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Abstract

Residual dipolar couplings provide significant structural information for proteins in the solution state, which
makes them attractive for the rapid determination of protein structures. While dipolar couplings contain inherent
structural ambiguities, these can be reduced via an overlap similarity measure that insists that protein fragments
assigned to overlapping regions of the sequence must have self-consistent structures. This allows us to determine
a backbone fold (including the correct C�–C� bond orientations) using only residual dipolar coupling data from
one ordering medium. The resulting backbone structures are of sufficient quality to allow for modeling of
sidechain rotamer states using a rotamer prediction algorithm and a force field employing the Surface General-
ized Born continuum solvation model. We demonstrate the applicability of the method using experimental data
for ubiquitin. These results illustrate the synergies that are possible between protein structural database and mo-
lecular modeling methods and NMR spectroscopy, and we expect that the further development of these methods
will lead to the extraction of high resolution structural information from minimal NMR data.

Introduction

There exists a need for methods that would allow the
more rapid determination of protein structure using
NMR than can currently be attained, both from the
viewpoint of traditional structural biology, as well as
from the ‘proteomics’ and ‘structural genomics’ per-
spective. One of the principle rate-limiting steps in
NMR structure determination is the sequential assign-
ment of sidechain proton resonances and the assign-
ment of NOESY crosspeaks to particular sidechain
resonances. These steps are considerably more diffi-
cult and time-consuming than the sequential assign-
ment of chemical shifts along the peptide backbone,
for which relatively robust automated methods al-

ready exist [1]. Therefore, it would be desirable to
have a method for obtaining reliable structural infor-
mation based on the smallest possible additional data
collection beyond that needed for the backbone reso-
nance assignments. It would be especially useful if
such minimal data could yield all-atom models, rather
than simply backbone structures. In this paper, we
describe our recent work in the pursuit of this goal.

Backbone residual dipolar couplings are of partic-
ular interest for this purpose since they require
relatively little data collection time and provide con-
siderable structural information through their depen-
dence on the orientation of internuclear vectors
relative to an order frame [2]. The development of a
variety of orienting media (such as lipid bicelles and
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filamentous phage) [3–5] have increased the practi-
cality of such measurements in recent years, and the
use of residual dipolar couplings as a supplement to
NOEs and scalar couplings in the refinement of high-
resolution NMR solution structures is becoming more
common [6].

Applications of residual dipolar couplings to the
study of protein structure in the absence of NOEs
have previously been reported [7–11]. All of these
methods, however, are limited to different degrees by
the orientational ambiguities arising from the many-
to-one relationship between internuclear vector orien-
tation and dipolar coupling. We have shown in earlier
work [12] that the effect of these ambiguities can be
greatly reduced by the use of filtering procedures
based on measures of structural similarity between
protein fragments with overlapping regions. In this
paper, we summarize that work and give some new
results on the use of sidechain rotamer prediction al-
gorithms for the building of all-atom models from
backbone structures determined from residual dipolar
coupling data.

Theory and methods

A residual dipolar coupling associated with a given
internuclear vector is related to the orientation of that
vector relative to an order tensor and is given by

D � Da ��3 cos2 � � 1� � 3�2 R cos2� sin2 �� (1)

where Da is a constant which depends on the inter-
nuclear distance and the gyromagnetic ratios of the
spins involved, R (0 � R � 2/3) is a measure of the
asymmetry of the order tensor, and � and � are spher-
ical coordinates which relate the internuclear vector
to the principle axis system (PAS) of the order tensor
[2]. Alternatively, one can rewrite equation 1 in the
form

D � �x y z� �Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

� �x
y
z
� (2)

where Dij are the elements of a symmetric and trace-
less matrix proportional to the Saupe order tensor [13,
14] in an arbitrary molecular frame defined by the di-
rection cosines x, y, and z. The relationship between
(�, �) or (x, y, z) and D is many-to-one, since there
exist manifolds of (�, �) or (x, y, z) points which give

rise to the same dipolar coupling, e.g. circles of con-
stant � in the case of R � 0. These degeneracies lead
to orientational ambiguities which can give rise to
false positive hits when searching a database or to
structural ambiguity when constructing a structural
model de novo.

Since equation (2) is linear in the tensor elements
Dij, it is possible to solve for the optimal Dijs which
maximize the agreement between a set of internuclear
vector orientations and the dipolar coupling data us-
ing a computationally efficient linear least squares
procedure [14]. Given this fit, we can easily back-
calculate the best-fit dipolar couplings and calculate a
goodness-of-fit measure known as the ‘Q factor’ [15]:

Q �
	
i

�Dcalc, i � Dobs, i�
2

	
i

Dobs, i
2

(3)

where Dcalc, i and Dobs, i are the back-calculated best-
fit and experimental values for the i-th residual dipo-
lar coupling.

A database consisting of 191 696 seven-residue
protein fragments from the SCOP40 database [16]
was constructed. Seven-residue data windows, which
included dipolar couplings for N–HN, C�–H�, C�–C,
C–N, and C–HN internuclear vectors from the
‘charged bicelle’ data of Ottiger & Bax [17] (Support-
ing Information Table 2) were fit to each fragment in
this database, and a Q factor calculated. Database
fragments derived from domains having clear struc-
tural homology to ubiquitin with a CE z-score [18]
greater than 4.0 (including ubiquitin itself) were ex-
cluded. For each seven-residue window in the protein
(i.e. residues 1–7, 2–8, 3–9, ..., 70–76), the 15 frag-
ments with the smallest Q factors were saved. Due to
orientational ambiguities, these 15 hits in general con-
tain both true positives (fragments which are similar
in structure to that which generated the data) and false
positives (fragments which are significantly different
in structure from that which generated the data) (Fig-
ure 1). Because of this, a filtering procedure is
required to locate the true positives.

Our filter is based on the idea that protein frag-
ments assigned to overlapping regions of the
sequence must have self-consistent structures: e.g. a
selected hit for data window 1 (residues 1–7) must be
structurally similar to the selected hit for data window
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2 (residues 2–8) over the overlapping region from
residues 2 through 7. Finding the fragment for each
data window such that the total overlap similarity is
maximal leads to a combinatorial optimization prob-
lem that grows exponentially with the number of win-
dows. However, we have developed a bounded tree
search algorithm [12] which allows for the efficient
search for optimal selections over a block of up to
twenty windows.

Once we have found the optimal choice of frag-
ment for each window, we construct a structural
model by performing rigid body superpositions of the
selected fragments. For each window i (i > 1), we
translate and rotate the selected fragment for that win-
dow so as to minimize the C� RMSD with the se-
lected fragment for window i � 1 over the six resi-
dues where they overlap [19]. When this has been
done for all windows in the protein, each residue po-
sition will have atomic coordinates from up to seven

fragments. We construct a consensus structure by cal-
culating the centroid of the atomic coordinates for
each of the backbone atoms N, C�, and C, and use
these to calculate backbone dihedral angles � and �.
Up to this point we have made no use of the ‘long
range’ information inherent in residual dipolar cou-
plings. This information is reintroduced by refining
the backbone dihedral angles by direct minimization
of the projected Q factor [20] as a function of the �
and � angles for the entire protein using an ideal pep-
tide geometry and peptide bond torsion angle � fixed
at 180° as described in [12].

Sidechain rotamer modeling made use of the
OPLS force field [21, 22] for protein intramolecular
energetics along with the Surface Generalized Born
(SGB) implicit model of solvation [23]. The SGB
model can be understood as a relatively inexpensive,
analytical approximation to the Poisson-Boltzmann
description of continuum electrostatics, and the pa-

Figure 1. The results of the fragment database search for the seven-residue ubiquitin data window 52 corresponding to residues 52–58. Each
small circle represents one fragment in the database, and its position is given by the Q factor for the fit to the dipolar coupling data and that
fragment’s C� RMSD to the corresponding residues of the 1UBQ crystal structure. Only those fragments with a Q factor less than or equal
to 0.2 are shown. The green ellipses denote fragments which are true positives, the cyan ellipses denote false negative fragments, and the red
ellipse denotes false positive fragments. If only the 15 fragments with the smallest Q factor values are saved, then only true and false posi-
tives will be observed.
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rameters have been calibrated against both Poisson-
Boltzmann calculations and experimental solvation
free energies for a wide range of small organic mol-
ecules. The combinatorial optimization of the
sidechain rotamer states was performed using the al-
gorithm of Jacobson and Friesner (manuscript sub-
mitted), which is an adaptation of the method de-
scribed by Xiang and Honig [24] and is similar to that
used previously by Bruccoleri and Karplus [25]. For
cases where the backbone structure is assumed to be
known (e.g. when testing the algorithm and energy
function on high-resolution crystal structures), the al-
gorithm first chooses a rotamer state for each
sidechain at random from the highly detailed rotamer
library of Xiang and Honig [24]. This library is con-
siderably larger than that used in other rotamer pre-
diction methods, with a resolution of 10° and approx-
imately 2000 rotamer states for Lys and Arg. This
library is first pre-screened using hard-sphere overlap
as a rejection criterion to prevent the selection of rot-
amers which lead to steric clash with the protein
backbone. Next, the rotamer state of each sidechain

in the protein is optimized one at a time while hold-
ing the rotamer states of all the other sidechains con-
stant. This is done by searching the pre-screened rot-
amer library for the lowest energy rotamer, which was
then energy minimized with respect to all of its de-
grees of freedom in Cartesian space using a novel
multiscale minimization algorithm (Jacobson and
Friesner, manuscript submitted) based on the Trun-
cated Newton method of Xie and Schlick [26]. This
procedure is iterated until no sidechains change rota-
mer states, and then all sidechains are energy mini-
mized simultaneously in Cartesian coordinates to
remove any remaining clashes.

For cases where the backbone is known to be ap-
proximate, such as backbones modeled using residual
dipolar couplings, a modified version of the above al-
gorithm was used. The rotamer library was first pre-
screened to avoid rotamer states which lead to steric
clash with the protein backbone. For residues which
gave rise to no acceptable rotamer states, the steric
screening criterion was relaxed until at least one ac-
ceptable rotamer state was found. The iterative

Figure 2. A summary of the fragment database search results for all data windows in ubiquitin using a window size of seven. The small
circles represent (for each window) the 15 fragments in the database with the smallest Q factor, and the ordinate is the fragment’s C� RMSD
to the corresponding residues of the 1UBQ crystal structure. The green lines represent the fragment selections with the optimal overlap
similarity. Selections were performed using a bounded tree search algorithm [12] in five blocks (corresponding to windows 1–20, 21–25,
26–35, 36–50, and 51–70) chosen to reduce the running time of the tree search.
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sidechain optimization procedure then proceeded as
above, followed by a minimization of the whole pro-
tein with respect to the OPLS/SGB energy. The
sidechain prediction was then repeated based on this
‘relaxed’ backbone.

Results and discussion

The results of the dipolar coupling-based database
search for ubiquitin are shown in Figure 2, where we
plot the RMSD to the ubiquitin crystal structure
1UBQ [27] for each of the 15 smallest Q factor hits
in each data window. It is clear that some regions (e.g
windows 13–18, 31–39, and 47–63) have many more
false positives than others (e.g. windows 1–12 and
20–30). Some of this variability is easily explained.
For example, windows 20–30 correspond to the al-
pha-helical region of ubiquitin (residues 23–34).
Since helices are common and tend to have relatively
similar structures on a seven-residue level, there will
be many structurally similar fragments in the data-
base, many of which will also have a small Q factor
when fit with data derived from a helical structure.
Other regions with a large number of false positives
correspond to regions in which there is a large amount
of missing data, such as windows 31–39, which over-
lap the data-poor region in the vicinity of proline res-
idues 37 and 38. However, despite the false positives,
there is still a sufficient number of true positives for
us to expect to be able to construct a reasonably ac-
curate structure.

The use of the bounded tree search algorithm to
select one hit for each window which maximizes the
overlap similarity with the neighboring windows
greatly reduces the impact of the false positives. This
can be seen in the green line in Figure 2, which indi-
cates the selections made by the tree search proce-
dure. In general, the selections are quite good, though
usually not the best in terms of the RMSD of the
fragment to 1UBQ. The only substantial deviation is
in the area of windows 31–36, which could be another
consequence of the low data density for residues
36–38 mentioned above. The local structure corre-
sponding to each block is generally quite good, as can
be seen in the remarkably tight bundle for the frag-
ments corresponding to windows 1–20 (residues
1–26) (Figure 3). The overall structure before refine-
ment is topologically correct but of somewhat poorer
quality than the fit in the individual blocks: the
RMSD of the mean C� positions to 1UBQ is 5.94 Å.

This is not surprising, however, as absolutely no
‘long-range’ information has been used in the con-
struction of this initial model, i.e. the fragments have
been fit only to each other and not to a common or-
dering frame.

In order to reintroduce long-range dipolar coupling
information into the structure, the backbone torsion
angles were adjusted so as to minimize the overall Q
factor using the structure obtained from the fragment
search and overlap filtering as a starting point. Dur-
ing the iterative minimization procedure [12] the
overall RMSD relative to 1UBQ decreased from 6.77
to 2.69 Å, while the RMSD for the core of the pro-
tein (neglecting the unstructured N and C termini)
decreased from 6.20 to 2.40 Å. The resulting final
model is shown in Figure 4 along with the best-fit su-

Figure 3. (A) The result of the superposition of the selected frag-
ments for the window block 1–20 (residues 1–26) as described in
Theory and methods. The 20 fragments chosen are 1SLU:A(69–
75), 1BTN(75–81), 1BTN(76–82), 1BTN(77–83), 1TSS(35–41),
1AGQ:A(115–121), 1AGQ:A(116–122), 1DNP:A(67–73), 1DN-
P:A(68–74), 1RIE(84–90), 1RIE(85–91), 1AGQ:A(44–50),
1AGQ:A(45–51), 1AGQ:A(46–52), 1ALO(15–21), 1ALO(16–22),
1ALO(17–23), 1EXN:A(90–96), 1EXN:A(91–97), and
1HVD(116–122), respectively. Each fragment is shown in a differ-
ent color. (B) The corresponding region of 1UBQ. The C� RMSD
between it and the mean C� positions of the fragments shown in
(A) is 1.56 Å.

107



perposition to the crystal structure 1UBQ. While the
final model does contain some mis-orientation of sec-
ondary structural elements (e.g. the two N-terminal
�-sheets), it is still very good. Not only is the back-
bone fold correct, but the peptide planes and C�–C�

bond vectors also have the correct relative orienta-
tions. This can be seen by comparing the RMSD of
the final model to 1UBQ using the C� atoms only
(2.69 Å) and using the C� and C� atoms together
(2.78 Å). Our model is accurate enough to identify
the backbone fold (for purposes of structural genom-
ics), and the fact that the sidechain C�–C� directions
are accurately defined raises the possibility of con-
structing all-atom models using modern sidechain
conformation prediction algorithms and molecular
mechanics refinement.

We performed sidechain rotamer prediction as de-
scribed in the Theory and methods section above us-
ing both the crystallographically determined back-
bone structure from 1UBQ, as well as the final model
determined from the residual dipolar coupling data
above. The results using the 1UBQ backbone were
very good, with 94% and 87% accuracy rates for �1

and �2 angles (where ‘correct’ is defined to be within
± 40° of the dihedral angle observed in the crystal
structure), while the �3 angles were 60% correct (all
RMSD and fractions correct do not include the two
N-terminal and two C-terminal residues). When us-
ing the dipolar coupling modeled backbone, the error
rates were higher, but still reasonably accurate: 62%,
48%, and 56% for �1, �2, and �3, respectively. The
accuracy of �1 was further analyzed by sidechain type
(polar vs non-polar) and location (inside vs. outside,
where ‘outside’ is defined as those residues whose

sidechains have more than 20% accessible surface
area; Table 1). For both the X-ray and modeled back-
bones, the interior sidechains were predicted more
accurately than the surface sidechains. With respect
to amino acid type, the results suggest that the con-
formation of non-polar sidechains is more accurate
than that of the polar ones when using the 1UBQ
backbone, but this is no longer the case when the di-
polar coupling modeled backbone is used. The in-
creased accuracy of the �1 predictions for interior
residues likely arises from steric restriction due to the
backbone and sidechain packing, and similar results
have been seen when modeling surface sidechain con-
formation in the presence and absence of crystal
packing interaction (Jacobson and Friesner, manu-
script submitted). In order to investigate the role of
protein size on sidechain rotamer prediction accuracy,
we repeated our sidechain modeling procedures using
the backbone structure of the 370 residue maltodex-
trin binding protein (1DMB). The resulting overall
accuracy rates are comparable to those for ubiquitin,
and similarly show increased accuracy for interior
and non-polar sidechains (Table 1). A more detailed
study of the impact of protein size on sidechain pack-
ing and prediction accuracy is currently underway.

In order to evaluate the influence of the backbone
accuracy on the sidechain rotamer prediction, we gen-
erated a series of perturbed backbone structures using
Monte Carlo simulation at high temperature. Specifi-
cally, we used internal coordinate Monte Carlo using
the OPLS/SGB energy function at 10 000 K on the
1UBQ backbone with sidechains removed. A total of
8 conformations were saved at intervals of 10 Monte
Carlo steps, and the C� RMSD from the crystal struc-
ture increased from zero to nearly 4 Å over those 8
conformations. As seen in Figure 5, the sidechain ac-
curacy decreases rapidly as the backbone RMSD in-
creases from 0 to 1 Å, and then remains fairly con-
stant as the RMSD increases further. This result
seems to indicate that sidechain prediction accuracy
is very sensitive to small deviations from the native
structure. However, it is possible that some fraction
of this error is due not to distortions in the overall
conformation but rather to incorrect C�−C� vector
orientations. To determine the magnitude of this con-
tribution, we performed a Cartesian coordinate Monte
Carlo perturbation while holding C� coordinates fixed
at the positions found in the crystal structure while
allowing the other backbone atoms to move (using the
same energy function for 10 000 steps at 10 000 K).
The accuracy of sidechain prediction in this case is

Figure 4. Stereo diagram of the backbone traces of the C� super-
position of the structural model generated using the methodology
described in this paper (red) compared with the crystal structure
1UBQ (blue). The N- and C-termini are indicated.
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decreased to 83%, despite the fact that its C� RMSD
from the crystal structure is zero (filled circle in Fig-
ure 5). Therefore, C�−C� orientational errors likely

make a significant contribution to the decrease in
sidechain �1 accuracy in going from the X-ray back-
bone to 1.0 Å RMSD. Since protein backbone mod-

Table 1. A summary of the results for �1 sidechain prediction on ubiquitin and maltodextrin binding protein using native, perturbed, and
dipolar coupling modeled backbone structures.

Ubiquitin Maltodextrin binding protein

Fraction correct �1 Fraction correct �1

Number of

residues

1UBQ

backbone

Dipolar

coupling

backbone

Perturbed

1UBQ

backbone

(0.5Å

RMSD)

Perturbed

1UBQ

backbone

with fixed

C�

Number of

residues

1DMB

backbone

Perturbed

1DMB

backbone

(0.4Å

RMSD)

Perturbed

1DMB

backbone

with fixed

C�

Overall 66 94% 62% 70% 83% 297 83% 72% 76%

Inside 19 100% 74% 89% 95% 137 91% 80% 83%

Outside 47 91% 58% 62% 76% 160 76% 65% 71%

Polar 38 87% 63% 63% 84% 156 76% 67% 71%

Non-polar 28 100% 61% 79% 82% 141 91% 79% 82%

See the text for details. A �1 angle is considered to be correct if it is within ±40° of the rotamer conformation seen in the corresponding
X-ray structure.

Figure 5. Results of sidechain �1 rotamer prediction for ubiquitin using both the native and perturbed backbone structures. The �1 percentage
correct (where ‘correct’ is defined to be within ±40° of the native rotamer) is plotted against the C� RMSD from the crystal structure. The
filled square indicates the fraction correct using the crystal structure backbone. The open circles represent the perturbations of the entire
backbone using high temperature Monte Carlo as described in the text. The filled circle indicates the result using a backbone structure in
which all atoms except the C� have been perturbed.
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els derived from residual dipolar coupling data have
generally correct C�−C� orientations, it is likely that
further improvements in backbone model building us-
ing dipolar coupling data will lead to a greater in-
crease in sidechain prediction accuracy than sug-
gested by the Monte Carlo perturbation results shown
in Figure 5.

Figure 6 shows the correlation between the RMSD
from the crystal structure of the backbone and the to-
tal OPLS/SGB molecular mechanics energy of the all
atom model generated in the high temperature Monte
Carlo simulations, and also including the model based
on the residual dipolar coupling data. The energy dif-
ference between the minimized X-ray structure (dot-
ted line) and the model with sidechains predicted us-
ing the X-ray backbone is only 1.7 kcal/mol. The
energy of the protein increases almost linearly for
small deviations from the x-ray structure, reaching a
plateau beyond 1.0 Å. This result implies that mini-
mization of the molecular mechanics energy can re-
sult in improvements in the backbone conformation.

We have in fact observed this in sidechain modeling
using the backbone structure determined using dipo-
lar coupling data. In this case, the addition of
sidechains results in steric clashes which are removed
by energy minimization, causing the RMSD over core
residues to improve from 2.4 to 2.2 Å. These results
provide a demonstration of the synergies that are pos-
sible between protein structural database and molecu-
lar modeling methods and NMR spectroscopy, and we
expect that the further development of these methods
will lead to the extraction of high-resolution structural
information from minimal NMR data.

Conclusions

We have shown that a protein fragment database
search approach using overlap RMSD as a filtering
tool is an efficient way of generating a backbone fold
from residual dipolar coupling data. Furthermore, the
resulting structures are of sufficient accuracy to allow

Figure 6. The total OPLS/SGB energy of the structures generated using sidechain rotamer prediction based on the native and perturbed
ubiquitin backbones. The dotted line indicates the energy of the 1UBQ structure after minimization. The filled square indicates the energy of
the complete structure after sidechain placement using the crystal structure backbone. The open circles represent the molecular mechanics
energies of the complete stuctures after sidechain placement onto backbones perturbed using high temperature Monte Carlo as described in
the text and Figure 5. The filled circle indicates the energy of the complete stuctures after sidechain placement onto backbone determined
using residual dipolar couplings.
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the placement of sidechains using a rotamer predic-
tion algorithm.There is a great deal of information
contained in the residual dipolar couplings, not all of
which is used by the methods described here, and the
overall reliability and robustness of our procedure
could be improved by incorporating this information.
For example, we used the dipolar couplings to assem-
ble the list of candidate fragments at each window
position, but this information was not used at all in
the fragment filtering and the construction of the ini-
tial model. Furthermore, molecular mechanics meth-
ods could be incorporated earlier into the structure
determination process, as it is routinely done in NOE-
based NMR structure determination. Also, the addi-
tion of chemical shift and scalar coupling data is
likely to greatly increase the accuracy of the resulting
models.
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