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INTRODUCTION

The equations of ab initio quantum chemistry--the clamped-nuclei
Schroedinger or Dirac-Fock equations--have been known for nearly 60
years. Initially, accurate solutions could only be obtained for the simplest
systems, e.g. the hydrogen atom, helium atom, and hydrogen molecule.
The mathematical complexity of these ab initio equations for many-elec-
tron atoms and molecules led chemists to focus on construction of approxi-
mate, semiempirical molecular orbitals [e.g. Huckel theory (1)], 
approach ~;hat has contributed (and continues to contribute) enormously
to our understanding of chemical phenomena.

Forty ye, ars ago, the development of digital computers revived the hope
that one might obtain molecular wavefunctions from first principles cal-
culations. On the theoretical side, the work of Hartree (2, 3), Fock (4),
and others led to a systematic hierarchy of approximation schemes based
on a self-consistent field (SCF) or Hartree-Fock (HF) methodology 
starting point; the SCF solutions were then corrected for electron cor-
relation by various techniques. Somewhat later, the development of density
functional (DF) theory by Kohn, Hohenberg, and Sham (5, 6) provided 
different approach to reducing the electronic Schroedinger equation to
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342 FRIESNER

tractable form. These two formalisms remain the alternatives if one pursues
a first principles method.

The early digital computers had only a small fraction of the memory
and central processing unit (CPU) capabilities of current machines. Thus,
it was extremely difficult to make progress in developing numerical algo-
rithms for the solution of these complicated partial differential equations.
Over the first two decades, a dominant computational algorithm emerged
for HF and related methods, which we refer to as conventional quantum
chemistry (CQC). The critical component of CQC is expansion of the self-
consistent molecular orbitals in a Gaussian basis set, which allows the
resultant two electron repulsion integrals that appear ir~ the Roothaan-
Hall (RH) equations to be computed analytically. The refinement of this
approach, by the use of contracted Gaussian basis functions (7, 8) remedied
a major deficiency of the original method, namely the unsuitability of a
single Gaussian function for representing atomic or molecular orbitals,
particularly tight core orbitals. The announcement of the GAUSSIAN
70 program system (9), which contained the first efficient methods for
computing integrals over the contracted Gaussians, initiated a long period
of CQC research in which the basic theoretical and numerical framework
was fixed and enormous efforts were invested in software and algorithm
design, both for HF and correlated methods. There are now several large,
complex codes of more than 100,000 Fortran statements (e.g. GAUSSIAN
90) that provide access to the latest CQC technology for nonspecialists in
a relatively painless fashion.

In some ways, this research program has been extremely successful.
Over the past 20 years the explosiw~ growth in the power of computational
hardware has allowed CQC treatments of small- and medium-sized mol-
ecules at increasing levels of accuracy. For small (2-6 atom) molecules,
genuine predictive power for a wide: variety of properties is generally within
reach (albeit at a substantial cost for the extensive inclusion of electron
correlation), whereas for medium-sized (7-20 atom) molecules, insightful
studies can often be performed. Significant problems remain even for the
small systems, e.g. accurate treatment of transition metals, excited states,
or truly multiconfigurational trans:ition states is far from trivial. However,
these difficulties do not appear insuperable, and continued improvements
in hardware, software, and CQC rnethodology are expected to bring most
remaining obstacles under control.

The treatment of larger systems: by CQC techniques is in a much less
satisfactory state. The principal barrier has been the scaling of CQC
methods with system size. Formality, the computational effort for solving
the RH-SCF equations scales as N4, where N is the size of the basis set
(ordinarily proportional to the size of the molecule). Correlation methods
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METHODS FOR ELECTRONIC STRUCTURE 343

begin with a scaling of N5, e.g. for second order perturbation theory, and
become as large as N7 for highly accurate methods; full configuration
interaction, a brute force inclusion of all possible determinants within a
given basis set, grows exponentially. This behavior makes it virtually
impossible to imagine applications to systems in the 50-100 atom range
in the near future, even with the doubling of hardware cost/performance
every few )’cars.

In the early days of computational quantum chemistry, scaling behavior
was not critically important. Because of highly restrictive memory limita-
tions, one could, in any case, only treat small molecules, where the
additional powers of N required for the higher level correlation methods
was not an insuperable burden. Furthermore, the emphasis of quantum
chemists in this period was on accurate comparisons with gas phase
measurements, where the systematic improvability of CQC methods
proved to be enormously attractive to experimentalists. In the struggle to
understand the elements of chemical bonding and potential energy surfaces
for small molecules, CQC has become an invaluable tool.

Over the past 20 years, hov~ever, an alternative vision of the uses to
which quantum chemical calculations can be put to has developed. In
molecular ’,simulation (or molecular modeling) methods (10, 11), inter-
action potentials were initially constructed by empirically fitting to both
simple gas phase experiments (e.g. vibrational frequencies) and bulk
thermodynamic properties. When coupled to formal statistical mechanical
techniques, which now range from classical Newtonian dynamics to free
energy perturbation theory, such simulations offer the exciting possibility
of direct theoretical modeling of condensed phase systems. Concomitantly,
a host of ]powerful new experimental techniques for directly studying
condensed phases has been invented. This research program offers an
alternative to the older picture of chemical physics in which knowledge of
chemical structure and reactivity was to be obtained by detailed inves-
tigation of small molecules in the gas phase, transferring the resulting
insights (and interaction potentials, if they could be extracted) to con-
densed systems, in which most (although not all) practical chemistry takes
place.

Enhanced hardware capabilities have now made molecular modeling a
serious possibility for virtually any system one cares to study. A crucial
question, however, is the reliability of the interaction potentials, par-
ticularly if one is interested in obtaining actual numbers, rather than just an
attractive (but perhaps quantitatively incorrect) graphical representation.
This, in turn, poses a challenge to ab initio quantum chemists: Can one
carry out calculations efficiently enough on large systems to contribute to
molecular modeling approaches? An affirmative answer to this question is
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344 FRIESNER

absolutely essential for the development of truly predictive molecular
modeling methods. There are simply too many adjustable parameters and
too few experiments to derive accurate potential surfaces without recourse
to quantum chemical calculations. These difficulties are particularly acute
when considering reactive (bond breaking) processes, excited states, tran-
sition metals, or any other poten.tial surface that is not, for whatever
reason, well-characterized experimentally. Ab initio methods (principally
at the HF level) are already utilized extensively in computing effective
point charges and force fields for small- and medium-sized molecules or
molecular fragments as inputs to molecular modeling programs (10,
11); the development of more effective correlation methods and better
scaling of the calculations with system size can only accelerate this trend.

What are the prospects of performing sufficiently accurate quantum
chemical calculations on large (e.g. 50-100 atom) systems in reasonable
CPU times? One possibility is to ,employ semiempirical methods (1, 12-
15), which are in general considerably less expensive than any of the
first principles approaches. The problem here is to develop parametrized
Hamiltonians of sufficient generali.ty and reliability. At present, this is an
active area of research; however, it lies outside the scope of this review.
The relevant point for our purpose~ is that existing semiempirical methods,
while impressive in selected applications, have not yet reached a level of
accuracy where the use of ab initio techniques becomes redundant.

There remain three alternatives, if one intends to stick with some sort
of first principles approach. First, one can modify existing CQC methods
for application to large systems, by incorporating the rapid improvements
in computational hardware technology. There has been remarkable pro-
gress along these lines over the past ten years, particularly in the solution
of the HF equations. Second, substantial efforts have been made in this
same period to improve the accuracy and computational efficiency of DF
methods. In the 1970s, for various historical reasons, the practitioners of
this approach did not put the samc level of effort into software and
algorithm development as did the CQC workers, particularly for molecular
(as opposed to solid state) calculati.ons. This state of affairs has now altered
significantly, and DF methods must be considered as serious competitors
for large molecule quantum chemical calculations. Significant progress has
been made in the construction of effective gradient corrections (16-19),
which represent real improvements in the energy functional beyond the
local density approximation, and in the development of reliable numerical
techniques to evaluate the total er~ergy and its gradient (20, 21).

Finally, one can ask whether new algorithmic approaches to solving the
molecular Schroedinger equation, are possible. For example, it is easy
enough to design numerical methods for SCF calculations, which have
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METHODS FOR ELECTRONIC STRUCTURE 345

much better scaling properties with system size than the RH approach,
e.g. plane wave expansion methods that formally scale as N2 (22). However,
even for large systems, the prefactor multiplying the scaling term is crucial.
A characteristic feature of electronic structure calculations is that one
needs enormously high relative precision (as a function of geometry) 
the energy, typically on the order of one part in l07. TO achieve this
precision, methods that have superior scaling properties may require huge
prefactors, so that even for 50-100 atom systems, CQC methods, suitably
modified for large scale calculations could be greatly superior. Similar
consideratiions are paramount in the development of new correlation
methods, e.g. quantum Monte Carlo techniques (23-28), which are very
promising in theory because of their favorable scaling properties, but to
date have ihad great difficulty in obtaining adequate relative precision in
reasonable CPU times.

Over the past five years, we have developed the first successful alternative
to RH methods for solving nonlocal ab initio SCF equations for poly-
atomic molecules (29-35). The method uses conventional quantum chemi-
cal basis sets in conjunction with the pseudospectral method, a numerical
technique borrowed from hydrodynamic simulations of turbulence (36-
39). The methods bear some resemblance to approaches used to solve the
DF self-consistent field equations; indeed, an important feature of our
results is the demonstration that the efficacy of such numerical methods is
not dependent upon the use of local exchange operators, as had been
widely thought in the past. We have shown that significant reductions in
computational effort, as compared with modern CQC programs, can be
achieved with the method without sacrifice in accuracy for both HF and
multiconfigurational self-consistent field (MCSCF) calculations.

The objective of this article is to describe the developments that have
occurred over the past five years for each of these three methods and to
assess prospects for the future. We give a more detailed presentation of
our new methodology, as this is likely to be less familiar to readers than
the two alternatives. The conclusions arising from these examinations is
an exciting one; over the next five to ten years, reasonably accurate first
principles methods will become applicable to large molecular structures
on a routine basis. Furthermore, the development of user-friendly, com-
mercialized software insures that this technology will be accessible to
chemists in all fields and institutions.

The orienttation of this review is towards presenting concepts, as opposed
to conducting an exhaustive survey of the recent literature. A particular
manifestation of this is the focus on three (among many) first principles
electronic structure codes: GAUSSIAN 90, a CQC-based program;
DGAUSS, a DF program utilizing Gaussian basis functions; and our own
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346 FRIESNER

pseudospectral codes, PSHF and PSGVB. Although the last of these are
at present unique, there are a significant number of alternatives to the first
two pa6kages. Both GAUSSIAN !90 and DGAUSS are representative of
the state-of-the-art in their respective methodologies; however, we intend
no particular implications concerning the relative performance of these
codes as compared with the above-mentioned alternatives.

CONVENTIONAL AB INITIO QUANTUM
CHEMISTRY

Algorithms for Hartree-Fock Computations

The HF level of ab initio theory is the method most commonly used
in actual applications and is conceptually the most straightforward first
principles approach. The method is variational; it assumes a single deter-
minant trial wavefunction and optimizes the constituent molecular orbits
to yield the lowest values of the ground state electronic energy. For peda-
gogical purposes, we consider only the closed-shell version of the method,
assuming an even number of electrons.

The HF equations for an occupied molecular orbital qS~ and electronic
eigenvalue e~ of the ground state of a closed-shell molecule are

(ho+ 2J--K)ffa~ = ~c~ 1.

where, defining r, as the coordinate of electron a, Rb as the position of
nucleus b, and Zj as the charge on nucleus j,

2 -- Zbh0 - - 1/2Va -b)~ ira~RbI 2.

is the one electron operator, and the nonlinear Coulomb and exchange
operators J and K are defined in physical space as:

f l(9~(r)12d3r ~P(r) d3 3.J(r~)= ~ Ir~--r[
=~[ra--r[

K(r,)*c~a = Z 4)~(ro)~ .j ]r~-r~ d3r" 4.

In Equation 3, we define the electron density p(r) as the sum over the
squares of the occupied molecule orbitals. The exchange operator K is a
nonlocal integral operator that acts on a function CB by placing it inside
the integral sign.

In the RH approach, one expands the molecular orbital qS~ in a localized
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METHODS FOR ELECTRONIC STRUCTURE 347

a~omic ba~,;is set Z, multiplies both sides of Equation 1 by a basis function
Xj, and integrates over coordinate space, thus yielding the matrix equations

Fc~ = ~Sc~ 5.

where the Fock operator F is just ho-2J+K, S is the overlap matrix of
the nonorl:h0gonal basis functions, and ca is a vector of basis function
coefficient,,; that represent the molecular orbital ~. The Coulomb and
exchange operators are now assembled from two electron integrals over
atomic basis functions (t)’lkl) and density matrix elements Pk~ via 
formulas

Jij = E (ijlkl)pk~ 6.
kl

Kij = ~,, (ikljl)pkl. 7.
kl

The basic CQC strategy for solving the RH equations is straightforward.
The one electron matrix elements of h0 and S are easily computed ana-
lytically and stored, The two electron repulsion integrals (/j[kl) can 
computed analytically in a variety of ways for contracted Gaussian basis
functions. One starts with an initial guess for the density matrix (e.g. from
a semiempirical calculation) and uses this and the two electron integrals
to assemble the Coulomb and exchange operators J and K from Equations
6 and 7. From these operators, a new guess for the density matrix can be
obtained, either via diagonalization of the Fock matrix or (when close to
the solution) Newton-Raphson methods (40) or extrapolation procedures,
the most efficient of which has been developed by Pulay (41). This process
is repeated until the change in the density matrix and/or the total energy
is less than a preset tolerance, whereupon the calculation is declared to be
converged to the desired level of accuracy.

A brief discussion of the structure of CQC contracted Gaussian basis
sets will prove useful in what follows; in the interest of simplicity, we
confine our remarks to first row atoms (although it should be noted that
the development of basis sets for heavier atoms, e.g. transition metals, is
still an ongoing process). For HF calculations of equilibrium geometries
and vibrational frequencies, one can obtain rather good results from a
double zeta (DZ) basis. For any given first row atom, except hydrogen,
this consists of three s-type functions (two of which are contracted) and
two p-type functions (one of which is contracted) for a total of nine
functions; the analogous set for hydrogen contains just two s functions.
The next level of accuracy is double zeta plus polarization (DZP), in which
the DZ basis is augmented by one set of six Cartesian d (polarization)
functions (or, for hydrogen, a set of p functions). The d functions are
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necessary for properly describing some angular bonding structures and
are essential in carrying out any so~-t of correlated calculation. Additional
s, p, and d functions [e.g. triple zeta, double polarization (TZDP) would
contain four s functions, three p functions, and two d functions] lead
to improved results for specific properties (e.g. NMR chemical shifts,
intermolecular forces) and allow recovery of a larger part of the correlation
energy. The necessity for utilizing these extended basis sets, instead of
DZP (which is currently more or less standard for second order per-
turbation theory calculations, for’ example) is not yet established. At
present, this is an active research: area, with considerable effort being
expended on the construction of basis sets specifically designed to produce
optimal results with various correlation strategies.

For sufficiently small molecules, the two electron integrals can be gen-
erated once and stored in fast memory. However, there are N4/8 two
electron integrals for a molecule with N basis functions and no symmetry,
so this approach begins to be impractical when N ~ 100 for current
hardware. Assuming a DZP and first row atoms, this restricts such "in
core" methods to about six heavy atoms, a rather small calculation by
today’s standards.

An alternative approach is to sl:ore the two electron integrals on disk
and read them into fast memory on each iteration. The tradeoffs here are
different, as they depend upon the capacity and speed of the I/O subsystem
of a particular machine. With typical (gigabyte) levels of disk storage, one
is limited to systems with about 201) basis functions; for this size, I/O costs
begin to compete significantly with CPU time as a bottleneck in job
throughput on a multiple-user machine.

A third alternative is to recompute the two electron integrals at each
iteration; this is referred to as "direct" SCF (42-45). This has the obvious
advantage of eliminating the memory and disk storage issues, even for
very large systems. The disadvantage, equally obvious, is the increase
in CPU time associated with integral recomputation, which is the most
expensive step in an HF cycle. During the past five years, substantial
progress has been made in speeding up two-electron integral evaluation
(46-48), in part by exploiting vector architectures (a painful process
because of the nature of the integral generation algorithm) and in part by
reducing operation counts, particularly those scaling as high powers of the
number of contracted primitives in the Gaussian basis functions. As an
example, consider the performance on a Cray X-MP of GAUSSIAN 86
(which stores integrals on disk, bttt uses old integral generation routines)
as compared with GAUSSIAN 88, which employs a recursive, vectorizable
scheme devised by Head-Gordon & Pople (47) [based partially on the work
of Obara & Saika (46) along the same lines]. For the largest molecules
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METHODS FOR ELECTRONIC STRUCTURE 349

accessible to GAUSSIAN 86 (e.g. glutamine at the DZP level, which
requires 200 basis functions), GAUSSIAN 88 provides significant
reductions in CPU time despite its need to recompute integrals for 7-12
SCF cycles. These results are partly explained by the fact that one does
not require the same accuracy for every SCF cycle; early cycles, being
distant from the minimum, can utilize approximate integrals, whereas later
ones can also be done cheaply by using the Fock matrix updating scheme
of Almlof and coworkcrs (42). Nevertheless, the new integral generation
algorithms clearly are already five to ten times faster on vector machines
than the old ones, and further improvements are currently in progress (48).

Assuming a direct SCF scheme, we can next examine the actual scaling
of computational effort with system size for large molecules. A substantial
reduction from the formal N4 is readily obtained by using integral cutoffs;
the integral (O’lkl) is not computed at all if the product of the overlap 
functions ~! and j with that of k and ! are less than a certain threshold.
These cutoffs lead to an asymptotic scaling of N2. Further reduction of
the asymptotic scaling to order NlogN is then possible, in principle, by
employing multipole expansions of the product t~" and kl charge densities,
assuming that the density matrix falls off with distance reasonably quickly.
Thus, we have reason to be optimistic about applying CQC to large
molecular :~ystems. In practice, for typical systems in the range of 200-400
basis functions, GAUSSIAN 90 appears to achieve a scaling of around
N2. 7 (49).

Nevertheless, the computation times required for GAUSSIAN 90 are
substantial; there is still a significant barrier to carrying out HF cal-
culations c,n larger systems. For example, a DZP treatment of porphine,
which utilizes 430 basis functions, consumes 2759 CPU seconds on a Cray
Y-MP. Improvements in scaling and overall timing are, therefore, still
essential if we are to utilize ab initio methods in large scale molecular
mechanics simulations. One possibility is that these improvements can be
achieved by employing new generations of massively parallel super-
computers. The second possibility, that the CQC algorithm can be quali-
tatively improved, are examined in subsequent sections.

Electron Correlation Alyorithms

In contrast to HF methodology, CQC electron correlation methods are
widely diverse in formalism and implementation. Many of these
approaches have been extensively tested on small molecules, and a great
deal is known about the sort of correlated wavefunction that is required
to achieve a specified degree of accuracy for particular molecular proper-
ties. It is not the objective of the present article to examine this issue in
detail. Rather, we seek to assess the promise of various approaches for
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large molecule calculations. We therefore focus on the computational effort
required as a function of system size, with only a brief characterization of
the accuracy available from each method.

There are three basic approa~he~; to electron correlation. One approach
is to utilize a perturbation series, typically the Moller-Plesset (MP) expan-
sion (50) (although other partiti,anings are possible). In the simplest
methodology, the reference system is the HF Hamiltonian, and the MP
series is carried out to the desired order, most frequently the second or
fourth. Second order MP theory (MP2) is one of the least expensive
correlation methods. It requires the generation of two electron integrals
over two occupied molecular orbitals and two virtual molecular orbitals.
The production of these matrix elements from two electron integrals over
atomic basis functions, referred to as a partial four index transform, scales
as nN4, where n is the number of occupied orbitals and N is the basis set
size. Furthermore, the transform rnust only be carried out once, in contrast
to other correlation methods that require a moderate number (10-15) 
iterations. For small- or medium-sized systems, the CPU time for MP2 is
often less than for the initial HF calculation.

Usually, MP2 recovers a substantial fraction of the correlation energy
(defined as the difference between the HF energy and the exact non-
relativistic eigenvalue of the molecular Schroedinger equation), often in
the 80-90% range if a very large basis set is used. For the first row, errors
in vibrational frequencies and equilibrium geometries are reduced by as
much as a factor of two or three from corresponding HF values; calculation
ofisodesmic (equivalent numbers of electron pairs) reaction energies is also
significantly improved (5l). The 61osed-shell MP series does no~ properly
separate to open-shell fragments, so quantitatively reliable bond dis-
sociation Curves cannot be generated throughout the entire geometry of
separation. Nevertheless, signific~tnt improvements over HF are usually
obtained for bond dissociation energies and reaction barriers (51). On the
other hand, chemical (2 kcal/mole) accuracy is rarely available for these
quantities.

The MP series appears to converge rather slowly beyond second order;
for cases where MP2 has substantial errors, MP4 rarely provides a large
fraction of the corrections, and the results tend to oscillate as function of
increasing the number of pcrturb~.tion terms. As the computational effort
grows rapidly with increasing order (MP4 scales as JV6 or IV 7, depending
upon whether triple substitutions ..are included), it is not clear whether this
pathway is suitable for large molecule applications.

MP2 is one of the few correlation strategies for which a serious attempt
has been made to reformulate the algorithm for large scale calculations.
The most significant barrier to ].arge scale MP2 calculations has been
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storage of the two electron integrals on disk during the integrals trans-
formation steps. By employing "semidirect" methods (52-54) that involve
recalculation of two electron integrals over basis functions when necessary
(as in direct SCF approaches), it is possible to limit the disk space require-
ments for llhe integral transformation at the cost of some CPU time, thus
making possible MP2 calculations on systems with a few hundred basis
functions. However, larger systems still present difficulties, because of the
increase in overall computational effort as the fifth power of the system
size and the inability to employ cutoffs as a result of the delocalized nature
of the molecular orbitals.

A second class of methods (55) involves the optimization of multi-
configurational wavefunctions (i.e. sums of determinants of molecular
orbitals) via a variational procedure; typically, both the SCF orbitals and
the coefficients of the determinants are optimized. Such MCSCF methods
include complete active space SCF (CASSCF) [in which M electrons are
distributed in all possible ways among K molecular orbitals (56)] and
generalized valence bond (GVB) approaches [in which classes of valence
bond wavefunctions are optimized self-consistently (57-60)], as well 
configurati,~n lists tailored to specific problems. These methods properly
dissociate to open-shell fragments, and almost always provide a quali-
tatively rea~onable picture of molecular structure. Furthermore, quantities
like vibrational frequencies and equilibrium geometries are often sub-
stantially improved as compared with HF results. However, the inclusion
of only a limited number of excited determinants leads to quantitative
errors, particularly in dissociation energies.

The computational effort involved in MCSCF calculations depends
heavily up~,n how many determinantal configurations are included in the
MCSCF expansion and how many individual parameters are associated
with this expansion. In most CQC-based MCSCF algorithms, one must
carry out a full four-index transform of the atomic integrals to integrals
over molecular orbitals; this procedure scales as N5 and must be performed
at every SCF iteration. For small systems, it is, nevertheless, relatively
inexpensive because the transforms can be written as matrix multiplies,
which are well suited to modern computational hardware. Calculations
with large configuration lists are dominated by the configuration inter-
action (CI) part of the calculation (see below), with scaling N6 or N7

for various ways of systematically including configurations as a function
of system size. Not much work has been done to extend these methods to
very large systems, so we do not yet have much information concerning
practical scaling behavior. However, the use of delocalized molecular orbi-
tals clearly is inimical to the employment of physical space cutoffs. If such
an extension is to be accomplished, the localization of the SCF orbitals
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to be utilized will clearly become a key problem, which has been examined
in this context by only a few investigators to date (61, 62). Generalized
valence bond methods appear to have a significant advantage in this re-
gard, because the GVB orbitals are localized automatically.

A third methodology, CI (63), employs diagonalization of the Hamil-
tonian in a basis of excited determinants, typically constructed from HF
orbitals. A conceptually simple approach is to use all single and double
excitations into HF virtual orbitals from the HF ground state (SDCI); this
approach scales as N6. Over the p~tst decade, it has become clear that for
a relatively modest computational increase, one can, by employing an
exponential ansatz, carry out a modified SDCI-type computation in which
higher excitations (triples, quadruples, etc) are implicitly included in the
wavefunction via faetorization assumptions. These coupled-cluster
methods (64) have proven to be capable of high accuracy (in many cases,
chemical accuracy) for most properties of interest to chemists. However,
the N6 scaling remains a formidable barrier to large molecule applications,
and little work has been done to investigate the use of localized orbitals
or the implementation of cutoffs in coupled-cluster-based approaches to
reduce the scaling.

It is possible to combine two of these approaches into a more complex
scheme. The most commonly used method is to carry out CI starting with
a multiconfigurational reference state, as opposed to a HF reference. These
multireference configuration interactions (MR-CI) approaches have also
proven capable of yielding high accuracy for a wide variety of small
molecule applications (26, 55, 57-60, 63, 65). Both MR-CI and coupled-
cluster have occasional failures, which often receive a great deal of publicity
[e.g. the chromium dimer calculations of Goddard and coworkers (66)].
This should not obscure the fact that, overall, either approach is highly
satisfactory for small molecule co~aaputations. The difficulties lie in exten-
sion to larger systems.

One promising approach is to perform a CI expansion for only a small
subset of localized electron pairs. An example of this methodology is the
correlation-consistent CI (CCCI) approach of Goddard and coworkers
(59, 60), in which bond dissociation energies are computed by correlating
only the electron pairs associated with the bond in question; the localized
nature of the GVB pair orbitals is exploited here. Chemically accurate
results have been obtained for several small molecule test cases, although
the number of results is not yet sufficient to establish the generality of
the methodology, and applications to large systems have not yet been
presented. An overall scaling of N5 is obtained for a large molecule if only
a few electron pairs are correlated[ at the SDCI level.

Recently, there has been some interest in combining MCSCF and per-
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turbation theory approaches in an attempt to devise an accurate method
with more favorable scaling properties: If the MCSCF expansion does not
have an extremely large configuration list, a formal scaling of N5 can be
obtained (67, 68). This idea appears to be very promising, although there
are difficulties in the definition of the appropriate zeroth order Hamiltonian
correspon,ding to an MCSCF wavefunction. Further experiments on small
molecules are required to determine the accuracy of this approach for
various properties of interest.

To summarize, correlation methods that are chemically accurate for
many (but not all) systems have been developed that scale in the 6 regime.
Other methods, which are less reliable but still represent a significant
improvement over HF theory, scale in the N5 regime, and there are several
directions in which these methods can be developed without increasing the
scaling belyond N5. To reduce the scaling below N5, it is necessary to
employ localized orbitals and physical space cutoffs in matrix elements
and integral transformations. Work in this area is, at present, in its infancy.

DENSITY FUNCTIONAL METHODS

Density functional theory is based upon the formal theorem, derived by
Hohenberg and Kohn, which states that the total ground state electronic
energy of ~t molecule can be expressed as a functional of the ground state
electron density p(r). If one then guesses the functional dependence of the
energy on the density, variational methods can be employed to minimize
the total energy within the limitations of the functional form, thus yielding
SCF equations that are very similar mathematically to the HF equations.
The principal advantage of this approach is the possibility of including
electron correlation in the SCF equations from the start. The disadvantage
is that the quality of the answer depends upon how well one has guessed
the density functional, an enterprise in which it is difficult to generate
systematic~tlly improved results.

Our focus in this article is on two issues: the functional form of the local
density functional (LDF) equations, as compared with the HF equations,
and numerical methods of solution of each; and the prospects for obtaining
reasonably accurate large molecule structures and energies by utilizing DF
approaches. Additionally, the discussion is confined to the performance
of the LDF equations for isolated molecules, as opposed to the crystalline
and amorp]hous condensed phase applications in which this methodology
has traditic.nally been dominant. New issues arise in the solid state (e.g.
the qualitatively incorrect behavior of the HF approximation near the
Fermi surf~tce), which would favor the use of one method over another.
Although these issues are interesting in and of themselves, the comparison
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of methods, even in the small molecule case, is quite involved, and it seems
best in this short space to avoid additional complexities.

Local density functional theory (6) assumes that the exchange and
correlation energies of a molecule are a local functional of p(r). The
functional itself is typically obtained by a parametrization that ensures
recovering the exact exchange and correlation energy for the uniform
electron gas; several such parametrizations are available in the literature
(69). The density is expanded in a set of"orbitals," and the SCF equations
for these orbitals reads:

(h0+ZJ- Vxc[p(r)]}dp~ = ~c~. 8.

The one electron and Coulomb terms h0 and J are exactly the same here
as in the HF equations above, and p(r) is formally identical to its definition
in Equation 3, i.e.

p(r) = ~ [q~a(r) 9.

although the meaning of the self-consistent orbitals ~b (we refer to them as
"density orbitals") is not equivalent in HF and DF methodology.

Equations 8 and 9 together form a self-consistent set that can be solved
by approaches analogous to those employed for the HF equations. The
orbitals ~ba are expanded in a Gaussian basis set, the coefficients of which
are determined by solution of a matrix version of Equation 8. The SCF
iteration process is initiated via an initial guess for p(r), which is used to
construct the operators in Equation 8; a new set of orbitals then yields a
new p(r) from Equation 9, and the process is repeated until the change 
energy and/or electron density is sufficiently small.

The new term in Equation 8, conapared with Equation 1, is the exchange-
correlation potential Vx¢, which is a local functional of the electron density
p(r); in compensation, the nonlocal integral exchange operator K is not
present. These LDF equations are thus three-dimensional, nonlinear par-
tial differential equations in which the potential operator is local in coordinate
space, in contrast to the HF equations where the exchange operator is non-
local. On the other hand, V~o is typically specified numerically, so that one
cannot do all of the integrals appearing in a RH-like version of the theory
analytically. Thus, LDF practitioners have been forced to rely on "numeri-
cal" methods of solution from the start, which involves the use of grids in
physical space on which to evaluate Vx¢ and, hence, to carry out the evalua-
tion of the exchange-correlation matrix elements. This has led, quite natur-
ally, to the use of similar method~,; to evaluate the Coulomb term, as well.

These historical developments ihave led to a misconception concerning
the computational effort involved in solving the HF and LDF equations,
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which we hope to dispel in this article. The fact is that the locality of the
LDF equations is of minor (although nonnegligible) importance in ease
of solution, and one can develop analogous grid-based methods for solving
the nonloeal HF equations that have a very similar scaling with system
size and are similar in overall operation counts, as is explained below.
The crucial question is the computational efficiency of methods that use
numerical grids, as compared with RH procedures, which do not use such
grids. This issue has to be examined carefully, because one must compare
the methods when they yield the same average level (over many molecular
examples) of relative precision. Comparisons of CPU time for a grid-based
method, which routinely exhibits spurious energy errors of 10 kcal/mole
for local energy differences with an RH-based procedure reliable to 0.1
kcal/mole, are not very informative. Note that the relevant errors here are
energy differences as a function of geometry for a particular equation (HF
or DF); we wish our computational scheme to reproduce as closely as
possible the differences that would be obtained via exact solution of the
actual partial differential equations.

Early methods for solving the LDF equations for molecules (e.g. muffin-
tin approxJlmations) did not, in general, yield highly accurate total energies
(70, 71). To some extent, this was a consequence of the objectives of those
calculations. Much of the work, for example, was aimed at qualitative
large molecule applications, and the DF approach was presented as one
intermediate between semiempirical and ab initio methods in both accu-
racy and computational cost. However, the development of numerically
accurate LDF algorithms for.small molecules demonstrated that, in many
cases, LDF solutions yielded chemical properties at a level often superior
to HF (but not, generally, MP2) calculations. This has spurred the develop-
ment of efficient and reliable LDF codes with complex, careful numerical
schemes (2,0-22, 70, 72, 73).

There is still a great deal of evaluative work to be done to assess the
convergence properties of the existing DF numerical methods and the
performance of the LDF approximation when numerical precision is
removed as an issue. For example, studies of diatomics (74) indicate
that the LDF approximation often makes substantial (~ 1 eV) errors 
dissociation energies; however, it usually provides a reasonable qualitative
picture, typically better than HF and in some cases better than MR-CI
methods [,e.g. for Cr2 (75)]. Similarly, equilibrium geometries and
vibrational force constants are normally quite reasonable, again in many
cases supe~rior to HF. At present, however, there is not a large data
base concerning accuracies for larger molecules or for a wide variety of
properties. For example, how well does the LDF theory describe hydrogen
bonded structuresor rotational barriers around torsional angles? With the
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development of numerically reliable LDF programs, it should be possible
to assemble substantive data bases analogous to those that already exist
for HF computations of molecules that contain first row atoms. Only in
this fashion can we obtain a truly unbiased performance evaluation.

Efforts have been underway for many years to improve the LDF
approximation and produce more accurate density functionals, a task that
certainly seems feasible in principle. However, only recently have useful
methods for including density gradient corrections (16-19) (the logical
systematic way to improve a functional based on an electron gas of uniform
density) been developed. In preliminary tests (21), these methods appear 
lead to systematically bettei results for a wide variety of molecular prop-
erties, although the quality of the results are not yet at the level of chemical
accuracy, and the degree of improvement obtained is far from uniform.
Although it is too early to know exactly what level of accuracy can be
achieved by this approach, this is certainly an exciting research area with
potentially great promise.

There are other issues that mnst be considered when applying LDF
methods. The treatment of open-shell systems via a local spin density
approximation (76), for example, is difficult to improve systematically.
Excited state calculations are possible (77), but again the quality of the
approximations is unclear and dil~cult to upgrade. There are numerous
other properties, e.g. magnetic resonance coupling constants, electric field
gradients, and optical activity parameters, with which there is little or no
experience. We also do not know how well the LDF method works in
dctermination of transition states; for chemical reactions, as there have
been few quantitative applications of this type.

Nevertheless, the LDF method has had enough successes in molecular
calculations over the past five years to become a serious alternative to
wavefunction-based methodology.. One important question, which we have
not yet examined, is that of computational effort. The formal scaling of
the bulk of the numerical methods currently used to obtain accurate
solutions to the molecular LDF equations is N3; with the use of cutoffs,
this can be reduced to on the order of N2, and a scaling ofN22 is reported
for medium to large molecules (.21). Recent work of Andzelm and co-
workers (21) has begun to address issues, such as convergence of the energy
and equilibrium geometry, with respect to the basis set, number of grid
points, and other numerical parameters. Reasonably well-converged (~ 0.1
kcal/mole) relative energies can apparently be obtained with moderate grid
(~ 1000 pts/atom) sizes. Andzelm and coworkers (21) report a CPU 
of 20 minutes on a Cray Y-MP :for an energy plus gradient calculation
involving 62 atoms.

By comparison, the estimated time for GAUSSIAN 90 to complete a
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comparable calculation, based on a scaling of N2’7 and a 45 minute CPU
time for porphine as described above, is on the order of 3 hours (180
minutes). This comparison is not completely straightforward, however,
because one must estimate what sort of basis set will render the GAUS-
SIAN and LDF calculations equivalent; in general, RH-based algorithms
can utilize :smaller basis sets, because they display superior cancellation of
error across geometry. The above estimation assumes a DZP and then an
average of ten basis functions per atom, plus 50% additional time for
the gradient calculation. On the basis of these numbers, there is a clear
computational advantage in utilizing the DF methodology, an advantage
that increases as the molecules become larger. And, as we have seen, the
accuracy of even the LDF approach is typically as good as or better than
HF, and promises to become greater still with improved functionals, which
do not substantially increase the computational effort of DF methods.

Traditional ab initio methods are in no danger of losing their primacy
in chemicallly accurate studies of small molecules, where they can achieve
a precision far greater than DF methods will be able to in the foreseeable
future (e.g. on the order of 1-2 kcal/mole accuracy for dissociation ener-
gies), and the unpleasant computational scaling of the accurate correlation
methods required to obtain such agreement does not lead to prohibitive
CPU times. For large systems, however, DF approaches may become the
methods of choice unless new strategies can be implemented to reduce
the computational scaling of both HF and correlated methods for large
systems. In the next few sections we describe one effort along these lines,
which has been pursued in our research group.

NUMERICAL METHODS FOR AB INITIO
QUANTUM CHEMISTRY

Historical Background and Analysis
The first HF calculations for atoms were performed by Hartree and Hat-
tree (3), who used standard numerical methods for solving differential
equations. The spherical symmetry of the atomic problem can be used to
reduce the numerical computations to one (radial) dimension, which 
readily dealt with via finite difference algorithms. Such calculations are
still carriedl out and generally yield results with lower total energies than
even quite large Gaussian basis sets.

The extension of these numerical methods to higher dimensions poses
formidable problems of numerical precision. One would like to know
relative conformational energies, for example, to an accuracy of 1 kcal/
mole at a rninimum and preferably to 0.1 kcal/mole. Leaving aside for the
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moment the question of the reliability of the correlation approximation
being made (HF rotational barriers are, in fact, quite reasonable), this
requires a precision of one part in 106 for a small molecule and one part
in l0s for a large molecule. As the energy difference cannot be directly
evaluated, each total energy must be computed to this accuracy unless one
can rely upon a systematic cancellation of error across geometry. As we
see below, such a cancellation is much more difficult to achieve with
numerical methods than with analytical ones.

Over the past 40 years the key to the dominance of the Gaussian-based
RH methodology is the remarkable convergence of relative con-
formational energies with basis set. size. The basis sets used in molecular
calculations--even those like DZP that are considered high quality are
astonishingly small considering the precision demanded in the energy.
Consider, as a simple example, the water molecule. The energy near equi-
librium is on the order of 76.023 au for a standard DZP basis set, 6-31
G** (78). A near HF limit calculation yields a total energy of 76.065 
(78). However, the O-H bond lengths obtained from the two basis sets
differs by a few thousandths of an angstrom, and the bond angle by less
than one degree. In other words, the potential surfaces obtained from
these two computations are very similar, despite the difference in total
energy of on the order of 25 kcal/mole. This error cancellation across
geometry is not as consistent when the energies of different molecules (e.g.
separated fragments) are computed, and one is advised to correct for this
basis set superposition error via now-standard techniques (79). Never-
theless, the local reliability of energy differences is crucial to many appli-
cations of CQC methodology.

Now consider the same sort of conformational energy difference cal-
culation carried out with a numerical method involving grid points. Any
reasonable numerical method has the grid points move with the atomic
nuclei; a uniformly dense grid, in which the position of the nuclei are
ignored, would require an inordinate number of points per atom and would
be prohibitively expensive in accurate polyatomic calculations. Thus, the
integration grid used is altered as; the molecule changes conformation,
and there is a spurious energy difference due to inequivalent numerical
integration schemes. It is the absence of such differences in the RH
approach (because all integrations are done analytically) that give the
method its power, despite the formally worse scaling properties.

One way to overcome the above dilemma is to utilize analytical gradient
technology. In the context of a numerical method, what one is doing is
computing changes in the energy as a function of geometry over a small
region without changing the integration scheme. The LDF numerical
approaches now exploit this idea ,extensively. However, for determining
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conformational energy differences between local minima and barrier tops,
this approach is not adequate, and one must directly confront the precision
problem.

Over the past 20 years, there has been a lot of work on numerical HF
methods for diatomic molecules, which has principally employed finite
difference techniques. Here, one can utilize a special (elliptical) set 
coordinates and exploit symmetry so that the numerical grid need only be
in the plane (rather than fully three-dimensional) (80, 81). Highly accurate
results have been obtained for diatomics, albeit at a rather large CPU cost.
However, methods based on specialized diatomic coordinate systems are
not very useful for a general polyatomic molecule. To our knowledge,
there has not been a single accurate HF grid-based calculation for a
polyatomic molecule that contains more than two electrons until our work
in this area began several years ago.

Pseudospectral Hartree-Fock Methodology

To understand more clearly the difficulties involved in utilizing grid-based
methods to solve the HF equations, we first examine one method currently
used in solving the LDF equations. As indicated above, it is now possible
to obtain reasonably reliable total energies by using this approach (which
itself is a ~airly recent development). Many of the ideas used in our HF
methodology are quite similar to the LDF technique that we describe here.
The key difference, treatment of nonlocal exchange and the modification
of the algorithms it requires, is examined in some detail below.

The one electron kinetic energy and electron-nuclear attraction oper-
ators (i.e. h0) in both theories can be treated trivially by computing ana-
lytical matrix elements. In LDF methods based on expansion of the density
orbitals in a Gaussian basis set, one must evaluate integrals of the form

Jij = (ijlJ(r)) = (O’]p(r)/(r--r’))and Vij = (/~]’l Vx~(r))where iandjare Gaus-
sian basis functions, J(r) is the Coulomb operator given by Equation 3,
and Vxc(r) is the exchange-correlation potential. The important point here
is that there are only two functions, J(r) and Vxc(r), for which one needs
matrix elements with pairs of basis functions.

In the program DGAUSS of Andzlem and coworkers, p(r) and Vx~(r)
are themselves expanded in Gaussian functions. Once this expansion
is conducted, the resulting integrals over three Gaussian basis functions
(in the Coulomb case, these integrals additionally involve the kernel
1/1 r-r’l) can be done analytically by using standard Gaussian integral
technology;: in fact, the recursive technology used in DGAUSS is very
similar to that used in GAUSSIAN 90. The smaller number of such
integrals, and the fact that they are, at most, three- (rather than four
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centered, leads to significant reductions in computational effort. Of course,
the fitting procedure has to be checked carefully to make sure it has
not induced spurious numerical errors into relative energies. Apparently,
enough effort has now been put into the DGAUSS program so that this
problem is reasonably well understood.

The Coulomb terms in the HF equations could be treated analogously.
The problem lies in the nonlocal exchange operators. Rather than fitting
a single charge density, a corresponding algorithm for nonlocal exchange
would require fitting all product densities consisting of one occupied molec-
ular orbital and one basis function, to evaluate integrals of the form
Ki,j~ = (ielJ/?), where i andj are basis functions and e and/~ are occupied
molecular orbitals. The saving of computational effort is clearly much
smaller here than for the local operators, as the number of charge density
fits (of the product functions j/J) now rises from two to nN, where n is the
number of occupied molecular orbitals and N is the basis set size.

There is, however, another alternative, although it is not immediately
obvious from the previous discussion. Rather than fitting the charge den-
sities, it is possible to fit the product of the integrated charge density
multiplied by an orbital--or, more generally, sums of integrated charge
densities multiplied by orbitals. F,or the Coulomb term, for example, this
involves fitting the product J(r)~l~(r) to a Gaussian expansion for each
basis function )~ and projecting the results back onto basis function Zj to
obtain the Fock matrix element F~i. The algorithm to do this can be shown
to scale formally like N3. Perhaps somewhat surprisingly, an analogous
algorithm for assembling the exchange operator K~j can be devised that
also ,scales like N3 and is no more expensive in operation counts than the
Coulomb algorithm. This observation led to the development of our new
grid-based HF program (29-35).

The original idea for this new approach did not come from electronic
structure theory, but rather from numerical methods used in fluid dynam-
ics. In 1970, Orszag proposed that the nonlinear terms in the Navier-
Stokes equations be evaluated by computing derivatives analytically,
multiplying the results together on. a physical space grid, and transforming
the resulting product back to a basis set (in his case, sine and cosine
functions) (36-39). This pseudospectral method (so-called because it util-
ized a basis set, i.e. a spectral expansion, but in addition a physical space
grid) is now routinely employed in hydrodynamic simulations of tur-
bulence; furthermore, after its introduction into chemical physics by Kos-
loff & Kosloff (82), it has been increasingly utilized for sol~ing quantum
mechanical vibrational and scattering problems (82-85). The use of the
method in conjunction with Gaussian basis functions has been
implemented in this area quite successfully by Light et al (84).
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We do not discuss many of the numerical details here; the reader is
referred to Refs. 29-35 for an extensive explication. However, a summary
of the steps required to assemble a Fock matrix provides a useful overview.
First, the action of the Coulomb and exchange operators on a basis
function, which yields a new function expressed on the numerical grid, are
computed exactly, principally by manipulating potential integrals involv-
ing two basis function indices and one grid index. Because these integrals
contain only two (rather than four) basis function indices, they are sig-
nificantly less expensive to generate per integral than the four-center inte-
grals of CQC; furthermore, one can easily vectorize calculations over the
grid, thus heading to a more efficient use (by roughly a factor of 3) of the
vector processors present in most currently used supercomputers. The
number of integrals required, ignoring the effects of cutoffs, is NZM, where
N is the basis set size and M is the number of grid points. As M is
proportional to N, the formal scaling is N3. The actual computational
efficiency dearly is critically dependent upon the size of M; if the number
of grid points required is so large that M is much greater than N2 for
practical values of N, the "advantage" of the method is nonexistent.

The second step in the method consists of fitting the new function,
produced bly the action of the Fock operator on a basis function that uses
a least squ~Lres procedure, and projecting the resulting expansion onto a
second basis function by utilizing overlap integrals, which are trivial to
obtain com]putationally. An expanded, even-tempered Gaussian basis set,
with exponents spaced by a factor of 2 and angular momentum varying
from s to g functions depending upon the exponent, is used in the least
squares expansion. The employment of analytical projection as the last
step essentially filters components, which are outside of the basis set, from
the least squares expansion. This filtering procedure, known as dealiasing
in the Fourier transform literature, renders the procedure equivalent to
the RH method in the limit that the least squares basis is complete.

Dealiasing allows one to approach the RH results for a given basis set
without explicitly increasing the basis set size. An increase in the size of
the dealiasing basis effects only the formation of theleast squares matrices,
and not assembly of the Fock operator. Thus, as long as the computational
effort in this part of the algorithm does not become excessive, one can
exploit the cancellation of error that has already been demonstrated for
CQC Gaussian basis sets in RH calculations. This provides a practical
solution to the problem of spuriouS numerical errors in the energy as a
function of geometry; the filtering procedure essentially removes these
errors and mimics the results obtained from an unbiased integration
scheme.

Improvement of the least squares technology, both mathematically and

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 1

99
1.

42
:3

41
-3

67
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 S

ta
nf

or
d 

U
ni

ve
rs

ity
 R

ob
er

t C
ro

w
n 

L
aw

 L
ib

. o
n 

09
/1

5/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


362 FR~ES~rZR

in the computer implementation, is; ongoing and can be expected to reduce
the required grid size and computational effort significantly in the future.
For example, different, localized least squares schemes are now used
depending upon which basis functions are to be projected onto (33). The
design of the grid itself is crucial to efficient functioning. At present, a
molecular grid is generated by joining atomic grids composed of spherical
shells of points with weights that exactly integrate spherical harmonics up
to a certain order (35), The integration of spherical harmonics by the radial
shells (86-89) is essential and also employed in the DF numerical methods
described above.

To make this technology function accurately and efficiently, it is neces-
sary- to optimize the parameters associated with the grid and least squares
expansion functions. We performecl this optimization by hand for a restric-
ted set of test cases, then checked the quality of results for numerous
additional molecules. Once a satisfactory set of parameters has been
developed for a given atomic ba:~is set, it can then be employed in an
arbitrary molecular calculation. We additionally employ many, now stan-
dard techniques from direct SCF methodology, e.g. Fock matrix updating
and extrapolation procedures. The Fock matrix updating is well comple-
mented by a multigrid scheme, in which grids of different sizes (and hence
accuracies) are utilized in differing iterations; both the early iterations and
those subsequent to the initiation of the updating procedure can be carried
out on grids that are roughly five times smaller than a grid yielding high
accuracy.

A final important point is that as many terms as possible are evaluated
analytically. The one electron operator can be treated in this fashion, as
in LDF theory. However, we also currently utilize analytical two electron
integrals when all four basis functions are on the same atom. This has
negligible computational cost, and has been shown to reduce the grid size
required to achieve accurate results significantly.

Our criterion for accuracy has been to reproduce the RH total energy
for a given basis set to within 0.1 kcal/mole, regardless of molecular
geometry. If the dealiasing procedure can be made sufficiently robust so
that this can be done reliably, the pseudospectral algorithm becomes an
isomorphic replacement for conventional RH programs and can take
over the large literature of conclusions that rely on the error cancellation
inherent in the RH method. As reported in Ref. 33, this goal has now been
achieved for first row atoms; optimizations for second row atoms and
transition metals are in progress. The major difficulty in the procedure is
that, as one changes the algorith~x~ significantly, new optimizations need
to be performed. We have, therefore, set up a variety of software tools
to facilitate optimization; these, combined with the increasing power of
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computational hardware and the experience gained in previous optimiza-
tions, haw,̄ led to a tolerable (but still significant) effort to complete this
task. Further automation of the parameter optimization procedure is
clearly possible, and work along these lines is in progress.

The numerical methods described above are not yet close to their final
form, and we expect that factors of 5-10 reduction in computational
effort are .available from relatively straightforward modifications of the
algorithm that are currently in progress. It is, nevertheless, useful to com-
pare the CPU times of the present pseudospectral Hartree-Fock code,
PSHF, with those of GAUSSIAN 90. The comparisons are for a single
point energy calculation, starting from a semiempirical initial guess, util-
izing the same basis set, and converging to 5.0 × 10-5 atomic units, the
current GAUSSIAN 90 default value (a tighter convergence criterion
would substantially increase the CPU time required by GAUSSIAN 90,
while making virtually no difference in the PSHF timings). The pro-
grams are both run in direct mode, i.e. integrals are recalculated at every

iteration.
For the porphine molecule, employing a 6-31 G** basis of 430 basis

functions, PSHF requires 938 CPU seconds, as compared with the 2759
CPU seconds for GAUSSIAN 90. The scaling of PSHF with system size
in the 200--400 basis function range is approximately N22, as compared
with the N2"7 obtained for GAUSSIAN 90. From these results, we judge
that the PSHF method is currently comparable in efficiency to the LDF
program DGAUSS, with the actual CPU advantage dependent upon
which assumptions one makes concerning what constitutes equivalent
basis sets.

Pseudospectral Methods for Electron Correlation

Thus far, pseudospectral methods for electron correlation have been
applied only in the context of the GVB perfect pairing (PP) methodology.
As this approach can be formulated in terms of Coulomb and exchange
operators for each GVB electron pair, it is straightforward to show that
by using pseudospectral techniques the formal computational scaling is
reduced from pN4 to pN3, where p is the number of GVB pairs; this is
readily reduced to a pN2 scaling via cutoffs. Reference 34 demonstrates
that the numerical accuracy of pseudospectral correlated calculations is
equivalent to that obtained for HF, i.e. on the order of 0.1 kcal/mole
agreement with RH results.

An extremely important observation is that higher levels of GVB theory
can be implemented using pseudospectral methods with essentially no
increase in computational effort. In particular, the GVB-RCI (restricted
configuration interaction) wavefunction (59, 60) can be determined with-
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out the necessity of a four index transform (which scales as N~); in fact,
the formal scaling can be shown again to bepN3, with only a small increase
in the prefactor as compared with GVB perfect pairing. As GVB-RCI is
a considerably better approximation than GVB perfect pairing (in many
cases comparable to CASSCF), this offers the hope of obtaining a very
good MCSCF wavefunction for quite large molecules in reasonable CPU
times.

Application to other correlation methods also appears feasible. Pre-
liminary investigation indicates that the use of pseudospectral techniques
can be quite useful in addressing the problem of storage of configuration
coefficients encountered in large scale configuration interaction cal-
culations (E. A. Carter 1991, per~;onal communication) and the integral
disk storage problem in perturbation theory methods. The actual advan-
tages gained in these approaches, if any, can be assessed only by actually
developing a serious code, a lengthy undertaking.

A particularly attractive pseudospectral correlation method is obtained
from the combination of GVB-RCI and second order perturbation theory.
Because the perturbation theory can be carried out by using the highly
localized GVB orbitals, the entire method can be expected to scale in the
N3 regime for large systems, even if every valence electron pair is treated at
the GVB/pcrturbation theory lew~l (and as 2 i f o nly afew electrons of
critical importance are treated thusly, or in the extreme asymptotic limit
in any case). Although there are problems associated with this theoretical
formulation, there is every hope of solving them in a cost-effective fashion.
This theory might then provide a competitive wavefunction-based alter-
native to the DF approach for large molecules, yielding higher accuracy
and greater flexibility (e.g. reas;onably accurate excited state wave-
functions) at only a moderately greater computational cost.

CONCLUSION

Whatever turns out to be the optimal first principles electronic structure
method, we are clearly entering a new era in which high quality calculations
will be available for increasingly larger molecular structures. The adap-
tation of the methods to massively parallel computers, while an extremely
difficult task, will further extend the range of systems that can be profitably
studied, as will continued improvements in the basic algorithms. Truly pre-
dictive chemistry for new materials is likely to occur, however, only when
more powerful approaches to the correlation problem (either from the DF
or wavefunction perspective) have been produced; but, there is reason
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to be optimistic here, also, as there are many promising avenues to pursue.
Although DF numerical methods will surely continue to improve, the

key to progress is the construction of better functionals. This research area
deserves to. attract a greatly enhanced effort, given the progress made over
the past five years. The development of a large data base of results
and experimentation with a wide variety of approaches to functional im-
provement, essential for further progress, will require a critical mass of
investigators.

The additional complexity of the wavefunction-based techniques,
especially those involving correlation, means that further development of
numerical :methods is both necessary and likely. One promising approach
for very large systems is to utilize multipole approximations to the two
electron integrals; it has already been demonstrated that this leads to an
asymptotic: scaling of Nlog N (or even N) for HF calculations. Multipole
methods can also be profitably integrated into pseudospectral technology.

Further development of the pseudospectral approach logically involves
a more intiimate synthesis with CQC techniques, as these have been dra-
matically improved over the past five years. For example, one could cal-
culate two.- and selected three-center integrals analytically (by using the
new, accelerated two electron integral technology) at a very low cost, and
then use pseudospectral approximations only for the remaining three- and
four-center integrals; this would allow the use of considerably sparser
grids, because of the smaller size of the residual terms. We expect that a
truly efficient method will utilize all of these techniques, integrated to yield
the most efficient overall computational scheme. The end result should
make HF and LDF calculations similar in their required computational
effort. The situation is less clear for correlated wavefunctions, and esti-
mates of attainable practical scalings and CPU times will have to await
actual computational experiments.

Other approaches to the correlation problem are possible. For example,
given the arguments we have made above, one might combine a cor-
relation-only density functional with exact treatment of exchange. Quan-
tum Monte Carlo methods may yet be radically improved in their com-
putational efficiency and numerical precision. Finally, the addition of
semiempirical elements to all of these "first principles" methods should be
seriously considered; if one can achieve decent results with an incorrect
(Hartree-Fock) functional form and an inflexible, single zeta basis set, the
use of a more accurate ab initio formalism coupled to parametrization of
some key elements of the theory might do much better at a relatively
small computational cost. Encouraging results along these lines have been
obtained by Goodgame & Goddard (66).
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