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interfaces. Various tensor quantities such as distortion, 
torsion and curvature have been developed in terms of 
the Burgers circuit and are shown to give what is 
perhaps the most complete description available until 
now of the Burgers vector and dislocation density 
associated with such two-phase interfaces. 
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Efficient Structure-Factor Calculation for Large Molecules by the Fast Fourier Transform 
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A method is presented for calculating structure factors by Fourier inversion of a model electron density 
map. The cost of this method and of the standard methods are analyzed as a function of number of atoms, 
resolution, and complexity of space group. The cost functions were scaled together by timing both meth- 
ods on the same problem, with the same computer. The FFT method is 3½ to 7 times less expensive than 
conventional methods for non-centrosymmetric space groups. 

Structure factor calculation is one of the major ex- 
penses in refinement of macromolecular structures. 
The purpose of this paper is to show how the fast 
Fourier transform (FFT) method can be used to cal- 
culate structure factors, and to compare FFT structure- 
factor calculation with conventional methods in terms 
of convenience, speed, and economy. A specific com- 
parison of the two methods for the space group P6122 
has been carried out as part of a project in this lab- 
.oratory to refine the structure of thermolysin, a pro- 
teolytic enzyme from Bacillus thermoproteolyticus 
(Matthews, Weaver & Kester, 1974). It will be shown 
that the FFT structure-factor calculation is con- 
siderably less expensive than any of the direct-sum- 
mation methods. 

A. Calculation of structure factors by the FFT method 

The fast Fourier transform algorithm can only compute 
finite discrete Fourier transforms. Therefore we must 

construct a model electron density map sampled on 
a grid and invert it to obtain our structure factors. 
The calculation of such a model map presents two 
problems which must be solved in order to use this 
method. First, a procedure must be devised to solve 
the sampling problem; otherwise the model electron 
density map must be constructed on a very fine grid, 
which greatly increases the computer storage require- 
ments and the cost of the calculation. Second, a con- 
venient functional representation must be found for 
the electron density distribution of a single atom. 
Sayre (1951) discussed these problems in some detail. 
In the following sections we describe ways of solving 
these problems, and also discuss programming strategy. 

A.1. The sampling problem 
The FFT algorithm can only be used to calculate 

the finite discrete Fourier transform of a function 
sampled at regular intervals on a grid. The act of 
sampling a continuous function implies potential loss 
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of information. Specifically, if a function is sampled 
at N evenly spaced grid points there is only enough 
information present to determine N Fourier coeffi- 
cients.* The Fourier series representation of a con- 
tinuous function is in general an infinite series. In the 
particular case where that series terminates after N or 
fewer terms a finite discrete Fourier transform based on 
N evenly spaced samples will give the same results as 
the integral Fourier transform. Unfortunately the 
Fourier series representation of a crystal structure does 
not terminate. (The fact that the observed data are 
limited in resolution is a separate problem.) 

When the Fourier series representation of a function 
requires more coefficients than are provided by the 
sampling grid, a finite discrete Fourier transform will 
produce N Fourier coefficients which will exactly re- 
produce the sampled function at the grid points but 
will not in general reproduce the function at other 
points in space. It is well known that structure factors 
calculated by an FFT program will be the sum of the 
desired structure factors and those spaced at multiples 
of N away from the desired structure factors. [For 
discussion see, for example, Sayre (1951) or Brillouin 
(1962). 1 The proof that follows is intended primarily 
to introduce notation and definitions. 

Let ~o(x) be a one-dimensional electron density dis- 
tribution which repeats with a period a. Then Q(x) 
has a complex Fourier series expansion 

1 +co 

~o(x)= a h=~_oo F(h) exp ( -  2rcihx/a) (1) 

where 

F(h)=fio(x)exp(2zihx/a)dx. (2) 

If we now sample Q(x) at N equally spaced points 
over one complete period and calculate the finite 
discrete Fourier transform we obtain F'(h), as follows: 

N-1 a 
F'(h)= ~ y'  ~(ja/N) exp (2~zihj/N) 

j=0  

= - -  F(k) 
N j=0 k--~o~- 

3 
x exp ( -  2rcikj/N)l exp (2xihj/N) 

._l 
~oo N - 1  

1 , F(k) ~ exp[2rci(h-k)j/N] (3) 
N k = - ~  j = 0  

The inner sum in (3) is clearly zero unless h -  k = pN 
with p an integer; in that case it is N. Therefore 

+oo 
F'(h)= ~ F ( h + p N ) .  (4) 

p =  --oo 

* If the function is real instead of complex the Fourier transform 
will contain N/2 unique complex numbers, but a complex number 
carrys twice as much information as a real number. 

For most practical crystallographic purposes the 
structure factors fall off with resolution rapidly enough 
that the only significant contamination is from 
F(h_+N), but this contamination can be serious. The 
following procedure can be used to reduce the con- 
tamination by higher-order structure factors to any 
desired level. 

Since a crystal is composed of atoms the structure 
factor can be written as 

F(h)= ~ J) exp [ -  Bj(sin 2 0)/22] exp (2rcihx/a) (5) 
j = 0  

where j) is the atomic scattering factor for atom j, Bj 
is the isotropic thermal factor for atom j, 0 is the 
scattering angle, and )~ is the wavelength of the X-rays. 
Now let a constant B ° be added to all of the thermal 
factors and calculate Fs(h), noting that (sin 0)/2= 
h/2a. 

FB(h) = exp ( -  B°h2/4a2)F(h) (6) 

FB(h + N)-- exp [ -  B°(h + N)2/4a2]F(h + N) (7) 

F B ( h - N ) = e x p  [ - B ° ( h  -N)E/4a2]F(h - N ) .  (8) 

Adding (6), (7) and (8) and multiplying by exp (B°h2/ 
4a 2) gives, from (4), 

FB(h) exp (B°hE/4a2) ~- F(h) 

+exp  [-B°N(N + 2h)/4a2]F(h+ N) 
+exp  [-B°N(N-2h)/4a2]F(h-N) (9) 

where both of the exponentials on the right-hand side 
can be made as small as desired by an appropriate 
choice of B °. 

As a numerical example let us take a = 50/~, N = 50, 
h = 20 (2.5/~ resolution, typical of much protein work), 
and B°=15  A 2. The structure factor F(20) will be 
contaminated by F(70), which is at 0.7 /~ resolution 
and probably is very small, and by F( -30) ,  which is 
at 1-67 A resolution and could be a problem if high 
accuracy is required. From equation (9) we have 

1.822F~(20) = F(20) + 0.472F( - 30) + 0.001 F(70). 

Since the mean structure amplitude at 1.67 A would 
be expected to be about 50-60~o of the mean amplitude 
at 2-5 ,~ (assuming a mean atomic B of 10 ,~2) the error 
in F(20) would be of the order of 25~,  which is prob- 
ably too large to tolerate. If we take a finer grid the 
situation looks much better, and we do not have to 
use such a large B °. With N = 75 the worst contamina- 
tion is from F( -55) ,  which is at 0-9 .~ resolution and 
would be expected to be about 7 ~  of F(20). A B ° 
value of 5/~2 then gives 

1.221F~(20) = F(20) + 0 .270F(-  55) + 0"013F(95) 

which reduces the error in the 2.5 ,~ data to about 2~ .  
For most protein work a grid size of roughly three 

times the maximum index of the data in each direc- 
tion seems appropriate for structure-factor calcula- 
tion, as recommended by Lipson & Cochran (1966). 
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This is not a hard and fast rule. In particular there is 
no reasonable value of B ° which would let one cal- 
culate 6 A resolution structure factors with a grid 
spacing near 2 .~. In that case the first contaminant 
would be a 3 ,~ structure factor and the damping 
factor in (9) would be only exp (-B°/48).  

Sayre (1951) considered the possibility of using 
atoms with large temperature factors in constructing 
the model density function and concluded that it had 
two serious disadvantages. They were (a) that the struc- 
ture factors so calculated cannot be directly compared 
with the observed structure factors, and (b) that the 
high-resolution structure factors so calculated are so 
small that they are rendered uncertain by rounding- 
off errors. However, if the same large B ° is added to 
the temperature factors of all of the atoms it is a simple 
matter to re-scale the results, which eliminates the 
first objection. The second problem can be more 
serious, depending on the values of B ° and N. An error 
analysis by Gentleman & Sande (1966) shows that 
the FFT method is extremely stable with respect to 
round-off errors. It is very unlikely that round-off 
error would be a problem on any modern computer, 
but in case of doubt the formulae of Gentleman & 
Sande will give limiting values for that source of error 
for any computer word length. 

The method proposed (and used in an example) by 
Sayre for overcoming the sampling problem was to 
construct the model electron density map from a rep- 
resentation of the atoms which contained no Fourier 
coefficients of order higher than ½N. This method has 
the advantage that the finite discrete Fourier trans- 
form gives analytically correct results without the 
necessity for modifying the model in any way. The 
disadvantage of this method is the necessity for cal- 
culating the profile of each type of atom in the struc- 
ture for each distinct value of the atomic temperature 
factor. 

to use the electronic distributions calculated from 
quantum mechanical treatments of the various atom 
types, but this is laborious and presents problems with 
the thermal parameters. (The model electron density 
is the convolution of the electron density for an atom 
at rest with a Gaussian function which describes the 
thermal motion.) A second approach would be to cal- 
culate the Fourier transforms of the scattering factor 
curves and interpolate as was done by Sayre (1951), 
but this procedure also presents problems with respect 
to individual atomic thermal factors. 

The approach suggested here is to use an appro- 
priate analytical approximation to the scattering factor 
curves and calculate the analytical Fourier transform 
of the approximation. Vand, Eiland & Pepinsky (1957) 
noted that the scattering factors can be approximated 
quite well by a function of the form 

f ( x ) = P  exp ( -px2 )+Q exp ( -qxZ )+R  (11) 

where x=s in  0. Forsyth & Wells (1959) modified (11) 
by taking x as (sin 0)/2 and calculated tables of the 
coefficients for most types of atoms. The r.m.s, error 
in these approximations is generally a fraction of 19/o 
of the number of electrons in the atom. 

Equation (1 l) is in a particularly useful form for 
incorporating thermal factors since multiplication 
throughout by exp ( - B x  2) does not change the func- 
tional form of either the approximation or its Fourier 
transform. The final form for our model electron 
density function is a sum of three Gaussian functions, 

P Q 
¢(r)= a---~ exp (-nrZ/a2)+ o.---~ exp (-nrZ/a 2) 

R + a---~ exp ( -nrZ/a 2) (12) 

where a2 = ( p +  B)/4n, a2 = ( q +  B)/4n, and a2=B/4n. 

A.2. Electron density distributions for model atoms 
For medium-resolution work, say out to 2.5 ,~, a 

simple Gaussian approximation for the electron den- 
sity distribution of an individual atom is adequate. 
The form factor for C in this range is roughly equiva- 
lent to a point atom with a thermal factor of about 
10 /~2. The real thermal factor should be added to 
this pseudo-thermal factor to obtain a B', and the 
electron density can be calculated as 

Z 
Q(x)= ~-x exp ( -  rcr2/o -2) (10) 

where o-2= B'/4n, r is the distance in ]k from the center 
of the atom to the grid point x, and Z is the number of 
electrons in the atom. 

At resolution greater than 2 ,~ the atomic scattering 
factors deviate substantially from Gaussian form. An 
appropriate model electron density function can be 
obtained in several ways. One approach would be 

A.3. Organization of the calculation 
This section of the paper describes the design of a 

program which has been used to calculate structure 
factors for thermolysin, a protein containing 2437 non- 
hydrogen atoms in the asymmetric unit. The space 
group is P6122, which has 12 equivalent positions and 
very complicated structure-factor formulae. Calcula- 
tion of P6122 structure factors by FFT methods takes 
only slightly longer than a P1 FFT structure-factor 
calculation for the same asymmetric unit. 

The first step is to select all of those atoms in the 
structure which will contribute to the electron density 
in the crystallographic asymmetric unit. (This list is 
not the same as the list of all unique atoms in the struc- 
ture because atoms near the edge of the asymmetric 
unit will contribute density in more than one place.) 
For this purpose a maximum atomic radius, defined 
as the radius at which the electron density is exp (-4re) 
(i.e. 3.5 × 10-6) times its maximum value, is calculated 
for each atom as it is read into the computer. The 
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atom is then placed in all of the equivalent positions 
and all of the neighboring unit cells, and any position 
which will contribute electron density to the chosen 
asymmetric volume is retained. 

The second step is to organize the retained atoms 
by electron density section number. One pass through 
the list of retained atoms is sufficient to construct 
a set of lists of pointers; there is a list for each section, 
containing pointers to all of the atoms which will con- 
tribute electron density to that plane. The list of atoms 
is then written on a scratch file by section number - 
that is, all atoms which are in the list for the first sec- 
tion are written out, then those for the second section, 
and so on. Each atom will be written several times, 
but this procedure frees all of the computer memory 
previously used to hold the atoms and lists for use in 
constructing the model electron density sections. 

Finally the scratch file is rewound and the model 
density sections are calculated. [-It should be noted 
that Sayre's (1951) comment about multiplicity cor- 
rections at cell edges and symmetry elements does not 
apply in this case.] The model map is saved on mag- 
netic tape for input to a space-group specific FFT 
Fourier inversion program, which was written with 
the use of techniques described previously (Ten Eyck, 
1973). It should be noted that in principle it is possible 
to write optimum space-group specific FFT programs 
for all of the space groups except those in the cubic 
system and those which contain pure threefold or 
fourfold rotation axes. The execution time for such a 
program depends only on the number of grid points 
in the crystallographic asymmetric unit. In practice, 
such programs can be difficult to write for some space 
groups, particularly those involving centered lattices. 

B. Calculation of structure factors by direct summation 

The formula for calculation of structure factors by 
direct summation is 

F(hkl)= 
a t o m s  

r 

× Z 
positions 

$ 

{fr exp [ -B . ( s in  2 0)/221 

exp [2rci(hxs+ky~+lzs)]} (13) 

where f, is the atomic scattering factor for atom r at 
scattering angle 0, Br is the isotropic thermal factor 
for atom r, and the sum over s is over all of the equiva- 
lent positions in the unit cell. The sum over equivalent 
positions can usually be reduced in cost by using the 
symmetry relations for each particular space group. 

There are two general approaches which can be taken 
in applying (13) to the calculation of a set of structure 
factors. The most commonly used strategy seems to 
be to evaluate each F(hkl) separately. Recently Burnett 
& Nordman (1974) have shown that there are often 
advantages to evaluating the contribution of each 
atom to all of the structure factors before proceeding 
to the next atom, and present a data organization 

scheme which facilitates this strategy. In particular, 
the arguments of the sines and cosines needed for the 
complex exponentials in (13) advance by fixed in- 
crements as the indices (hkl) advance; this fact can 
be used to speed the calculation. The data organiza- 
tion and general program flow chart suggested by 
Burnett & Nordman will be assumed throughout the 
rest of this paper. 

B.1. Space-group symmetry 
It was mentioned previously that the space-group 

symmetry is generally used to reduce the complexity 
of the complex exponential terms in (13). Formulae 
for all of the space groups are given in International 
Tables for X-ray Crystallography (1968). However, 
these formulae are not always in the most useful form 
for machine computation - particularly for some of 
the more complicated space groups. The objective is 
to factor out the dependence on at least one index. 
This can easily be done for all space groups except 
those in the cubic system, which fortunately are rare 
except for very simple structures. 

The factoring is easiest if the structure-factor 
formulae are left in complex exponential form. There 
are two possible forms, 

exp [2rci(hxs+kys+Izs)]=Eo exp (2~zilz) (14) 
s 

o r  

exp [2rci(hx~ + kys + Izs)] = E1 exp (2rcilz) 
$ 

n t- E2  exp ( -  2rcilz) (15) 

where the particular values Eo, E1 and E2 c a n  depend 
on h, k, l, x and y, but not on z. Furthermore the de- 
pendence on l (if any) will be such that for any par- 
ticular value of h and k there will be only a small 
number of possible values of Eo, El, o r  E 2. The 
quantities E may be real, imaginary or complex, and 
E1 may or may not be equal to E2 o r  its complex 
conjugate. Analysis of these possibilities shows that 
for all non-cubic space groups there are only four 
levels of complexity in terms of the number of arith- 
metic operations required inside the inner loop of the 
calculation. Allowing for the multiplications by the 
atomic scattering factor and the additions required 
to accumulate F(hkl), these levels of complexity are 
2m+ la, 3m+2a,  4m+2a,  and 6m+4a,  where m rep- 
resents a multiplication and a represents an addi- 
tion. 

As a specific example the space group P6a22 gives 

Ex = {exp [2rci(hx + ky)] 
+exp (toil) exp [-2rci(hx +ky)]} 

+exp (2r~il/3){exp [2rci(kx + iy)] 
+exp (nil) exp [-2rci(kx + iy)]} 

+exp (4rcil/3){exp [2rci(ix + hy)] 
+exp (nil) exp [-2rci(ix +hy)]} 
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and 
E2 = {exp [2ni(hx + iy)] 

+exp  (hi/) exp [-2ni(hx +iy)]} 

+exp  (2nil/3){exp [2ni(kx + hy)] 

+exp  (hi/) exp [-2ni(kx +hy)]} 

+exp  (4nil/3){exp [2hi(ix + ky)] 
+exp  (hi/) exp [-2hi(ix +ky)]} 

where i = - (h + k). At first sight these expressions seem 
very complicated. However, exp ( n i l ) = ( - 1 )  t, the ex- 
pressions exp (2nil/3) and exp (4nii/3) can only take 
on three distinct values, and the terms grouped by 
curly brackets involve complex conjugate pairs. There- 
fore the whole calculation can be reduced to six cases, 
depending only on I, of the form 

F(hk/)= y" f~ exp [ -Br ( s in  2 0)//~ 2] 
a t o m s  

r 

× {(a,.+ib,.) cos 2nlz+(c,.+id,.) sin 2nlz} (16) 

where the six different values of a~, br, c~ and dr for 
each atom can be computed outside the inner loop 
of the calculation. The space group P6122 therefore 
belongs to the 6m + 4a category, as would be expected. 
Interestingly enough, the geometrically simplest pos- 
sible space group, P1, also belongs to this category. 

Burnett & Nordman (1974) suggest exploiting the 
fact that the arguments of the complex exponentials 
in (13) advance by fixed increments for each atom as 
the indices hkl advance. In the unfactored version of 
this method the number of operations inside the inner 
loop of the calculation is 2m + 2sa for non-centrosym- 
metric space groups and l m +  ½sa for centrosymmetric 
space groups, where s is the number of equivalent 
positions; there are also either s or ½s add-shift-mask 
operations to determine the indices for the sine/cosine 
table. This method is comparable in cost to the factored 
method described previously, and is particularly ad- 
vantageous for the cases s = 1 and s = 3. It is of course 
possible to incorporate the factored expressions in 
the Burnett & Nordman method. In that case one has 
the same number of arithmetic operations as in the 
ordinary factored method, plus an add-shift-mask to 
determine the sine/cosine value required. Since all of 
the values of exp (2nilz) needed in the fully factored 
method can be precalculated for each atom there ap- 
pears to be a slight disadvantage to using the factored 
version of the Burnett & Nordman procedure com- 
pared with a factored procedure as will be described 
in the next section. However, it should be remembered 
that there are space groups for which the unfactored 
Burnett & Nordman procedure will beat any factored 
procedure. 

. B.2. Programming considerations 
A program was written with the basic logic of Bur- 

nett & Nordman (1974), but with a factored structure- 
factor expression in the inner loop. Since all depen- 

dence on exp (2nilz) has been factored out of the struc- 
ture factor formulae, all required values of cos 2nlz and 
sin 2nlz can be tabulated as a function of l for each 
atom. Therefore the inner loop contains no sine or 
cosine calculations, and the table look-up index is 
also the loop index. The factorsfr exp [ - Br(sin 2 0)/2 2] 
must be tabulated as a function of (sin 0)/2; it was 
found that a table of length 200 produced changes in 
the third digit of the results as compared with use of 
analytic values of f~. This is below the level of the 
measurement error in the experimental structure am- 
plitudes, but the size of the table was increased to 
500 anyway. The longer table gave results which dif- 
fered from true in the fourth digit instead of the third. 
Finally, it was found worthwhile to treat the three 
centrosymmetric zones as special cases because about 
20% of the thermolysin data are centrosymmetric. 

C. Comparison of the methods 

This portion of the paper will give a direct comparison 
of the performance of both methods on the same 
problem, with the same computer, and then consider 
how the methods may be expected to work on other 
problems. We have used both techniques to calculate 
structure factors for thermolysin, a protein containing 
2437 non-hydrogen atoms, at 2.3 A resolution - some 
15 000 structure factors. The space group is P6122, 
which has 12 equivalent positions; the unit-cell con- 
stants are a = 94"2 and c-- 131.4 A. The computer used 
in this work was a PDP-10 with a KA-10 central 
processing unit. 

C.I. Performance of the FFT method 
The model electron density map was constructed 

on a grid with Nx=Ny= 120, Nz = 156. The values of 
B' and B ° were both set to 15/~2. This choice of par- 
ameters should lead to a maximum error of the order 
of 133/o of the F(80,0,0) structure factor in the F(40,0,0) 
structure factor. Since the F(80,0,0) structure factor is 
at 1" 15/~ resolution this is certainly an acceptable level 
of accuracy. 

The asymmetric unit was chosen as 0 _ < x < l ,  
0 _< y < 1, and 0_< z _< 1/12. This volume contains 201600 
grid points, l0 min of central processor time were 
required to calculate the model electron density func- 
tion on this grid. 

The cost of constructing the model electron density 
is roughly linear in the number of grid points; the 
same asymmetric unit on a grid 150x 150x 180 
(449 100 grid points) takes about 20 min. Use of the 
triple Gaussian model for the electron density would 
approximately double these times, the exact factor 
depending on the speed with which the Gaussian 
functions are calculated. 

The Fourier inversion required 6-5 min of central 
processor time. The cost of calculating the Fourier 
transform is also roughly proportional to the size of 
the grid. The arithmetic cost is proportional to 
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N log N, with N of the order of 105, and all of the pro- 
gram overhead (such as input/output costs) is directly 
proportional to N. 

The total time required to calculate the structure 
factors by the FFT method is 16.5 min, and depends 
almost entirely on the size of the sampling grid. In 
turn, the size of the sampling grid depends on the 
required resolution. The cost as a function of the num- 
ber of atoms n and the resolution in gmgstr6ms d is 
approximately given by 

cost = (K in + K2)/d 3 (17) 
F F T  

where K1 and K2 are constants which will depend on 
the particular computer and programs. 

C.2. Performance of the direct-summation method 
Test timings of the direct-summation program indi- 

cated that it would require about 4 h to calculate a set 
of thermolysin structure factors at 2.3 A resolution. 
Therefore the complete cycle over all indices hkl for 
each atom was re-written in machine code for maxi- 
mum speed. (The FFT structure factor programs are 
all written in Fortran IV.) With this change the pro- 
gram ran in 115 min. The mean absolute difference 
between the structure factors calculated by the two 
methods was 0-16% of the mean structure amplitude. 

The obvious scale factor to relate this time to a 
time for other problems is the product of the number 
of atoms and the number of structure factors. How- 
ever, there is also a 'complexity factor' which depends 
on the amount of arithmetic inside the inner loop of 
the program. (The cost of any direct-summation pro- 
gram depends almost exclusively on the number of 
operations inside the inner loop of the program.) The 
space group P6122 requires six multiplications and 
four additions per structure factor per atom. (The 
program logic used here does not require any arith- 
metic to calculate the trigonometric functions needed.) 
This is the minimum number of operations for all of 
the non-centrosymmetric trigonal and hexagonal 
space groups, as well as for P1 and the non-centro- 
symmetric tetragonal space groups with 4/mmm Laue 

symmetry. The remaining non-centrosymmetric te- 
tragonal space groups and the non-centrosymmetric 
space groups in the monoclinic and orthorhombic 
systems require three or four multiplications and two 
additions inside the inner loop. Centrosymmetric 
space groups seem to require at best two multiplica- 
tions and one addition, and at worst three multiplica- 
tions and two additions. On many computers (in- 
cluding the PDP-10) a floating point multiplication 
takes twice as long as a floating point addition. There- 
fore we have a set of 'complexity factors' ranging from 
5 to 16. (Complexity factors for cubic space groups 
will be slightly less than three times the complexity 
factors of their orthorhombic or tetragonal subgroups.) 
Thus we have a cost function of the form 

costosoc kn/d 3 (18) 

where k is the space group complexity factor, n is the 
number of atoms and d is the resolution in ~mgstrtSms. 

Subject to the same assumptions as above concern- 
ing the relative costs of multiplication and addition, 
the complexity factor for the method of Burnett & 
Nordman is 2s+4  for a non-centrosymmetric space 
group with s equivalent positions. Therefore 

costsN oc (2s + 4)n/d 3 . (19) 

D. Discussion 

The results of the preceding section are summarized 
in Tables 1 and 2, which show the relative cost of a 
fast Fourier transform structure-factor calculation 
and the two direct-calculation techniques discussed in 
this paper. The cost factors are scaled together based 
on the actual results for the two P6122 structure- 
factor calculations, which indicate that the FFT meth- 
od is similar in cost to a direct calculation with a com- 
plexity factor of 2.3. The FFT  method is superior in 
all cases. 

All three techniques discussed here retain the same 
relative cost factors as resolution is increased, with 
one important exception. When the resolution is 
better than 2 A the FFT structure factor calculation 

Type of space group* 
Arithmetic 
operations inside 
inner loop 2m + la 
Complexity factor]" 5 
Cost relative 
to FFT:[: 2.2 

Table 1. Comparison of  F F T  and factored structure-factor calculation 

Other centrosymmetric, 
Simplest simplest non- Simple non- 

centrosymmetric c e n t r o s y m m e t r i c  centrosymmetric 

Other 
non-centrosymmetric 

(not cubic) 

3m + 2a 4m + 2a 6m + 4a 
8 10 16 

3"5 4"3 7"0 

* The space groups are classified according to arithmetic operations inside the inner loop, not geometric complexity. P1 is not a 'simple' 
space group in this context. 

J" Estimates of the complexity factor assume one multiplication is as expensive as two additions (m = 2a). 
:~ The costs in this row will be somewhat lower for space groups with threefold and fourfold pure rotation axes (e.g. R3 or P4, but not 

P31, or P41). For these space groups the FFT cost formulae will be either (K~n+2K2)/d 3 or (Kln+3K2)d 3. 
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becomes more expensive if high precision (exact 
scattering factors) is required. It is doubtful, however, 
whether it would ever become more expensive than 
either of the direct methods. 

Table 2. Comparison of unfactored Burnett & Nordman 
(1974) method with others for non-centrosymmetric 

space groups 
Number of 
equivalent positions 1 2 3 4 6 8 12 
Complexity factor, 
Burnett & Nordman (1974) 6 8 10 12 16 20 28 
Cost relative to 
factored method* 0.4 1.0 0.6 1.2 1-0 1.3 1.8 
Cost relative 
to FFT method~" 2"6 3"5 4-3 5"2 7"0 8-7 12.2 

* This row is approximate because different space groups can 
have different complexity factors while having the same number 
of equivalent positions. For example, P222 has a complexity factor 
of 10, but P4 has a complexity factor of 8. 

t The relative costs listed in this row will be somewhat lower 
for space groups with threefold or fourfold pure rotation axes. 

High-resolution calculations may also involve an- 
isotropic temperature factors. Anisotropic tempera- 
ture factors completely destroy the relations used in 
factoring the complex exponentials of (13), so the cal- 
culation becomes triclinic. In addition we will have 
two more multiplications and an exponential function 
inside the inner loop. With tabulated exponentials 
assumed the cost of the 'factored' method becomes 
proportional to 20sn/d 3. The Burnett & Nordman 
method also requires two extra multiplications and 
an exponential function per atom for anisotropic 
thermal factors; therefore the cost becomes propor- 
tional to (6s + 4)n/d 3, which is much cheaper than the 
factored expression for all values of s. Anisotropic 
thermal factors can readily be accomodated in the 
FFT method by using elliptical atoms rather than 
spherical atoms when constructing the model electron 
density function. Elliptical atoms complicate the pro= 
cess of determining which atoms in the unit cell will 
contribute electron density to the asymmetric unit 

but do not complicate the actual computation of the 
electron density function. (The reason is that the equa- 
tion for a circle in a skew coordinate system is the same 
as the equation for an ellipse in an orthogonal coordi- 
nate system.) Therefore anisotropic thermal factors 
should cause a moderate increase in the cost of an 
FFT structure-factor calculation. 

The considerable labor involved in writing space- 
group specific FFT structure-factor programs is only 
justified at present for large problems for which the 
calculation will be repeated many times. Refinement 
of biological macromolecules is a case in point. Such 
problems typically involve several thousand atoms and 
more than ten thousand structure factors, and the pro- 
jects last several years. For the typical small-molecule 
crystallographic laboratory, where many space groups 
are encountered and the number of atoms is not large, 
the FFT structure-factor calculation is not worth the 
labor required to program it. 

This work was supported in part by grants from 
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