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Efficient pseudospectral methods for density functional calculations
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Novel improvements of the pseudospectral method for assembling the Coulomb operator are
discussed. These improvements consist of a fast atom centered multipole method and a variation of
the Head–Gordan J-engine analytic integral evaluation. The details of the methodology are
discussed and performance evaluations presented for larger molecules within the context of DFT
energy and gradient calculations. ©2000 American Institute of Physics.
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I. INTRODUCTION

Density functional~DFT! methods have, over the pa
decade become increasingly used in solving a wide rang
chemical problems. While the methods are still far from p
viding a truly quantitative description of all aspects of ele
tronic structure~for example, van der Waals energies are n
properly evaluated by any current functional!, the develop-
ment of gradient corrected and adiabatic connection meth
by Becke1,2 and the subsequent assembly of a family of u
ful functionals by the Pople group3 has dramatically en-
hanced the accuracy of DFT energetics and structures. T
developments, combined with the relatively low compu
tional cost of DFT calculations, have rendered the appro
of the method of choice for a significant number of applic
tions, particularly for large systems, where traditionalab ini-
tio correlated approaches have long been intractable.

In this paper, we describe the application of pseudosp
tral numerical methods to the solution of the major varia
of DFT. Our previous work4–7 has been focused upo
Hartree–Fock calculations and on wave function-based
calized correlation methods such as local MP2 and gene
ized valence bond~GVB! approaches. There has been
barrier in principle to the extension of PS methods to D
calculations and, indeed, we have had this capability in
Jaguar suite ofab initio programs for several years now
However, the initial implementations were sufficiently f
from optimal that we viewed the publication of them as p
tentially misleading in terms of the underlying viability o
the methodology. Over the past two years, we have refi
the relevant numerical techniques, and can now report
formance that we believe to be consistent with the inher
merits~and limitations! of pseudospectral approaches to th
problem. The implementation includes a newly develop
fast multipole methodology that differs considerably in
details from algorithms proposed by others in the contex
conventional quantum chemical technology. This algorit
will be described below and its performance explicated fo
range of realistic chemical problems, as opposed to the ra

a!Electronic mail: rich@chem.columbia.edu
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specialized systems~and low level basis sets! presented in
previous papers8,9 on this subject. We also present a nov
variant of the J-engine algorithm,10 proposed by Head–
Gordon and co-workers, specialized to three center tw
electron integrals, which are required in pseudospec
evaluation the Coulomb operator.

We shall discuss algorithms and performance for b
gradient corrected methods~for which the nonlocal HF ex-
change operator is not required! and adiabatic connection
methods~for which the HF exchange operator is required!.
We choose the B-LYP11 method as an example of the form
approach and the B3-LYP1,2 method as an example of th
latter. Results are presented for a wide range of basis sets
for gradient as well as single-point energy timings; this
essential as geometry optimization and/or large basis
single-point calculations clearly consumes the great majo
of CPU time is calculations that aim for high quality resul
We have also completed the development of second der
tive methods~including second derivatives for effective co
potentials, or ECPs!, but this will be reported in a separat
publication.

The paper is organized as follows. In Sec. II we provi
a brief overview of the now-standardized elements of
electronic structure methods, detailed descriptions of wh
can be found in other publications. In Sec. III we provide
in depth discussion of the evaluation of the Coulomb ope
tor, including our new fast multipole methods and the thr
center J-engine algorithm. In Sec. IV we present timing
sults for a range of chemical systems, focusing on large m
ecules.

II. OVERVIEW OF PSEUDOSPECTRAL NUMERICAL
METHODS FOR AB INITIO SELF-CONSISTENT
FIELD ELECTRONIC STRUCTURE CALCULATIONS

From an architectural point of view, PS self-consise
field ~SCF! calculations, whether of the DFT or Hartree
Fock variety, proceed in analogy to conventional quant
chemical programs that expand molecular orbitals~or density
orbitals, in the case of DFT! in a set of atom-centered Gaus
ian basis functions. The key step in the process, from
1 © 2000 American Institute of Physics
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10132 J. Chem. Phys., Vol. 112, No. 23, 15 June 2000 Murphy et al.
standpoint of computational effort~and all that we shall be
concerned with in this paper! is assembly of the componen
of the Fock matrix. The one-electron HamiltonianH0 is con-
structed and added into the Fock matrix via the usual a
lytical one electron integrals of the kinetic energy a
electron–nuclear interaction terms. The demanding par
the calculation is the construction of the Coulomb and
change operators. The Coulomb matrix elementJab between
two atomic basis functionsa andb is given by

Jab5(
cd

~abucd!rcd , ~1!

where r is the density matrix and (abucd) is a standard
two-electron repulsion integral over the Gaussian basis fu
tionsabcd. In conventional quantum chemical programs, t
two-electron integrals are evaluated analytically and the s
in Eq. ~1! carried out. In the pseudospectral formulation,4 a
numerical grid is introduced and the Coulomb operatorJ(g)
is first assembled on the numerical grid

J~g!5(
un

rmnAmn~g!, ~2!

where Amn(g) is a three-center, one-electron integral ov
atomic basis functionsm andn, evaluated at grid pointg. The
matrix form of the Coulomb operator is then obtained as

Jab5(
g

Qa~g!J~g!Rb~g!, ~3!

whereRb(g) is the atomic basis functionb expressed on the
grid andQa(g) is a least squares operator, designed to t
the productJ* R and project it onto atomic basis functiona.
The use of least squares is necessary to filter the alia
error arising from the fact that in typical electronic structu
calculations, the atomic basis sets employed are far f
being complete in the relevant basis set space. We have
cussed in detail methods used to construct an accurate
efficient representation ofQ in previous publications and
shall not repeat that work here; the reader is referred to R
4, 5, and 13 for extensive discussions of this topic.

The Hartree–Fock exchange operatorKab can be ana-
lyzed in a similar fashion. The final result for the PS rep
sentation ofK is

Kab5(
g

Qa~g!sab~g!Rb~g!, ~4!

sab~g!5(
ac

Aac~g!rcb , ~5!

where the various symbols have the meanings defined ab
A formal scaling analysis4 of the two-electron and PS

formulations for assembling the Coulomb and exchange
erators leads to a scaling ofN4 for conventional two-electron
methods andN3 for PS methods, whereN is the number of
atomic basis functions used in the calculations~the number
of grid points, which enters into the PS calculations, is p
portional toN!. For large systems, integral cutoffs reduce t
scaling of both methods toN2, and other techniques~such as
fast multipoles, discussed below! can yield even further re
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AI
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ductions to ~asymptotically! linear scaling.11 In practice,
however, much of the computational effort for molecules
chemical interest does not fall into the asymptotic regim
and the underlying scaling behavior has a significant qua
tative effect on performance. With proper optimization, P
methods can be made to substantially outperform conv
tional two-electron methods assuming that the basis se
sufficiently large. For small basis sets, such as STO-3G, a
lytical methods are to be preferred, as here the ratio of g
points to basis functions is big enough to make the prefa
in PS methods unfavorable.

To achieve the high precision needed forab initio quan-
tum chemical calculations, modifications of the above
formulation are required. The most important of these is t
some classes of two-electron integrals~those making the
largest numerical contribution to the energy! are performed
analytically. These include most one- and two-center in
grals and a subset of three-center integrals of the fo
(aa8ubc); the number of these last integrals depends up
the SCF iteration in question~the computational scheme va
ies on each iteration due to the use of Fock matrix updati!
and a cutoff threshold for the size of the integrals. T
(aa8ubc) terms are required only in the Coulomb operat
A detailed analysis of these analytical correction terms
terms of the technology for implementing them and the
tionalization in terms of relative amplitudes is presented
Ref. 13.

For DFT calculations, evaluation of the exchang
correlation~XC! operator is required, in addition to the Cou
lomb term. Gradient-corrected DFT methods such
BLYP11 do not use Hartree–Fock exchange~the K operator
presented above! and necessitate only numerical integrati
of the XC functional on a grid. As was indicated above, o
methods for evaluation of the gradient-corrected XC fun
tional are similar to those of others.1–3 For hybrid functionals
such as B3LYP, a component of the exchange operato
incorporated into the XC functional. In this case, Eq.~4!
above is used to evaluateK as in Hartree–Fock calculations

Our focus in this paper is on the refinement of the ba
PS methodology described above to increase the efficie
of DFT calculations of both the gradient-corrected and h
brid form. We accomplish this in two ways. In this paper w
focus mainly on the reduction in computational effort f
assembly of the Coulomb operator. For gradient-correc
DFT, this is a very substantial part of the calculation, p
ticularly for large systems. Our concern in this paper is n
the ultralarge systems that others have made a central
cern in formulating ‘‘linear scaling’’ DFT methods12 ~these
papers also have a strong emphasis on molecules tha
linear chains, whereas our emphasis instead is on glob
three-dimensional systems! but rather systems at the upp
end ~;50–150 atoms! of what are run in academic and in
dustrial laboratories that utilize quantum chemistry at a p
duction level, i.e., to study a large number of different m
ecules. Our atom-center multipole methods are capable
providing significant reductions in CPU time for gradien
corrected calculations, even for systems at the lower en
this range. A second improvement in Coulomb opera
evaluation is the use of a modified version of the J-eng
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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algorithm of Head-Gordon and co-workers.10 This reduces
computational effort for both gradient-corrected and hyb
DFT calculations. Finally, our implementation of the XC o
erator, combining efficient sparse matrix multiply techniqu
with a multigrid approach that has been implemented tho
is not detailed in this work, yields very large reductions
computational effort for XC energy and gradient evaluatio
The efficiency of both the combined Coulomb and XC alg
rithms are presented in CPU timings below.

III. ACCELERATION OF PSEUDOSPECTRAL
EVALUATION OF THE COULOMB MATRIX: ATOM-
CENTERED MULTIPOLES AND J-ENGINE
FORMALISM

A. Atom center multipole methods

1. Overview

A number of methods have now been described in
literature for acceleration of the evaluation of the Coulom
operator in electronic structure calculations via the use
fast multipole methods.8,9,12In general, these methods follow
the protocols developed for classical simulations of char
particles14 in that space is divided into cells, and integr
product centers falling within these cells are grouped
gether in multipole terms. This approach makes sense w
there are a large number of particles spread out more or
uniformly in the volume of interest. In an electronic structu
calculation, however, this is generally not the case. The
son that multipole methods are even feasible in an electr
structure calculation for molecules of the sizes typica
studied~30–200 atoms! is that there are a large number
product centers associated with the different primitive ba
functions pairs. However, these product centers are very
regularly distributed. In particular, they are disproportio
ately concentrated around the atoms of the molecule.
reason for this is easy to understand. If the exponents of
primitives are both large compared to their separation, t
the overlap of the basis functions is nearly zero and
primitive can simply be discarded. Cases where the ex
nents are both small compared to the product center sep
tion are relatively infrequent~this, in essence, requires tw
long range functions, whereas most contracted basis fu
tions are short range in basis sets of decent quality!. When
one exponent is large and the other is small~the dominant
case in practice!, then the product center will be located ve
close to the atom on which the large exponent is situa
Our atom-centered multipole method exploits this fact
locating the multipole expansion centers directly on atom
This dramatically reduces the number of terms in the mu
pole series needed for convergence. The efficiency of
method is documented below.

Additionally, the implementation of multipoles with P
methods is different in its details than what is required
conventional electronic structure calculations. The differe
arises from the use of three-center one-electron integral
the primitive integrals in the theory rather than the tw
electron integrals that appear in conventional approac
Our multipole method involves an approximation to the Co
lomb field in physical space rather than approximating Fo
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AI
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matrix elements directly. Once the multipole part of t
physical space Coulomb field is constructed, the additio
cost to incorporate it into the final evaluation of the Coulom
matrix elements@Eq. ~3! above# is negligible.

2. Coulomb field for pseudospectral integration

The Coulomb field at a given grid pointg,J(g), is rep-
resented pseudospectrally by a sum over three-center
electron integralsAmn multiplied by the AO density matrix,
rmn

J~g!5(
mn

rmnAmn~g!. ~6!

TheAmn integral is the Coulomb field at grid pointg created
by the contracted basis function pairmn

Amn~g!5E m~r !n~r !dr

ur 2r gu
. ~7!

The mn basis pair is composed of products of primitiv
Gaussian pairsab with fixed contraction coefficientsDa ,
Db , leading to the expansion ofAmn

Amn~g!5(
a,b

DaDbE a~r !b~r !dr

ur 2r gu

5(
a,b

DaDbAab~g!. ~8!

The ab primitive Gaussian pair is typically written in term
of the ‘‘product center’’r p defined by the primitive Gaussia
centersA, B and exponentsgd

r p5
gA1dB

g1d
. ~9!

The ab product has the following form:

a~r !b~r !5S )
j 5xyz

~xj2Aj !
n j~xj2Bj !

m jD
3exp@22gds~A2B!2#

3exp@2~g1d!~r2r p!2#, ~10!

s5
1

2~g1d!
,

wherenj andmj denote the Cartesian angular powers of t
primitive ~e.g.,dxx).

In the classical limit, namely from a distance far enou
from r p , the ab product function simply becomes a poin
charge located atr p

a~r p!b~r p!→ )
j 5xyz

~xp j2Aj !
n j~xp j2Bj !

m j

3@exp~22gds!~A2B!2#. ~11!

In this classical limit theAab integral is simply

Aab~g!→a~r p!b~r p!/ur p2rgu. ~12!

Although this classical limit is relatively simple, th
computational cost of evaluating the 1/R denominator at
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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10134 J. Chem. Phys., Vol. 112, No. 23, 15 June 2000 Murphy et al.
each grid point is a nontrivial cost to be avoided if possib
Our purpose in this research is to present a computation
fast multipole expansion ofAab and assembly of the fina
Coulomb field@Eq. ~6!# within this multipole expansion. The
techniques to be presented perform optimally within
pseudospectral integration scheme and are not directly
lated to more common multipole expansions of four-cen
integrals.10

3. Atom-centered multipole expansion

Obtaining high accuracy with a low-order multipole e
pansion requires a judicious choice for the center of the m
tipole expansion. Within the Gaussian product framew
discussed above we have chosen the multipole center t
the atom nearest theab product centerr p . Although more
optimal choices can be constructed, the nearest-atom
tered method has been found to perform adequately with
multipole expansion to the sixth order and with minim
complications of the formalism. Since many primitiv
Gaussians have relatively high exponents, a large fractio
the product centers are close to the atomic centers, thus m
ing a low-order atom-centered expansion feasible. The
pansion parameter of a given multipole expansion is the
fore the product center to multipole center (rmp) distance,
ur p2rmpu. The denominator in Eq.~12! can be rewritten to
exemplify this expansion

1

urg2r pu
5

1

u~rg2rmp!1~rmp2r p!u
5

1

uRg2du
. ~13!

The multipole expansion is feasible when, relative to
multipole center, the distance to the grid point (Rg) is much
larger than the distance to the product center~d!. For a par-
ticular ab primitive pair, the minimal distanceuRgu for use
of the classical approximation@Eq. ~7!# is Rclass

Rclass5d1Aln~p f /tol!/~g1d!, ~14!

wherepf denotes the constants multiplying theab pair ~e.g.,
DaDbrmn) tol is a tolerance for the accuracy~1.0e-07!, and
g,d are the Gaussian exponents. The minimal distanceRmul

for the multipole expansion of orderNmul to be accurate is

Rmul5
to

p f
~2d!~11 ltot* Nmul!, ~15!

with ltot the total angular momentum of theab pair. The net
cutoff Rcut for both classical and multipole approximations
simply

Rcut5max~Rmult ,Rclass!. ~16!

The multipole expansion takes the form in Cartesian coo
nates

1

uRg2du
5 (

L51,Nmul
(

j 51,f ~Nmul!
(

~m,n,l !
Cmnl

j dx
mdy

n

3dz
l Rgx

m8Rgy
n8Rgz

l 8 dL/Rg
L11, ~17!

where the expansion is up to orderNmul with f (Nmul) terms
at a given order. ForNmul56 there are a total of 130 multi
pole terms. There is no advantage in this formalism to tra
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AI
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form to more complicated non-Cartesian coordinate syste
as typically done in conventional multipole expansions.10

4. Multipole assembly

The objective is to formulate an efficient algorithm fo
assembling the part of the Coulomb field@Eq. ~6!#, which
can be approximated by the multipole expansion. To cla
the algorithm we first outline the structure of the Coulom
field assembly code without multipoles. The outer loop
theJ(g) constructor is over grid blocks$g% containing;128
grid points that are relatively well localized. The inner loo
are over contracted basis pairs~mn! that are then further de
composed into primitive pairs~ab!. For each primitive pair
Aab(g) is computed and its contribution toJ(g) including
the D,r prefactors of Eqs.~6!, ~8! are calculated.

For a given grid block, any contracted basis pair~mn! in
Eq. ~7! will have some subset of primitiveab pairs, which
can be treated by the classical multipole expansion@Eq.
~11!#. To make an efficient algorithm it is necessary to si
plify the logic for determining this subset of classical pai
This can be achieved by referencing the classical cutoffRcut

@Eq. ~16!# of a primitive pair to the whole grid block rather t
individual grid points. Thus, if the closest approach of t
grid block to the multipole center is greater thanRcut, the
primitive ab pair can be evaluated classically over the who
grid block. The localized nature of the grid blocks makes t
block-based cutoff approach practical. Since the actual g
points are not needed to make this classical/multipole ass
ment, the calculation of most of the multipole expansion d
can be done as a preprocessing step before looping over
blocks. This aspect of the algorithm is critical to its ef
ciency. We presently discuss the bulk of the multipole alg
rithm that assembles components of the multipole terms
are independent of the grid points.

5. Preassembly

The preassembly phase contains a loop over contra
mn basis pairs on all atoms, which is followed by loops
the corresponding primitiveab pairs. Once a batch ofab
pairs of specific angular momentum is accumulated, mu
pole data for this batch is accumulated as follows.

Density matrix/Contraction coefficients/Cutoff data. The
prefactors pf(ab) multiplying the primitive integral are first
calculated with the inclusion of the contracted density ma
rmn and the exponential factor of Eq.~11!

pf~ab!5DaDbrmn exp@22gds~A2B!2#. ~18!

The folding of the density matrix into the initial preproces
ing is essential to the efficiency of the algorithm. For th
reason the multipole method described herein is of no p
tical value for assembling the analogous exchange opera
If the prefactor is small enough the entireab integral is
ignored. The atom closest to theab product centerr p is
assigned as the multipole center of theab pair. The classical/
multipole cutoff in Eq.~16! can then be calculated and store
either in memory or on disk. This storage is necessary
ascertain on each grid block if theab pair can be done clas
sically using the grid-block-based cutoff scheme describe
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Downloaded 15 Se
TABLE I. Timings ~SGI R 10k seconds! for a pseudospectral portion of Coulomb assembly. Timings
multipole terms are T-pre: time to do the precomputation of multipole coefficients; T-assem: total time sp
grid assembly of multipole terms; T-Aij: time to evaluate nonmultipole three-center integrals; T-Jij: total
to construct the pseudospectral Coulomb matrix over the grid; T-Jij: total time for Coulomb matrixwithout
using multipoles.

Molecule/basis Nbasis T-pre T-assem. T-Aij T-Jij T-Jij no multipoles

C42H86 6-31G 550 2 22 79 180 368
Porphine
cc-pVTZ~-f!

678 5 4 190 288 619

Taxol 6-31G** 1185 4 28 264 495 1092
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subsequent sections. The I/O associated with reading the
off data is minimal compared to other parts of the calcu
tion. Theab cutoff values are ‘‘binned’’ by the nearest in
teger to the real cutoffRcut in Eq. ~16!. This binning of
cutoffs facilitates the summing of multipole coefficients in
integer cutoff classes discussed below.

6. Multipole coefficients

In this preprocessing phase of the algorithm the conc
is to obtain the parts of the multipole coefficients that can
assembled and accumulated using product center data an
grid point input. The contributions of eachab primitive pair
to all possible multipoles (Nmul) are accumulated an
summed into an array Totmp~ ! indexed by multipole number
expansion center, and the integer representation of the c
parameter discussed above. The first task is to calcu
terms that are common to several individual multipole term
One such class of terms are factors in Eq.~11! involving
powers of coordinates weighted by the prefactors of Eq.~18!

S~ab!5pf~ab!S )
j 5xyz

~xp j2Aj !
n j~xp j2Bj !

m jD . ~19!

A second term of this class are the powers ofd in Eq. ~17!
for each primitive pair. The binomial coefficients for ea
multipole are computed as well. Finally, the terms for t
individual multipole moments involving powers ofdx,dy,dz
of Eq. ~17! are computed using standard recursion relati
to minimize the number of multiplications involved. The
terms for individual multipoles are multiplied by the out
factor S in the above equation to produce the quantity

Smp~ab,mul!5S~ab!Cnml
j dx

mdy
ndz

l . ~20!

Binning of the multipole coefficients. At this point the
desired quantity Totmp~ ! describing the net multipole weigh
from primitive ab pairs that have a common multipole ce
ter and common classical/multipole cutoffRcut can be simply
formed by summing overSmp in the above equation using th
center and cutoff data of each primitive pair,
do ab pairs

ia5mpcenter~ab!

icut5int@Rcut~ab!#

do mul51,Mmult ~21!

Totmp~mul, ia, icut!5Totmp~mul,ia,icut!

1Smp~ab,mul!.
p 2006 to 171.64.133.179. Redistribution subject to AI
ut-
-

rn
e
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In the final assembly over grid blocks discussed further
low, each grid block will be within some cutoffRc of each
multipole center. The multipole weight that contributes
this grid block is a sum over integer cutoff bins from 0 up
int(Rc). Therefore it is expedient to sum Totmp( ) over bins

Totmp~mul,ia,icut!5 (
ic50,icut

Totmp~mul,ia,ic!. ~22!

7. Coulomb assembly over grid blocks

With the Totmp( ) array completed in preprocessing, th
remaining assembly of the multipole part ofJ(g) over the
grid is relatively simple. However, because of the large nu
ber of grid points, this final assembly is the most costly o
eration overall. Timings presented in Table I illustrate t
relative times for the preassembly and the grid-based ass
bly.

Each grid block is passed to a routine that assembles
multipole portion ofJ(g) on this block as follows. The oute
loop of the assembly is over multipole centers, in this ca
over all atoms. The minimal distance from the multipo
atom centeria to the grid blockRcutg is calculated and the
corresponding integer based cutoff, icut. Next, all multipo
terms are looped over in a recursive fashion followed b
loop over grid points. The multipole powers for multipolem
involving the grid coordinates in Eq.~17! are calculated and
J(g) is incremented using Totmp~mul,ia,icut!

J~g!5J~g!1Totmp~mul,ia,icut!Rgx
m8Rgy

n8Rgz
l 8 /Rg

L11. ~23!

If the size of Totmp times the maximum of the grid coordi
nate powers is less than a cutoff the assembly in the equa
above is skipped.

B. J-engine algorithm for three-center two-electron
integrals

In this section we describe in detail an efficient alg
rithm for the evaluation of three-center two-electron integr
of the form (aa8ubc), wherea,a8,b,c denote contracted ba
sis functions on distinct atomic centersa,b,c. Since these
integrals are the most numerous and costly subset of ana
correction integrals, we have developed an algorithm exp
itly designed to optimize the construction and po
processing of this type of integral. The algorithm we ha
developed and implemented is broadly related to the
engine’’ two-electron integral algorithm of Head-Gordo
et al.,10 since the method folds the (aa8ubc) integral with
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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the AO density matrix while calculating the integrals. How
ever, the algorithm described here differs in some import
respects since it was independently designed to optimize
(aa8ubc) class of integrals for general basis sets.

1. Gill –Head-Gordon algorithm and notation

We follow the notation of the four-center AO integr
work of Gill, Head-Gordon,et al.15 and refer to their method
as needed rather than rederive the parts of this algorithm
are common to theirs. For this reason, and to compare to
faster algorithm, it is appropriate to briefy review the Gil
Head-Gordon method. The (aa8ubc) integral over con-
tracted basis functions is a sum over uncontracted primi
integrals

~aa8ubc!5DkaDk8aDkbDkc@akaaka8
8 ubkbckc#. ~24!

The contracted (aa8ubc) integral is further contracted by th
AO density matrixr i j to form parts of theJaa8 and Jbc8
matrix elements, e.g.,

Jbc5(
aa8

~aa8ubc!raa8 . ~25!

The Gill–Head-Gordon method assembles the (aa8ubc) in-
tegrals and then does the final assembly of the Coulo
operator in Eq.~25! while the ‘‘J’’-engine method and the
method presented here fold the AO density into the tw
electron integral construction, thus producing the J ma
elements more directly.

The integrals are constructed as products of
(aa8uketubc) pairs wherein the bra/kets contain primitiv
pairs each with the same pair degree of angular momen
denoted byllb andllk ~e.g.,sppairs in the bra anddd pairs in
the ket!. The outermost loop of the code is overbc pairs with
a fixed llk. Each primitive pair product in the bra/ket has
associated set of angular momentum vectorsp andq defined
by the Hermite representation of the pair product,~p and q
will be used to denoteupu and uqu!. The basic entity from
which the integrals are constructed is thepq-primitive braket,

K 0 0

0 0 p

0 0 a1b
U0 0

0 0 q

0 0 c1d
L 5~21!q@p1q#~0!

5@r #~0!. ~26!

The @r # (0) integrals are computed via recursion from t
@0# (m) integrals via

@r #~m!5Ri@r21i #
~m11!2~r i21!@r22i #

~m11!. ~27!

The @0# (m) are the elementary integrals among the primit
Gaussian pairs. Primitive pairs that are far enough apar
that involve high exponents allow@0# (m) to be rapidly evalu-
ated by a classical expression.

Given the@r # (0), the Gill–Head-Gordon algorithm con
tracts these quantities over the primitive contraction coe
cients and then transforms the contracted@r # (0) to real space
integrals using recursion relations. The expensive parts o
algorithm are the construction of the primitive@0# (m) and the
contraction of the@r # (0). We will mainly focus on the calcu-
lations involving the nonclassical braket primitive pairs
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the assembly of the classical portion represents a very s
fraction of the CPU time since the braket factorizes in t
classical limit. The contraction step for a given contract
braket pair follows a two-step transformation, the first
which is

doupu

douqu~ ur u5up1qu!

dor

G~k,r !5(
k8

r kk8Ck8p , ~28!

wherek is the pair contraction degreekbkc of Eq. ~24! for the
ket and similarlyk8 for the ket. TheCk8p is a scaling coef-
ficient of the ket exponents and ofupu. This transformation
has a scaling of

(
upu,uqu

Nkk8M ~ ur u!, ~29!

whereM (r ) is the number ofr vectors forur u andNkk8 the
number of nonclassical braket primitive pairs.

The second contraction is overk

doupu

douqu~ ur u5up1qu!

dor

b~r !5(
k

G~k,r !Ckq . ~30!

The b(r ) are subsequently mapped tob(p,q) pairs that are
used in the inexpensive recursion relations to produce
final contracted AO integrals. The overall scaling of t
transformation is

(
upu,uqu

Nkk8M ~ ur u!1NkM ~ ur u!. ~31!

2. Multipath (aa 8zbc) Coulomb assembly

The chief disadvantage of the formalism above is tha
follows a single path. Our purpose in this research is to
lustrate that for the (aa8ubc) class of integrals, the assemb
described above can be written in terms of multiple pa
~methods!, including density folding. Each of these metho
of assembly has a different scaling as a function
Nk ,Nk8 ,Nkk8 ,Np ,Nq , etc. The least expensive path can
chosen as a function of these variables for a given clas
braket pairs. This freedom to choose multiple paths nec
sarily lowers the computation time.

The basic method aims to construct the density fold
integrals denoted by (aa8uBC) and (bcuAA8), where

~aa8uBC!5(
bc

~aa8ubc!rbc ;

~32!

~bcuAA!5(
aa8

~aa8ubc!raa8
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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is a contraction over thebcAO density matrix elements with
a similar definition for (bcuAA). The method presented he
focuses on an efficient construction of the contracted
uBC) and uAA), with the final transform of the AO bra to
real space from thepq Hermite space being done cheaply,
in the Gill–Head-Gordon algorithm~and even more inexpen
sively than in the Gill–Head-Gordon method since there
only one ket and notb* c of them!.

3. Intermediates

The various definitions of intermediate functions used
the multipath three-center integral method are presently
cussed in order to define the various paths from these in
mediates.

Using the Gill–Head-Gordon notation, the steps fro
b(p,q) contracted pairs of Eq.~30! to AO integrals are rep-
resented by the bra ket transformations from momentum
real space. The first step transforming theq space tobc con-
tracted AO pair space can be written for a givenbc angular
pair as

K 0 0 0

0 0 p

a a8 p
U0 0 0

0 b c

0 0 0
L

5(
q

gbc,qK 0 0 0

0 0 p

a a8 p
U0 0 0

0 0 q

b c q
L

5(
q

gbc,qraa8p,bcq , ~33!

wheregbc,q denotes a recursion coefficient that is a functi
of the bc product pair distance andq. To construct the den
sity contracted (aa8uBC) integral, we first leave the (aa8u
bra in momentum space~p! and density contract the trans
formedbc side, i.e., we form

~aa8puBC!5(
bc

rbc~aa8pu0bc!. ~34!

To avoid the restriction of having to transform ther quanti-
ties above, it is expedient to write an expansion for@r # (0)

using the recursion relation of Eq.~27!

@r #kk8
~0!

5(
m

@0#kk8
~m!Pm~r ,k,X,Y,Z!, ~35!

where Pm(r ,k,X,Y,Z) are polynomials that depend on th
coordinates~XYZ! between thebc primitive pair product cen-
ter and the one center~in uaa8)) distance. ThePm(r ,k) are
independent of the one-center contraction indicesk8.

Using this expansion of@r # (0),(aa8puBC) of Eq. ~34!
can be expanded as

~aa8puBC!5(
bc

rbc (
kk8,q

@0#kk8
~m!Pm~k,r !

3Ck8pCkqgbc,q ~r5p1q!. ~36!

The methods we present focus on an efficient assembl
the (aa8puBC) @and similarly (bcquAA)#. As noted, the final
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transform from (aa8puBC) to the full AO integral (aa8uBC)
is a minor fraction of the total CPU time. The key conside
ation in the assembly of Eq.~36! is to decompose it into
assemblies of intermediates that are independent of
(aa8pu bra. The multiple intermediates that can be a
sembled are tuned to the angular degree of the contra
pair ~i.e., the extent ofpq vectors! as well as the contraction
degrees (k,k8). In addition, the extent to which quantitie
are assembled independent of theaa8 side depends upon th
type of integral. For example, the AO density and recurs
coefficients are readily partially contracted over the poss
angular terms of app contracted pair, e.g.,pxpy

Uq5 (
bc5xy,xz,yz

rbcgbc,q . ~37!

In this manner the multiple pair angular indices~e.g.,pxpy of
a contractedpp8bc pair! are immediately removed from th
scaling of consequent steps. TheUq of each contracted pai
can then be multiplied byCkq to form Uqk for each each ket
contracted pair. A similar folded recursion coefficientUp can
be defined for the (bcquAA) assembly.

At this point we have enough of the essential definitio
to represent the various possible paths for assembly
(aa8puBC) and (bcquAA) along with their scalings.

4. Definitions of paths and scalings

As outlined above, the general structure of the code is
outer loop overbc contracted pairs with a common pair a
gular momentumllk and pair contraction degreek. In addi-
tion, we have allowed for ansp angular block to be pro-
cessed as a single angular type to avoid repeti
reconstruction of@0#kk8

m terms. At this point, before the one
center indexa appears, the density foldedUqk recursion co-
efficients of Eq.~37! are formed. The set of contractedbc
pairs is then combined with a set of atoms defining the o
center parts on centera. The creation of~bc,a! triplets is
made by choosing thea centers in groups such that for an
bc pair a subset of thek contracted pairs can be assigned
kcl classical pairs relative to anyaa8 pair. That is, in each
‘‘batch’’ of ~bc,a! triplets kcl of the kbc primitive pairs are
classical with respect to any of the centersa in the batch.

At this point all unscaled primitive@0#kk8
m are con-

structed and stored in memory. These quantities do not
volve the contraction indices. The construction of the@0# (m)

integrals here is essential to avoid expensive redundan
generation in later stages. The polynomialsPm(r ,k) of Eq.
~35! can also be made at this location. For the first assem
method discussed below the intermediateQ in ~a! of Eq. ~38!
can be formed at this point as well. The final loop is ov
individual aa8 contracted pairs of a given pair angular m
mentumllb and contraction degreek8. Once a pair is chosen
the set ofkcl8aa8 primitive pairs that can be done pure
classically with thebckcl pairs is computed.

Given l lb ,l lk ,k,kcl ,k,kc8 it is now possible to choose
the optimal path for construction of the (a8uBC),(bcuAA)
integrals for this batch. The various paths of assembling c
tributions to the final (aa8ubc) integral with this set of
primitive braket pairs can now be defined. The paths d
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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cussed initially are concerned with the more computation
demanding nonclassicalkk8 pairs. Some of the intermediat
quantities defined in Eqs.~4!–~13! will be referenced in the
subsequent derivations. Unless otherwise noted, the sca
below refer to scalings perbc/aa8 primitive pair assembly.

a. Path 1. For the assembly of (aa8puBC), the path
follows the calculations of

~a! Q~k,m,p!5K pU(
q

pm~k,r !UqkL ; r5p1q.

~38!

Note that this quantity is precomputed before theaa8 loops
have started:

~b! Z~k,m,p!5(
k8

@0#kk8
~m!Ck8p ;

~c! ~aa8puBC!5(
km

Z~k,m,p!Q~k,m,p!.

An intermediateV for the (bcquAA8) term is also incre-
mented;

~d! V~k,m,p!5V~k,m,p!1UpZ~k,m,p!,

and the increment of (bcquAA8) from V is made;

~e! ~bcquAA8!5K qU (
p,k,m

Pm~k,r !V~k,m,p!L .

The scalings for the steps of path 1 are

~a! NmNpNkNq1~b! Nkk8NpNm1~c! NkNmNp

1~d! Nkk8NpNm1~e! NpNqNkNm ,

where it must be remembered that the scaling for 14~a! is
independent of theaa8 loops. Path 1 is advantageous f
high llk low k, bc terms~e.g.,dd polarization! coupled with
high k8, e.g., (ss8uDD8) integrals.

b. Path 2.

~a! Q~k,k8,r !5(
k8

@0#kk8
~m!Pm~k,r !,

~b! Z~k,r ,p!5(
k8

Q~k,k8,r !Ck8p ,

~c! b~r ,p,q!5(
k

Z~k,r ,p!Ckq ,

~d! ~aa8puBC!5K pU(
q

b~r ,p,q!UqL ,

~e! ~bcquAA8!5K qU(
p

b~r ,p,q!UpL , ~39!

with scalings

~a! Nkk8 ,NmNr1~b! Nkk8NpNr1~c! NkNqNpNr

1~d! NpNq1~e! NpNq .

c. Path 3. Path 3 resembles path 2 with preference giv
to earlyk8 sums rather thank
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AI
y

gs

n

~a! Q~k,k8,r !5(
k8

@0#kk8
~m!Pm~k,r !,

~b! Z~k8,r ,p!5(
k

Q~k,k8,r !Ckq

~c! b~r ,p,q!5(
k8

Z~k8,r ,p!Ck8p ~40!

~d! ~aa8puBC!5K pU(
q

b~r ,p,q!UqL
~e! ~bcquAA8!5K qU(

p
b~r ,p,q!UpL ,

and scales as

~a! Nkk8NmNr1~b! Nkk8NqNr1~c! Nk8NqNpNr

1~d! NpNq1~e! NpNq .

d. Path 4. This path has the most in common with th
Gill–Head-Gordon~17! path discussed above

~a! Z~k,m,p!5(
k8

@0#kk8
~m!Ck8p ,

~b! Q~k,r ,p!5(
m

Pm~k,r !Z~k,m,p!,

~c! b~r ,p,q!5(
k

Q~k,r ,p!Ckq , ~41!

~d! ~aa8puBC!5K pU(
q

b~r ,p,q!UqL ,

~e! ~bcquAA8!5K qU(
p

b~r ,p,q!UpL ,

and scales as

~a! NmNkk8Np1~b! NmNkNpNr1~c! NkNqNpNr

1~d! NpNq1~e! NpNq .

5. Classical assembly

The integral assembly in the classical limit derives
speed from the independence of the bra and ket or mult
cative nature of the integral expression. In the followingk,k8
denote classical braket pairs.

These two terms are preassembled before theaa8 loop is
entered

g~k,r !5(
m

Pm~k,r !@0#k
~m! , ~42!

Q~p!5K pU(
k,q

g~k,r !UqkL , ~43!

and inside theaa8 loop

~aa8puBC!5(
k8

Q~p!Ck8p , ~44!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



e for
these

10139J. Chem. Phys., Vol. 112, No. 23, 15 June 2000 Efficient pseudospectral methods

Downloaded 15 Se
TABLE II. Scalings of Coulomb matrix construction. Times as defined in Table I and with T-Jana, the tim
analytic correction terms. T-Jij-tot is the total Coulomb matrix assembly time. The scaling derived from
timings are seen to be in the linear to quadratic regime (;N1.5) for a two- to three-dimensional molecule.

Molecule/basis Nbasis T-pre T-assem. T-Aij T-Jij T-Jana T-Jij-tot

Taxol 6-31G 660 2 23 189 373 173 546
Taxol 6-31G** 1032 2 26 264 500 559 1059
Taxol 6-311G** 1422 7 34 433 829 980 1809
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with increments of the function

b~p!5b~p!1(
k8

Ck8pUp , ~45!

following the aa8 loop

d~r ,q!5(
k

g~k,r !Ckq , ~46!

^bcquAA8&5K qU(
p

b~p!d~r ,q!L . ~47!

6. Gradient evaluation

The assembly of analogous gradient terms such as

S a
]

]x
a8UBCD and S b

]

]x
c8UAA8D ~48!

follows paths analogous to those discussed for the energ
simply accounting for the raising and lowering of angu
momenta that occurs upon differentiation. As seen in Ta
III, the scaling advantages of this multipath method for g
dients are more substantial than for the energy because o
strength of the multipath method in efficiently assembli
the higher angular momentum terms.

IV. IMPLEMENTATION AND RESULTS

We have implemented the above methods in the Jag
suite ofab initio electronic structure programs. We use sta
dard basis sets and~when relevant! effective core potentials
in the data reported below. The grids used for the DFT c
culations use a geometric progression for the radial spa
and Lebedev angular distributions on each radial shell.
grid weights are produced using a method similar to tha
Becke.11 In converging SCF iterations, Jaguar utilizes Fo
matrix updating, which allows some iterations to be eva
ated on coarse grids, thus saving considerable CPU t
This and other details of SCF convergence have been
cussed in detail in other publications~including construction
of the initial guess for the wave function!, and we shall not
repeat those discussions here.

Our principal purpose in the present paper is to pres
performance data for the new algorithms discussed abov
well as overall timing data for running DFT calculations
various types in Jaguar. First, we examine how much tim
saved by employing the atom-centered multiple and J-en
algorithms for a set of test cases. Then, we present ov
CPU times for DFT calculations for a series of molecu
that vary in size, composition, and overall topology~i.e.,
p 2006 to 171.64.133.179. Redistribution subject to AI
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quasi-one-dimensional versus quasi-three-dimension!.
Both single point and gradient timings are included for t
6-31G* basis set, which is the level at which one typica
carries out geometry optimization. For the cc-pVTZ~-f! ba-
sis set of Dunning,16 we present single-point timings; again
that is what this basis set is typically used for. For gradi
timings, we report the average CPU time for an entire gra
ent cycle in a geometry optimization. The issue of how ma
geometry steps are required to achieve convergence i
important one, dependent upon both the quality of the o
mizer and how much noise there is in the gradient~it is
possible to reduce gradient times by ‘‘cheating’’ on the n
merical precision in any type of calculation, however, th
has the effect of increasing the number of geometry st
required for convergence!. Our observation of Jaguar geom
etry optimization with the current implementation of the pr
gram is that the number of cycles required for converge
are comparable to those reported in the literature for otheab
initio codes, indicating that the gradients are being compu
at an acceptable level of accuracy~note that for DFT all
codes have this issue since the XC operator must be ev
ated numerically!. In a future publication we will examine in
detail the specific performance of the Jaguar optimizer.

We begin by assessing the reductions in CPU time
tained using the atom centered multiple and J-engine a
rithms. Table I presents timings for assembling the multi
portion of the Coulomb field on one of the more expens
~nonupdating! SCF iterations. The total time spent by th
multipole code (T-pre1T-assem) is seen to be a relative
small fraction of the total time for J matrix assembly over t
grid ~T-Jij!. Comparing against timings without the mult
pole method, it is apparent that the multipole method is s
ing from a factor of 2–3 in the J matrix evaluation over t
grid with the largest savings occurring in the largest se
three-dimensional case, taxol. We note that we have not c
sidered here ultralarge systems, such as have been inv
gated in Ref. 17 to assess multipole performance. O

TABLE III. CPU times~SGI R 10k seconds! for calculating the three-cente
(aa8ubc) Coulomb matrix elements using the multipath method,J(aauBC),
and the Gill–Head-Gordon~Ref. 17!, approach,J(aaubc).

Molecule/basis Nbasis

Time J(aauBC)
~energy/gradient!

Time J(aaubc)
~Gill method!

~energy/gradient!

C42H86 6-31G 550 57/129 163/526
Porphine cc-pVTZ~-f! 678 243/736 683/4627
Porphine 6-31G* 430 59/180 95/560
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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expectation is that much larger gains will be realized in th
cases due to the growth in the computational effort to eva
ate the Coulomb operator as the system size increases. H
ever, we have chosen to focus in this paper on systems
are in the range of typical academic and industrial appli
tions. Taxol, the largest system we consider, is an impor
pharmaceutical compound; the new methods provide s
stantial acceleration for this case. Even for the smaller s
tems on the order of 50 atoms, though, significant impro
ments are observed. This reflects the efficacy of the at
centered multipole approach, which has a negligible amo
of overhead yet still is able to incorporate a considera
number of product centers effectively due to the details of
design.

The net scaling of the Coulomb matrix construction
calculated from the timings in Table II, including all analyt
integral correction timings. For taxol, which falls between
two- and three-dimensional class, the net scaling is ca
lated to lie between the linear and quadratic regimes,N1.5.

The efficiency of the J-engine method for the (aa8ubc)
analytic integrals is displayed in Table III for both ener

TABLE IV. Summary of improvements from multipole and J-engine alg
rithms. Porphine cc-pVTZ~-f! BLYP timings ~SGI R 10k minutes!. T-Jij:
total time to evaluate the J matrix over the grid for 9 SCF iterations/
gradient. T-jana: total time to evaluate analytic corrections to the J ma
over nine SCF iterations/one gradient. T-SCF: total SCF time, T-grad: t
gradient time.

Method T-Jij T-Jana T-SCF T-grad

New 40/10 18/22 78 40
Old 91/17 37/93 147 117

TABLE V. CPU times ~minutes! of single-point energy and averag
energy1gradient times for density functional calculations with Jaguar
on an SGI Irix 62-r10k work station. All molecules were run in C1 symm
try except for C42H48, which has Cs symmetry. The LACVP** basis was
used for Fe and the LACVP* basis for Ge.

Molecule Nbas SCF-Iters SCF time SCF1grad time

B3LYP 6-31G**
Porphine 388 10 23 27
sMMO active site 623 19 217 167
C34H38O4Si2Ge 653 10 95 100
C42H86 802 8 46 61
Taxol 1032 11 207 216

B3-LYP 6-31G**
Porphine 388 10 39 43
sMMO active site 623 17 337 259
C34H38O4Si2Ge 653 9 179 210
C42H86 802 8 78 105
Taxol 1032 10 421 472

BLYP cc-pVTZ~-f! single point
Porphine 678 5 106
BPh 1172 7 616
C42H86 1740 6 394
Taxol 1885 8 1428

B3-LYP cc-pVTZ~-f! single point
Porphine 678 5 191
BPH 1172 7 950
C42H86 1740 6 546
Taxol 1885 8 2674
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and gradient. There are factors of 1.6–2.9 improvement
the energy integral evaluation speed and from 3.1–6.2 in
gradient evaulations. The improvements are larger for
gradient and for the correlation-consistent basis sets.

The overall improvements in the J matrix assemb
times are presented in Table IV for the case of a porph
BLYPcc-pVTZ~-f !SCF1gradient calculation. In general, th
combination of the multipole and J-engine methods result
a factor 2 improvement in the energy evaluations and a
tor of 3 in the gradient for this case, both for the compone
of the J matrix evaluation and in the total SCF/gradient ti
ings.

Overall CPU times are presented in Table V. These
sults reflect a 5-25x speedup as compared toGAUSSIAN 92

timings, as we have demonstrated in detail elsewhere18 and
have partially reproduced in Table VI. Some of the adva
tage is due to intrinsic efficiencies of PS methods while o
ers can be attributed to the new algorithms described ab
The speedups are larger for gradient-corrected DFT du
the advantages conferred by the atom-centered multip
method. These timings represent a major improvemen
compared to conventional electronic structure codes, and
low larger and more complex systems to be addressed
DFT methods on a routine basis.

V. CONCLUSION

We have presented pseudospectral methods for carr
out both gradient-corrected and hybrid functional DFT c
culations. New algorithms were introduced to substantia
reduce computational effort for assembly of the Coulom
operator; assembly of the exchange-correlation operator
also accelerated by multigrid techniques. Current perf
mance levels allow calculations on 100–200 atom system
be carried out routinely on workstations with a mode
amount of memory and disk storage.
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