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The analytical expression for the distribution of an interatomic

distance resulting from a known error-free distance and a

Gaussian perturbation of the atomic coordinates is presented.

This is used to estimate the coordinate error on the basis of

known geometric features of protein models via the nearest-

neighbour or the radial distance distribution. A simple

relation is presented that describes the dependence of the

map correlation on the positional error of the protein model,

the resolution of the X-ray data and the overall atomic

displacement parameter. The distribution of geometrical

features and the relation between the map correlation and

the positional error can be used in assisting the decision-

making process during automated model-building procedures.
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1. Introduction

Estimation of the map quality is essential for automated

model building. Decisions on the placement of a structural

element based on density criteria ideally re¯ect both the prior

information of the expected electron density for a particular

structural element as well as a measure of how well the

placement of such a fragment represents the observed density

with a given error. An example of this principle are the

building routines implemented in RESOLVE (Terwilliger,

2000, 2003), where available phase-probability distributions

are utilized to compute the likelihood of a fragment at a

certain location. The automated model-building routines

implemented in ARP/wARP (Perrakis et al., 1999) operate in

real space and mechanisms are being developed to incorpo-

rate information on the positional errors of free atoms and the

characteristics of the electron density in the decision-making

process during model building. The effects of the errors of the

positional parameters during C�-backbone tracing have been

addressed by Morris et al. (2002), who showed that error-

speci®c scoring functions can be constructed. Furthermore,

this error estimate can be used to give a reasonable approx-

imation of the size of the search problem during automated

model building (Morris, Perrakis et al., 2003). Although a

number of error and map-quality estimation procedures are

available (Cox & Cruickshank, 1948; Luzzati, 1952; Read,

1986; Lunin & Skovodora, 1995; Pannu & Read, 1996;

Murshudov et al., 1997; Cruickshank, 1999; Colovos et al.,

2000), it is worthwhile investigating whether other straight-

forward estimates can be obtained or used in conjunction with

existing methods. In this paper, real-space properties of

protein models are utilized for the estimation of model and

map quality. In a forthcoming paper, we will extend the

methodology to reciprocal space (Zwart & Lamzin, 2003).



Here, we present the distribution of an interatomic distance

given a Gaussian error of the coordinates. This distribution is

subsequently used to compute the distribution of nearest-

neighbour distances in protein models as well as the radial

distance distribution, both as a function of the coordinate

error. These distributions can be used to assess the stereo-

chemical quality of an atomic model prior to chemical

interpretation. Linking the r.m.s.d. (root-mean-square

displacement) to a quality estimate of the electron density

provides a tool that can be used elsewhere for setting

empirical decision boundaries for the acceptance of the

placement of a structural element on the basis of its ®t to the

electron density. A simple relation is presented that connects

the r.m.s.d. estimate to the expected map correlation of a map

with errors to the ®nal electron-density map. The relation is

derived on the basis of a simpli®ed real-space model of the

electron density and involves an empirical atomic shape

parameter which is related to the optical resolution as

proposed by Vaguine (1999).

The abbreviations used are given in Table 1. The notation

and main symbols used in this paper are given in Table 2. In

the notation of probability and density functions, the usual

subscript denoting the random variable has mostly been

omitted for clarity. Structure factors are distinguished from

distribution functions via the subscript h.

2. Methods

2.1. Distance distribution

Let a pair of atoms (xi, xj) separated by a target distance dtar
jk

undergo a random Gaussian perturbation of the positional

parameters. Let the variance of the displacement in the x, y

and z directions to be equal to �2
j for atom j and �2

k for atom k.

Assuming that the errors of the positional parameters are

independent, it can be shown (Arfken & Weber, 1995; Abra-

movicz & Stegun, 1974) that the observed interatomic distance

after the perturbation, dobs
jk , is distributed according to

f �dobs
jk � �

1

�2���2
j � �2

k��1=2
exp ÿ �d

obs
jk ÿ dtar

jk �2
2��2

j � �2
k�

" #

� dobs
jk

dtar
jk

1ÿ exp ÿ 2dtar
jk dobs

jk

�2
j � �2

k

 !" #
: �1�

A plot of this distribution for dtar
jk = 1.5 AÊ and �j = �k = 0.4 is

shown in Fig. 1, as well as a Gaussian approximation and a

distribution obtained via simulation. The raw moments of this

probability density function (p.d.f.) are given in Table 3.

Expression (1) becomes identical to the Maxwell distribu-

tion (Weisstein, 1999) for dtar
jk = 0. For this reason, we denote
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Table 1
Abbreviations.

R.m.s.d. Root-mean-square displacement
p.d.f. Probability density function
NCM Non-central Maxwell
m.c.c. Map correlation coef®cient

Table 2
Notation and main symbols.

E[t(x)]x Expectation value of t(x) by integration over x
ht(x)i Average of t(x)
xj Positional parameters of atom j
�2

m The variance of a Gaussian error model applied on the
positional parameters

qj The perturbation term on atom j: a random vector from a
spherically symmetric Gaussian centred on the origin

dtar
jk The error-free (ideal) distance between atoms j and k

dobs
jk The observed distance between atoms j and k

F�dobs
jk jdtar

jk ; 2�2
m� The cumulative distribution function of a distance

between atom j and k, given the target distance and a
Gaussian error of the positional parameters

f �dobs
min;jj2�2

m� The nearest-neighbour distribution for atom j in a
protein structure with a given Gaussian error

f �dobs
minj2�2

m� The nearest-neighbour distribution for a protein with a
given Gaussian error

frad�dobsj2�2
m� The radial distance distribution of a protein for a given

Gaussian error
2! The atomic width given a Gaussian density model
� The expected map correlation
dmin The nominal resolution of an X-ray data set
BWil The Wilson plot B value
|Fh| A structure-factor amplitude
h Reciprocal-lattice spacing
u A Patterson vector

Figure 1
The non-central Maxwell distribution (dashed) and a Gaussian distribu-
tion (thick continuous line) for an ideal distance of 1.5 AÊ and an expected
r.m.s.d. of 0.69 AÊ (�m = 0.4) on the positional parameters. The thin line
represents a distribution obtained via simulation, exactly matching the
theoretical curve.

Table 3
The vth raw moments of dobs, distributed according to NCM(dobs|dtar, �2).

Erf(z) denotes the error function, ÿ(�) the Gamma function and �(a, b; z) the
con¯uent hypergeometric function (Lebedev, 1972).

v E[(dobs)v]
0 1

1 (2/�)1/2� exp ÿ �d
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(1) as the non-central Maxwell distribution, as it describes the

distribution of a vector length of a spherical three-dimensional

Gaussian centred on a vector with given length dtar
jk . A similar

relation exists between the Rice and Wilson distributions

(Read, 1990; Bricogne, 1997).

The following shorthand for (1) will be used:

NCM�dobs
jk jdtar

jk ; �
2
j � �2

k�:
Note that the Rice, Rayleigh/Wilson, Maxwell and the NCM

distribution can be seen as special cases of the generalized

Rice distribution (Andersen & Kirsch, 1993). For complete-

ness, the p.d.f. and moments of the generalized Rice distri-

bution are given in Appendix A, as well as an outline of the

derivation of the non-central Maxwell distribution.

The expected r.m.s.d. between an error-free and perturbed

structure given a Gaussian error model with variances in each

direction equal to �2
m can be shown to be equal to the square

root of the second raw moment of the Maxwell distribution:

E�r:m:s:d:�dobs � 31=2�m: �2�
(2) relates the expected r.m.s.d. to the width of the (non-

central) Maxwell distribution. Precise knowledge of �m is thus

needed to make accurate inferences on error-free bond

lengths given an observed distance.

2.2. Nearest-neighbour distance distribution

Let Sj be the set of observed interatomic distances from

atom j to all other atoms in a model:

Sj � fdobs
j1 ; . . . ; dobs

j;jÿ1; dobs
j;j�1; . . . ; dobs

jN g: �3�
Assuming a Gaussian error with a variance �2

m on the posi-

tional parameters of the model, the individual interatomic

distances are distributed according to NCM(dobs
jk jdtar

jk , 2�2
m).

Application of an error to the atomic positions results in a

change of interatomic distances. A formerly large distance has

a certain probability of becoming the shortest. Assuming that

the elements are independently distributed, the smallest value

in set Sj has the following (cumulative) distribution function:

F�dobs
min;jj2�2

m� � 1ÿ QN
k�1;k6�j

�1ÿ F�dobs
jk jdtar

jk ; 2�2
m��: �4�

Although the assumption of independence between the

distributions of the distances is not strictly valid, the formulae

are well applicable for true Gaussian errors, as shown in x3.

(4) gives the nearest-neighbour distance distribution for a

single atom in a speci®c environment. Taking the derivative

with respect to dobs
min;j to obtain the p.d.f. and averaging over all

atoms results in the nearest-neighbour distance p.d.f. for a

randomly selected protein atom,

f �dobs
minj2�2

m� �
1

N

PN
j�1

f �dobs
min;jj2�2

m�: �5�

The summation in (5) can be seen as a marginalization: the

atom names and corresponding different chemical environ-

ments are integrated out. The resulting p.d.f. thus describes the

occurrence of nearest-neighbour distances given a protein

model and the variance of a Gaussian disturbance. For values

of 2�2
m larger than zero, distribution (5) is dominated by a set

of short 1±2, 1±3 and 1±4 distances. All protein structures

consist of the same set of basic elements and distribution (5)

can thus be expected to be essentially the same for all proteins.

The nearest-neighbour distance distributions for various

values of �m can be pre-computed. When a protein model with

a Gaussian coordinate error is available, the set of nearest-

neighbour distances fdobs
ming in the model can be computed. This

observed set of distances can then be used to estimate the

coordinate error via the maximization of the likelihood of the

observed distances as a function of �2,

Lnndd��2jfdobs
ming� �

QN
i�1

f �dobs
min � dobs

min;ij2�2�: �6�

2.3. Radial distance distribution

Let us denote the radial distance distribution of a single

protein molecule by frad�dtar�. Upon a Gaussian coordinate

error, the interatomic distances will change and the distribu-

tion will be smeared out:

frad�dobsj2�2
m� �

R1
0

frad�dtar�NCM�dobsjdtar; 2�2
m� ddtar: �7�

If the radial distance distribution up to a certain distance

(dradmax) can be assumed to be the same for all proteins, the

blurring described by (7) can be used to estimate the coordi-

nate error. Maximizing the likelihood of the observed

interatomic distances fdobs
radg given the radial distance distri-

bution for a proposed value of �2
m will result in the maximum-

likelihood estimate of the variance of the Gaussian error

model,

Lrad��2jfdobs
radg� �

QM
i�1

frad�dobs � dobs
rad;ij2�2�; �8�

where M is the number of the observed interatomic distances

that are smaller than dradmax.

2.4. Map correlation and its relation to the r.m.s.d.

Let us de®ne the map correlation (m.c.c.) by the linear

correlation over the whole unit cell of the map computed with

phases from a model with a coordinate error to the map

computed from phases of the ®nal model. Both maps are

constructed using (Fobs, 'calc) coef®cients.

Let us assume that an electron density is modelled by a set

of three-dimensional isotropic Gaussians g(r|rj, !
2) centred on

rj and with a width of 2!,

��r� � 1

N

PN
j�1

g�rjri; !
2�: �9�

Now assume that the electron density calculated from

imperfect phases can be modelled using (9) with a Gaussian

disturbance q (with variance �2
m) on the atomic centres,



�0�r� � 1

N

PN
j�1

g�rjri � qi; !
2�: �10�

The expression for the expected correlation � between these

two electron-density functions is

� � E f��r� ÿ E���r��rgf�0�r� ÿ E��0�r��rg� �r
E f��r� ÿ E���r��rg2
ÿ �

r
E f�0�r� ÿ E��0�r��rg2
ÿ �

r

� �1=2
: �11�

The expectation values are obtained by integration over r, as

denoted by the subscript. Ignoring effects arising from overlap

of neighbouring atoms, it can be shown (Appendix B) that the

correlation becomes equal to

� � 1

N

P
exp
ÿq2

i

4!2

� �
' R1

0

exp
ÿq2

4!2

� �
NCM�qj0; �2

m� dq:

�12�
Working out (12) results in

� � 1� �2
m

2!2

� �ÿ3=2

: �13�

(12) relates the expected coordinate error, which is a function

of �2
m, to the expected map correlation via the atomic shape

parameter !. (12) is in principle only valid for an isolated

atom. Effects arising from atomic overlap can be taken into

account in the following empirical way. An electron density for

a reasonably large protein structure is constructed according

to (9) with a given value of !. The same protein structure is

perturbed with Gaussian noise with a variance equal to �2
m on

the positional parameters and an electron density is created as

performed for the unperturbed structure. If this procedure is

carried out for a reasonable range of known ! and �2
m values,

the correlation � between the perturbed and unperturbed

densities can be used to estimate an empirical relation

between �, ! and �2
m. Using a wide range of ! and �2

m values,

the following dependency has been obtained:

� � 1� �2
m

2:56!2:8

� �ÿ1

: �14�

Thus, if an atomic shape parameter ! is known, (14) provides

simple means of relating a coordinate error estimate of a

model to a map correlation estimate for a map calculated with

phases from that model. The procedure for the estimation of

the parameter ! is described below.

2.5. Estimation of x

From (2) and (14), it can be seen that the slope of the

least-squares line ®tted through a set of points {r.m.s.d.2,

7.68(�ÿ1ÿ 1)} is equal to !2.8. Given the electron-density map

of the ®nal model and a number of electron-density maps

computed with phases originating from protein models with

known Gaussian errors, ! can be obtained via least-squares

methods.

2! thus models the width of the electron density of an atom

with a Gaussian shape, without the contribution of neigh-

bouring atoms. 2! is likely to be in¯uenced by the resolution

of the X-ray data and the Wilson plot B value (Wilson, 1942,
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Figure 2
Nearest-neighbour distance distributions for three protein models (1o2l,
1e3o and 1ibz) for r.m.s.d. values equal to 0.02 (a), 0.2 (b) and 0.50 AÊ (c).
For errors larger than 0.20 AÊ , the distributions for different models are
essentially identical.
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1949). Because 2! conceptually models the atomic width, we

suspect that it is related to the width of the Patterson origin

peak, which was estimated by a procedure outlined in

Appendix C. The width of the Patterson origin peak is

furthermore linked to the optical resolution as de®ned by

Vaguine (1999) and has been argued to be an objective

measure of the expected level of detail in electron-density

maps (Weiss, 2001). An empirical relation between the

observed 2! and the width of the Patterson origin peak can be

used to estimate 2! from the available diffraction data.

Another approach is to construct an empirical relation that

would give an estimation of the value of !2 on the basis of the

characteristics of the X-ray data set. We have chosen a simple

polynomial function with the nominal resolution dmin and the

Wilson plot B value BWil as variables,

!2 � �a1dmin � a2B
1=2
Wil � a3�2: �15�

The coef®cients a1 and a2 are the weights to the contributions

of the nominal resolution and the average atomic displace-

ment factor on the blurring of the electron density. Coef®cient

Figure 3
Radial distance distribution for three protein models (1o2l, 1e3o and
1ibz) for r.m.s.d. values equal to (a) 0.02, (b) 0.20 and (c) 0.50 AÊ . As for
the nearest-neighbour distributions, the radial distance distributions are
essentially identical for different protein models for coordinate errors
larger than 0.20 AÊ .

Figure 4
The dependence of the estimated r.m.s.d. values via nearest-neighbour (a)
and radial distance distributions (b) to the true r.m.s.d. (simulated
Gaussian errors, 50 independent randomizations per r.m.s.d. bin). A line
with a slope of 1 and intercept equal to 0 is shown for comparison.



a3 can be seen as modelling the average width of an atom at

rest at in®nite resolution.

3. Results

3.1. Nearest-neighbour and radial distance distributions

Nearest-neighbour distance distributions have been

obtained numerically for three different protein structures

(PDB codes 1o2l, 1e3o and 1ibz) via expression (5) and are

shown in Fig. 2 for three different r.m.s.d. values. The distri-

butions are very similar at moderate to high r.m.s.d. values, but

differ for lower errors. This observation has been con®rmed by

calculating the Kolmogorov±Smirnov statistic (Dudewicz &

Mishra, 1988) between the different distributions at a number

of r.m.s.d. values, indicating that the distributions of the three

proteins can be regarded as equal for coordinate errors larger

than 0.20 AÊ .

Error-dependent radial distance distributions up to 4 AÊ

were obtained numerically for the same protein structures via

expression (7). A number of these distributions is shown in

Fig. 3.

To test the use of the error-dependent nearest-neighbour

distributions, the atomic model of crambin (PDB code 1ab1)

was randomized with different r.m.s.d. values. The nearest-

neighbour distances of the resulting models were computed

and were used in the likelihood-maximization procedure

described by (6). The results are plotted in Fig. 4. Estimates of

the coordinate error using the radial distance distribution via

expression (8) are also shown.

3.2. Determination of x

The atomic shape parameter ! has been estimated by

randomizing the atoms of a well re®ned structure and using

that coordinate set to calculate phases and a `scrambled'

electron-density map. This has been carried out for a number

of different r.m.s.d. values and the resulting map correlations

to the original map have been calculated (Fig. 5). This

procedure has been carried out for 69 structures with

experimental X-ray data (see Table 4 for a summary of some

statistics) downloaded from the PDB (Berman et al., 2000;

Bernstein et al., 1977). For each structure, ! has been deter-

mined (hereafter denoted as observed !) using expression

(14). A typical plot of observed and ®tted map correlations as

a function of r.m.s.d. is shown in Fig. 5.

The estimated values of 2! from the isolated atom

approximation (13) and those obtained from the overlapping

atom approximation (14), are plotted in Fig. 6 against the

width of the Patterson origin peak. The width of the Patterson

origin peak is affected by atomic electron-density overlap,

resulting in a broader width than expected from the width of a

single atom. Therefore, we expect the width of the Patterson

origin peak to be larger than or equal to 2!. The values of 2!
obtained via expression (14) re¯ect this expecation surpris-

ingly well. For this reason, any further reference to 2! is thus

based on the estimates obtained via expression (14). Least-

squares ®tting of the parameters a1, a2, a3 in expression (15),

given the nominal resolution quoted in the 69 PDB entries and

the Wilson plot B value as determined by ARP/wARP (Morris,

Zwart et al., 2003), resulted in

!2 � �0:078dmin � 0:043B
1=2
Wil � 0:322�2 �16�

with estimated standard deviations of 0.014, 0.004 and 0.021,

respectively. A plot of the observed !2 values versus the values
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Figure 5
Map correlation as a function of r.m.s.d. for two data sets: 1h79
(dmin = 2.9 AÊ , BWil = 51.3 AÊ 2) and 1gsi (dmin = 1.6 AÊ , BWil = 15.0 AÊ 2).

Table 4
Summary statistics of the 69 data sets used in the estimation of !.

Average Minimum Maximum

Resolution dmin (AÊ ) 2.05 1.35 2.91
Wilson plot B value BWil (AÊ 2) 24.5 7.24 74
Overall completeness (%) 95.1 79.5 99.9

Figure 6
The dependence of the 2! estimates based on the isolated and
overlapping atoms approximations on the width of the Patterson origin
peak. A line with a slope equal to 1 is shown for comparison.
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predicted via expression (16) is shown in Fig. 7.

In a further simpli®cation where we use the observed

dependency of B
1=2
Wil on dmin for 69 PDB entries, (16) reduces to

h2!i � 0:34dmin � 0:64 �17�

and has a correlation of 0.82 against the observed 2!. A plot of

the nominal resolution versus h2!i, the resolution measure

according to James (1948), Stenkamp & Jensen (1984) and the

width of the Patterson origin peak, is shown in Fig. 8.

3.3. Map correlation estimates via an r.m.s.d. estimate of
unrestrained refined atoms

A number of unrestrained re®nements were carried out on

scrambled models of leishmanolysin (PSP; courtesy of P.

Metcalf) and the -adaptin appendage domain (adaptin;

courtesy of S. Panjikar and H. M. Kent). A Gaussian error was

applied to the positional parameters and the model has been

subsequently re®ned without restraints using REFMAC5

(Murshudov et al., 1997). The r.m.s.d. of the coordinate set has

been estimated using the nearest-neighbour distance distri-

butions and the corresponding map correlations via expres-

sions (16) and (14). The results of these experiments are listed

in Table 5.

Furthermore, two free-atom modelling experiments have

been carried out. The intermediate models of these runs have

been used to monitor the progress of phase improvement. The

r.m.s.d. and the map correlation were estimated as performed

for the scrambled models. Figure-of-merit estimates from

REFMAC5 were used to estimate the map correlation, with

the aid of an expression derived by Lunin & Woolfson (1993),

albeit in a modi®ed form:

� �
P jFhj2fomhP jFhj2

: �18�Figure 8
The nominal resolution as quoted in the 69 PDB entries is plotted against
a number of different resolution measures. See main text for details.

Table 5
R.m.s.d. and map correlation estimates of scrambled and subsequently
re®ned models.

(a) PSP data set. The resolution range was 20±2.0 AÊ . The Wilson plot B value
was 18.0 AÊ 2, which corresponds to a value of 1.32 AÊ for 2!.

True r.m.s.d. 0 0.19 0.37 0.56 0.77
Estimated r.m.s.d. 0.03 0.17 0.32 0.52 0.76
True m.c.c. 1.00 0.99 0.96 0.90 0.79
Estimated m.c.c. 1.00 0.99 0.95 0.90 0.80

(b) Adaptin data set. The resolution range was 20±1.45 AÊ , the Wilson plot B
value was equal to 10.5 AÊ 2 and 2! is thus equal to 1.15 AÊ .

True r.m.s.d. 0 0.15 0.33 0.56 0.80
Estimated r.m.s.d. 0.20 0.22 0.33 0.76 1.03
True m.c.c. 1.0 0.99 0.94 0.84 0.69
Estimated m.c.c. 0.98 0.97 0.94 0.74 0.60

Figure 7
Observed !2 versus modelled !2 using the overlapping atom approxima-
tion, ®tted on the basis of the Wilson plot B value and the resolution of
the data set. The correlation coef®cient is 0.93.

Table 6
R.m.s.d. and map correlation estimates in the ®nal ARP cycle.

The r.m.s.d. was estimated using the nearest-neighbour distances and
converted to a map correlation estimate as described in the text. `True
r.m.s.d.' stands for an r.m.s.d. estimate obtained using the known map
correlation and the inverse of expression (14).

PSP Adaptin

True r.m.s.d. 0.43 0.40
Estimated r.m.s.d. 0.45 0.33
True m.c.c. 0.93 0.91
REFMAC5 m.c.c. 0.98 0.95
Estimated m.c.c. 0.92 0.94



The results are shown in Fig. 9 and summarized for the last

free-atom modelling cycle in Table 6.

4. Discussion and conclusions

The presented analytical distribution of an interatomic

distance given the target distance and a Gaussian error model

serves as an essential component in modelling of distance

distributions in proteins. The non-central Maxwell distribution

can be described reasonably well by a Gaussian when the

variance is small compared with the error-free distance, as

indicated by the mean and second raw moment in Table 3. For

errors that are large compared with the error-free distance, the

Gaussian approximation becomes inadequate (Fig. 1). Similar

observations have also been made when comparing the Rice

and Gaussian distribution (Pannu & Read, 1996; Bricogne,

1997).

Both the derived theoretical nearest-neighbour and radial

distance distributions as a function of the coordinate error

model the true Gaussian errors of the positional parameters

extremely well (Fig. 4) in spite of the approximation of the

independence of distances, which is not fully justi®ed. The

average relative difference between predicted and true r.m.s.d.

is below 12% for errors up to 1.0 AÊ . The error estimates of the

re®ned randomized models also lie close to the correct values

(Table 5), indicating that the errors in the positional para-

meters follow an (approximate) Gaussian distribution. The

error estimates on the free-atom models, both the r.m.s.d. and

map correlation, are not quite correct in the early stages of the

iterative model update and re®nement procedure (Fig. 9).

However, the results improve as the free-atom modelling

procedure comes close to convergence (Table 6). The reason

for this is ascribed to speci®cs of ARP/wARP: the presence of

noise atoms and the distance limits used while placing free

atoms in the electron density with underlying errors that are

not accounted for. Clearly, if the initial free-atom model is

built on the grid points on which the electron density is

calculated, the distribution of the nearest neighbours is

primarily governed by the grid rather than by the quality of

the phases. Use of the statistical characteristics of these lattice

distributions (Abramovicz & Stegun, 1974) in automated

model-building procedures will be presented elsewhere.

Addition of tight stereochemical restraints on the model

will of course bias the set of distances towards the geometrical

targets. This will result in an underestimation of the coordinate

error using either the nearest-neighbour or radial distance

distributions. Nevertheless, some direct-method approaches

based on real/reciprocal-space recycling (e.g. Miller et al.,

1993; UsoÂ n & Sheldrick, 1999) or conditional optimization

approaches (Scheres & Gros, 2001) might bene®t from the

error analyses presented here.

The expression derived for the dependence of the map

correlation on the r.m.s.d. is a crude approximation to the

reality. The electron-density fall-off at truncated resolutions

shows a sharper drop as a function of distance from the atomic

centre than can be modelled by a Gaussian function

(Chapman, 1995). Furthermore, an electron-density map with

errors in the phases cannot be appropriately described by a

simple shift of the atomic centres while keeping the atomic

shape constant. Surprisingly, however, the (empirical) func-

tional forms obtained are good enough to obtain a workable

model that allows the prediction of the map correlation within

reasonable accuracy.

As expected, 2! does correlate with the width of the

Patterson origin peak (Fig. 6). A relation with the optical

resolution as computed by SFCHECK is also present, but has

a lower correlation (0.93 instead of 0.97), most likely owing to

the fact that the optical resolution has an added nominal

resolution-dependent term. We regard 2! as a model of the

shape of an average protein atom that is linked via a simple

expression (14) to the sensitivity of the map correlation to

Gaussian positional errors. Expression (17) is simple but

rather approximate, as it does not take the Wilson plot B value

directly into account but rather relies on the correlation
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Figure 9
Map correlation estimates via an r.m.s.d. estimate (estimated m.c.c.), via
the ®gures of merit of REFMAC5 (REFMAC5 m.c.c.) and true map
correlation (true m.c.c.) as a function of the ARP cycle. (a) Adaptin, (b)
PSP.
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between the Wilson plot B value and the nominal resolution in

the data present in our test set. Estimating the value of 2!
should rather be carried out by use of expression (16) or via its

relation to the width of the Patterson origin peak.

When a reasonably accurate estimate of the map correla-

tion is thus available, this can be converted to an estimate of

the r.m.s.d. of the free atoms using the inverse of expression

(14), as can be seen from Table 6. The r.m.s.d. estimate de®nes

the geometrical part of the error model which can be used in

the scoring function in main-chain tracing or side-chain

building. The use of the nearest-neighbour distance distribu-

tion in estimating the quality of a free-atom model in the early

stages of model construction is limited, but can possibly be

used in assisting atom update and removal or as a source of

prior information in non-grid-based free-atom model

construction. Using the empirically derived quantity 2! as a

classi®er for an X-ray data set to choose appropriate density

templates during chain tracing and the construction of tailor-

made decision boundaries as a function of map quality and

data-set characteristics is currently being implemented in the

latest version of ARP/wARP and awaits thorough testing to

validate the results.

The 69 X-ray data sets used to obtain the coef®cients for

(16) and (17) can certainly be used for more elaborate

analyses of characteristics of the electron density. Impressive

work along these lines has already been carried out by

Kleywegt et al. (2003), who constructed a database of electron-

density maps and quality indicators for local density ®ts given

atomic models and corresponding X-ray data submitted to the

PDB.

APPENDIX A
The non-central Maxwell distribution

Let f(x, y, z) be the p.d.f. of a three-dimensional spherical

Gaussian in an orthonormal coordinate framework centred on

an arbitrary vector (xjk, yjk, zjk),

f �x; y; z� � 1

2��3�2��1=2
�19�

� exp ÿ �xÿ xjk�2 � �yÿ yjk�2 � �zÿ zjk�2
2�2

" #
:

Transforming this p.d.f. to polar coordinates results in

f �r; �;  � � r2 sin���
2��3�2��1=2

exp ÿ r2 � rjk ÿ 2rjkr cos���
2�2

� �
: �20�

Integrating out the angles [note that  is uniformly distributed

over (0, 2�)] results in the distribution of the length of a vector

drawn from a three-dimensional Gaussian centred on

xjk, yjk, zjk,

f �rjrjk; �
2� � 1

��2��1=2
exp ÿ �rÿ rjk�2

2�2

" #
r

rjk

1ÿ exp ÿ 2rjkr

�2

� �� �
:

�21�

Subsequently setting �2 = �2
j + �2

k by assumed independence in

the errors of the atoms results in expression (1). The (cumu-

lative) distribution function of the non-central Maxwell

distribution (21) is given as

F�r� � �

�2��1=2rjk

exp ÿ �rjk � r�2
2�2

" #
ÿ exp ÿ �rjk ÿ r�2

2�2

" #( )

� 1

2
Erf

rÿ rjk

21=2�

� �
� Erf

r� rjk

21=2�

� �� �
: �22�

The K-dimensional generalization of (21) is known as the

generalized Rice distribution and has the following p.d.f.:

frobs
�rj�2; rjk� �

r

2�2

r

rjk

� �Kÿ2
4

exp
r2 � r2

jk

2�2

� �
IK

2ÿ1

rjkr

�2

� �
; �23�

where IK
2ÿ1 denotes a modi®ed Bessel function of the ®rst kind.

Depending on whether the dimension of the system is odd or

even, it is of fractional or integer order, respectively. Setting

K = 3 results, after some rearranging, in expression (21). The

raw moments of the generalized Rice distribution are given for

completeness:

E�rvjK�r � �2�2�v=2 ÿ��K � v�=2�
ÿ�K=2� � ÿ v

2
;

K

2
;ÿ r2

jk

2�2

� �
: �24�

It can be shown that when K = 2, (24) reduces to the moments

of the Rice distribution given by Pannu & Read (1996). For

K = 3, (24) is equivalent to the expression for the raw moments

given in Table 3.

APPENDIX B
On the derivation of expression (12)

Let us describe an atomic density by a Gaussian g(r|q, !2)

placed on the atomic centre q and expand it along the x, y and

z directions:

gq�rjq; !2� � gx;q�xjqx; !
2�gy;q�yjqy; !

2�gz;q�zjqy; !
2�: �25�

The following shorthand will be used:

gx;qx
�xjqx; !

2� � gx;qx
: �26�

Let x, y and z be distributed uniformly over (ÿa, a). If a is

large, then

E�gx;qx
�x �

R�a

ÿa

1

2a
gx;qx

dx ' 1

2a
; �27�

E��gx;qx
�2�x �

R�a

ÿa

1

2a
�gx;qx
�2 dx ' 1

4a�1=2!
�28�

and

E��gx;qx
��gx;0��x �

R�a

ÿa

1

2a
gx;qx

gx;0 '
1

4a�1=2!
exp ÿ q2

x

4!2

� �
:

�29�
Expanding (11) results in



� � E���r��0�r��r ÿ E���r��rE��0�r��r
fE���r�2�r ÿ E���r��2r gfE��0�r�2�r ÿ E��0�r��2r g
ÿ �1=2

: �30�

Writing out the ®rst part of the covariance term in (30)

explicitly for a single -atom molecule, we obtain

E���r��0�r��r � E�gx;0gx;qx
�xE�gy;0gy;qy

�yE�gz;0gz;qy
�z: �31�

Working out the other moments and using (27) and (28)

results in

� � �1=��
1=2!�3� exp�ÿ�q2

x � q2
y � q2

z�=4!2� ÿ aÿ2

�1=��1=2!�3� ÿ aÿ2
: �32�

Neglecting the aÿ2 terms (a is large) results in

� � exp ÿ q2
x � q2

y � q2
z

4!2

� �
� exp ÿ jqj

2

4!2

� �
: �33�

The validity of the previous expression has been checked

numerically. The larger a, the more justi®ed the approxima-

tions made. For a multi-atom molecule a similar derivation can

be made, resulting in expression (12), assuming that atoms do

not overlap.

APPENDIX C
The width of the Patterson origin peak

Consider the Patterson synthesis:

P�u� �P
h

jFhj2 exp�ÿ2�ihu�: �34�

Averaging over the sphere with radius u results in

hP�u�i �P
h

jFhj2
sin�2�hu�

2�hu
: �35�

This can be approximated further by summing over resolution

bins hj, rather than individual re¯ections,

hP�u�i �P
j

NjhjFhj2ij
sin�2�hju�

2�hju
: �36�

Modelling the Patterson origin peak by a Gaussian function

leaves us with ®tting the following dependency around the

origin,

ln�hP�u�i� ÿ ln�hP�0�i� � p1u2: �37�
(ÿ1/p1)1/2 is than equal to the width of an average Gaussian-

shaped atom. This number is quoted in the text as the width of

the Patterson origin peak.

The authors would like to thank A. Schmidt, R. J. Morris,

G. Murshudov and the referees for useful comments on this

manuscript.
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