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This paper presents methods for incorporating crystallographic symmetry properties into complex 
Fourier transforms in a form particularly well suited for use with the Cooley-Tukey fast Fourier 
transform algorithm. The crystallographic transforms are expressed in terms of a small number of 
one-dimensional special cases. The algebra presented here has been used to write computer programs 
for both Fourier syntheses and Fourier inversions. Even for some quite large problems (7000 structure 
factors and 149000 grid points in the asymmetric unit) the rate-limiting step is output of the answers. 

Introduction 

The fast Fourier transform method has been widely 
available since 1965, but has not yet been used ex- 
tensively for crystallographic work. This paper shows 
how crystallographic symmetry elements may be in- 
corporated into fast Fourier transform algebra in a 
form particularly suited for machine computation. The 
use of these methods leads to large savings in computa- 
tion time for Fourier transforms and enables one to 
write very efficient space-group specific Fourier-syn- 
thesis programs. The advantages of the fast Fourier 
transform are not as great in crystallographic com- 
puting as in other fields, but one may reasonably ex- 
pect an improvement of an order of magnitude over a 
space-group specific trigonometric program and a 
much greater improvement over a general-purpose 
trigonometric program. The methods presented here 
are likely to be most useful for macromolecular struc- 
tures and for direct methods of crystal-structure deter- 
mination. (In the latter case the convolutions can be 
calculated very efficiently by Fourier methods.) 

There are several reasons for the smaller gain in 
efficiency in crystallographic problems than in other 
fields by fast Fourier transform methods. The most 
striking advantage of the method is that the cost of 
replacing a sequence of N complex numbers with N 
Fourier coefficients is reduced from something propor- 
tional to the square of N to something proportional 
to N log N; in crystallographic problems explicit ad- 
vantage is always taken of the fact that there are far 
fewer structure factors than grid points. Thus the cost 
of a crystallographic Fourier transform, appropriately 
factored, goes up by a factor of 16 if both the grid 
interval and number of structure factors are doubled 
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for each dimension, instead of going up by a factor 
of 64 as might be expected on an N 2 basis. The cost 
of the corresponding fast Fourier transform depends 
only on the size of the grid and therefore goes up only 
by a factor of 8. Since any given crystallographic trans- 
form is usually rather short - of the order of 50 to 100 
points - the advantage of N log N over N 2 is not as 
strong as in time-series analysis, for example, where 
N may be several thousand or more. Finally, most of 
the generally available fast Fourier transform pro- 
grams suffer from various practical defects, such as be- 
ing restricted to the case where N is a power of two, 
or being written in machine code for some specific 
computer. These problems, plus the lack of symmetry, 
have inhibited widespread use of the method. 

This paper shows that most of the objections can be 
met. Examination of the algebra of the fast Fourier 
transform has shown how nearly all symmetry ele- 
ments can be fully exploited. Those which cannot be 
fully exploited are at least helpful. It has been em- 
phasized elsewhere (Gentleman & Sande, 1966) that 
the method is not restricted to powers of two. Actual 
timings of programs written using the methods de- 
scribed here have shown that, on a medium-sized com- 
puter (an IBM 360/44), a protein electron-density map 
with 7000 unique structure factors and 149000 grid 
points in the asymmetric unit can be calculated faster 
than it can be written onto magnetic tape. 

The methods presented here can also be used to in- 
vert electron-density maps to obtain structure factors. 
For every special form presented there is also a special 
form for the inverse transform. Given a reasonably 
cheap method for generating the desired electron-den- 
sity map from a list of coordinates this may well be 
the method of choice when only structure factors are 
desired, as in Fourier refinement or direct methods of 
solving structures. Another potentially useful applica- 
tion for the structure-factor czlealation is calculating 
structure factors for macromokcules, where the resolu- 
tion is typically fairly low (between 2 and 3 /~) and 
the number of structure factors is very large. 

This paper is in three parts. The first part describes 
the factoring of the Fourier transform, and borrows 
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heavily from the work of Gentleman & Sande (1966). 
The second part shows how to incorporate one-dimen- 
sional phase relationships into the calculation of 
Fourier transforms. (Each such relationship is worth 
at least a factor of two in computation time and an- 
other factor of two in computer memory.) The third 
part shows how the symmetry properties of reciprocal 
space can be used, along with some of the properties 
of Fourier transforms listed in Table 1, to calculate 
three-dimensional Fourier transforms for selected 
space groups. 

Notation 

R(t),  S(t) ,  X( t ) ,  Y(t) ,  Z ( t ) ,  t=O, . . . ,  N - 1  are se- 
quences of (possibly) complex numbers. R, S, X, Y, 
and Z are to be considered as periodic modulo N, 
so that X ( -  t) = X ( N -  t). 

X*( t )  is the complex conjugate of X(t) .  
Re (X) is the real part of X. 
Im (X) is the imaginary part of X. 
e(x) = exp ( -  2~ ix) 

e(x) = 1 for any integer x 
e(a+b)=e(a)e(b) 
e(1 - x) = e( - x) 

R(t), S(t), X(t), Y(t), Z(t), t=0 ,  . . . ,  N - 1  are the 
finite discrete Fourier transforms of R, S, X, Y, Z 
defined as 

N - - I  

X(t)= ~. X ( t ) e ( t t / N ) .  
t = 0  

x, y, and z are fractional cell coordinates. 
F(h,k , l )  is a (possibly) complex structure factor. 
~o(h,k, l) is the phase angle associated with F(h,k,  l). 
T,(h,k, z) is the Fourier transform along l of F(h, k, l). 

Factoring the finite discrete Fourier transform 

It can easily be seen from the definition of the finite 
discrete Fourier transform that the cost of replacing 
a sequence of N Fourier coefficients with their Fourier 
transforms is proportional to the square of N. Cooley 
& Tukey (1965) showed that i fNhas  factors the Fourier 
transform may be computed as a series of shorter trans- 
forms, reducing the cost to something proportional to 
N log N. A very clear description and discussion of 
the method is given by Gentleman & Sande (1966). 
The description of the factoring process given here is 
based on that of Gentleman & Sande. 

Let N = A B .  Then the expressions a B + b  and a + b A  
will each generate all of the integers in the range 
O < t < N  when a=O, . . . ,  A - 1  a n d b = 0 ,  . . . ,  B - 1 .  
If we let t = a B + b a n d t = a + b A  ( a , a = 0 ,  . . . , A - l ;  
b, b=0,  . . . ,  B - l )  the Fourier transform of X( t )  
may be written as 

N - - 1  

X(t)= ~ X( t )e ( t t /N)  
t=O 

B--1  A - - I  

X ( a + b A ) = ~  ~ X(aB+b)e[(aB+b)  (a+bA) /AB] . (1)  
b=O a=O 

The exponential may be expanded as 

e[(aB + b) (a+bA)/AB] =e(aa/A)e(ab)e(ba/AB)e(bb/B) 

=e(aa/A)e(ba/AB)e(bb/B).  (2) 

The transform is therefore 

X(a+bA) 
B - - I  A - - 1  

= ~ e(bb/B)[e(ba/AB) ~ X(aB+b)e(aa/A)] .  (3) 
b =0 a=O 

The inner sum is a Fourier transform of length A and 
the outer sum is a Fourier transform of length B. The 
cost of replacing X( t )  by its transform is now pro- 
portional to N times the sum of the factors of N~ which 

,¢i 
is roughly proportional to N log N. 

It is often believed that the fast Fourier transform 
is restricted to the case where N is a power of 2. It can 
be seen from the above algebra that this is not true. 
Factors of 2 and 4 are very useful, because 2-point and 
4-point Fourier transforms can be computed without 
using complex multiplication, but the method is not 
limited to this case. 

A very good discussion of the problems of writing 
computer programs using equation (3) is given in the 
paper by Gentleman & Sande (1966). Those authors 
also give a useful table comparing properties of the 
infinite continuous Fourier transform and the finite 
discrete Fourier transform. Some of these properties 
are included in Table 1, along with others of interest 
for crystallographic computing. The two ways of fac- 
toring the Fourier transform by two are particularly 
important in the discussion that follows. 

Table 1. Useful properties o f  Fourier transforms 

(1) Linearity. 

If 
Z(t) = aX(t) + b Y(t), 

then 
Z(t) = aX(t) + bY(t). 

(2) Inverse transform. 
N - I  

X(t) = [ ~. X(t)e( - tt/N)]/N 
t = 0  

17--1 

= [ ~ X*(t)e(tt/N)]*/N, 
t - - 0  

that is, the inverse transform is the complex conjugate of the 
Fourier transform of the complex conjugate, scaled by N. 
(3) Shifting theorem. 

N - - I  

Y. X(t + h)e(tt/N) = e( - ht/N)X(t), 
t = 0  

that is, an origin shift in real space is a phase shift in reciprocal 
space, and vice-versa. 
(4) Conjugate symmetry. 

N - - 1  

7. X*(t)e(t t)/N) = X*(N- t), 
t = 0  

that is, the Fourier transform of the complex conjugate is the 
complex conjugate of the mirror image of the Fourier trans- 
form. 
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Table 1 (cont.) 

(5) Inversion symmetry. 
N - - I  

X ( N -  t)e(tt/N) = X(N-  t), 
t = 0  

.that is, the Fourier transform of the mirror image is the mirror 
image of the Fourier transform. 

(6) Mirror symmetry and antisymmetry. 

If 
X ( N -  t) = X(t) 

then 
X ( N -  t) = X(t). 

If 
X ( N - t ) =  --X(t) 

then 
X(N-  t) = - X(t). 

(7) Hermitian symmetry and antisymmetry. 

If 
X ( N - t ) = X * ( t )  

then X(t) is real, and vice-versa. 

X ( N - t ) =  - X * ( t )  

then X(t) is imaginary, and vice-versa. 

(8) Periodicity and antiperiodicity. 

X(t+N/2)=X(t )  

then X(2t + 1) = 0, and vice-versa. 

X(t + N]2) = - X(t) 

then X(2t)= 0, and vice-versa. 

(9) Convolution theorem. 
N - - I  N - - I  

Y. X(s) Y(t - s )  = [ Y. X(t)Y(t)e( - tt/N)]/N 
s = O  t = O  

N - l  

= [ Y X*(t)Y*(t)e(tt/N)]*/N, 
t = 0  

that is, the convolution of X and Y is the inverse transform of 
the product of the Fourier transforms of X and Y. 

(10) Factoring by 2. 

Let N=2A; t, t=0  . . . . .  A -  1. 

Case I: 
Let R(t) = X(2t) 

and 
S(t) = X(2t + 1). 

Then 
X(t) = R(t) + e(t/N)S(t) 

and 
X(t + A) = R(t)-  e(t/N)S(t). 

Case II: 
Let R(t) = X(t) + X(t + A) 

and 
S(t) = e(t/N) [X(t) - X(t + A)]. 

Then 
X(2t) = R(t) 

and 
X(2t+ 1) = S(t). 

(These are special cases of the factored Fourier transform 
derived from equation (3) by direct substitution.) 

One-dimensional  Fourier transforms 
with special properties 

The distinguishing feature of crystallographic Fourier  
t ransforms i s - the  high degree of  symmetry involved. 
The symmetry i s  usually expressed in terms of  com- 
plicated tr igonometric formulae,  as in International 
Tables for  Crystallography (1952). These formulae tend 
to obscure the true symmetry of  reciprocal space, which 
is best expressed in terms of  point  groups with colour 
symmetry,  as shown by Bienenstock & Ewald (1962). 
When  the point  groups are examined it is found that  
there are a small  number  of  types of  special relation- 
ship between positive and negative values of  the same 
reciprocal-space index in all of  the monoclinic  and 
or thorhombic  space groups, and for a number  of  other 
space groups of  higher symmetry.  With a set of  sub- 
routines to handle  these relationships and to use the 
Hermit ian  symmetry of  reciprocal space one can use 
fast Fourier  t ransform techniques and take full ad- 
vantage of  all of  the crystallographic symmetry ele- 
ments for these space groups. 

In all of  the special cases discussed below, N is as- 
sumed for convenience to be even, and  A = N/2. The 
problem considered in each case is that of  using only 
the unique informat ion to calculate the unique port ion 
of  the Fourier  t ransform, using an ordinary complex 
Fourier  t ransform as the basic tool. Since all other 
forms are reduced to one-dimensional  complex Fourier  
t ransforms the efficiency of the method depends crit- 
ically on the efficiency with which such transforms can 
be calculated. 

(A) Hermitian symmetry  and anti-symmetry 

It is frequently the case that  X ( - t ) = X * ( t ) .  The 
Fourier  t ransform consists of  N real numbers ;  the 
unique portion of the data contains A + 1 real numbers  
and A - 1  imaginary numbers.  [Both X(0) and X ( A )  
are real.] 

and 

Let R(t)= X(t) + X(t + A) 
= X ( t ) + X * ( A - t ) ;  

R(A -- t )=  X(A -- t) + X(2A -- t) 
= X ( A - t ) + X * ( t ) :  

S( t )  =e(t /N)  [X(t)- X( t  + A)] 
=e(t /N)  [ X ( t ) - X * ( A - t ) ] ;  

S ( A - t ) = e ( - t / N )  [ X ( A - t ) - X * ( t ) ]  . 

Then R( t )=  X(2t) and S( t )=  X(2 t+  1). I f  we let 

Y ( t ) = R ( t ) + i S ( t )  
then 

Y(t) =X(2t)  + iX(2t+  1) 

because of the linearity property. Thus the Fourier  
t ransform of  Y has the desired t ransform of X in its 
real and imaginary  parts. Note that  the sequence Y( t )  
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may be formed in one pass through the data working 
in from each end, overwriting the original data. Thus 
the transform may be calculated in place without using 
scratch storage. 

The processing of a Hermitian antisymmetric se- 
quence differs only in the sign of the complex con- 
jugate terms and in the fact that the resulting trans- 
form is imaginary instead of real. The even terms will 
be found in the imaginary part of Y and the odd terms 
will be found negated in the real part of Y. 

(B) Real and imaginary data 
As might be expected, this problem is just the in- 

verse of the previous one. 

Let 

and 

R(t)=X(2t);  

S ( t )=X(2 t+ l ) ;  

Y ( t )=R( t )+iS( t )  . 

Then Y = R + iS. If X is real, R and S are Hermitian 
symmetric modulo A. The Fourier transforms of R 
and S may be recovered from that of Y by conjugate 
symmetry and recombined to give the unique part of 
the Fourier transform of X. 

Re [Y(t)] = Re [R(t ) l -  Im [S(t)] 

Re [Y(A-  t)] = Re [R(t)] + Im [S(t)] 

Im [Y(t)] = Re [S(t)] + Im [R(t)] 

Im [Y(A-t) ]  = Re [ S ( t ) ] - I m  [R(t)] 

X(t) = R(t) + e(t/N)S(t) 

X(A - t) = R(A - t) + e[(A - t)/N]S(A - t) 

= R * ( t ) -  e ( -  t /N)S*(t) .  

The treatment of imaginary data differs only in minor 
details. The sequences R and S are Hermitian anti- 
symmetric instead of symmetric; this and the multi- 
plication by i will change some of the signs. 

(C) Alternating Hermitian symmetric and 
antisymmetric data 

A screw diad passing through the origin produces 
relationships of the form 

X ( - t ) = ( - 1 ) t X * ( t ) .  

Given only half of the structure factors we wish to 
compute half of the Fourier transform. 

Let 
R(t)=X(2t)  . 

and 
S ( t ) = X ( 2 t + l ) ,  

Y ( t )=R( t )+ iS ( t ) .  

Then 

and 
Y(t) = R(t) + iS(t) 

X(t) = R(t) + e(t/N)S(t). 

The Fourier transforms of R and S may be recovered 
from Y by using the fact that R(t) is real and e(t/N)S(t) 
is imaginary. This works for all values of t except 0. 
S(0) can be computed and saved while Y is being 
formed; it is merely the sum of the imaginary parts 
of the structure factors for which t = 2 n +  1. The se- 
quence Y(t) can be formed in place overwriting X(t), 
but not in natural order. The most convenient order 
for forming Y(t) is 

Y( t )=X(2 t )+iX(2 t+ 1) 
Y(A - t -  1)= X*(2t + 2) - iX*(2t + 1) 

where X(2t) is overwritten by Y(t) and X ( 2 t + l )  is 
overwritten by Y(A - t -  1). Re-ordering Y before cal- 
culating the transform is a simple matter. 

(D) Symmetric and anti-symmetric data 
For symmetric data with N even we have X ( t ) =  

X(N-t), with both X(0) and X(A) being unique. This 
gives A + 1 unique numbers. 

Let 
R(t)=X(2t)  , 

S ( t )=X(2 t+  1), 
and 

Y ( t ) = R ( t ) + S ( t ) .  

The sequence X may be overwritten by Y in a manner 
analogous to that described for the case of alternating 
Hermitian symmetry and antisymmetry, that is 

Y ( t ) = X ( 2 t ) + X ( 2 t +  1); 
Y ( A -  t -  1)= X(2t + 2)+ X(2t + 1); 

X(2t) is overwritten by Y(t) and X ( 2 t + l )  is over- 
written by Y ( A -  t -1 ) .  Then 

X(t) = R(t) + e(t/N)S(t) 
and 

X(t + A ) =  R(t)-e(t/m)s(t). 
R and R are both symmetric modulo A ; X is symmetric 
modulo N. Thus we have 

X ( N - t ) - - X ( 2 A - t )  

= R ( A - O - e [ ( A  - t ) /N)S(A  - t )  

= R(t) + e ( -  t/N)S(A - t ) ,  

which when combined with the expression for X(t) im- 
plies that 

S(A - t )=e(2t /N)S(O . 

Since Y = R + S ,  

Y(A - t) - Y(t) = S(A - t) - S(t) 

=[e(2t/N)-1]S(t) .  
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Thus the Fourier  t ransform of Y may  be separated 
into R and S, which can be combined to give the 
desired ha l f  of  the Fourier  t ransform of  X. This is 
valid for all points except X(0) and X(A). For  these 
points we have 

X(0) = R(0) + S(0) 
and  

X(,4) = R ( 0 ) -  S(0).  

I f  X is overwritten with Y the value of S(0) may  be 
computed while Y is being formed and stored in the 
location originally occupied by X ( A ) ,  which is not 
used for Y. Then 

X(0) =Y(0) 
and  

x(,4) =Y(0)-2s(0). 

The treatment  of  an ant isymmetr ic  sequence is the 
same as that for a symmetric  sequence, except that  

and 

Y ( A - t -  1)= -X(2t  + 2)-  X(2t + 1); 

R(,4-0= -R(0; 

S(A-t) = -e(2t/N)S(t); 

Y(A-t) +Y(t)= S(t)[1-e(2t/m)]. 

Synllnetric data are frequently real rather than com- 
plex. In this case Y is real and Y is Hermit ian  sym- 
metric modulo  A. The Fourier  t ransform of  Y may  be 
calculated using the methods described previously. The 
Fourier  t ransform of  R (which is real and symmetric 
modulo  ,4) may  be separated f rom the Fourier  trans- 
form of S (which is Hermit ian  symmetric modulo  A) 
by using the fact that e( t /N)S( t )  is rea l  Then 

and 
X(t )=  R(t) + e( t /N)S( t )  

X(,4 - t) = R(t) - e( t /N)S(t) .  

These two real numbers  can be stored in the real and 
imaginary parts of  Y(t), and thus the whole calculation 
can be done in place. 

T h r e e - d i m e n s i o n a l  F o u r i e r  t r a n s f o r m s  w i t h  s y m m e t r y  

The symmetry properties of  reciprocal space are best 
expressed in terms of  complex point  groups with colour 
symmetry,  as was shown by Bienenstock & Ewald 
(1962). Their  paper  describes methods for deriving the 
point  groups corresponding to each of  the 230 space 
groups. Each such point  group is composed of  oper- 
ators of  the form 

l t ' 

(0' a b  c 

where Iq is a point  operator relating two points in 
reciprocal space which have identical ampli tudes and 
~0 is a phase angle associated with that point. The 
ari thmetic involving ~ is always to be taken as periodic 
modulo  2n. The operator ( - I ) ,  which is simply an ex- 
pression of  Friedel 's  law, is also a member  of  every 
such point  group. Constraints  on the coefficients in 
the bot tom row of  the operator are obtained by ap- 
plying the operator to itself until  the identity operator 
is achieved. Those coefficients which are unconstrained 
depend on the origin in real space. As an example, con- 
sider a twofold rotation axis parallel to e*. The cor- 
responding operator is 

- 1  0 0 0 
0 - 1  0 0 
0 0 1 0 
a b c 1. 

Therefore 2 c = 0  modulo  2n. I f  c = 0 ,  we have a diad 
in real space; if  c =  n we have a screw diad. A list of  
a number  of  operators and derived constraints is given 
in Table 2; some more examples are given in the dis- 
cussion for specific space groups. 

Table 2. Reciprocal  space s y m m e t r y  operators 

(1) Inversion centre 
- 1  0 0 0 

0 - - 1  0 0 
0 0 - 1  0 
a b c 1 

(2) Twofold axis 
- 1  0 0 0 2c= 0 modulo 2zc 

0 - 1  0 0 for2 c =0 
0 0 1 0 for 2~ c = rc 
a b c 1 

(3) Threefold axis (on 60 coordinate axes) 
- -1  - 1  0 0 

1 0 0 0 
0 0 1 0 
a b c 1 

(4) Fourfold axis 
0 - 1  0 0 
1 0 0 0 
0 0 1 0 
a b c 1 

(5) Sixfold axis 

0 - 1  0 0 
1 1 0 0 
0 0 1 0 
a b c 1 

(6) Plane of symmetry 

1 0 0 0 
0 1 0 0 
0 0 - - 1  0 
a b c 1 

~(h,k,l) = - (ha + kb + 1c)/2 

4c = 0 modulo 2n 
for4 c=0 
for 4z c = n/2 
for 42 c=zt 
for 43 c = 3n/2 

6c=0 modulo 2re 
for6 c=O 
for 6x c=n/3 
for 62 c=2n/3 
for 6a c=z~ 
for 64 c=4zc/3 
for 65 c= 5n/3 

2a= 0 modulo 2rt 
2b = 0 modulo 2re 
a=0  b=0  form 
a = zc b = 0 for a-glide 
a=0  b=rc for b-glide 
a = zc b = zc for n-glide 

3c= 0 modulo 2n 
for3 c=O 
for 3~ c=2n/3 
for 32 c=4zc/3 
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Six of the seven crystal systems are discussed below; 
the cubic system is too complex for this paper. In the 
discussion that follows a space group is considered 
'solved' when only a unique set of structure factors is 
required to calculate a crystallographic asymmetric 
unit, without calculating unnecessary intermediate 
results. A space group is 'nearly solved' if more than 
an asymmetric unit must be calculated or if redundant 
intermediate results must be computed. All of the tri- 
clinic, monoclinic, and orthorhombic space groups can 
be solved. Most of those tetragonal, trigonal, and 
hexagonal space groups which involve screw axes can 
be solved. Those space groups in which the boundaries 
of the asymmetric unit are not parallel to the edges of 
the unit cell cannot be solved but can be nearly solved. 
Regardless of the space group, the last Fourier tansform 
must be Hermitian symmetric because the results must 
be real. 

(A) Triclinic system 
Both space groups in this system are trivial. The 

only special symmetry is that the structure factors for 
P I  are real, so the first transform gives results for half 
the cell. 

(B) Monoclinic system 
Most of the monoclinic space groups are simple ex- 

amples of the special transforms described previously. 
Two space groups will be considered in detail to illus- 
trate some points of special interest. The second setting 
will be used, and the unique set of structure factors 
taken as all h, k >_ 0, and l> 0. 

(1) C2 
The diad along b* plus the Hermitian inversion cen- 

tre makes the Fourier transform along k Hermitian 
symmetric, giving real results for the whole axis from 
half the structure factors. The centred lattice intro- 
duces systematic absences for h + k  = 2n + 1, so from 
the periodicity and antiperiodicity properties in Table 1 
it can be seen that for h = 2n + 1 the transform will be 
periodic modulo N/2 and for h=2n it will be anti- 
periodic. We can therefore add the h-even and h- 
odd sets of structure factors and recover the inter- 
mediate results by 

Tk(h',y,l)= Tk(2h + 1,y,l) + Tk(2h,y,l) 
Tk(h', y + ½,l) = Tk(2h + 1, y , l ) -  T~(2h, y,l) 

where h'=h/2 truncated to an integer value. Thus we 
have real intermediate results for all h, O_<y <½, and 
l_>0; the transforms on h and l give half x, half y, 
all z as an asymmetric unit. This method of treating 
centred lattices is generally applicable and no further 
examples will be given. 

(2) P21/c 
This space group has been selected to illustrate the 

conversion from a symmetry element at the origin to 
another more favourable case. The origin for this space 

group is taken as the centre of symmetry, so the struc- 
ture factors are all real. Because of the glide plane and 
the screw diad the relationship along k is given by 

F(h, - k , / )  = ( -  l)k+'F(h,k,l) . 

The alternating symmetry and antisymmetry along k 
is complicated by the dependence on the parity of I. 
If we let l ' =  1/2 truncated to an integer, we may form 

X(h, k, l') = F(h, k, 21') + iF(h, k, 21' + 1) 

which has alternating Hermitian symmetry and anti- 
symmetry along k. The Fourier transform of X along 
k can be separated because it is the sum of a Hermitian 
symmetric sequence and a Hermitian anti-symmetric 
sequence. Thus 

Ta(h,y,2l')=IX(h,½- y , l ' )+ X(h,y,l')]/2 

and 

Tk(h,y,2l' + 1)=[X(h,½- y , l ' ) -  X(h,y,r)l/2i . 

Transforming on h and l then gives as an asymmetric 
unit that portion of the cell lying between y = 0  and 
y=¼. 

The relationship between the method just presented 
and shifting the screw diad at el4 to the origin is fairly 
obvious. By the shifting theorem (Table 1) we would 
have 

F ' (h , k , l )=e ( - k )F (h , k , l )  

which would make the /-odd structure factors imagi- 
nary. The real and imaginary sequences along k each 
satisfy the screw diad phase relationships, that is, 

F'(h, - k , / ) =  ( -  1)kF'*(h,k,l) 

and can be added pairwise to form a sequence which 
has exactly the same symmetry along k as X. The sign 
reversals for l = 2  modulo 4 and l=3  modulo 4 do 
not affect the relationship between positive and nega- 
tive values of k. Thus the method given here for trans- 
forming this space group is very similar to shifting the 
screw diad to the origin, transforming, and shifting it 
back to c/4. 

(C) Orthorhombic system 
In this crystal system the unique set of structure fac- 

tors will be taken as h, k, and l all > 0. Because of the 
mmm symmetry of the diffraction pattern it is always 
possible to derive phase relationships along each axis. 
The first transform therefore seldom presents problems. 
The second transform may require transposition of 
intermediate results, in the case where twofold axes 
are involved instead of planes of symmetry. In the dis- 
cussions that follow the first transform will be along 1 
and the second transform along whichever axis is most 
convenient - usually k. 

(1) P222 

In this space group all axes are equivalent and Her- 
mitian symmetric. Therefore we can calculate Tz(h, k, z) 



L Y N N  F. TEN E Y C K  189 

(which is real) for all z. Since 

~o( h, - k ,  Z) = - ~o(h,k,  Z) . 

r , ( h , - k , z ) =  r ' ; ( h , k , - z ) =  T , ( h , k ,  - z )  . 

By transposing intermediate results we can complete 
the transform to compute all x, half y, and half z as 
an asymmetric unit. 

(2) P212~21 

This space group is complicated by the fact that none 
of the symmetry elements pass through the origin. The 
point group operators are 

- 1  0 0 0 1 0 0 0 
0 - 1  0 0 0 - 1  0 0 
0 0 1 0 and 0 0 - 1  0 
zc 0 zc 1 zc rc 0 1 

where the origin-dependent parameters are chosen to 
make all axes equivalent. Therefore 

~0(h, k, - l) = (h + l)z~- ~0(h, k, l) 
and 

~0(h, - k, l) = (h + k)zc + ~0(h, k, - l ) .  

Examining first the relationships along l we see that 
for h even we have the same phase relationships as for 
a screw diad through the origin. For h odd, the phase 
relationships are reversed. By the linearity property we 
may multiply the h-odd structure factors by i, trans- 
form, and divide by i to recover the desired transform. 
Multiplication of the h-odd structure factors by i gives 
them the same phase relationships as the h-even struc- 
ture factors. We may therefore calculate T~(h,k,z) for 
half z. Examination of the phase relationships along 
the k axis shows that 

F(h, - k , l )  = ( -  1)h+kF(h,k, - l )  . 

Therefore we may complete the transform by 

Tz(h,-k,z) = ( -  1)h+kT,(h,k,--z) 

=(-1)kTf(h ,k ,½-z)  
because 

r , ( h , k , - z )  = ( -  O " r ~ ( h , k , ½ - z )  . 

This gives all x, all y, and one fourth z as an asym- 
metric unit. 

(3) Pbca 
This space group has an inversion centre at the ori- 

gin and three mutually perpendicular glide planes. The 
structure factors are real and the following relation- 
ships are easily derived. 

The Fourier transform along l can be calculated in the 
same manner as that along k for P2~/c, giving com- 
plex intermediate results for one quarter of the z axis. 
To complete an asymmetric unit we need ½y and all x. 
From the last structure-factor relationship and the fact 
that the structure factors were initially real we can see 
that 

T,(h,-k,z)  = ( -  1)~+kT,(h,k,-z) 
=(-1)"+kr'{(h,k,z) 

which can be dealt with by multiplication of the h odd 
intermediate results by i, transforming as along a screw 
diad, and dividing the h-odd results by i. In fact, the 
intermediate results for the transform along l are re- 
coverable directly in a form multiplied by i for h odd, 
which saves one stage of multiplication and division 
by i. 

(D) Tetragonal system 
The tetragonal system cannot be solved completely. 

A fourfold rotation axis can only be treated as a diad, 
although some economy is possible by expanding the 
intermediate results rather than the structure factors. 
Those tetragonal space groups with triangular asym- 
metric units (e.g. P4/mmm) can only be nearly solved 
as well, because the fast Fourier transform method is 
inherently incapable of calculating a triangular asym- 
metric unit. Those space groups corresponding to Laue 
symmetry 4/m are basically like the monoclinic space 
groups. Therefore only the fourfold aspects will be 
considered. The unique set of structure factors will be 
taken as h, k, and l all > 0. Those space groups with 
Laue symmetry 4/mmm are basically like the ortho- 
rhombic system; the unique set of structure factors will 
be taken as 0 < h, 0 < k < h, and 0 < 1. 

(1) P4~, P4z, and P43 
From Table 2 we can see that the constraints for 

these space groups are all of the form 

~o(- k, h, l) = ~o(h, k, l) + nlrc/ 2 

which simply means an origin shift after transforming 
on l. For P4~ and P43 the phase relationships along l 
are the same as those for a screw diad; for P4z they 
are the same as for a diad. After transformation along 
l the intermediate results may be transposed as 

Tz(- k,h,z)= T~(h,k,z + ¼) ( P 4 0 ,  

Tt(-  k,h,z)= Tz(h,k,z +½) (P4z),  

T,(-k ,h ,z)= T~(h,k,z +¼) (P4a) • 

and 

F(h,k, - l )  = ( -  1)n+lF(h,k,l) , 

F(h, - k , l )  = ( -  1)k+'F(h,k,l) , 

F ( - h , k , l ) = ( -  1)h+kF(h,k,l) , 

F(h, - k , l ) = ( -  1)h+kF(h,k, - l )  . 

The intermediate results for P42 are real. In each case 
transforming on h, then k gives an asymmetric unit. 

(2) P412~2 and P4a2~2 

The screw tetrad permits these enantiomorphic space 
groups to be completely solved. The desired phase 
relationships are generated from the diagonal diad 
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through the origin and the screw tetrad, that is 

0 1 0 0 0 - 1  0 0 
1 0 0 0 1 0 0 0 
0 0 - 1  0 and 0 0 1 0 
0 0 0 1 a b re/2 1 

(The example is P4~212; the corresponding relations 
for P43212 are derived in exactly the same manner.) The 
parameters a and b are determined by noting that ap- 
plication of the 4~ twice must be equivalent to a 21 
through the origin; therefore b + a-- 0 and b -  a = 0. 
Since the 41 does not pass through the origin we have 
a = b = re. From these two operators and the Hermitian 
inversion operator we may derive the following phase 
relationships. 

q)(h, k, - l) =lrc - q)(h, k, l) 

~o(k,h,l)=~o(h,k, - l )  

q~(-h,k,l)=(h + k)z~- lzr/2-~o(h,k,l) 

~o(- k, h, l) = (h + k)rc + lrc/2 + q)(h, k, l) . 

We may therefore transform along l as though it were 
a 21 axis. The results may then be transposed to give 

T,(k,h,z)= Tt(h,k,~-z) 

Tz(-h,k,z)=(- 1)"+kT~(h,k,¼-z) 

T,(-k,h,z)=(- 1)"+kT,(h,k,¼ + z) 

for 0 <z < 81. The transforms on h and k can then be 
calculated to give one eighth of the cell along z as an 
asymmetric unit. 

(E) Trigonal and rhombohedral systems 
Those trigonal space groups conventionally indexed 

on rhombohedral axes cannot be economically treated 
on such axes by fast Fourier transform methods be- 
cause there are no one-dimensional relationships. The 
choice of a rhombohedral cell is made on the grounds 
that it has one third the volume of the trigonal cell. 
It is a very simple matter to index the cell on trigonal 
axes and only compute one third of the cell volume by 
factoring the Fourier transform by three. Factoring by 
three gives (with A = N/3) 

A - - I  A - I  

X(t)= ~ X(3t)e(tt/A)+e(t/U) ~. X(3t+ 1)e(tt/A) 
t = 0  t = 0  

A - - I  

+e(2t/N) ~ X(3t + 2)e(tt/A) 
t = 0  

A- - !  

X(t + A)= ~ X(3t)e(tt/A) 
t = 0  

A - - I  

+e(½)e(t/N) ~ X(3t + 1)e(tt/A) 
t = 0  

A--1 

+e(2-)e(2t/N) ~ X(3t + 2)e(tt/A) 
t = 0  

A - I  

X(t + 2A)= ~ X(3t)e(tt/A) 
t = 0  

A - - I  

+e(-})e(t/N) ~ X(3t + l)e(tt/A) 
t = 0  

A--1 

+e(½)e(2t/N) ~ X(3t + 2)e(tt/A) 
t = 0  

where t = 0, . . . ,  A - 1. 
Because of the equivalent positions at (0,0,0), 

(1 2 z~ and (3z,½,½) there are systematic absences un- 5 ,  5 ,  3-/, 
less k -h+l=3n .  Therefore, for the transform on l, 
only one of the three summations will be non-zero for 
any given value of h and k. There is thus no disad- 
vantage in considering all trigonal space groups on 
trigonal axes. 

The combination of threefold symmetry and Frie- 
del's law means that only one sixth of reciprocal space 
need be specified as a unique set of structure factors. 
Since the reciprocal axes a* and b* are at an angle of 
sixty degrees and there are no convenient one-dimen- 
sional relationships along l, the unique set will be 
taken as h and k >0 and all l. Additional symmetry 
elements are of course helpful. An inversion centre 
reduces the computation by making the transform 
along l real. Planes of symmetry and diads reduce the 
computation by decreasing the unique set of structure 
factors from h and k > 0 to h > 0 and 0 < k < h. 

(1) P3, R3, P31, and P32 
In all of these space groups the Fourier transform 

along I is complex and has no special properties except 
the factoring by three for R3. The threefold rotation 
operator on hexagonal axes will carry the results from 
(h,k) to ( - h - k , h ) .  To fill in the remaining third of 
the requisite intermediate results we may use the fact 
(true for all space groups) that 

T,(-  h, - k,z)= T'{ (h,k,z) 

which is simply a statement that the final transform 
is real. The transposition relations for P3 and R3 
(which can only be nearly solved) are 

T , ( -h - k ,h , z )=  T,(h,k,z) 

T,(-k,h+k,z)= r~(h,k,z) 

which completes the transform. The transposition rela- 
tions for P3~ and P32 (which can be solved) are 

Tt ( -h - k ,h , z )=  Tt(h,k,z +½) (P31) 

T~(-k,h + k,z)= T~ (h,k,z + z) (e30  

Tz( -h -k ,h , z )=  Tt(h,k,z +I )  (P32) 

TI(-- k,h q- k , z )  = T~ (h,k,z -t- ½) (e  32) 

for 0<z<½.  
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(2) P3112 and P3121 
These space groups are chosen to illustrate an im- 

portant  point about trigonal space groups with extra 
symmetry elements. The orientation of the diad in the 
transform is preserved, but the axes of the coordinate 
system have been altered. Thus the diad makes an 
angle of thirty degrees with a* in P3~21 but is along 
a* in P3~12. The point operator for the diad in P3112 is 

1 1 0 0 
0 - 1  0 0 
0 0 - 1  0 
0 0 0 1 

which can be combined with the operator for a 3~ axis 
and a Hermitian inversion centre to obtain the rela- 
tionship 

~o(k,h,l)= - (2~r/3) 1 -~o(h,k,l) 

which in turn gives 

Tz(k,h,z)= r t ( h , k , ½ - z ) .  

This can be combined with the transposition rela- 
tionships already given for P3, to fill in all h, +k ,  
0 < z <-~, from which an asymmetric unit can be cal- 
culated. For P3121 the twofold operator is 

0 1 0 
1 0 0 
0 0 - 1  
0 0 0 

which gives immediately 

~o(k,h, l) = ~o(h,k, - l) 
and 

T,(k,h,z)= Tt(h,k, - z )  

which again can be combined with the 31 relations to 
give an asymmetric unit. 

(F) Hexagonal system 
As would be expected the hexagonal system is very 

similar to the trigonal system in its transformation 
properties. The twofold component of the hexads re- 
duces the number of structure factors required by a 
factor of two, only the positive half of ! is required. 
A pure sixfold rotation axis can only be utilized as a 
diad, but all of the sixfold screw axes except 63 can be 
solved. (A 63 screw cannot be solved because the asym- 

metric unit is not favourable.) As an example of a fairly 
complicated hexagonal space group P6122 will be used. 
The operator for the 61 axis is given in Table 2; the diad 
is given by 

1 0 0 0 
- 1  - 1  0 0 

0 0 - 1  0 
0 0 0 1. 

From these operators we may derive the following 
phase relationships. 

~0(h,k, - l)  = / ~ -  ~o(h,k, /)  

~o(k,h, Z) = - Z . / 3  - ~o(h,k, l)  

q~(-  k , h  + k , l )  = lrcl3 + ~o(h,k , l )  

~o( -  h - k ,  k,  l )  = Dz/3 - ~o(h, k ,  l )  

~o(-  h - k , h ,  l)  = 2l  z~/3 + ~o(h,k, l)  

~ o ( - h , h + k , l ) =  - 9 ( h , k , l )  . 

From this set of phase relationships it can be seen that 
the transform along l is the same as for a screw diad 
(as would be expected since applying the 61 three times 
is equivalent to a 21). The following set of transposi- 
tion relations then holds: 

T,(k,h,z)= T* , (h , k ,~ - z )  

T , ( -  k,h + k,z) = T,(h,k,~ + z) 

T ~ ( - h - k , k , z ) =  T~(h,k,~ - z) 

T , ( - h - k , h , z ) =  T,(h,k,l  +z) 

T~(- h,h + k,z) = T,(h,k, ½-  z) 

from which one twelfth of the z axis may be calculated. 
This is an asymmetric unit for this space group. 
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