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Assembling short fragments from known structures has
been a widely used approach to construct novel protein
structures. To what extent there exist structurally similar
fragments in the database of known structures for short
fragments of a novel protein is a question that is funda-
mental to this approach. This work addresses that ques-
tion for seven-, nine- and 15-residue fragments. For each
fragment size, two databases, a query database and a tem-
plate database of fragments from high-quality protein
structures in SCOP20 and SCOP90, respectively, were
constructed. For each fragment in the query database, the
template database was scanned to ®nd the lowest r.m.s.d.
fragment among non-homologous structures. For seven-
residue fragments, there is a 99% probability that there
exists such a fragment within 0.7 AÊ r.m.s.d. for each loop
fragment. For nine-residue fragments there is a 96%
probability of a fragment within 1 AÊ r.m.s.d., while for 15-
residue fragments there is a 91% probability of a frag-
ment within 2 AÊ r.m.s.d.. These results, which update pre-
vious studies, show that there exists suf®cient coverage to
model even a novel fold using fragments from the Protein
Data Bank, as the current database of known structures
has increased enormously in the last few years. We have
also explored the use of a grid search method for loop
homology modeling and make some observations about
the use of a grid search compared with a database search
for the loop modeling problem.
Keywords: database/fold/loop modeling/protein fragment/
protein structure

Introduction

Modeling of protein structure based on sequence and structural
homology or limited experimental data can make use of either
systematic search of conformational space (Deane and
Blundell, 2000), use of spatial restraints (Fiser et al., 2002)
or databases of fragments of known proteins. The fragment
database approach dates back to 1986, when retinal binding
protein was reconstructed by choosing fragments from only
three other proteins (Jones and Thirup, 1986). Since then,
protein fragment databases have been used to build complete
protein backbone structures (Reid and Thornton, 1989; Correa,
1990; Summers and Karplus, 1990; Holm and Sander, 1991;
Levitt, 1992) or serve as candidates for loop modeling [e.g.
(van Vlijman and Karplus, 1997; Wojcik et al., 1999)]. The
protein structure prediction program ROSETTA (Simons et al.,

1999), which was used successfully in the CASP competition,
also built structures by assembling short fragments.

As an example of an application of fragment-based model-
ing, we recently determined the backbone structure of ubiquitin
using limited NMR residual dipolar coupling data (Andrec
et al., 2001; 2002). In our method, we selected a small number
of seven-residue fragments which ®t well to the experimental
data from a library of nearly 200 000 fragments drawn from the
SCOP40 database (Murzin et al., 1995; Brenner et al., 2000;
Chandonia et al., 2002). This was done for all overlapping
seven-residue data windows. The chosen fragments were
subjected to a ®ltering procedure to maximize their structural
similarity over overlapping regions of sequence and the
complete protein backbone structure was built by superimpos-
ing the selected fragments (Figure 1).

To construct the structure of a novel protein from a database
of protein fragments, it is assumed that there exists at least one
fragment from a known protein structure which is structurally
similar to each fragment of the novel protein. The validity of
this assumption is the focus of this study. Previous work based
on an all-against-all comparison of a database of 2743 seven-
residue fragments from 57 high-resolution non-homologous
proteins concluded that there was a 96% probability of ®nding
a fragment from a non-homologous structure with a Ca root
mean square deviation (r.m.s.d.) <1 AÊ and that this probability
decreased signi®cantly for longer fragments (Fidelis et al.,
1994). Lessel and Schomburg later studied fragments of length
3±12 residues in the Protein Data Bank (PDB) using a
clustering approach: two fragments were grouped to the same
cluster if the difference between the distance of the ®rst and last
Ca atoms was <1.6 AÊ and if the Ca r.m.s.d. between two
fragments was <0.8 AÊ (Lessel and Schomburg, 1997). Based on
the number of members in the clusters they concluded that the
database was complete only for three and four residue
fragments and was incomplete for longer fragments. Since
the number of structures in the PDB (Berman et al., 2000) has
increased rapidly in recent years, the previous conclusions need
to be updated. In this work, we examine the degree to which a
protein fragment can be found in a database of non-
homologous protein structures using current, much larger
databases. In addition, we have performed conformational
searching in the context of loop modeling using a grid search
method and explore the merits of this strategy relative to a
database approach for loop homology modeling.

Methods

For seven-residue fragments, two protein structure databases
were constructed for purposes of this study: a query database,
which is used to represent fragments of unknown novel
structures, and the template database, which is used to
represent fragments of known structures. The query and
template databases are derived from the SCOP20 and
SCOP90 databases, version 1.53 (Brenner et al., 2000;
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Chandonia et al., 2002). These databases consist of domains
from the complete SCOP database (Murzin et al., 1995)
selected so that no pair of domains has more than 20 or 90%
sequence identity, respectively. Our databases are constructed
using only those structures with an R-factor of <20% and
resolution better than 2 AÊ . The query database contains 34 205
seven-residue fragments from 172 domains selected from
SCOP20 so that no pair of domains belong to the same fold,
while the much larger template database contains 174 914
seven-residue fragments from 955 domains selected from
SCOP90. The fragments in both the template and query
databases can be overlapping, e.g. residues 1±7, 2±8 and 3±9
on the same peptide chain can all be in the database.

The Fidelis et al. study (Fidelis et al., 1994) considered only
loop structures, which they de®ned as seven-residue fragments
with fewer than four continuous a-helical or b-strand residues
as de®ned by DSSP (Kabsch and Sander, 1983). In this study, a

loop fragment is de®ned in exactly the same way. Furthermore,
we de®ne an a fragment to be a seven-residue fragment with
four or more continuous a-helical residues and a b fragment to
be a seven-residue fragment with four or more continuous b-
strand residues. The percentage of a, b or loop fragments in our
query database is 33.7, 18.8 and 47.6%, respectively. For the
template database, the corresponding percentages are 32.3,
19.5 and 48.2%, respectively.

The goal of this work was to study the distribution of the
r.m.s.d.s of the most similar fragment in the template database
(the `nearest neighbor fragment') for every fragment in the
query database. The structures of protein fragments were
compared by calculating the r.m.s.d. after optimal super-
imposition of the Ca atoms (Kabsch, 1976; McLachlan 1979).
Since we wish our results to be relevant even in the case where
the unknown structure corresponds to a previously unobserved
fold, for each fragment in the query database we eliminate from

Fig. 1. An example of the use of a protein fragment database in the construction of a backbone model based on limited experimental data (Andrec et al., 2001,
2002). The complete database consisting of nearly 200 000 seven-residue fragments (represented by the left-most box) was ®rst ®ltered in step A using
experimental NMR residual dipolar coupling data. These were used to select the 15 fragments from the complete database which best agreed with the
experimental data for each seven-residue window in the protein sequence. One best representative from each of these sets was then chosen in step B in such a
way that maximized the structural similarity in overlapping regions of the sequence. These representatives were then combined in step C by rotating each into a
common reference frame to minimize the r.m.s.d.. In subsequent steps (not shown), the overlapping fragments were converted into a consensus backbone model
and the resulting model was further re®ned with respect to the NMR data.

P.Du et al.

408



consideration all fragments in the template database which
come from domains belonging to the same fold according to
the SCOP classi®cation (Murzin et al., 1995) as the domain
from which the query fragment is derived.

Fragments of nine and 15 residues were studied in the same
manner as seven-residue fragments, except that the de®nitions
of loop, a and b fragments were adjusted for the longer size. In
particular, an a fragment was de®ned to be a nine-residue
fragment with ®ve or more continuous a-helical residues or a
15-residue fragment with eight or more continuous a-helical
residues. A b fragment was de®ned to be a nine-residue
fragment with ®ve or more continuous b-strand residues or a
15-residue fragment with eight or more continuous b-strand
residues. Loop fragments were de®ned to be all fragments that

are neither a fragments nor b fragments. These de®nitions
serve the purpose of roughly separating the contributions from
fragments of different secondary structures.

Results

For seven residues, Figure 2A shows the distribution of the Ca
r.m.s.d. for 99 995 pairs of loop fragments randomly chosen
from the template database such that the two fragments do not
come from domains of the same SCOP fold. These random pair
r.m.s.d.s have a bell-shaped distribution ranging from 0 to
almost 6 AÊ , with the peak at 2.8 AÊ . This distribution is almost
identical with Fidelis et al.'s result of an all-against-all
comparison of loop fragments [their ®gure 1A (Fidelis et al.,

Fig. 2. (A) Histogram of the distribution of the Ca r.m.s.d. of 99 995 pairs of
seven-residue loop fragments randomly chosen from the template database.
The bin width is 0.1 AÊ . (B) Histogram of the distribution of nearest neighbor
Ca r.m.s.d.s in the template database for seven-residue fragments in the
query database. The solid, dot-dashed, short dashed and long dashed curves
are the distributions for all fragments, a, b and loop fragments, respectively.
The bin width is 0.05 AÊ . The height for each bin is the number of fragments
in the query database whose nearest neighbor Ca r.m.s.d.s in the template
database fall in that bin. The total number of fragments in the query database
is 34 205. Among them, 11 513 are a fragments, 6424 are b fragments and
16 268 are loop fragments. The total number of fragments in the template
database is 174 914. Among them, 56 535 are a fragments, 34 024 are b
fragments and 84 355 are loop fragments.

Fig. 3. (A) Histogram of the distribution of the Ca r.m.s.d. of 99 994 pairs of
nine-residue loop fragments randomly chosen from the template database.
The bin width is 0.1 AÊ . (B) Histogram of the distribution of nearest neighbor
Ca r.m.s.d.s in the template database for nine-residue fragments in the query
database. The solid, dot-dashed, short dashed and long dashed curves are the
distributions for all fragments, a, b and loop fragments, respectively. The
bin width is 0.05 AÊ . The height for each bin is the number of fragments in
the query database whose nearest neighbor Ca r.m.s.d. in the template
database fall in that bin. The total number of fragments in the query database
is 33 775. Among them, 10 775 are a fragments, 5513 are b fragments and
17 487 are loop fragments. The total number of fragments in the template
database is 172 345. Among them, 52 804 are a fragments, 28 783 are b
fragments and 90 758 are loop fragments.

Protein fragment database completeness

409



1994)]. Figure 2B shows the distribution of the r.m.s.d.s of the
nearest neighbor fragments in the template database for each
fragment in the query database (solid curve). This distribution
has a sharp peak at 0.05 AÊ , a broader peak at ~0.25 AÊ and a long
tail extending to 1.0 AÊ . When that distribution is decomposed
according to the relative contributions from loop, a and b
query fragments (long dashed, dot-dashed and short dashed
curves, respectively), it becomes obvious that the sharp peak at
0.05 AÊ is due to the a query fragments, as the distribution of
nearest neighbor r.m.s.d.s of the a fragments shows a peak that
overlaps with the 0.05 AÊ peak of the solid curve. The
distribution of nearest neighbor r.m.s.d.s for loop fragments
is a broad curve with a peak at 0.3 AÊ . Beyond 0.6 AÊ , the tail of
this distribution almost overlaps the tail of the solid curve,
which is consistent with the commonly held view that loops are
irregular structures and have fewer close neighbors in the
structural database. In comparison, Fidelis et al.'s distribution
of nearest neighbor r.m.s.d.s for loop fragments has a peak at
0.5±0.6 AÊ and has a tail extending to 1.4 AÊ (Fidelis et al.,
1994). This signi®cant improvement in the peak position and
the upper tail over the results obtained by Fidelis et al. in 1994
is a re¯ection of the vastly increased structural diversity of
today's PDB and suggests that there is suf®cient coverage in
the present database to construct models for novel structures
based on existing protein fragments. The distribution of nearest
neighbor r.m.s.d.s for b query fragments is also broadly
distributed, with a peak at 0.2±0.25 AÊ and a long tail extending
to 0.8 AÊ . The solid curve in Figure 5 shows the cumulative
probability of nearest neighbor r.m.s.d.s for all loop fragments
in the query database. The height of the curves in Figure 5 at an
r.m.s.d. value of x is equal to the percentage of the query
fragments whose nearest neighbor r.m.s.d. is <x. If the
threshold for structural similarity is set to 1 AÊ , then we are
virtually guaranteed to ®nd a fragment in the template database
which has a similar structure to a given query database
fragment, even if we insist that the two fragments come from
domains with different folds. With a stricter similarity
threshold of 0.7 AÊ , the probability is still 99.3%.

For nine-residue fragments, the distribution of Ca r.m.s.d. of
fragment pairs randomly chosen from the database is also bell-
shaped and is centered at 3.5 AÊ (Figure 3A). The centers of
distribution of nearest neighbor r.m.s.d.s for a fragments, b
fragments and loop fragments are 0.1, 0.4 and 0.5±0.6 AÊ ,
respectively (Figure 3B). The loop fragments account for
almost all the upper tail beyond 0.9 AÊ , which extends to 1.5 AÊ .
From the cumulative probability plot (dashed curve in
Figure 5), we see that for 96% of the loop fragments in the
query database, a fragment exists in the template database
which is within 1 AÊ Ca r.m.s.d. of the query fragment, which
happens to equal Fidelis et al.'s results for seven-residue
fragments (Fidelis et al., 1994). Compared with the seven-
residue results, it seems the additional structural complexity
introduced by two more residues is compensated by the
expansion of the structure database since 1994.

The chance that there exists a similar structure in the
database for each fragment decreases for 15-residue fragments.
The distribution of Ca r.m.s.d. of fragment pairs randomly
chosen from the database is still bell-shaped (Figure 4A) and is
centered at 5.0 AÊ . The centers of the distributions of nearest
neighbor r.m.s.d.s for a, b and loop fragments are 0.2, 1.3±1.4
and 1.6 AÊ , respectively (Figure 4B). Since a b fragment must
have eight or more continuous b residues and the typical length
of a b strand is approximately six residues, the number of 15-

residue b fragments is small relative to the seven- or nine-
residue case. The upper tail beyond 1.6 AÊ , which extends to 3 AÊ ,
is again overwhelmingly dominated by the loop fragments.
However, this is still much smaller than the center of the
distribution of randomly chosen fragments (Figure 4A). If the
structural similarity for 15-residue fragments is de®ned as a Ca
r.m.s.d. <2 AÊ , then the dot-dashed curve in Figure 5 shows that
91% of the loop fragments in the query database have a similar
structure in the template database. While this similarity
criterion is not as stringent as for the smaller loops above,
fragments with such structural similarities are likely to be
useful for some homology modeling applications.

Our results for all three sizes were veri®ed by repeating the
above procedure using a smaller query database consisting of

Fig. 4. (A) Histogram of the distribution of the Ca r.m.s.d. of 99 385 pairs of
15-residue loop fragments randomly chosen from the template database. The
bin width is 0.1 AÊ . (B) Histogram of the distribution of nearest neighbor Ca
r.m.s.d.s in the template database for 15-residue fragments in the query
database. The solid, dot-dashed, short dashed and long dashed curves are the
distributions for all fragments, a, b and loop fragments, respectively. The
bin width is 0.1 AÊ . The height for each bin is the number of fragments in the
query database whose nearest neighbor Ca r.m.s.d. in the template database
fall in that bin. The total number of fragments in the query database is
32 499. Among them, 8781 are a fragments, 2483 are b fragments and
21 235 are loop fragments. The total number of fragments in the template
database is 164 842. Among them, 43 411 are a fragments, 11 806 are b
fragments and 109 625 are loop fragments.
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loop fragment from a set of four domains from CASP4 which
were classi®ed as novel folds (1FW9, 1EWQ, 1FU1 and 1JAD)
(Sippl et al., 2001) (the `CASP4 new fold set') (Figure 6). The
resulting distributions of nearest neighbor r.m.s.d.s shown as
the solid, dashed and dot-dashed curves in Figure 6 are
comparable to the long dashed curves in Figures 2, 3 and 4,
respectively. Despite the fact that the CASP4 new fold set is
much smaller than the query database, each curve in Figure 6
has an overall shape similar to its counterpart generated from
the query database. For example, the distribution of nearest
neighbor r.m.s.d.s for seven-residue loop fragments in the
CASP4 new fold set is also centered at 0.2±0.3 AÊ and no
fragment has a nearest neighbor r.m.s.d. >0.8 AÊ in the template
database. Results with the CASP4 new fold set are consistent
with the results generated from the template and query
database and con®rm that our results are applicable even for
a protein with an entirely new fold, since none of the domains
in the CASP4 new fold set have a similar fold in the version of
SCOP from which the template database was constructed.

Discussion

The results described above are considerably more promising
than those reported by Fidelis et al. in 1994 (Fidelis et al.,
1994) and are due to the much larger database of protein
structures currently available. The center of the distribution of
nearest neighbor r.m.s.d.s for a seven-residue loop fragment is
improved signi®cantly from ~0.6 to 0.3 AÊ . The fact that 99.3%
of the time one can ®nd a seven-residue fragment in the
template database that is within 0.7 AÊ of a given fragment in
the query database implies that a database approach is
applicable for the construction of complete protein folds
from short fragments, when combined with sparse experimen-

tal data, such as given by Andrec et al. (Andrec et al., 2001,
2002). Consider the case where the threshold of similarity is
realistically set to 0.7 AÊ and a protein of unknown structure is
200 residues long. The probability that all 194 overlapping
seven-residue fragments in the target protein have a similar
structure in the template database is 0.256 (0.993194), while the
probability of encountering one `rare' fragment for which no
similar structure exists in the database is 0.350
(19430.99319330.007). The latter probability decreases rap-
idly for more than one rare fragment. Since the fragments can
be overlapping, the presence of a small number of rare
fragments is not fatal, since there may be suf®cient structural
information in the neighboring fragments to allow for the
construction of the protein structure.

As expected, a fragments are structurally very similar to
each other for all three sizes. It is surprising, however, that for
seven-residue fragments, the average nearest neighbor r.m.s.d.
for b fragments is 0.2±0.25 AÊ and is broadly distributed. In fact,
the distribution of nearest neighbor r.m.s.d. for b fragments is
actually close to that for loop fragments (Figure 2B). Although
it is known that b strands are structurally diverse owing to
twisting and other distortions (Chothia, 1973), the observed
variability is somewhat greater than might have been expected.

Enforcing the condition that the query and template database
fragments belong to domains having different SCOP folds
might be too strict to use as a criterion to remove structural
homology, since proteins in the same fold class but different
superfamilies are not homologous to each other. The fact that
structurally similar fragments can be found even under this
very strong condition implies that the results are applicable
even when the prediction target is of an entirely new fold and is
con®rmed by the results with the CASP4 new fold set
(Figure 6).

Fig. 5. The cumulative probability of the nearest neighbor Ca r.m.s.d.s in the template database for loop fragments in the query database. The height at an
r.m.s.d. value of x is equal to the percentage of the query fragments whose nearest neighbor Ca r.m.s.d. is <x. The solid, dashed and dot-dashed curves
represent seven-, nine- and 15-residue fragments, respectively.
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For longer fragments, it becomes more dif®cult to ®nd a
similar fragment in the template database for each fragment in
the query database. However, how similar a fragment must be
to the native structure for it to be useful clearly depends on the
application. For example, the existence of fragments in the
database which are within ~0.7 AÊ r.m.s.d. over seven residues
is necessary for building models of protein structure using an
NMR residual dipolar coupling based approach (Andrec et al.,
2001). As the fragment size becomes longer, the structure
becomes more fold-speci®c, i.e. fragments from a different fold
are less likely to share similar structure. For example, an
average 15-residue fragment typically has a nearest neighbor
r.m.s.d. about 1.5 AÊ (e.g. the peak of the distribution in
Figure 4B or the dot-dashed curve in Figure 5). Such fragments
are not structurally similar enough to ®t NMR dipolar coupling
data, though they will be useful in building homology models.
When compared with the distribution of the r.m.s.d. of pairs of
randomly chosen fragments (Figure 4A), which has a mean of
5.5 AÊ and a standard deviation of 1.6 AÊ , the 1.5 AÊ r.m.s.d.
between nearest neighbor non-homologous 15 residue frag-
ments is 2.8 standard deviations from the mean and is therefore
highly statistically signi®cant in the sense of structural
similarity.

Knowing that the right structural fragment is in the database
is only the ®rst step: one must also be able to pick it out. For the
loop modeling problem, one can search for fragments in the
PDB whose residues adjacent to the loop can be superimposed
to those of the target (e.g. Greer, 1980; Summers and Karplus,
1990; van Vlijman and Karplus, 1997; Wojcik et al., 1999;
Deane and Blundell 2000). This approach has already been

shown to be effective for loops up to nine residues long (van
Vlijman and Karplus, 1997), but becomes less reliable for
loops of longer size. A second way to pick out the correct
fragments is to use information in the amino acid sequence and
composition, which are used in the loop modeling programs by
Kwasigroch et al. (Kwasigroch et al., 1996) and Wojcik et al.
(Wojcik et al., 1999). Short fragments whose structures
correlate strongly with sequence pro®les can also be predicted
using sequence to structure clustering according to the method
of Bystroff and Baker (Bystroff and Baker, 1998).

An increasingly important way to pick out the correct
fragments from the database is the use of sparse experimental
data [e.g. (Jones and Thirup, 1986; Cornilescu et al., 1999;
Delaglio et al., 2000; Andrec et al., 2001, 2002)], which very
effectively reduces the number of feasible fragments. An
example of such a strategy based on NMR residual dipolar
couplings is shown in Figure 1. Residual dipolar coupling data
can be highly sensitive to small changes in conformation,
resulting in a relatively high rate of false negatives, that is,
fragments that are similar in structure to the target but which do
not score suf®ciently well to pass the ®lter in step A of Figure 1
(Andrec et al., 2001, 2002). For such a strategy to be sucessful,
it is critical that there be a suf®cient number of structures close
to the target structure. The growth of the structural database
described above has been essential for the feasiblity of model
building based on fragment libraries using NMR data.

The database-oriented approach to protein structure `con-
struction' is complementary to the grid search approach, which
systematically searches the conformational space. The former
is ef®cient and the fragments found are guaranteed to be

Fig. 6. Histogram of the distribution of nearest neighbor Ca r.m.s.d.s in the template database for all the loop fragments in the CASP4 new fold set for lengths
seven, nine and 15. The solid, dashed and dot-dashed curves are the distributions for seven-, nine- and 15-residue fragments, respectively. The bin width is 0.1
for lengths seven and nine, and 0.2 for length 15. The height for each bin is the number of fragments in the CASP4 new fold set database whose nearest
neighbor Ca r.m.s.d. in the template database fall in that bin. The target number, PDB code and residues in the CASP4 new fold set are as follows: T0086,
1FW9, A:1±164; T0116, 1EWQ, A:250±542; T0120, 1FU1, A:1±116; and T0124, 1JAD, A:3±244. The number of loop fragments in the CASP4 new fold set
for lengths seven, nine and 15 is 207, 204 and 261, respectively.

P.Du et al.

412



physically reasonable, but is limited by the completeness of the
database for longer fragments. The latter is not limited by
completeness, but rather by the exponential increase of the
conformational space that must be searched. Based on results
from this study, the database is essentially complete for seven-
and nine-residue fragments. Furthermore, the ef®ciency of
database methods can be greatly increased by making use of
clustering methods to reduce the structural redundancy of the
database (Lessel and Schomburg, 1997; Kolodny et al., 2002).
In particular, the recent work of Kolodny et al. has demon-

strated that the database size can be reduced to under 500
fragments for fragment lengths of four to seven residues and
still result in adequate modeling accuracy. In addition,
fragments selected by the database-based approach can be
successfully used as initial conformation for optimization (van
Vlijman and Karplus, 1997; Simons et al., 1999). The
usefulness of database search for longer fragments will depend
on the `radius of convergence' necessary for the particular
homology modeling application and the ability to `anneal'
database loop fragments onto template frameworks.

In order to compare the database search results with a grid
search method, we performed both types of searches on a set of
23 loops, nine and 15 residues in length. The conformational
search was performed using an early implementation of the
PLOP (Protein Local Optimization Program) loop homology
modeling software of M.P.Jacobson and R.A.Friesner (per-
sonal communication), which has been partially described in
other publications (Jacobson et al., 2002a,b). Loop conform-
ations are generated in PLOP by sampling the backbone
dihedral angles using a discretized version of the
Ramachandran plot for the N- and C-terminal halves of the
loop independently and then applying a loop closure algorithm
in the middle of the loop. The primary mechanism for
screening loop conformations is identi®cation of steric clashes.
However, other criteria are also employed to eliminate rapidly
unlikely conformations, including screens to ensure that the
side chains on the loop can ®t properly. Because the accessible
backbone conformational space of a loop can vary widely, the
number of conformations in the backbone dihedral angle
library is not set in advance. Rather, the PLOP algorithm
commences with coarse sampling and gradually samples more
®nely until a prescribed number of loop conformations have
been generated.

One question of interest is whether nature makes use of all
sterically satisfactory loops of a given size. For example, one
could imagine that not every sterically feasible loop has a close
neighbor in the PDB. If that were the case, then the use of
database search would have a distinct advantage over system-
atic search, since one would avoid those sterically feasible
loops that nature (for whatever reasons) does not use. To
determine if this is the case, we used PLOP to generate
sterically feasible loop models for each of the target loops as
described in the caption of Figure 7. For all of these feasible
loop models, we found the nearest neighbor in the template
database as described above and generated overall histograms
of the resulting distributions of r.m.s.d.s, which are shown in
Figure 7. For both nine- and 15-residue loops, these distribu-
tions are qualitatively very similar to the distributions in
Figures 3 and 4, particularly in the location and thickness of the
upper tail. This indicates that, for the most part, nature does in
fact use all sterically feasible loops, since loops systematically
generated by grid search have nearest neighbors in the database
with the same distribution as loops from actual proteins.

Since we have not yet developed a complete database-
oriented loop modeling method, we cannot directly compare
the ef®ciencies of the two approaches. However, in order to
compare the distributions in Figures 3 and 4 with the PLOP-
generated loops, we did examine the distributions of the best
loops generated by PLOP relative to the native conformation.
These are shown as the diamonds in Figure 7. For the grid
spacings used in these PLOP runs, the distribution for nine-
residue loops is approximately similar to the distribution of
nearest database neighbors of both Figures 7A and 3 (except

Fig. 7. Histograms of the distributions of nearest neighbor r.m.s.d.s in the
template database to loops generated using the PLOP software of
M.P.Jacobson and R.A.Friesner (personal communication). For each PLOP-
generated loop, the nearest neighbor r.m.s.d. in the template database was
found (as described above) and the resulting histograms were summed after
normalizing by the number of loop conformations. The diamonds indicate
the r.m.s.d. to the native loop conformation for the best PLOP-generated
conformation for each of the 14 target loops. (A) Results for 14 nine-residue
loops. The loops used as targets were 1BUE:A 86±94 (1297), 1BUE:A
156±164 (10 000), 1BUE:A 158±166 (10 000), 1BUE:A 160±168 (10 000),
1BUE:A 213±221 (4203), 1BUE:A 267±275 (2978), 2ACT 141±149 (2612),
2ACT 198±206 (6765), 2APR 76±84 (4509), 2APR 202±210 (3164), 2PTN
69±77 (1547), 2PTN 71±79 (1547), 3APP 129±137 (1158) and 8GCH
95±103 (3049) [PDB accession code:chain, residue range (number of loop
conformations generated)]. (B) The corresponding results for nine 15-residue
loops. The targets were 1PLC 41±56 (119), 2ACT 89±103 (155), 2ACT
141±155 (3095), 3APP 42±56 (370), 8TLN:E 55±69 (164), 8TLN:E 221±235
(1176), 1BGC 56±71 (10 477), 1BUE:A 155±169 (436) and 1OIS 217±231
(7008).
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for one outlier at 2.25 AÊ ), whereas for 15 residues the database
search appears to ®nd nearest neighbors with signi®cantly
smaller r.m.s.d.s to the native than are generated by the grid
search (compare Figures 4B and 7B). It should be noted that the
latter result is not surprising, since PLOP uses a coarser grid for
15-residue loops because of the exponential increase in the
search space. Since PLOP uses a systematic search, we expect
the distribution of the best r.m.s.d. relative to native to go to
zero as the ®neness of the grid (and the CPU time used)
increases. For the runs shown here, PLOP required several
hours to 1 day of CPU time per loop, while calculation of the
r.m.s.d. of a given loop against every fragment in the database
can be done in ~15 s. Of course, these times are not
comparable, since no ®ltering of the database loops for clashes
with the rest of the protein are being performed and no scoring
or ranking is being performed. However, these results suggest
that a database search approach for loop homology modeling
may have an ef®ciency advantage relative to conformational
grid search for long loops and the problem merits further
comparative study.

Overall, we have shown that there exist structurally very
similar fragments in the PDB from a non-homologous protein
for short loops; for seven-residue fragments there is a 99%
probability that there exists a non-homologous structure within
0.7 AÊ , whereas for nine-residue fragments there is a 96%
probability that there exists a non-homologous structure within
1.0 AÊ . For longer loops (15 residues) we observe a >90%
probability that there exists a non-homologous structure within
2 AÊ r.m.s.d.. Compared with systematic search in conforma-
tional space, the use of a database of known structures has the
potential advantage of more ef®cient sampling and guarantees
that all backbone conformations are physically reasonable.
Results from this study are far more optimistic than those from
previous studies of a similar nature and should encourage the
use of fragment databases for protein structure determination,
prediction and loop modeling, either alone or in combination
with the conformational search approach to building protein
structures.
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