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A method for the weighting of structure factors from an incomplete and

inaccurate model is described which relies on the fitting of smooth spline

functions of resolution. The use of smooth spline functions avoids the problems

of discontinuities introduced when performing calculations in resolution shells.

The complexity of the functions to be fit may be varied by changing the number

of spline parameters. This approach is used to investigate the stability of the

problem when data are limited.

1. Background

The task of weighting information arising from an incomplete

and inaccurate model of the scattering density of a crystal cell

is a vital part of the structure solution and refinement process.

Incomplete and inaccurate models arise at all stages of the

structure solution process, starting with the crude models

arising from molecular replacement or initial density inter-

pretation, right through to refined models which lack only in

their description of subtle features such as disorder and bulk

solvent. The weighting of incomplete and inaccurate model

phases allows calculation of improved maps with which errors

and omissions in an existing model can be corrected, and also

provides the basis for calculation of difference maps used in

the refinement of such models.

An early approach to this problem was proposed by Sim

(1959), who assumed that the model was incomplete but

without errors. This assumption leads to the result that the

measured structure factor must arise from the known partial

structure factor plus some unknown component arising from

the missing density. If the missing atoms are uniformly

distributed, this component will have a uniformly distributed

phase and a magnitude which varies according to the amount

of un-modelled density. Sim proposed that the unknown part

should obey a circular Gaussian distribution in the Argand

diagram, the width of which was determined by the

disagreement between the observed and partial structure-

factor magnitudes (or ‘lack-of-closure’). This Gaussian distri-

bution may be projected on to the circle described by the

observed structure-factor magnitude, giving rise to a phase

probability distribution centred about the phase of the partial

structure factor.

Srinivasan & Ramachandran (1965) developed a theoretical

framework to extend this approach to incorporate the effect of

errors in the model into the calculation based on the para-

meter �a, which combines information about model comple-

teness and accuracy. They noted that model errors on average

reduce the magnitude of the correct part of the partial struc-

ture factor and add an additional contribution to the Gaussian

error term. Read (1986) implemented this approach by

constructing a likelihood function which gave the probability

of the observed structure-factor magnitudes given a particular

combination of model incompleteness and error. The values of

�a that maximize this probability across all reflections provide

a better basis for weighting the resulting phases.

A formalized treatment of this work in terms of likelihood is

given by Murshudov et al. (1997). This approach has also been

extended to the case where some phase information is known,

by Pannu et al. (1998). A related description is given by Lunin

et al. (2002).

Read (1986) originally calculated �a in resolution bins. The

available reflections were divided up into shells in reciprocal

space, with each shell covering a narrow resolution range. The

likelihood function was maximized to determine the value of

�a for each shell individually, to allow �a to vary as a function

of resolution. About 1000 reflections are required in each

resolution shell to obtain a reliable estimate of �a.

Later it became desirable to calculate �a using the free-set

reflections alone (Brünger, 1993) to avoid the value being

biased by previous cycles of model refinement. This was

accomplished by Murshudov et al. (1997) by abandoning the

use of resolution bins, and instead fitting �a using a continuous

function of resolution. Murshudov et al. (1997) uses a form

composed of two interacting Gaussian terms originally

proposed by Tronrud (1997) as a Babinet correction for un-

modelled bulk-solvent contributions. This approach allowed

�a to be estimated using as few as 200 reflections, although a

sophisticated minimizer is required to arrive at that solution.

This paper identifies a simple approach, which is applicable

when an intermediate number of reflections are available, by

which parameters related to �a may be modelled using spline

functions of an arbitrary number of reflections. This was

attempted by Cowtan (2002); however, the method used there

suffered from stability problems. This work overcomes those

problems by choosing a different parameterization in which

two parameters are modelled simultaneously. These para-



meters are a lack-of-closure parameter and a scale factor,

which both scales the calculated data to the observed data and

reduces the calculated magnitudes to account for errors in the

calculated phase.

2. Method

Murshudov gives the likelihood function for the magnitude of

an observed structure factor given some partial structure

factor as follows (Murshudov et al., 1997, equation 14 therein):
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In these equations, �Fo
is the experimental error in the

observed magnitude, D is the proportion of the calculated

structure factor which is correct and �wc is the variance of the

Gaussian error term. Constants have been ignored, and the

equations have been simplified for a single partial structure.

An extra factor of 2 has been introduced inside the logarithm

in the centric term; this is for later convenience and is

cancelled by an additional contribution to the (omitted)

constant term.

The equations may be further simplified by substituting

�wc = "w, and defining " as the reflection multiplicity, given by

the number of symmetry operators relating the reflection to

itself, and "c as the number of symmetry operators relating a

reflection to itself or its Friedel opposite:

"c ¼
" acentric

2" centric

n
ð2Þ

This gives a single equation for centric and acentric cases:
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where

f ðxÞ ¼
log I0ðxÞ acentric

log coshðxÞ centric

�
ð4Þ

Here w scales the width of the Gaussian error term. s plays an

identical role to D in the original equations, but will also take

into account any difference in scale between the observed and

calculated data. These parameters are very similar to the � and

� of Lunin et al. (2002), with the latter differing by a factor of 2

in the centric case.

The first and second derivatives of this function may be

constructed with respect to s and w.
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The complete log-likelihood is obtained by summing the

individual reflection log-likelihoods (i.e. multiplying the

probabilities) over all the reflections (e.g. Murshudov et al.,

1997, equation 13 therein).

For this work, we will assume that the variables s and w vary

continuously as a function of resolution [i.e. s = s(|h|), w =

w(|h|)], according to some previously chosen function which

depends on some numerical parameters. Thus s and w are each

described by a ‘basis function’, using the terminology of

Cowtan (2002). For this paper, this basis function is assumed

to be a spline function of resolution as described by Cowtan

(2002); however the approach is independent of the choice of

this function.

The derivatives of the individual reflection log-likelihood

LLKh with respect to s(|h|) and w(|h|) may be derived and

combined with the derivatives of the basis function with

respect to its parameters (e.g. Cowtan, 2002, equations 10 and

13 therein) using the chain rule in order to construct the

derivatives of the log-likelihood function with respect to the

basis function parameters. Summing the derivatives over all

reflections gives rise to the derivatives of the full log-like-

lihood function. The resulting derivatives may be used in a

Newton–Raphson calculation to iteratively determine the

optimal values of the basis function parameters.
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Once the optimal parameters of s and w are obtained as a

function of resolution, a figure-of-merit may be calculated for

each reflection, according to the formula:

FOMðhÞ ¼ f 0
2jFojsjFcj

2�2
Fo
þ "cw

 !
; ð10Þ

where f 0(X) is the derivative of f(X), which is I1(X)/I0(X)for

acentric reflections and tanh(X) for centric reflections.

3. Implementation

The spline function of resolution was implemented as part of

earlier work on fitting arbitrary functions in reciprocal space,

and that code was re-used in this work. The remaining code

from that work was specialized to single-valued functions of

position, whereas in this case two functions are used, for s and

w, and so this code was not reused. Instead the target function

was implemented, returning LLKh and its first two derivatives

with respect to s(h) and w(h). This was used in conjunction

with spline basis functions for s and w, in a purpose-written

routine which constructed LLK and its derivatives with

respect to the two sets of spline parameters using the chain

rule. These derivatives were then used to implement a simple

Newton–Raphson optimization to determine the best para-

meters.

In early tests the full curvature matrix was calculated, but it

was found that the cross terms linking the parameters of s and

w, while helpful during the final stages of parameter refine-

ment, are a hindrance in the earlier stages of refinement. It is

therefore more efficient to break the matrix of curvatures into

two diagonal N � N blocks containing the curvatures relating

the s and w parameters, respectively. The shifts to the s and w

parameters may then be determined by solving two N � N

series of equations, instead of one 2N � 2N system.

One additional refinement was required in order to solve

two problems. Firstly, spline coefficients are prone to oscilla-

tions when they are used to fit sharply varying functions. These

oscillations are analogous to the ripples found in Fourier series

of discontinuous functions. As a result it is beneficial to pre-

scale the data in such a way as to remove the most steeply

varying features. Secondly, for the Newton–Raphson calcula-

tion to converge, a reasonable estimate of the parameters is

required as a starting point. This is also achieved as a side-

effect of pre-scaling.

The data (both Fo and Fc are therefore scaled onto an

approximate E-like scale, by dividing each structure factor by

hjFj2="i1=2, where the expectation value is again obtained by a

spline fit to the data. The resulting scaled magnitudes are not,

however, Es, because the effect of the reflection multiplicity

has not been removed. Furthermore no assumption is made

about the correctness of this scaling in the remainder of the

calculation.

Since both Fo and Fc are now on roughly the same scale, an

initial estimate of s may be made by setting all the spline

coefficients, and thus the value of the function itself, to 1. Since

w is to a first approximation related to the squared difference

between |Fo| and |Fc|, and these are on a roughly |E|-like scale,

this may also be set to 1 as a crude order-of-magnitude esti-

mate. Using these estimates, the calculation converges reliably

in between 5 and 15 cycles. The results are robust against

different initial estimates, even for poor models. However, as

will be shown, the results may be sensitive to the choice of

data.

4. Results

Initial tests were conducted by comparing the results of this

implementation with a version of the original implementation

of Read (1986), as modified and distributed as part of the

CCP4 suite (Collaborative Computational Project, Number 4,

1994). A simulated molecular replacement was constructed

using the observed data for the lysozyme structure 1lz8

(Dauter et al., 1999), which was obtained from the Protein

Data Bank (Berman et al., 2000). Calculated data were

obtained from the atomic model of 1hhl (Lescar et al., 1994),

which was rotated and translated to match the target structure.

The model was truncated to include only main chain and C�
atoms, and structure factors were calculated using refmac5

(Murshudov et al., 1997), with no bulk-solvent correction.

Figures-of-merit were calculated using the original binned

�a approach, and using the spline fit for s and w, using all the

available reflections. The mean figure-of-merit was calculated

in resolution bins and plotted as a function of resolution for

both calculations in Fig. 1. The features of this plot depend

both on the estimates of �a or s and w, and on the observed

and calculated magnitudes in each resolution shell. Note that

over most of the resolution range the mean figure-of-merit

agrees well between the two calculations. The largest devia-

tions between the two calculations arise at the low resolution

end, where the discontinuities arising from bin boundaries will

be most pronounced. The agreement confirms firstly that the
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Figure 1
Comparison of mean figure-of-merit as a function of resolution between
different implementations of the weighting calculation. The program of
Read (1986) is compared with the new spline-based implementation.



approach is working, and secondly that the effect of the

experimental �Fo
, which is omitted in Read’s original imple-

mentation, does not have a significant impact in this case.

It is important to determine how many reflections are

required to obtain reliable weight estimates using a given

number of spline parameters in the fitting of s and w, so that a

suitable functional form may be chosen for any given problem.

This is particularly important for refinement calculations

where s and w may be determined using the free-set reflections

only. For this purpose the data for a larger glycosidase struc-

ture, 1h2j (Varrot & Davies, 2003), were used.

Again molecular-replacement type models were

constructed using related structures from the PDB. Three

models of decreasing quality were used: an all-atom model of

1h11 (Varrot & Davies, 2003), a main chain + C�model of 1qi2

(Varrot et al., 2000) and a main chain + C� model of 1g0c

(Shirai et al., 2001). The coordinate errors of these models are

listed in Table 1. The models were aligned using the SSM

secondary structure alignment method (Krissinel & Henrick,

2004).

The original data for 1h2j included �47500 reflections to

1.5 Å resolution. These data were divided into first 20 sets of

�2500 reflections and then five sets of �10000 reflections.

Weighting calculations were performed using the reflections

from each of five different free sets in each case to fit spline

functions to s and w. The results using each set of reflections

were compared to determine how many reflections are

required for a particular parameterization.

Initially phase weighting calculations were performed using

the intermediate model, 1qi2, using free sets of �2500

reflections. These calculations were performed using different

numbers of spline parameters. Comparisons of the resulting

mean figure-of-merit as a function of resolution are shown in

Figs. 2 and 3 for the results of using three spline parameters

and 15 spline parameters. When only three spline parameters

are fitted, the results are very similar whichever free set is

used; however, when 15 spline parameters are used, the

variation in mean figure-of-merit can be substantial. For

subsequent tests it will be assumed that the first of these

results represents the limit of acceptable deviation between

free sets.

In Fig. 2 it is possible to see the contribution of observed

and calculated magnitudes to the figure-of-merit. Since only

three spline parameters are used, s and w may have only three

extrema, and the remaining features of this plot arise from the

individual structure factors, which are conserved between

different estimates of s and w. In Fig. 3, s and w may have as

many as 15 extrema and the features vary between estimates,

so the errors in s and w are responsible for the bulk of the

features.

To quantify these results for further analysis, the standard

deviation of the figures-of-merit among the five sampled free

sets was calculated for each model, parameterization and

choice of free reflections. The results of these calculations are

shown in Figs. 4, 5 and 6. Note that the adequate result in Fig. 2

corresponds to an FOM standard deviation of about 0.017, so

a deviation of greater than 0.02 will be considered unac-

ceptable.

For the best model, 1h11, Fig. 4 shows that with 10000

reflections it is possible to fit 15 or more spline parameters

without difficulty. With only 2500 free reflections, nine para-

meters can be fitted reliably. Thus in the case of a good model,

such as a model in the final stages of refinement, only 250

reflections are required per spline parameter. This is more

parameters than are required for the smooth function used by
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Table 1
Simulated molecular replacement models used in testing the structure-
factor weighting algorithm.

Model C� r.m.s.d. (Å) Completeness R factor

1h11 0.16 All atoms 0.324
1qi2 0.37 Main chain + C� 0.436
1g0c 0.99 Main chain + C� 0.537

Figure 2
Comparison of mean figure-of-merit as a function of resolution between
model weighting calculations using different free sets and three spline
parameters.

Figure 3
Comparison of mean figure-of-merit as a function of resolution between
model weighting calculations using different free sets and 15 spline
parameters.



Murshudov et al. (1997), but is usable for the refinement of

medium and large macromolecules.

For the intermediate model, 1qi2, Fig. 5 shows that with

10000 reflections it is possible to fit 15 or more parameters;

however, with only 2500 reflections only three parameters may

be reliably determined. This corresponds roughly to the case

of an incomplete model in the early stages of refinement. In

this case around 750 reflections are required for each spline

parameter. Again this is usable for medium or large macro-

molecules as long as only a few spline parameters are used in

the early stages of refinement.

For the worst model, 1g0c, Fig. 6 shows that with 2500

reflections no reliable results are obtained. With 10000

reflections, it is possible to fit two or three spline parameters.

This corresponds roughly to the case of a poor first molecular

replacement model, before initial rebuilding. The quality of

the phasing is also not dissimilar to that which arises in some

density modification calculations (see for example Abrahams,

1997). In this case it would be wise to use all the reflections in

the estimation of the spline parameters, and to use a limited

number of spline parameters. At this stage of the calculation

model bias will be far less of an issue since no refinement of

the model has taken place, and so the use of all the reflections

is not a major problem.

Comparisons were made between weighted maps obtained

using the centroid weights obtained using the binned and

spline approaches using different numbers of parameters.

Initially the new method was thought to give more reliable

results when only a few parameters were used; however, it was

later found that the main difference arose from the spline

scaling of the data, rather than spline fitting of the s and w

functions. Once this effect was removed, the resulting maps

were effectively indistinguishable between old and new

methods and different numbers of parameters. The benefits of

the spline approach may be more significant for density

modification calculations, where resolution cutoffs of isomor-

phous derivative phasing may yield less smoothly varying

values for s and w.

5. Conclusions

The method presented here provides a simple means for the

weighting of phase information from incomplete and inaccu-

rate models using a continuous function of resolution. This

approach offers the theoretical benefit over the use of reso-

lution bins that there are no discontinuities at bin boundaries,

which will be particularly pronounced when the number of

bins are small. Unlike the previous technique of using a

continuous function for phase weighting (Murshudov et al.,

1997), the complexity of the functions used here may be varied

in accordance with the number of data available and the

amount of information present in that data.
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Figure 4
Standard deviation between figures-of-merit using different free sets as a
function of number of parameters for a complete and accurate model
(1h11).

Figure 5
Standard deviation between figures-of-merit using different free sets as a
function of number of parameters for a partial (main chain + C�) and
intermediate model (1qi2).

Figure 6
Standard deviation between figures-of-merit using different free sets as a
function of number of parameters for a partial (main chain + C�) and
poor model (1g0c).



This has led to the investigation of the reliability of the

result as a function of number of data and quality of the

model. The data-to-parameter ratio is shown to vary strongly

with the quality of the model. The results obtained here for the

spline fitting approach may well be transferable to other phase

weighting methods; in particular they should be directly

applicable to the case of a binned calculation. The continuous

function used by Murshudov et al. (1997) requires less data per

parameter because its functional form is well matched to the

specific problem; however, it is hoped that insights into the

variation in the number of data required as a function of

model quality will also be useful in that approach.

The quality of the final weighted maps does not differ

significantly with the spline approach when compared with

previous implementations. This suggests that further work in

the determination of functional forms for the parameters of

the weighting calculation is not required, at least when

weighting phases from atomic models. However, should new

functional forms be required for future applications, the

separation between the target function and the functional

forms of the fit functions which have been demonstrated here

will facilitate that investigation.

The software and source code developed in the course of

this work are available as part of the Clipper project from

http://www.ysbl.york.ac.uk/~cowtan/. The author has not

sought any patents concerning this work.

Dr Cowtan would like to thank R. Read and G. Murshudov

for discussions which inspired this work. The work was funded

by the Royal Society, University Research Fellowship number

003R05674.
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