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The goal of the inverse protein folding problem is to identify amino
acid sequences that stabilize a given target protein conformation.
Methods that attempt to solve this problem have proven useful for
protein sequence design. Here we show that the same methods can
provide valuable information for protein fold recognition and for
ab initio protein structure prediction. We present a measure of the
compatibility of a test sequence with a target model structure,
based on computational protein design. The model structure is
used as input to design a family of low free energy sequences, and
these sequences are compared with the test sequence by using a
metric in sequence space based on nearest-neighbor connectivity.
We find that this measure is able to recognize the native fold of a
myoglobin sequence among different globin folds. It is also pow-
erful enough to recognize near-native protein structures among
nonnative models.

Knowing the structure of a protein is most useful for predict-
ing, analyzing, and modifying its function. As it is not

feasible to determine experimentally the structure of every
protein, structure prediction has become central to the field of
structural biology and more specifically to structural genomics.
On the basis of their study of ribonuclease A (1), Anfinsen and
coworkers provided the first clues that all of the information
required for folding a protein is to be found in its sequence. Not
long after this discovery, people took on the challenge of
discovering the rules that allow the protein to fold. This problem
is far from simple and has not yet been solved (2). Three major
routes are usually considered paths to the solution: homology
modeling, threading, and ab initio prediction. To study a protein
with unknown conformation C, the first two methods follow the
same scheme: a similar protein whose three-dimensional struc-
ture is known is identified, and this protein is used as a scaffold
to generate a model for C. When the sequences of the two
proteins are homologous (i.e., when they have an obvious
common ancestry), sequence similarity is assumed to infer
structural similarity (3, 4), and the method is then referred to as
‘‘homology modeling.’’ When the two sequences show no obvi-
ous evolutionary relationship, the method is referred to as ‘‘fold
recognition,’’ which works by assessing the compatibility of the
target sequence with each member of a library of known
structures (5).

Ab initio structure prediction methods try to build a model for
the target protein structure without using a specific template
protein. Most of these methods proceed by first generating a
large collection of possible conformations (decoys), which are
then searched with a scoring function to identify native or, more
realistically, near-native conformations (6–9). This second step
resembles the fold recognition problem, with the major differ-
ence that the library of folds considered includes computer-
generated models instead of naturally occurring protein folds. In
this paper, we show how recent developments of threading
techniques can be applied to the problem of the recognition of
near-native conformations among nonnative models.

Fold recognition techniques can be divided into two groups.
Structure-based techniques such as threading rely on fitting the
sequence of the unknown protein to the known structure of a
template protein. This is usually done by using a conformational

energy calculation (10–15). Sequence-based techniques, in con-
trast, aim to detect similarity between the sequence of the unknown
protein and the sequence of the template protein (see, for example,
ref. 16). These techniques work well when the two sequences are
homologous and become less sensitive when the sequences are
distantly related. Recent work has focused on improving the
sensitivity of sequence-based fold recognition techniques by using
information coming from multiple sequence alignments. The se-
quences of the proteins belonging to the same family as the template
protein are used to generate either position-specific substitution
matrices [profiles (17)] or hidden Markov models [HMM (18)]. The
sequence of the unknown protein is subsequently tested against
these profiles or HMMs. The same idea can be extended to include
sequences homologous to the sequence of the protein under study.
In the latter case, fold recognition involves profile–profile align-
ments (19). These methods provide more sensitive recognition of
similarity between protein sequences that have significantly di-
verged through evolution. Finally, it was found that combining the
information contained in the sequence-based profiles with struc-
ture-based scores has significantly improved fold recognition (20).

Ab initio protein structure prediction provides a collection of
computer-generated model structures, referred to as decoys, for
the protein of interest. These decoy structures are tested against
the sequence of that protein, in the hope of identifying near-
native conformations. A wide variety of scoring energy functions
has been developed for that purpose (6, 21–26). These functions
are either based on physical principles or derived from known
protein structures by using statistical methods.

In parallel to the recent developments of fold recognition
techniques, new methods for ab initio protein structure predic-
tion have been proposed that include multiple sequence infor-
mation (27–30). On the basis of the observation that homologous
proteins fold into similar structures, these methods simulta-
neously generate decoys for a family of homologous sequences,
under the constraint that these decoys look alike. These proce-
dures were shown to generate better decoys than methods that
rely on only a single sequence (28–30). Unlike fold recognition
techniques, however, there is no sequence information for the
model proteins, because all these decoys are computationally
generated with the same sequence. In this paper, we show that
this can be overcome by designing sequences that would stabilize
these decoys. These designed sequences can then be used to
identify near-native conformations by using sequence-based fold
recognition. We refer to this strategy as the ‘‘reverse design
approach’’ or RDA.

Methods
Given a protein sequence and a collection of structural models,
the aim of our method is to use the sequence information implicit
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in each model to identify the model closest to the native structure
of the protein of interest. It is divided into two steps:

(i) Protein Sequence Design. A complete description of the protein
design procedure is given in our previous work (31). We list here
the modifications pertinent to this work. The program starts with
the backbone of the template protein structure and constructs all
possible side chains (including all 20 types) for each residue.
Conformations for the side chains are taken from the rotamer
library of Tuffery et al. (32), which has been corrected for
duplicates. Interactions among these side chains are precom-
puted and stored efficiently in a large energy matrix. A full atom
representation is used, and the energy function includes van der
Waals interactions, electrostatics, and an environment free
energy to account for the solvent (33). Once the energy matrix
is built, the sequence design procedure is initialized by gener-
ating randomly 100 sequences with a fixed amino acid compo-
sition (taken from the native sequence of the template struc-
ture). These sequences are chosen to cover as much sequence
space as possible by imposing the requirement that the sequence
identity between any two sequences is less than 20%. Each
sequence is threaded on the target backbone, and a full-atom
model is built by using a self-consistent mean field approach (34,
35). The energy of this model drives the Monte Carlo optimi-
zation in sequence space. Moves are defined as exchange of the
amino acid types of two positions chosen at random in the
sequence. After each move, the new sequence is used to generate
a new structural model, whose energy is compared with the
energy of the model structure before the move. The new
sequence is consequently accepted or rejected by using the
Metropolis scheme (36). These moves maintain the amino acid
composition of the designed sequence constant and are expected
to ensure specificity, in accordance with the random energy
model (37–39). The optimizations of the 100 sequences are
performed in parallel. Efficiency is reached through usage of the
precomputed energy matrix.

(ii) A New Metric in Sequence Space. In the second step, the
sequences designed for each structural model are compared with
the native sequence of the target protein. Percentage Sequence
Identity (I) is an intuitive distance measure in sequence space.
It does have a serious limitation: high sequence identity is a
reliable measure of homology, whereas low sequence identity
(�25%) is much less informative (40). We first transform the
percentage sequence identity into a distance D defined as 100 �
I. This still suffers from being meaningless for D � 75. The
distance D is also capped, i.e., the maximum distance between
two sequences is 100. There is therefore a need for a distance
measure that provides a better estimate of the distance between
two far-away sequences. We introduce a new distance measure
Dloc, which preserves sequence identity as a distance for neigh-
boring sequences, and approximate the distance Dloc between
two distant proteins as the addition of a series of short hops
between neighboring sequences. The best series of hops is
computed efficiently by finding the shortest paths in the graph
with edges connecting neighboring points.

The algorithm that computes all distances Dloc for a set of N
sequences has two steps. The first step determines which se-
quences are neighbors in sequence space. We use the nearest-
neighbor approach: for each sequence, we first find the K closest
sequences on the basis of sequence identity. K is a parameter of
our approach. These neighborhood relations are then repre-
sented as a weighted graph G over the N sequences, with edges
of weight D(i, j) between two neighboring sequences i and j and
infinite weight for all other pairs of sequences. In the second
step, we estimate the distance Dloc between all pairs of sequences
by computing their shortest path in the graph. We use Floyd’s
algorithm for finding this shortest path. A similar graph distance

was recently introduced in the ISOMAP approach for solving
dimensionality reduction problems (41).

(iii) Representation of the Protein Sequence Space. Protein se-
quences occupy a high-dimensional space, which is difficult to
visualize. Here we circumvent this problem by using a technique
for nonlinear dimensionality reduction. We apply classical dis-
tance geometry (42) to the matrix of graph distances Dloc,
constructing an embedding of the data in an M-dimensional
Euclidean space E that best preserves the intrinsic geometry of
the sequence space. Briefly, the N sequences in the data set are
represented by N points with coordinates r in E. For simplicity,
the N points are considered centered at the origin of the
coordinate system of E (i.e., �i�1

N ri � 0). We then consider the
embedding matrix G defined by:

G�i , j� � ri�rj [1]

where � is the vector dot product.
The matrix G is derived from the matrix of graph distances Dloc

by using:

G�i , j� � �0.5�Dloc�i, j�2 �
1
N �

k � 1

N

Dloc�k, j�2 �
1
N �

l � 1

N

Dloc�i, l�2

�
1

N2 �
k � 1

N �
l � 1

N

Dloc�k, l�2�. [2]

The optimal embedding of the N points in E is obtained by first
diagonalizing G (G � P�DP) and then setting the coordinates ri

of point i as (42)

ri� j� � �D� j, j�P�i , j� [3]

The quality of the embedding is measured by using:

R �
1
N��

i ,j

�dE�i , j� � Dloc�i, j��2 . [4]

The summation extends over all pairs of sequences (i, j), and dE

is the Euclidean distance in E. R is called the residual variance
for the embedding.

Results
(i) Sequence-Based Fold Recognition. We first tested our reversed
design approach on a well-characterized fold recognition prob-
lem based on globin sequences. Globins constitute a large family
of proteins with similar fold (43). This family includes at least five
subfamilies: myoglobins, hemoglobins, erythrocrourins, leghe-
moglobins, and plant phycocyanins. We have recently shown that
we could design a sequence stable for the myoglobin fold that
recognizes myoglobins but not hemoglobins when tested against
a database of protein sequences (44). In this study, we plan to use
the information contained in similarly designed sequences to
help identify the correct fold of a globin sequence. We consider
four different globins: two distantly related myoglobins [from
sperm whale and yellowfin tuna, whose Protein Data Bank
(PDB) codes are 5mbn and 1myt, respectively], one hemoglobin
(from marine bloodworm, PDB code 2hbg), and one leghemo-
globin (from yellow lupine, PDB code 2gdm). A detailed com-
parison of 5mbn with the three other globins is given in Table 1.
Although all four globins are structurally similar, pairwise
sequence comparison identifies only 1myt as homologous to
5mbn with an E value of 8 	 10�25. We have designed 100
sequences for each of the four proteins by using the procedure

692 � www.pnas.org�cgi�doi�10.1073�pnas.022408799 Koehl and Levitt



described above. The relative positions of these 400 sequences
and of the corresponding four native sequences are shown in a
two-dimensional projection of the sequence space whose metric
is defined by the nearest-neighbor distance Dloc (Fig. 1A). It is
noteworthy that the observed dimensionality of this sequence
space is three (Fig. 1B). The two-dimensional embedding iden-
tifies four clusters of sequences, each corresponding to one of the
four globins. These four clusters are connected with a graph
based on a number of neighbors K equal to 40, indicating that
they share a common region in sequence space. It should be
noted that the two sequence clusters corresponding to the two
myoglobin structures are already connected with K � 2. In each
case, the native sequence of a protein is within, or very close to,

the cluster of sequences that were designed for that protein.
Interestingly, the two clusters corresponding to the two myoglo-
bins overlap, whereas the clusters for the hemoglobin and
leghemoglobin are further apart.

Recent fold recognition methods include multiple sequence
alignment information. When the sequence of 5mbn is compared
with the SWISSPROT (45, 46) nonredundant database by using
PSIBLAST (17) with five iterations, all three globins (1myt, 2hbg,
and 2gdm) are confidently detected as homologous to 5mbn
(Table 1). PSIBLAST proceeds by building a profile at the end of
each iteration, incorporating information on all sequences found
to be similar to the test sequence. This profile is used at the next
iteration, yielding more sensitive detection of distant homology
(2). This is observed here in this study of myoglobin (Table 1
shows a comparison of PSIBLAST results obtained with one
iteration and five iterations). Similarly, the sequences designed
for each globin fold considered in the test case described above
can be included in profiles, which would in turn be compared
with test sequences (44). Here we find that a direct measure of
the mean of the distances, Dloc, between the test sequence S and
the sequences designed for the target fold F also provides a
sensitive estimate of the compatibility between the test sequence
and the fold. In the comparison of the native sequence of 5mbn
with the four clusters of sequences designed from the structures
of the four globins, 5mbn, 1myt, 2hbg, and 2gdm, the mean Dloc
distances correlate well with the structural similarity between
5mbn and the target structures (Fig. 1C).

(ii) Ab Initio Structure Prediction: Identification of Near-Native Con-
formations by Using Sequence Design. Most ab initio protein struc-
ture prediction methods proceed in two steps. First, a large data
set of model structures is built, either systematically (9) or

Table 1. Comparison of the sperm whale myoglobin (PDB code
5mbn) with the myoglobin of yellowfin tuna (PDB code 1myt),
the hemoglobin of bloodworm (PDB code 2hbg), and the
leghemoglobin of yellow lupine (PDB code 2gdm)

Master, 5mbn 1myt 2hbg 2gdm

Sequence identity (%)* 44.5 25 23
PSIBLAST E-value (1 cycle)† 8 	 10�25 �1 �1
PSIBLAST E-value (5 cycles)† 4 	 10�25 10�9 10�15

Structure similarity (cRMS, Å)‡ 1.07 1.65 2.16

*The sequence identities are deduced from sequence alignments based on the
BLOSUM 62 substitution matrix (50) with a penalty for gap opening of 12 and
a penalty for gap extension of 1.

†The sequence of 5mbn was compared to the nonredundant SWISSPROT (45, 46)
database of April 2001 (640,428 sequences) by using PSIBLAST (17) with and
without five cycles of iteration.

‡We have used STRUCTAL (52) for protein structure superposition.

Fig. 1. A well-characterized fold recognition problem involves the globin family. The restricted library of folds consists of four globins: two myoglobins (5mbn
and 1myt), one hemoglobin (2hbg), and one leghemoglobin (2gdm). One hundred sequences are optimized for stability and specificity for each of the four
proteins. The corresponding 400 sequences are pooled with the native sequences and given as input to ISOMAP (41). The underlying distance for close neighbors
in sequence space is D � 100 � I, where I is the percent sequence identity between the two sequences [computed on the basis of the structure alignment of their
corresponding structures; we use STRUCTAL (51) for protein structure superposition]. The neighborhood of each sequence includes its 40 closest sequences (i.e.,
K � 40; see text). (A) A two-dimensional projection of the sequence space spanned by these 404 sequences is shown. The designed sequences are shown in black
with small marks (E for 5mbn, * for 1myt, e for 2hbg, and x for 2gdm), whereas the native sequences are shown in gray with large marks. The sequences are
found in four clusters, each corresponding to one of the globin structures. The native sequence of each protein is found within, or very close to, the sequences
designed for that protein. (B) The residual variance of the ISOMAP embedding is plotted versus the dimensionality of the projection. The dimensionality of the
sequence space covered by the four globins is estimated to be 2. (C) The mean ISOMAP distance (for K � 40) between the native sequence of 5mbn and each family
of sequences designed for the four globin structures is plotted versus the cRMS between the corresponding structure and 5mbn.
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through assembly of small parts (8). Second, near-native con-
formations are identified in this data set (26). Recent progress
has concerned the generation of the decoys, in the hope of
generating better models and enriching the set with near-native
structures. Recognition of near-native conformations in this
data set is presumably a harder problem than fold recognition,
as it does not benefit from any additional sequence information
for the model structures. RDA was designed to circumvent this
difference by generating sequences by computer design experi-
ments that would stabilize the model structures.

We first tested RDA on the identification of near-native
conformations for 1ctf. 1ctf, the C-terminal domain of the
L7�L12 ribosomal protein of Escherichia coli, is a small highly
stable protein of 68 residues, which has been extensively used as
a test protein for ab initio prediction methods. A data set of 1,000
model structures for 1ctf was downloaded from the web server
(http:��depts.washington.edu�bakerpg�) of David Baker’s
group (8). These models were generated by using ROSETTA, a
program for ab initio protein structure prediction that assembles
a protein fold from a database of small fragments (8). Each
decoy comes as a PDB file containing the coordinates of the
main-chain atoms (N, CA, C, and O) and CB for each residue.
We generated a full-atom model for each of these decoys by
adding the side chains using our self-consistent mean-field
approach (33). The data set contains the native structure of 1ctf
and 999 decoys whose root-mean-square distances (cRMS)
computed over C� compared with 1ctf are in the range 3.45–18.7
Å. All these models contain similar secondary structures. The
compatibility of the native sequence of 1ctf with each model in
the data set was measured by using a full-atom database-derived
scoring function similar to the residue-specific all-atom condi-
tional probability discriminatory function (RAPDF) potential
introduced by Samudrala and Moult (25). Ten models, including
the native structure of 1ctf, were selected on the basis of the
criteria that they are poorly discriminated by the RAPDF
scoring function. They correspond to near-native models with
high energies and nonnative models with low energies, some with
energies even lower than that of the native structure (Fig. 2A).

One hundred sequences were designed for each of the 10
models. All sequences designed for the native structure of 1ctf
are very similar to the native sequence of 1ctf (average sequence
identity of 37%, varying between 21 and 48%). In contrast, the
sequences designed for the nonnative model at 11.4 Å from 1ctf
show much-reduced sequence identity with the native sequence
of 1ctf (average sequence identity 20%, varying from 13 to 30%).
The 1,000 designed sequences together with the native sequence
of 1ctf were pooled, and all distances D between any two
sequences were computed and stored in a distance matrix. These
distances were converted to local distances Dloc by using differ-
ent values for the number K of neighbors for each sequence used
to define the underlying graph (see Methods). Low values of K
will restrict connectivity to sequences that are very similar to
each other, whereas larger values of K allow detection of
sequences that are more distantly related. For K � 2, only the 100
sequences generated for the native structure of 1ctf are found in
the vicinity of the native sequence of 1ctf (Fig. 2B). For K � 5,
the graph is extended to all 100 sequences designed for the
near-native model at 3.9 Å from 1ctf (Fig. 2C). More near-native
models are detected for K � 11 and K � 15 (Fig. 2 D and E). All
three nonnative models with cRMS greater than 7 Å are not
connected to the graph at K � 15 and become connected only
when K � 35. By using the mean distance Dmean between the
native sequence of 1ctf and the cluster of sequences generated
for a model structure, the RDA is able to recover a good ranking
(in terms of structure) of the different models for 1ctf (Fig. 3A).
Fig. 2 shows that the different sequence clusters are connected
sequentially to the native sequence of 1ctf with increasing values
of K, in an order that reflects the structural difference between

the model used to generate the sequences and the native
structure of 1ctf. On the basis of this observation, we computed
for each sequence cluster Kfirst the value of K for which the first
connection to the native sequence of 1ctf is observed. In Fig. 3B,
we plot Kfirst against the cRMS between the model structure and
1ctf. Kfirst is found to correlate well with cRMS and can be used
as an alternative ranking function to the mean distance Dmean
used in Fig. 3A.

The best near-native conformation in the 1ctf decoy dataset of
David Baker differs from the native structure of 1ctf by 3.45 Å.
To test the ability of RDA to identify near-native structures
closer to the true structure of the protein under study, we chose

Fig. 2. Recognition of native-like structures for 1ctf among nonnative
models. (A) Ten model structures (including the native structure) were se-
lected from the data set of 1,000 decoys generated by the group of David
Baker for 1ctf (8). The RAPDF score of these 10 models is plotted versus cRMS.
These models were chosen such that the all-atom potential of mean force
RAPDF (25) fails to distinguish near-native from nonnative conformations.
(B–D) One hundred sequences were designed for each of the 10 models
selected for 1ctf. The corresponding 1,000 sequences together with the native
sequence of 1ctf are given as input to ISOMAP. Two-dimensional embeddings of
the sequence space covered by these 1,001 sequences are shown for the
increasing value of K, the number of sequences that defines the neighbor-
hood of each sequence in the underlying graph. The marks used to identify
each sequence cluster are consistent with A. The native sequence is shown in
red as a big circle (E). Note that the sequences designed for each particular
model structure cluster in sequence space.
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as a second test set for our method the protein rubredoxin (PDB
code 4rxn). We downloaded a data set of 678 decoys for 4rxn
from the ‘‘Decoys ‘R’ Us’’ web site (http:��dd.stanford.edu�).
These models were generated by systematically varying a few
structural degrees of freedom of the protein (6). Each decoy
comes as a PDB file containing the coordinates of all atoms of
the protein. The data set contains the native structure of 4rxn,
and 677 decoys whose cRMS compared with 4rxn are in the
range 1.35–9.57 Å. The compatibility of the native sequence of
4rxn with each model in the data set was measured by using the
RAPDF scoring function (25). Nine models, including the native
structure of 4rxn, were selected on the basis of the criteria that
the RAPDF scoring function for these proteins is poorly cor-
related with cRMS (Fig. 4A). One hundred sequences were
designed for each of the nine models. The 900 designed se-
quences together with the native sequence of 4rxn were pooled,
and all distances D between any two sequences were computed
and stored in a distance matrix. These distances were converted
to local distances Dloc by using different values for the number
K of neighbors used to define the underlying graph. For each
cluster of 100 sequences, we compute Kfirst, the value of K for
which the first connection with the native sequence of 4rxn is
observed. These values are plotted against the cRMS between
the model and the native structure of 4rxn in Fig. 4B. Kfirst
correlates well with cRMS (r � 0.91), providing a ranking
measure that can be used to distinguish near-native structures for
4rxn from nonnative models. Interestingly, the values of K for the
first connection do not distinguish between the native structure
of 4rxn and decoys that are very close to 4rxn (cRMS � 2; Fig.
4B). The mean ISOMAP distances (for K � 80) between the native
sequence of 4rxn and the families of sequences designed for the
model structures show a similar correlation with cRMS (r � 0.79;
results not shown).

Discussion
The results shown above demonstrate the ability of our strategy
for protein sequence design to provide useful information on the
sequence space compatible with a given protein structure. We
also show that the family of sequences designed for a protein

contains enough information about its structure that it is able to
identify its native structure.

Eisenberg and coworkers originally introduced the concept of
projecting the structural information of a protein model into
sequence space by defining three-dimension–one-dimension
(3D-1D) profiles. These profiles were initially used for fold
recognition experiments (12) and then applied to the problem of
the assessment of protein models (47). In that method, each
residue position in the protein model is characterized by its
environment (which combines local secondary structure infor-
mation, accessibility, and number of polar contacts) and is
represented by a row of 20 numbers in the profile, corresponding
to the 20 amino acid types. These numbers are the statistical
preferences of each amino acid type for this environment. The
3D-1D profiles are based on the so-called frozen approximation,
i.e., the hypothesis that residue environments are conserved in
protein with similar folds. This hypothesis has been recently
questioned (48, 49). The method described in this paper does not
assume the frozen approximation (31, 44), in that it designs a
sequence profile for each model structure.

Both fold recognition techniques and ab initio protein struc-
ture prediction require a method of comparing three-
dimensional models of a particular sequence and determining
which model is closer to the native structure. This is often
accomplished by using a scoring scheme based on either a
physical energy function or a knowledge-based potential, or even
a combination of the two (for review, see ref. 26). These scoring
functions are usually tested on standard test sets such as Prostar
(http:��prostar.carb.nist.gov�) and ‘‘Decoys ‘R’ Us’’ (http:��
dd.stanford.edu) for their ability to recover native and near-
native structures among misfolded models. A ‘‘good’’ scoring
function should provide a significant correlation between the
score of a model and its cRMS to the corresponding native
protein structure. Although significant progress has been made
in designing more discriminative scoring functions, the latter
remain the bottleneck in protein structure prediction: the two
recent critical assessment of protein structure prediction method

Fig. 3. Plots of score versus cRMS for the data set of 10 models selected for
1ctf (see legend of Fig. 2). (A) The mean ISOMAP distances (for K � 35) between
the native sequence of 1ctf and the families of sequences designed for the
model structures are plotted versus cRMS. A significant correlation of 0.77 is
observed between these distances and cRMS for nonnative models. (B) The
first value of K, Kfirst, for which a connection is observed between the family
of sequences designed for a model structure, is plotted versus the cRMS of the
model to the native structure of 1ctf. A significant correlation of 0.88 is
observed between Kfirst and cRMS. The dotted lines in A and B show the best
line fits to the data.

Fig. 4. Recognition of native-like structures for 4rxn among nonnative
models. (A) Nine model structures (including the native structure) were se-
lected from the data set of 638 decoys generated by B. Park and M.L. (6). The
RAPDF score of these 10 models is plotted versus cRMS. No correlation be-
tween the RAPDF score and cRMS is observed. (B) The first value of K, Kfirst, for
which a connection is observed between the family of sequences designed for
a model structure is plotted versus the cRMS of the model to the native
structure of 4rxn. A significant correlation of 0.91 is observed between Kfirst

and cRMS. The dotted line shows the best line fit to the data.

Koehl and Levitt PNAS � January 22, 2002 � vol. 99 � no. 2 � 695

BI
O

PH
YS

IC
S



experiments have shown that most predictors had better models
in their decoy sets than the one they submitted as ‘‘best’’
predictions. In this paper, we have shown that protein sequence
design can help recognize near-native folds among nonnative
folds even when other techniques fail (Figs. 3 and 4). We are well
aware that this problem remains difficult, and that it is very likely
that a test case can be designed such that the procedure
presented here fails. We believe, however, that it is the combi-
nation of several methods based on different principles that will
help solve this problem.

The computing time required by our method represents its
major limitation: the full design of 100 sequences to fit a single
structure of a 68-residue protein such as 1ctf requires 25 h of
central processing unit time on a Compaq DS20 computer. At

this stage, it cannot be used to test a large collection of decoy
structures and is limited to the testing of a small well selected
data set of model structures, most probably as a second round of
screening after the initial models have been evaluated with other
scoring functions. We are currently working on new techniques
that would reduce this computing time.

An interesting aspect of our procedure is the introduction of
Dloc, a distance metric in sequence space, based on a neighbor-
hood-connecting graph. We show that this distance identifies
hierarchically sequence and structure similarities between pro-
teins and should prove useful in studies of protein evolution.
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45. Bairoch, A. & Böckman, B. (1991) Nucleic Acids Res. 19, 2247–2249.
46. Bairoch, A. & Apweiler, R. (2000) Nucleic Acids Res. 28, 45–48.
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