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Efficient memory equation algorithm for reduced dynamics
in spin-boson models

Andrei A. Golosov, Richard A. Friesner, and Philip Pechukas
Department of Chemistry, Columbia University, New York, New York 10027

~Received 6 July 1998; accepted 16 September 1998!

The dynamics of a one-dimensional quantum system coupled to a harmonic bath can be expressed
through Feynman’s path integral expression for the reduced density matrix. In this expression the
influence of the environment is seen in correlations between positions of the system that are
nonlocal in time. Makri and Makarov@J. Chem. Phys.102, 4600 ~1995!# showed that for many
practical problems correlations over only a few time steps,Dkmax, need to be taken into account,
which led to an efficient iterative scheme. However, this algorithm scales as the size of the system
to the power of 2(Dkmax11), which restricts the size of the system that can be studied with this
method. In this work we present an efficient algorithm which scales linearly withDkmax. In our
method the reduced density matrix is written as a convolution of its past values with an integral
equation kernel. The calculation of that kernel is based on a perturbative expansion of the
discretized quasiadiabatic path integral expression for the reduced density matrix. The expansion
ignores certain types of correlations. ©1999 American Institute of Physics.
@S0021-9606~98!50848-3#
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I. INTRODUCTION

The dynamical simulation of quantum dissipative sy
tems is a challenging problem in condensed matter phy
and chemistry.1 Such systems consist of a few relevant d
grees of freedom coupled to a huge environment,
‘‘bath,’’ and serve as a model to describe condensed ph
dynamical processes such as charge-transfer reactions2 vi-
brational relaxation,3 macroscopic tunneling,4 etc.

The most commonly used microscopic model of dissi
tive systems is of the spin-boson type,4 i.e., a few-level sys-
tem bilinearly coupled to an infinite set of harmonic oscil
tors. Within the path integral approach,5 the harmonic bath
can be integrated out giving rise to an influence function6

with time correlations between different path segments. T
is the basis of quantum Monte Carlo~QMC!,7–9 the only
feasible exact method available so far. Since the numbe
paths to be included in QMC increases exponentially w
the number of time slices, this approach becomes probl
atic for long propagation times.

This difficulty prompted the development of approx
mate methods. Classical path methods,10–13 surface-hopping
techniques14–17 and the recent mixed semiclassical–classi
approach18 all assume that the system is described quan
mechanically, while the bath is described classically. T
kind of approximation is valid when the temperature of t
bath is higher than its characteristic frequency. By samp
initial positions and momenta of the bath particles from
Wigner instead of the Maxwell–Boltzman distribution fun
tion, Stock19 showed using the example of the spin-bos
system that mixed quantum-classical method~a particular
version derived using a semiclassical self-consistent field
proach! may give qualitatively correct results even at lo
temperatures. These mixed techniques have problems in
1380021-9606/99/110(1)/138/9/$15.00
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nonadiabatic regime, where the bath dynamics is much fa
than that of the system.

In that regime, theories of a perturbative type work ve
well. These include Redfield theory,20 the noninteracting
cluster approximation~NICA!21 and its specific case for a
two-level system, the celebrated noninteracting blip appro
mation ~NIBA !.4,22 For example, Redfield theory has bee
successfully applied to a variety of problems including ES
and NMR,20 vibrational relaxation3,23 and electron transfer.24

Such theories fail in the adiabatic to intermediate regi
where the bath dynamics is slower than or as fast as tha
the system.

Several recent methods such as centroid molec
dynamics,25 the discretized integral equation approach26 and
techniques based on the semiclassical approximation18 look
very promising. However, further tests are necessary to
veal all of the benefits of these methods.

Several years ago Makarov and Makri27,28 developed a
method based on an approximation which is the truncation
time correlations in the influence functional. They observ
that the broad spectrum of the environment to which
system is coupled leads to a finite range of correlations
tween different path segments. They showed that for m
practical purposes correlations over only a few time ste
Dkmax, need to be taken into account. This led to a reas
ably efficient iterative procedure which scales
O(n2(Dkmax11)) for an n-level system. However, the expo
nential scaling limits the size of the system that can be st
ied to very few levels. In this paper we present an efficie
numerical scheme which overcomes this bottleneck with
substantial loss of accuracy. It has linear scaling withDkmax.

The rest of the paper is organized in the following wa
In Sec. II, a model system coupled to a harmonic bath
discussed. For this model, the quasiadiabatic path inte
© 1999 American Institute of Physics
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expression and the tensor multiplication algorithm are brie
reviewed in Secs. III and IV, respectively. These sectio
introduce the main notations and equations which will
used in Sec. V, which describes the memory equation a
rithm, the essential result of this paper. Numerical results
presented in Secs. VI, and Sec. VII contains concluding
marks and sketches some directions for a possible impr
ment of the method.

II. MODEL

A commonly used model for quantum dissipation is
one-dimensional~1D! system bilinearly coupled to an infi
nite set of harmonic oscillators that mimic the environme
~bath! within the regime of validity of linear response theor
Its Hamiltonian can be written as

H5
P2

2M
1V~Q!1

1

2 (
j

MmodesS pj
21v j

2S qj2
gjQ

v j
2 D 2D , ~1!

whereQ is the system coordinate with conjugate moment
P, andqj is the position of thejth bath mode with conjugate
momentumpj , frequencyv j and coupling strengthgj . All
information about the bath that is essential for the dynam
of the system can be captured in the compact form of
spectral density function

J~v!5
p

2(
j

gj
2

v
d~v2v j !. ~2!

III. DISCRETIZED QUASI-ADIABATIC PATH
INTEGRAL

The quantity of interest is the reduced density matrixs,
the trace of the total system-bath density matrix over b
coordinates,

s~ t !5TrBr~ t !5TrB~e2 iHtr~0!eiHt !, ~3!

where\ is assumed to be 1 throughout the paper. It fu
describes the dynamics of the system.

Introducing a reference Hamiltonian

H ref5
P2

2M
1V~Q!1

1

2 (
j

Mmodes gj
2

v j
2

Q2, ~4!

the system-bath Hamiltonian can be split into two parts

H5H ref1Henv, ~5!

where

Henv5
1

2 (
j

Mmodes

~pj
21v j

2qj
2!1 (

j

Mmodes

gjqjQ. ~6!

Rewriting eiHt as (eiHDt)N, inserting the identity

E dQuQ&^Qu )
j 51

MmodesE dqj uqj&^qj u51 ~7!

between each pair ofeiHDt, utilizing an adiabatic partitioning
of each exponential operator

eiHDt'eiH envDt/2eiH refDteiH envDt/2 ~8!
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AI
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and integrating over the bath coordinates, Makri obtained
quasi-adiabatic propagator path integral~QUAPI! expression
for the reduced density matrix. For a factorized initial de
sity matrix

r~0!5rs~0! ^
e2bHbath

Z
, ~9!

which corresponds to switching on interactions betwee
system and a bath which is in equilibrium at the initial tim
~here Hbath is the bath Hamiltonian andZ is its partition
function!, the reduced density matrix can be written as27

s~Q9,Q8; t5NDt !5E dQ0
1Q1

1 . . . QN21
1

3E dQ0
2Q1

2 . . . QN21
2

3^Q9ue2 iH refDtuQN21
1 & . . .

3^Q1
1ue2 iH refDtuQ0

1&

3^Q0
1urs~0!uQ0

2&

3^Q0
2ueiH refDtuQ1

2& . . .

3^QN21
2 ueiH refDtuQ8&

3I ~$Qi
1 ,Qi

2% i 50
N ; Dt !, ~10!

where the influence functionalI ($Qi
1 ,Qi

2% i 50
N ;Dt) captures

the effect of the environment on the system by the introd
tion of nonlocal correlations between positions of the syst
at different times. It can be written as

I 5expF2 (
k50

N

(
k850

k

~Qk
12Qk

2!~hkk8Qk8
1

2hkk8
! Qk8

2
!G ,

~11!

wherehkk8 is an integral expression which depends only
the spectral functionJ(v), temperatureT, and discretization
time stepDt (hkk8 depends only onuk2k8u for 0,k,k8
,N). This expression for the influence functional is just
discretized version of that of Feynman and Vernon6 for the
continuous forwardQ1(t) and backwardQ2(t) paths of the
system

I 5expF2E
0

t

dt8E
0

t8
dt9~Q1~ t8!2Q2~ t8!!

3~a~ t82t9!Q1~ t9!2a!~ t82t9!Q2~ t9!!G , ~12!

with

a~ t !5
1

pE0

`

dvJ~v!S cothS bv j

2 D cos~vt !2 i sin~vt ! D ,

~13!

which gives meaning toQk
1 and Qk

2 as forward and back-
ward constant path segments at max(0,k2 1

2)Dt<t<min(k
1 1

2, N)Dt, respectively. Herea(t), a so-called memory ker
nel, is a measure of nonlocality of the influence function
In the memoryless, or Markovian, limit Re@a(t)# is propor-
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tional to a delta functional and Im@a(t)# is proportional to its
derivative, and thereforehkk850,uk2k8u.1. In the opposite,
or adiabatic, limita(t) is a constant, indicating infinite time
range correlations between positions of the system at dif
ent time steps. In many practical situations the width of
memory kernel~the memory length! is between those two
extreme limits, i.e., it is finite. Employing a cutofftmax on the
memory length@hkk8 in Eq. ~11! is set to zero foruk2k8u
.Dkmax,DkmaxDt5tmax], Makri and Makarov implemented
an efficient tensor multiplication algorithm.27,28

IV. TENSOR MULTIPLICATION ALGORITHM

Since our algorithm is closely related to the tensor m
tiplication scheme, this section is essential for understand
further material. However, it should be considered as a b
introduction; details can be found in the original papers
Makarov and Makri.27,28 We have changed some of the
notation and order of summation for convenience.

In the discrete variable representation, i.e., in the ba
set formed by eigenvalues~labeleds) of a system position
operator

^sauQusb&5Q̃adab , ~14!

expression~10! for the reduced density matrix can be rewr
ten as

s~s9,s8;t5NDt !

5 (
s0

1 ,s1
1 . . . sN21

1
(

s0
2s1

2 . . . sN21
2

^s9ue2 iH refDtusN21
1 & . . .

3^s1
1ue2 iH refDtus0

1&^s0
1urs~0!us0

2&

3^s0
2ueiH refDtus1

2& . . . ^sN21
2 ueiH refDtus8&

3I ~$si
1 ,si

2% i 51
N ; Dt !, ~15!

where

I ~$si
1 ,si

2% i 51
N ; Dt !

5expS 2 (
k50

N

(
k850

k

~Q̃k
12Q̃k

2!~hkk8Q̃k8
1

2hkk8
! Q̃k8

2
!D

~16!

with Q̃k
6 being eigenvalues corresponding to eigensta

usk
6.. Labeling pairs of indices (sk

1 ,sk
2) as sk , (s9,s8) as

sN and introducing short-hand notations for a free syst
propagator

^si
1ue2 iH refDtusj

1&^sj
2ueiH refDtusi

2&5A0~si ,sj !, ~17!

and for the density matrix of the system at the initial mom

^s0
1urs~0!us0

2&5s0~s0! ~18!

the above expression for the reduced density matrix can
written as
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AI
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s~sN ; t5NDt !5 (
s0 ,s1 . . . sN21

A0~sN ,sN21!

3A0~sN21 ,sN22! . . .

3A0~s1 ,s0!s0~s0!3I ~$si% i 51
N ; Dt !.

~19!

The influence functional can be decomposed into pairw
products

I ~$si% i 51
N ; Dt !5)

k50

N

)
Dk50

k

I Dk~sk ,sk2Dk!, ~20!

where

I uk2k8u~sk ,sk8!5exp@2~Q̃k
12Q̃k

2!~hkk8Q̃k8
1

2hkk8
! Q̃k8

2
!#.

~21!

After defining

A1~sk ,sk21!5A0~sk ,sk21!I 0~sk ,sk!I 1~sk ,sk21!, ~22!

s(t) can be expressed as

s~sN ;t5NDt !

5 (
s0 ,s1 . . . sN21

A1~sN ,sN21! )
Dk52

N

I Dk~sN ,sN2Dk!

3A1~sN21 ,sN22! )
Dk52

N21

I Dk~sN21 ,sN212Dk!

•••

3I 0~s0 ,s0!s0~s0!. ~23!

The first, the second and following lines of the right si
expression contain correlations between, respectively,sN ,
sN21 , . . . configurations and all configurations at the pre
ous time steps up to the initial moments0 .

Expression~23! is the basis of Makri and Makarov’s
algorithm. Consider the simplest case, in whichDkmax52.
The result after rearrangement of the summation indices

s~sN ;t5NDt !5 (
sN21

A1~sN ,sN21! (
sN22

I 2~sN ,sN22!

3A1~sN21 ,sN22! (
sN23

I 2~sN21 ,sN23!

•••

3A1~s2 ,s1!(
s0

I 2~s2 ,s0!

3A1~s1 ,s0!I 0~s0 ,s0!s0~s0!. ~24!

From here we can see that summation in each successive
performed in the direction from the bottom to the top line
Eq. ~24! gives the expression which depends only on t
indices which can be used in the calculation of the abo
lines. In other words, if we denote the result of the first li
~from the bottom! as

r~s1 ,s0!5A1~s1 ,s0!I 0~s0 ,s0!s0~s0!, ~25!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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then the second line gives

r~s2 ,s1!5A1~s2 ,s1!(
s0

I 2~s2 ,s0!r~s1 ,s0!, ~26!

and so on until the last line where

s~sN ; t5NDt !5 (
sN21

r~sN ,sN21!. ~27!

In the actual calculation it was taken into account th
I Dk(sk ,sk2Dk) depends only onuk2k8u for kÞN,Dk. In this
calculationr, a so-called augmented density tensor, depe
only on its value from the previous time step, thereby
nonMarkovian dynamics for the reduced density matrix
mapped into the Markovian dynamics of an augmented
duced density tensor.

In general, for a givenDkmax, the augmented reduce
density tensor depends onDkmax indices. The cost of its
propagation isO(n2(Dkmax11)) in CPU andO(n2Dkmax) in
storage. Heren is the number of DVR states. In the ne
section we will introduce a method with propagation cost
O(n4Dkmax).

V. MEMORY EQUATION ALGORITHM

Our ansatz is to present the reduced density matrix
convolution of its previous values in time with an operatorK

s~ t5NDt !5 (
Dk51

min~Dkmax,N!

KDk~Dt !s~ t2DkDt !, ~28!

wheres is represented as a vector of lengthn2, KDk is a
matrix of sizen23n2, and n is the number of DVR state
~which for a discrete system is the total number of state!.
This expression is just a discretized version of a general
master equation.29 In this section, we will develop an ap
proximate scheme of the construction of the kernels in
~28!, the heart of thememory equation algorithm.

Suppose we knowKDk , then the CPU cost of propaga
tion by this convolution expression scales asO(n4Dkmax) in
comparison to that of the tensor multiplication algorith
which scales asO(n2(Dkmax11)). Since for most of the case
studied in the literature,Dkmax is at least of order of 10, this
would mean enormous savings both in CPU time and s
age, especially forn.2 @although even forn52 and Dk
510 the saving is of order 222/(2410)'2.63104]. In fact for
n53 andDkmax.6, Sim and Makri30 first had to select im-
portant paths by performing a random walk inn2Dkmax di-
mensional space in order to use their tensor multiplicat
algorithm.

The question remains how to calculateKDk? Let us look
at the dynamics for the first two time steps. Using Eq.~24!,
the reduced density matrix after the first time step is

s~s1 ; t5Dt !5(
s0

A1~s1 ,s0!s~s0 ; 0!, ~29!

where we denoteI 0(s0 ,s0)s0(s0) as s(s0 ;0) ands(sN ; t
5NDt) is the reduced density matrix for allt except 0. After
the second time step,s becomes
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AI
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s~s2 ; t52Dt !5(
s1

A1~s2 ,s1!

3(
s0

I 2~s2 ,s0!A1~s1 ,s0!s~s0 ; 0!. ~30!

This can be rewritten as

~31!

whereK15A1 andK25A1
2 .*( I 221s). Here ‘‘.*’’ stands for

the element-by-element product and 1s is a n23n2 matrix
with all elements equal to one. Thus we obtain

s~2Dt !5K1s~Dt !1K2s~0!, ~32!

which is an exact expression. IfDkmax52, we truncate the
memory equation~28! to the first two terms:

s~NDt !'K1s~~N21!Dt !1K2s~~N22!Dt !, N.2.
~33!

In a moment we will show that this approximation is
a perturbative type, but right now let us consider the gen
alization of Eq.~33! to Dkmax.2. We introduce two approxi-
mate propagators of the reduced density matrix from the
tial momentt50 to t5NDt. The first,AN(sN ,s0), and the
second, ĀN(sN ,s0), include correlations up toDkmax

5max(N21,1) andDkmax5N, respectively. We would like
to build these propagators recursively, i.e., to expressAN and
ĀN in terms ofAN8 and ĀN8 , whereN8,N.

From Eq.~29! it is obvious thatA15Ā1 . To find A2 and
Ā2 we rewrite Eq.~31! as

s~s2 ; t52Dt !

5(
s0

S (
s1

K1~s2 ,s1!Ā1~s1 ,s0! D I 2~s2 ,s0!s~s0 ; 0!

5(
s0

Ā2~s2 ,s0!s~s0 ; 0!. ~34!

If Dk52 correlation were not included in this expressio
I 2(s2 ,s0) would be omitted, and thereforeA25K1Ā1 . The
inclusion of that correlation gives
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Ā25A2 .* I 2 ,

K25Ā22A25A2 .* ~ I 221s!. ~35!

The propagatorA3 includes correlations only up toDkmax

52. Thus it can be calculated directly from Eq.~33! or, more
strictly, its expanded form Eq.~31!

(
s0

A3~s3 ,s0!s~s0 ; 0!

5(
s2

K1~s3 ,s2!s~s2 ; t52Dt !

1(
s1

K2~s3 ,s1!s~s1 ; t5Dt !

5(
s0

H(
s2

K1~s3 ,s2!Ā2~s2 ,s0!

1(
s1

K2~s3 ,s1!Ā1~s1 ,s0!J s~s0 ; 0!. ~36!

From the above expression it follows that

A35K1Ā21K2Ā1 . ~37!

The inclusion of the correlation withDk53 gives Ā3

5A3 .* I 3 . Furthermore, the expression for the reduced d
sity matrix after the third time step,

s~3Dt !5(
s3

Ā3~s3 ,s0!s~s0 ; 0!, ~38!

can be split into two parts

s~3Dt !5(
s3

A3~s3 ,s0!s~s0 ; 0!1(
s3

A3~s3 ,s0!

3~ I 3~s3 ,s0!21!s~s0 ; 0!. ~39!

The first term contains all correlations exceptDk53, and
therefore according to Eq.~33!, is equal to K1s(2Dt)
1K2s(Dt). Thus in order to get the above expression in
form of ~28!, we assign the second term asK3s(0), where
K35Ā32A35A3 .*( I 321s). Similarly, we can calculate
the kernelsKN of the integral equation~28! by the recurrence
relations

KN5AN .* ~ I N21s!,

ĀN5AN .* I N , ~40!

AN5K1ĀN211K2ĀN221 . . . 1KN21Ā1 , N.1,

K15A1 , Ā15A1 .

These kernels are then used to calculate the reduced de
matrix

s~NDt !5K1s~~N21!Dt !1K2s~~N22!Dt !1 . . .

1KNs~0!. ~41!

Equations~40! and ~41! constitute thememory equation al-
gorithm.
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AI
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Now let us consider what the approximation given
Eq. ~40! means. We will use a diagramatic representati
Let A1 be a bond~also referred to as local bond! connecting
adjacent time steps. Further, in our graph formalism,I N

21s), N.1, is a bond connecting pointsN time steps apart;
an open circle is an opened~unsummed! index; a closed
circle is a closed~summed! index; a straight line segment i
s(s0 ; 0). Using this notation, the reduced density matrix
the first several steps forDkmax52 is shown in Fig. 1. Here,
circled terms in corresponding expressions fors are those
which arenot generated by~40! and~41!. It is not hard to see
that the only diagrams which will be left out by the memo
equation algorithm are those containing overlaps of bon
The largest error will be due to terms containing only tw
overlapping bonds, like the circled term fors(3Dt).

In cases where ofDkmax.2, the situation is even more
complicated, since more diagrams are ignored, and there
the error will increase asDkmax increases. However, our goa
for a given spectral density functionJ(v), and therefore for
a given memory kernel, is to find the dynamics of the s
tem.a(t) usually has a finite width, saytmax. Therefore, for
a given Dt, we haveDkmax5@ tmax/Dt#11, where square
brackets stand for an integer part of an inside express
The bigger the time stepDt, the smaller the number of cor
relationsDkmax that need to be taken into account, and the
fore the smaller the error by Eqs.~41! and~40!. On the other
hand, the error due to the adiabatic partitioning~8! will be
larger. Therefore, there must be an optimal time step to m
mize the two types of errors simultaneously. To find it w
have used ‘‘a principle of minimal sensitivity’’ which wa
successfully applied to recent calculations of energy lev
by the semiclassical quantization method.31 Utilizing this
principle to determine this optimal time step, we finds(t)
for a different Dt ~but so thatDkmaxDt5tmax5const) and
chooseDt at whichs(t) is the least sensitive to the chang
in Dt.

The knowledge of an optimal time step is also importa
for an efficient evaluation of the QUAPI expression by eith
the QMC or tensor multiplication techniques or their com
nation, although the optimal time step in this context is t
largest one which still gives ‘‘reasonable’’ results~say within
10% error!. This makesDkmax as small as possible, whic
cuts the computational costO(n2(Dkmax11)) substantially.
Hopefully, both of the above-mentioned optimal time ste

FIG. 1. A diagrammatic expansion of the reduced density matrix
Dkmax52.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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are close to each other. In the next section we will try
estimate them from the properties of the memory kernel.

VI. NUMERICAL RESULTS

The memory equation algorithm was tested on two d
sipative spin-boson models, a two-state system~TSS! and a
three-state system bilinearly coupled to harmonic heat ba
The two-state model has been extensively1 used to describe
chemical reactions at very low temperatures when tunne
between products and reactants is the major contributio
the rate of the reaction. Its Hamiltonian, introduced by C
deira and Leggett,4 is

H5esz1Ksx1
1

2 (
j

Mmodes

~pj
21v j

2qj
2!1sz (

j

Mmodes

gjqj ,

~42!

wheresz andsx are Pauli matrices of the TSS,e is a bias,K
is a tunneling element between two sites, andqj is the posi-
tion of the jth bath mode with conjugate momentumpj ,
frequencyv j and coupling strengthgj . The spectral density
function was chosen to be ohmic

J~v!5
p

2
av exp~2v/vc!, ~43!

wherea is a Kondo parameter andvc is a cutoff frequency.
This type ofJ(v) has been used most frequently in the l
erature, because a compact analytical solution given
NIBA can be obtained, and in addition, the spin-boson s
tem with this type of the spectral density shows a set
interesting phenomena,4 which include a transition from co
herent to incoherent dynamics, and symmetry breaking
zero temperature. As for the last property, it has been sh
that unbiased (e50) TSS coupled to a harmonic heat ba
with the ohmic spectral density exhibits the localization o
tunneling particle on one of the sites fora>1.

For the two-state system we have calculated the pop
tion dynamics,̂ sz(t)&5Tr(s(t)sz), which is of most in-

FIG. 2. The population dynamics calculated from the memory equation
function of a discretization time step. The parameters area50.64,T52.5,
wc52.5, K51.
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terest for the study of chemical reaction dynamics. For e
of the cases studied, we determined an optimal time s
Dtopt for the memory equation. It was obtained by looking
the dependence of the populations of each sitePi(t) on Dt
~so thatDkmaxDt5tmax, which was kept constant!. At an
optimal step we expectPi(t) to be the least sensitive to
change inDt. The sensitivity is estimated as the root of th
sum of the mean-square displacement ofPi(t) over i be-
tween two successive values ofDt, say Dt1 and Dt2 , di-
vided by uDt12Dt2u. This is illustrated by Figs. 2 and 3
wheret5Kt. The time step was incremented by 0.05 sta
ing from 0.05 and rounded to the nearest value giving inte
Dkmax. Note, atDt near 0.2̂ sz(t)& depends the least on th
time step and practically coincides with the calculation
tensor multiplication scheme done for the same mem
length cutoff. The width of the memory kernel was chos
large enough to make sure thatDtopt does not depend on it
For example, in the case presented on Figs. 2 and 3,DkmaxDt
was set to 1.8. In this way we have determined the optim
time step for all but one examples given here.~The exception
was the case presented on Fig. 7.! Here the time step was
incremented by 0.005 starting from 0.005. We also estima
whether at this optimal time step the tensor multiplicati
scheme, whenever it was used for a comparison, still gi
reasonable results. To do this we compared the calculatio
the current time step with that ofDt/2 and 2Dkmax ~i.e.,
keeping the memory length constant!. Unfortunately, this is
only an estimate, because we could make a comparison
at a smaller memory length;Dkmax@9 would take enormous
numerical effort.

We have tested our method for several sets of par
eters: the transition from a coherent~damped oscillations! to
an incoherent~a simple exponential decay! regime at low
and high temperatures~Figs. 4 and 5!; T50 anda5 1

2 ~the
parameter at which NIBA predictions are exact f
vc /K@1) ~Figs. 6 and 7!; strong system-bath coupling (a
52) at low and high temperatures and at different values
the tunneling elementK ~Figs. 8 and 9!; an adiabatic~slug-
gish! bath ~Fig. 10!.

a

FIG. 3. The sensitivity as a function of time step. The parameters are
same as for Fig. 2.
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First of all, we notice that the high temperature dynam
is reproduced more accurately than the low temperature
Obviously, the method cannot handle accurately enough
dynamics with distinct nonmonoexponential decay and it
comes unreliable whenDkmax@10 ~the top of Fig. 8!. For the
rest of the plots,Dkmax59 was large enough to reach co
vergence. It can be also noticed that forDkmax,10 the
method worked reasonably well in all cases~including the
top of Fig. 8! studied here. SuchDkmax means that the width
of the memory kernel is not too large. It can be seen from
examples studied that this is the case in a range includ
both the intermediate and nonadiabatic regimes. The har

FIG. 4. The transition from the coherent to the incoherent regime
T50.625,wc52.5, K51 ~parameters from Ref. 7!.

FIG. 5. The transition from the coherent to the incoherent regime atT52.5,
wc52.5, K51 ~parameters from Ref. 7!.
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test is in the adiabatic regime. This is a regime where
mixed quantum-classical method19 is a good approximation
As expected, the result of our method substantially devia
from the calculation done by that technique. In that calcu
tion the integration time step was 0.05. The bath was d
cretized byMmodes5400 harmonic modes with uniformly
distributed frequencies between 0 and 10vc . The couplings
gj were obtained from integration of both sides of Eq.~2! by
the trapezoidal rule and the assignment ofgj to the term
containingJ(v j ). We ran 2500 trajectories in order to obta
a converged result.

And finally, the result~Fig. 11! for a three-state system
coupled to the ohmic bath with parameter from Ref. 30 is
very good agreement with the recent calculations by the
tered propagator technique. This was the most time cons
ing calculation which took less than a second of CPU ti
on PowerPC~604e/200MHz! under AIX 4.1

And now let us address the question of the estimate
the optimal time step; in other words, where we should lo
for it. If A1 is a bare propagator~i.e., Dkmax51 for the re-
duced density matrix!, then the inverse of the fastest ra
obtained forA1 would be the shortest time scaletA1

low ~one of

t

FIG. 6. Zero temperature dynamics compared to NIBA predictions

a5
1
2, K51.0, wc510.0; Dt50.1636,Dkmax59.

FIG. 7. Zero temperature dynamics compared to NIBA predictions

a5
1
2, K51.0, wc5100.0; Dt50.01636,Dkmax59.
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the eigenvalues ofA1 will be 1; the others can be written i
the form exp(2GiDt1iViDt), whereG i andV i are real, and
G i stands for the decay rate of either diagonal or off-diago
elements!. Since we are expanding correlations of the infl
ence functional in a perturbative series and taking longer
longer range correlations less and less accurately, at an
mal time step,A1 determines the time scales for the evo
tion of the system. Therefore, we can expect thatDt at which
uDt2tA1

low(Dt)u has a minimum is close to an optimal tim

step ~if there are several crossings we choose the sma
Dt). According to Table I this is, indeed, the case.

FIG. 8. Simulations for strong system-bath coupling, wherea52,
T/vc50.4, Dt50.36. QMC calculations are from Ref. 9.

FIG. 9. Simulations for strong system-bath couplinga52, T/vc54.0,
Dkmax59. QMC calculations are from Ref. 9.
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VII. CONCLUSION

We have developed an efficient algorithm for the calc
lation of the quantum dynamics of a one-dimensional sys
bilinearly coupled to a harmonic bath. The algorithm
based on an approximation of Makri and Makarov’s ten
multiplication scheme which, in its turn, is based on th
observation that the broad spectrum of the environmen
which the system is coupled leads to a finite range of co
lations among positions of the system at different times~i.e.,
the finite width of the memory kernel in the influence fun
tional which is equal toDkmaxDt). Our method presents th
reduced density matrix as the convolution of its past val
with an integral equation kernel, which is constructed a
proximately. Thus the propagation cost of the reduced d
sity matrix scales asO(n4Dkmax) in CPU and storage. The
cost of the operator construction scales asO(n6Dkmax).
Since for the most interesting cases studied in the litera
Dkmax;10, this means huge savings in computer resour
compared to Makri and Makarov’s tensor multiplicatio

FIG. 10. Memory equation result (Dt50.2 andDkmax580) compared to the
mixed quantum-classical calculation in the near adiabatic regime (a5200,
T50.2, K51, vc50.01).

FIG. 11. The site population dynamics for the three-state system couple
an ohmic bath with parameters from Ref. 30. The time step for mem
equation calculations and tensor multiplication scheme was chosen t
0.72. The circles are the final converged result (Dt50.3, Dkmax516) ob-
tained by the filtered propagator technique~see Table 5 of the Ref. 30!.
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scheme which has a CPU cost which scales
O(n2(Dkmax11)), especially forn.2. Although the tensor
multiplication algorithm was substantially improved30 by the
important path selection technique, the configuration sp
for the QMC used in it grows exponentially withDkmax im-
posing limits on its efficiency. In most of the cases stud
our results are in good agreement with those of QMC a
tensor multiplication schemes.

Our method can be viewed as an extension of NIBA a
Redfield theory from the nonadiabatic to intermediate reg
where the time scales of the bath and system dynamics a
the same order and other approximate methods break d

Some issues remain unresolved. Most importantly,
need to find a consistent, yet an efficient, way of finding
integral equation kernel, which will allow us to avoid searc
ing for the optimal time step, and to improve results at low
temperatures.

ACKNOWLEDGMENTS

We are very grateful to Joachim Ankerhold, Dan G
zelter, and Balazs Hetenyi for proofreading the paper.

TABLE I. Estimates,tA1

low , of the optimal stepsDtopt for different param-
eters of both spin-boson models.

a T wc K Dtopt tA1

low

0.32 0.625 2.5 1.0 0.16 0.5
0.51 0.625 2.5 1.0 0.16 0.5
0.64 0.625 2.5 1.0 0.1 0.45
0.13 2.5 2.5 1.0 0.3 0.5
0.25 2.5 2.5 1.0 0.26 0.8
0.64 2.5 2.5 1.0 0.2 0.25
0.5 0 10. 1.0 0.16 0.55
0.5 0 100. 1.0 0.016 0.015
2.0 0.4 1.0 0.2 0.36 0.4
2.0 0.4 1.0 0.6 0.36 0.45
2.0 4.0 1.0 0.8 0.26 0.15
2.0 4.0 1.0 1.2 0.2 0.15

200 0.2 .01 1.0 0.2 0.5
three-state system 0.72 0.25
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