 
Ymin is the minimum value of the normalized structure- 
factor magnitudes for the reflection H and the inverse 
reflection ICI. Owing to the importance of the 
anomalous-scattering method, particularly due to the 
advent of synchrotron radiation as a source for 
diffraction studies, it would be useful to know a priori, 
in the case of a given crystal, the percentage of 
observed reflections for which the Bijvoet ratio X 
would be greater than any specific value Xo, say. This 
information can be obtained from the probability 
value for the event {(X -> X0) c~ (Ymin -> 0"3)} (= D, 
say) and we shall denote this probability by 
M(Xo, 0.3). The values of M(Xo, 0.3) for the par- 
ticular case of X0 = 0.1 were obtained in VP for the 
triclinic, monoclinic and orthorhombic crystals con- 
taining one or two heavy atoms per asymmetric unit 
for values of k (i.e. the ratio of the imaginary to the 
total real part of the atomic scattering factor of the 
anomalous scatterer) up to 0.6. Under a pronounced 
anomalous-scattering effect, k can have larger values 
for some of the heavy atoms. For example, the values 
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