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Various approaches have been demonstrated for the auto-

matic interpretation of crystallographic data in terms of

atomic models. The use of a masked Fourier-based search

function has some bene®ts for this task. The application and

optimization of this procedure is discussed in detail. The

search function also acquires a statistical signi®cance when

used with an appropriate electron-density target and

weighting, giving rise to improved results at low resolutions.

Methods are discussed for building a library of protein

fragments suitable for use with this procedure. These methods

are demonstrated with the construction of a statistical target

for the identi®cation of short helical fragments in the electron

density.

Received 19 April 2001

Accepted 26 June 2001

1. Fast Fourier feature recognition

1.1. Background

The identi®cation of protein features is a key step in the

interpretation of the data from a diffraction experiment. This

feature-detection process takes many different forms depen-

dent on the nature of the data available. If phases and,

therefore, an electron-density map are unavailable, then the

primary means for structure solution is molecular replace-

ment. The entire molecule, or a large substructure, must be

recognized from an appropriate model by matching against

the observed structure-factor magnitudes.

Commonly, no such isomorphous model is available, in

which case some sort of phase information is required. This

phase information may be used to calculate a `best' electron-

density map. Feature recognition commonly relies on these

maps, although a better approach would make simultaneous

use of both the phase information and the unphased magni-

tudes.

Feature recognition in electron-density maps also takes

various forms depending on resolution and map quality. At

high resolution it is suf®cient to perform a simple peak-picking

procedure to identify atomic sites, as demonstrated in direct-

methods programs such as MULTAN (Germain et al., 1970) or

in a more sophisticated form in the ARP automated re®ne-

ment procedure of Lamzin & Wilson (1997).

At lower resolutions it is common to trace ridges in the

density to produce a `skeleton', for example using the method

of Greer (1985). This skeleton was initially used as an aid to

visualization, with the user identifying protein motifs from the

pattern of ridges; however, more recently the skeleton has

been used as a basis for automated feature recognition, for
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example Jones & Kjeldgaard (1997) and the QUANTA

(Molecular Simulations Inc., 2000) software. The approach is

fast and effective; however, it does suffer from a signi®cant

limitation The topology of the electron density changes very

quickly as the resolution of the map changes. Therefore, the

methods used for interpreting the skeleton must change as the

resolution of the density map changes. The ARP/wARP `build'

procedure of Perrakis et al. (1999), which ®ts pseudo-atoms

into a map and traces protein-like motifs through them, has

similar strengths and limitations.

An alternative approach which avoids this dif®culty is to use

the electron density of some expected protein fragment as a

search model. The resolution of the search model may

therefore be matched to the resolution of the map, yielding a

method which will work at any resolution, given a suitably

sized search fragment. At higher resolutions it may be possible

to use small clusters of atoms, such as individual residues or

pairs of residues, as search fragments. In this work, the

problem of identifying common secondary-structure features,

and in particular �-helices, in lower resolution maps is

considered.

The identi®cation of density motifs in an electron-density

map requires that the search density be compared against the

electron-density map at every possible position in the unit cell,

for every possible orientation of the search density. This is a

six-dimensional search over three translation and three

orientation parameters, which is only practical computation-

ally with careful optimization.

Kleywegt & Jones (1997) implemented an exhaustive real-

space search with a molecular fragment by adopting a

computationally simple target function. In the `Essens'

program a search was performed in six dimensions over all

possible positions and orientations of a fragment. The frag-

ment coordinates were mapped into the electron-density map

using each possible orientation and translation in turn and the

map densities near atomic centres were compared in order to

obtain a score for that combination of orientation and trans-

lation. The best matches were stored and could be interpreted

as a map of likely positions of the fragment in the map.

An alternative approach to the computational problem is to

perform a three-dimensional search over orientations and

then for each orientation consider every translation simulta-

neously by use of a Fourier-based translation function. The

simplest function to implement by Fourier methods is the

overlap integral, often called a phased translation function,

given by the product of the fragment density and the map

density summed over the volume of the fragment at each

translation. (The summation is actually calculated over the

whole map, since the fragment density will be zero beyond the

boundaries of the fragment.) This function is easily calculated

in reciprocal space by means of the convolution theorem.

Colman et al. (1976) suggested the use of this function for

the location of an oriented molecular-replacement model

using low-resolution phase information. The phased trans-

lation function was extended by Read & Schierbeek (1988) to

form a simple correlation function. In the present work, a

weighted mask function is also used to further improve the

search function and allow its development into a simple

statistical form.

1.2. Fast Fourier feature recognition

Cowtan (1998b) described how a modi®ed phased trans-

lation function could be ef®ciently calculated using FFTs and

used to locate small atomic models in an electron-density map.

By searching over all possible orientations of the fragment, all

instances of the search fragment in the electron-density map

could be identi®ed.

Let the translation search function, which gives the agree-

ment between the search fragment (in the current orientation)

and the electron density as a function of fragment position, be

called t(x). The fragment density is �f (x) and the corre-

sponding fragment mask is �f (x). The search function is then

formed from the sum of the mean-squared difference in

density between the offset fragment and the map,

t�x� �P
y

�f �y���f �y� ÿ ��yÿ x��2 �1�

�P
y

�f �y��2
f �y� ÿ 2�f �y��f �y���yÿ x� � �f �y��2�yÿ x�;

where � is the `best' electron-density map (typically a

weighted Fourier map based on the observed magnitudes,

phase estimates and ®gures-of-merit) and y is a coordinate

used to sum over the volume of the fragment. An RMS

difference may be formed from the square root of

t�x�=Py �f �y� if required.

Note that in the expansion the ®rst term is independent of x

and so is only calculated once, whereas the second two terms

are convolutions and may therefore be ef®ciently calculated in

reciprocal space as follows,

t�x� �P
y

�f �y��2
f �y� �

1

V
FfFÿ1��f �x��Fÿ1��2�x���

ÿ 2Fÿ1��f �x��f �x��Fÿ1���x���g; �2�
where F represents the Fourier transform, Fÿ1 the inverse

Fourier transform and * complex conjugation. If the Fourier

coef®cients of the density and squared density are pre-

calculated, then the translation function for a fragment in

multiple orientations may be calculated by three fast Fourier

transforms (FFTs) per orientation. Since the fragment will

usually have no symmetry, all FFTs must be performed in P1.

Once the translation function has been calculated for a

particular orientation of the search model, the results must be

stored for combination with results from other orientations.

This may be achieved by a peak search or by storing a map of

`best orientations' for each position in the unit cell as

described by Kleywegt & Jones (1997) (this assumes that a

fragment can only adopt one matching orientation at any

location in the cell and that the fragment is positioned at the

origin).

This method was implemented by Cowtan (1998b) and

shown to provide similar accuracy with twofold to ®vefold

speed improvement over the real-space approach of Kleywegt

& Jones (1997) for search models of 25±50 atoms.



1.3. Optimization
The method outlined above can be improved upon in

several ways to provide dramatic improvements in computa-

tional ef®ciency. These optimizations are as follows.

(i) Rotation of the search model in reciprocal space. Instead

of calculating the Fourier transform of the fragment mask

Fÿ1��f �x�� and of the product of the mask and model

Fÿ1��f �x��f �x�� for each search orientation, the Fourier

transforms may be calculated once and the rotations

performed in reciprocal space, in an equivalent manner to that

used in a conventional rotation function; see for example

Navaza (1987). The calculation required for each search

orientation is therefore reduced from three FFTs to one. If the

structure factors for the mask and mask � model are calcu-

lated on a ®ne orthogonal grid, then the rotation in reciprocal

space can be calculated by linear interpolation for minimal

computation overhead, giving a speed increase of close to

threefold over the previous results.

(ii) Use of crystallographic symmetry. While the translation

search function itself does not obey crystallographic

symmetry, the combination with the translation and orienta-

tion information must obey the crystal symmetry, since the

arrangement of fragments in the true structure also obeys it.

Crystallographic symmetry can therefore be utilized by

calculating only a sub-region of the translation search function

and generating the remaining regions from the results of other

search orientations.

In practice, it is simpler to use the crystallographic

symmetry to reduce the number of search orientations. This is

again performed in a manner analogous to a conventional

rotation function, with the exception that the centrosymmetric

property of a Patterson rotation function does not apply.

If the search orientations are expressed in Eulerian angles,

then the range of search orientations can be determined as in

Table 1.

NB is the order of rotational symmetry about the B axis; N?
is 2 if there are twofold axes perpendicular to the B axis and 1

otherwise. This makes optimal use of all primitive symmetries

below cubic. Cubic and non-primitive symmetries will lead to

some duplication of calculation.

The use of space-group symmetry in this manner provides a

fourfold speed increase over the P212121 calculations reported

in Cowtan (1998b).

In addition to use of the space-group symmetry, the metric

for the Euler coordinate space should be used to ensure

uniform sampling of orientation space, as described by Navaza

(1987).

(iii) Grid-doubling FFT. The peak-search step described in

x1.2 depends on the translation function being calculated on a

®ne grid, otherwise peaks can be lost between grid points. In

practice, the results are degraded if the grid spacing is greater

than 0.2 times the map resolution (0.4 times the Nyquist

spacing). Calculating the ®nal FFT on such a ®ne grid would be

time-consuming, so instead the FFT is performed on a grid at

twice the desired spacing and the intermediate points obtained

by interpolation. To avoid the translation-function peaks

being eliminated by the smoothing effect of the interpolation,

quadratic B-splines (Cowtan, 1998a) are used along with the

corresponding spectral correction in reciprocal space. The

interpolation may be performed along one dimension at a

time; thus, only in the ®nal dimension need all the points in the

®ne grid be considered. Convolution with the quadratic

B-spline interpolant at half-integral grid points can be

performed with four ¯oating-point operations; thus, the

interpolation stage is not rate limiting and the calculation time

is reduced by a factor close to 8,1 although in practice a slightly

®ner grid is used to ensure that no peaks are missed.

As a result of these optimizations, a fragment search on a

100-residue protein at 4.0 AÊ , as implemented in the FFFEAR

program, typically takes 10±30 min on a modern workstation.

This time is independent of fragment size and scales with FFT

time for a given unit cell and resolution.

1.4. Scaling issues

In order for the mean-squared difference residual to be

effective in locating the search fragment in a map, the model

and map density should be as consistent as possible. This

means that the features in the fragment density should have

the same scale and offset as those in the map and additionally

that the features should be calculated at similar resolutions.

The temperature factors of the fragment atoms should also be

®tted to the map density, or alternately both map and frag-

ment atoms can be sharpened to an arbitrary temperature

factor, typically B = 0, using the method of Cowtan (1998a).

1.4.1. Fragment resolution. Resolution may seem irrelevant

for the fragment density, since the search function is actually

assembled in reciprocal space and any higher resolution terms

not available for the map may be discarded. However, the

search function depends not on the Fourier transform of the

fragment, but on the Fourier transform of the product of the

fragment and the mask. As a result, it is found that better

results are obtained when searching in low-resolution maps if

the initial fragment density �f (x) is calculated using resolution

truncated atoms, generated using a spherically symmetric one-

dimensional Fourier transform of the resolution-truncated

atomic scattering factors.

1.4.2. Fragment mean and scale: the use of density filters.
The scale and offset of the fragment density can be dealt with

by keeping all data on an absolute scale, but this ignores some

practical problems. It is common for some low-resolution

terms to be missing or unphased in experimental maps, leading

to long-range ripples in the electron density across the unit

cell. For small search fragments, these long-range variations in

local mean density will add noise to the translation function;

for large search fragments (e.g. molecular-replacement

models) they can prevent any match from being found. This

problem will be even worse in the case of NCS searches, where
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1 Note that the same procedure may be applied in reverse for structure-factor
calculation: density is calculated on a ®ne grid, convoluted with the spline
function to obtain values at coarse grid sites, transformed and a spectral
correction applied to the resulting structure factors. This is a particularly
effective approach for the fast calculation of E values from coordinates, since
the convolution of the spline function with a �-function can be constructed
analytically.
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the search model is a reoriented volume of the map density

and will therefore contain the same ripples running in a

different direction.

Scale also becomes a problem when regions of the molecule

exhibit different thermal motion: a copy of a fragment may be

missed because its thermal motion is higher and the density

peaks correspondingly lower. Again, this is a problem when

searching for an NCS copy with higher thermal motion using

density from a copy with lower thermal motion.

Cowtan (1998b) suggested matching the mean, and

optionally the variance, of the search model and the map by

use of a more complex search function (which becomes a

correlation coef®cient if both mean and variance are

matched). This approach requires two additional FFTs and is

less amenable to optimization than the simple mean-squared

difference function.

An alternative approach is to pre-®lter the map, and if

necessary also the search model, to ensure that the local mean

density calculated over a spherical region about each density

point is constant. This achieves a similar result to the more

complex search function; however, the ®ltering stage is

performed once at the beginning of the calculation instead of

requiring extra computation for every search orientation. This

is equivalent to the mean adjusted residual of Cowtan (1998b),

with the exception that the local mean is calculated over a

spherical volume instead of the mask volume. Since the

spherical volume is invariant under rotation, the ®ltering is

factorized out of the orientation search.

If the ®lter sphere is chosen to be smaller than the resolu-

tion of any missing low-resolution data, then this approach

additionally solves the problem of missing low-resolution

terms, since their effect is largely removed from the map and

the model. In practice, ®ltering the map and model densities

with a sphere of radius 4±6 AÊ has proven to be vital when the

volume of the search model is large, i.e. NCS and molecular-

replacement calculations. Larger radii are required for lower

resolution calculations.

1.5. Statistical search function

A better indication of the presence of a particular fragment

at a particular position in the unit cell may be obtained by use

of a density-based statistical search function. This function

may be constructed by calculating the probability that a

particular electron-density map could arise from a given

structural model and then applying Bayes' theorem to deter-

mine the probability of the model given the electron density.

The probability of a region of electron density taking on a

particular conformation may be determined by sampling the

electron density and taking the probability of obtaining a

particular electron density at each sample point. This assumes

that the electron density at each sample point is independent.

This assumption is identical to that used by Terwilliger (1999)

in the construction of a statistical solvent-¯attening procedure

and may be made under similar conditions, in particular that

the resulting log-likelihood be rescaled so that the density of

sample points in real space is equivalent to the density of

independent re¯ections in reciprocal space. This assumption

has been discussed further by Cowtan (2000).

In calculating the probability of an electron-density value at

a particular position in the map on the basis of a fragment

located at a particular translation, it is necessary to take into

account the two following major sources of error.

(i) The error in the map owing to errors in the phases and

missing re¯ections in the data set. (Missing high-resolution

terms may be ignored, however, if the search density is

constructed at the correct resolution.) This gives rise to a

scaling term, analogous to the `D' term in the �A method of

Read (1986), and a noise term.

(ii) The error in the model density owing to the inherent

variability in the structural motif to be located. In general, the

search model will be at best an approximate match to one or

more regions of the target molecule. The model density might

be expected to be more reliable for the more central residues

of the fragment and for main-chain rather than side-chain

atoms.

The search function is constructed using Bayes' theorem,

which may be written as

P�modeljdata� � P�datajmodel�P�model�
P�data� : �3�

In this case, the data is the electron-density map and the model

is a speci®c placement of the current search fragment. Let F

represent the case that the electron density arises from a

correctly positioned and oriented fragment and F represent

the case that the electron density arises from any other source

(i.e. incorrectly positioned fragment or density arising from a

completely different model). The probability of a correctly

positioned fragment given an individual density value from

the map is then given by

P�Fj��x�� � P���x�jF�P�F�
P���x�� : �4�

P(F) is the prior probability of a particular fragment, position

and orientation. When searching with a single fragment with

no other prior information about the map, this will be a

constant. Alternatively, information about solvent regions and

interpreted density may be incorporated in the prior.

P[(�(x)] is the probability of the `observed' map density at

x. It may be calculated as a marginal distribution of P[�(x), C],

C 2 |F, F |, i.e.

P���x�� � P���x�;F� � P���x�;F�
� P���x�jF�P�F� � P���x�;F�P�F�: �5�

For any complex fragment, it is far more likely that a density

value will arise from any other source than from the correct

Table 1
Range of search orientations.

Angle Range (�)

� 0±360/NB

� 0±180/N?
 0±360



fragment correctly oriented and positioned, therefore P(F)

will dominate over P(F). Neglecting this ®rst term, (4)

becomes

P�Fj��x�� ' P���x�jF�P�F�
P���x�jF�P�F� : �6�

The probability of an electron-density value given a particular

correctly positioned fragment will be approximated by a

Gaussian whose mean is the expected fragment density and

whose variance is given by the variance of the distribution of

densities at that position in the fragment over all matching

fragments in the database. (The calculation of these density

distributions is considered in x2.)

In order to account for noise in the electron-density map,

this variance must be increased by the expected noise level in

the map, given by Blow & Crick (1959),

�2
map �

P
h

1

V2
"h�1ÿ FOM2

h�jFhj2: �7�

The target density must also be scaled down by a factor D,

analogous to D in the �A calculation,

D2 �
P

h

"hjFhj2FOM2
hP

h

"hjFhj2
: �8�

The probability of an observed density value arising from a

correctly positioned fragment is then

P���x�jF� / exp ÿ ���x� ÿD�frag�x0��2
2��frag�x0�2 � �2

map�

( )

/ exp ÿ ���x� ÿ �
0
frag�x0��2

2�0frag�x0�2
( )

; �9�

where �0frag(x0) = D�frag(x0), �0frag(x0)2 = �frag(x0)2 + �2
map and x0 is

the coordinate in the fragment which maps to the point x in

the map under the current translation and orientation of the

fragment.

The probability of an observed density can be derived from

the histogram of a typical protein density map at the given

resolution, but it is simpler to make a Gaussian approximation

using the fragment density map itself by simply choosing a

position in the map where the atomic features are uncorre-

lated between matching fragments in the database (typically

by taking a point distant from the centre of the fragment and

outside of it). If the mean and variance of such uncorrelated

density are given by �rand and �rand, then

P���x�jF� / exp ÿ ���x� ÿD�rand�2
2��2

rand � �2
map�

( )

/ exp ÿ ���x� ÿ �
0
rand�2

2�02rand

� �
; �10�

where �0rand = D�rand and �02rand = �2
rand + �2

map.

Substituting these expressions in (6) and discarding the

constant terms gives

P�Fj��x�� / exp ÿ���x� ÿ �0frag�x0��2=�2�0frag�x0�2�
� 	
exp ÿ���x� ÿ �0rand�2=�2�02rand�

� 	
/ exp ÿ ���x� ÿ �

00�x0��2
2�00�x0�2

� �
; �11�

where

�00�x0� � �
02
rand�

0
frag�x0� ÿ �0frag�x0�2�02rand

�02rand ÿ �0frag�x0�2

and

�00�x0�2 � �0frag�x0�2�02rand

�02rand ÿ �0frag�x0�2
:

Finally, the probability indications for the presence of a

fragment on the basis of each individual density value in the

map are combined to give an overall indication of the prob-

ability of the fragment being present with the current trans-

lation and orientation,

P�Fj�� �
Y

x

P�Fj��x��: �12�

It is more convenient to form the logarithm of this expression,

log P�Fj�� �P
x

log P�Fj��x��

�P
x

ÿ���x� ÿ �00�x0��2=2�00�x0�2 � c: �13�

This expression is of the same for as the FFFEAR mean-

squared difference residual described in x1.2. Note, however,

that the mask function becomes a continuously varying func-

tion in the form of an inverse variance and also that the target

density has been modi®ed according to the value of the mask

function.

The resulting function may therefore be ef®ciently calcu-

lated using the FFT approach described earlier. However, to

construct the target function it is necessary to have both mean

and variance estimates of the search density as a function of

position, with the variance providing an indication of the

variability of the density at a particular position between

fragments matching the desired overall con®guration. The

mask function based on this variance replaces the earlier

binary mask, automatically masking a volume over which the

fragment density is signi®cantly better determined than

random protein density.

The construction of appropriate statistical density targets is

discussed in the following section.

2. Fragment clustering using the Protein Data Bank

In order to generate statistical search targets with accurate

density statistics, or even conventional search-fragment

models, it is necessary to analyse a large representative set of

known structures. A set of common protein motifs for use as

search models, along with frequency information, may be

determined by analysis of the Protein Data Bank. The most

common tool for the identi®cation and classi®cation of such
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motifs is cluster analysis, by means of which common features

can be identi®ed without the imposition of any prior prejudice

concerning which motifs might be important. The basic

cluster-analysis approach depends on pairwise comparison of

all candidates and so is computationally convenient as long as

the number of candidates to be compared is signi®cantly less

than 104.

In this work nine-residue fragments of polypeptide chain

are considered, although the same analysis will work for

longer and shorter fragments. The Protein Data Bank

(Berman et al., 2000) currently contains around 15 000 struc-

tures, most of which contain hundreds of such fragments

(counting every possible choice of nine contiguous residues

from the structure); therefore, cluster analysis of all possible

nine-residue fragments is impractical.

The ®rst step in addressing this problem is to remove the

redundant structures from the database. A representative set

of well determined X-ray structures were selected from the

database by the following method. The FSSP index (Holm &

Sander, 1996) was used as a basis for selecting a subset of the

database for analysis. This index divides the Protein Data

Bank into representative chains and homologous sets of

chains with greater than 30% sequence identity to each

representative chain. From each homologous set, the X-ray

structure determined at the highest resolution (if any) was

selected as a representative of that set. Each representative

X-ray structure was divided into overlapping nine-residue

fragments. The resulting data set consisted of 394 186 frag-

ments from 2793 structures.

The number of fragments is still impractical for cluster

analysis, so further steps must be taken to reduce the number

of fragments to be compared.

2.1. Pre-clustering the fragments

The number of comparisons may be further reduced by

replacing groups of similar fragments by a single representa-

tive model. The number of individual fragments will increase

as more structures are considered, whereas the the number of

representative fragments will remain largely constant and

depend only on the radius within which two fragments are

considered equivalent. This combination of fragments again

requires pairwise comparison of fragments; however, the

problem can be addressed ef®ciently if the fragments are ®rst

broken down into groups with similar structural features. For

this purpose only the C� atoms are considered, thus each

fragment is reduced to nine sets of coordinates in three

dimensions.

This problem of breaking down the conformational space

has been addressed by Old®eld (1992) by use of a hashing

algorithm based on the pseudo-Ramachandran angles (i.e. the

opening angles between three C� atoms and the torsion

between four C� atoms). The pseudo-Ramachandran angles

are calculated for the fragment and then quantized in steps of

20�, for example. The quantized angles can be represented by

a list of small integers: 13 integers for a nine-residue fragment,

or six if the opening angles are ignored. These integers are

then combined in a systematic manner to produce a hash code

± an integer value which depends on all of the quantized

angles, although several combinations of angles may lead to

the same hash code. The fragments are indexed by their hash

codes and only those structures with the same hash code are

compared with each other. Thus, all similar fragments should

have the same hash code, but some dissimilar fragments may

also match the same hash code. The dissimilar fragments are

obvious once comparisons are made within the set.

One problem with this approach is that changes in the

torsions along the fragment are cumulative and thus small

changes in several angles which do not affect the quantized

values can lead to signi®cantly different structures. Old®eld

(2000) suggested a related procedure using the elements of the

distance matrix instead of the pseudo-Ramachandran angles.

Since the distance matrix contains long-range as well as local

conformational information, this avoids the cumulative effects

of small changes. However, the distance matrix of nine C�

atoms contains 36 elements (or 15 if the 1±2 and 1±3 distances

are neglected) and is thus highly redundant. Furthermore, the

more parameters are involved in construction of a hash code,

the more often a cluster of similar conformations will be split

over a boundary in the quantization scheme.

2.2. Eigensystem analysis of the Ca distance matrix

The C� distance matrix uniquely identi®es a C� fragment,

apart from an ambiguity of hand, by combining information

about both short-range and long-range structural features.

However, to be useful in the classi®cation of fragment

conformation, the distance matrix needs to be reparameter-

ized in such a way as to remove the redundancy in the

distance-matrix elements. This may be achieved by de®ning a

new set of parameters which are linear combinations of the

distance-matrix elements but which are not correlated in the

same way as the distance-matrix elements.

The reparameterization is achieved as follows. The 36

unique elements of the distance matrix (assuming nine C�

atoms) are calculated for each nine-residue fragment in the

database. These 36 values are converted into a 36-element

vector for each fragment. The variance of each element and

the variance of each pair of elements of the vector are

calculated and used to form a 36 � 36 element variance±

covariance matrix whose rows and columns correspond to the

individual elements of the vector.

This matrix is then diagonalized using a standard eigenvalue

calculation. The matrix of eigenvectors is a rotation matrix

from the original coordinate system (the elements of the

distance matrix) into the new coordinate system (the eigen-

parameters). The eigenvalues are then the variances of the

eigenparameters.

The eigenvalue spectrum of the variance±covariance matrix

of distance-matrix elements when calculated across a large

number of fragments is shown in Table 2. Note that the

spectrum is dominated by less than ten signi®cant eigenvalues,

with the remainder being small. This is a result of the high

degree of redundancy in the distance matrix.



It is interesting to examine the signi®cance of the eigen-

parameters which vary most from fragment to fragment. To

visualize the eigenparameters, representative fragments were

chosen with extreme (high and low) values for one eigen-

parameter and values close to the mean for all the others. The

representative fragments for the ®rst four eigenparameters are

shown in Fig. 1.

The ®rst eigenparameter represents the `extent' of the

chain, with the extremes representing maximally extension or

a compact ball of residues. The second eigenparameter

determines whether the fragment is `hooked' at either the start

or the end of the chain. The third eigenparameter differ-

entiates between `linear' fragments, where the residues are

arranged along a linear axis, and `curved' fragments, where the

residues arc away from the line connecting the ends. The

fourth eigenparameter differentiates between fragments

which are curved in the ends and those which are twisted in

the middle.

Well known secondary-structure features can easily be

identi®ed from the ®rst three eigenparameters: �-strands have

large values of the ®rst eigenparameter (indicating a large

extent), whereas helices give rise to below average values of

the ®rst eigenparameter (indicating a short extent) and large

values of the third (indicating no overall curvature).

In practice, for the classi®cation of general fragments it was

found to be more effective to use ®ve eigenparameters

corresponding to the largest eigenvalues. If these are quan-

tized at equal intervals to divide the parameter space into

roughly 104 regions, then each region is found to contain

broadly similar conformations.

2.3. Microclustering of fragments

Once the fragments have been classi®ed by dividing them

into regions of the eigenparameter space, then similar struc-

tures may be merged together to produce `microclusters', with

the aim that there will be few enough microclusters for

analysis by a full clustering algorithm.

Each fragment in a region of eigenparameter space is

considered in turn as a potential microcluster. The fragment is

®rst compared with any previously formed microclusters in the

region by rotating to a common orientation using the Kabsch

algorithm (Kabsch, 1978) and then calculating an RMS co-

ordinate difference. If the RMS difference in C� coordinates

between the current fragment and any previous microclusters

in the region is less than some small value (0.5 AÊ was used for

this work) then a weighted average is performed between the

fragment and the microcluster, and the weight of the micro-

cluster is incremented by 1. Otherwise, the fragment becomes

a new microcluster of weight 1. This approach relies on the

differences between the fragments within a microcluster being

very small, otherwise the stereochemistry of the averaged

structures will be unrealistic.

Whilst the number of fragments increases with the size of

the database, the number of microclusters should remain

constant once the conformation space is fully populated.

Eliminating those microclusters with weights below some

fraction of the size of the database (e.g. 10ÿ4) removes unusual

conformations without affecting the common motifs which are

of interest.

2.4. Cluster analysis of the microclusters

The remaining microclusters may be subjected to conven-

tional cluster analysis. For each pair of microclusters, an RMS

coordinate difference is again calculated to form a symmetric

matrix whose indices are microcluster numbers. The two

microclusters with the smallest separation are combined to

form a new cluster whose weight is the sum of the weight of

the two microclusters. The corresponding rows and columns of

the matrix are combined by a weighted average using the

microcluster weights. The resulting matrix has rank one less

than the original matrix. This process is repeated, combining

clusters and microclusters until a single cluster remains.

The order of the clustering is recorded, together with the

weight of each cluster and the spacing between the two clus-

ters from which it was formed. The important clusters may

then be identi®ed by choosing a desired cluster separation and

examining the largest distinct clusters remaining at that point

in the clustering process.

The principal motifs to emerge from this analysis, using a

critical separation of 2.5 AÊ , include a helix motif, a curved

strand motif, a combined helix + strand motif and a turn motif

composed of two similar but distinct conformations. The

actual cluster frequencies are strongly dependent on the exact

cluster separation selected, suggesting that conformational

space is fairly continuously populated in some directions, even

if the population density is much higher in some regions. The

frequency of the helix and strand motifs is also in¯ated by the

fact that the same motif may repeat at one-residue intervals

along the chain.

Smaller clusters contain straighter and more curved strands,

some less common helix + coil and strand + coil motifs and the

same turn motifs offset along the chain in either direction.

However, there is no obvious separation of the helix motifs

into clusters of different pitches at this cluster separation.

Any of these clusters may then be used to construct a

statistical search model for use in the FFFEAR program. For

each cluster, the mean and variance of the electron densities of
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Table 2
The ten largest eigenvalues of the variance±covariance matrix of
distance-matrix elements.

Eigenvalue number Eigenvalue

1 149.53
2 25.45
3 11.63
4 7.49
5 3.92
6 2.81
7 2.30
8 1.45
9 1.29
10 0.74
. . . . . .
36 0.0024
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all fragments in the cluster may be calculated for each point in

a spherical region about the centre of the fragment. The mean

and variance are then used to calculate the target density and

weighting function (as described in x1.5). The mean electron

density and the standard deviation of the electron density for

the nine-residue helix cluster are contoured in Fig. 2. The

mean density shows the features of the helix clearly, but only

the stumps of the side chains. The density variance shows the

conserved core of the fragment, with hollows around the C�

atoms arising from the variability of the side-chain density.

The sensitivity of a feature search using such a model will be

affected by the critical cluster separation: if a large separation

is chosen, more matches are likely to be found but the

corresponding map features will be more diverse.

3. Results: fragment recognition

Comparisons between the basic FFFEAR search function

and other methods are given in Cowtan (1998b). Further

comparisons are provided here of the improvements to the

basic search function described in this paper.

To test the modi®cations to the search function, the struc-

ture of O6-methylguanine-DNA methyltransferase (Moore et

al., 1994), a DNA-repair protein of 178 amino acids, was used.

The structure includes six helices and a three-strand �-sheet.

The space group is P212121. All the data were available for

three derivatives for this structure, allowing the calculation of

maps of varying qualities by using different subsets of the data.

For the comparisons presented here, an MIR map was

calculated using only two of the derivatives (mercury and

lead), giving a mean ®gure of merit of 0.51 to 3.0 AÊ resolution.

The resulting data was degraded by truncating the phases to

8.0 AÊ resolution: the map was therefore of higher quality than

a genuine 8.0 AÊ MIR map, but still showed no detailed

features and a high level of noise.

Feature searches were were performed over both trans-

lational and rotational spaces. The searches all used the nine-

residue helix fragment obtained by analysis of the PDB;

however, the density-search function was calculated in three

different ways.

(i) Using an electron-density model based on 8.0 AÊ

resolution-truncated atoms and the fragment coordinates with

no ®ltering.

(ii) Using an electron-density model based on 8.0 AÊ

resolution-truncated atoms and the fragment coordinates with

a 8.0 AÊ radius ®lter to correct the mean density in the

electron-density map.

(iii) Using the statistical target density calculated directly

from the ensemble of densities of matching fragments in the

PDB at 8.0 AÊ without ®ltering.

The results are shown in Figs. 3(a), 3(b) and 3(c), respec-

tively. The 50 best matches against the density are shown in

each case. The horizontal axis gives the value of the FFFEAR

®tting function for that calculation (low values represent a

better estimated ®t). The vertical axis is the RMS coordinate

difference between the determined fragment orientation and

the nearest segment of true chain (low values represent a

better ®t to the true structure). The symbols represent the

Figure 2
Mean (blue) and standard deviation (green) of the electron densities
across all helical fragments.

Figure 1
Representative fragments for extreme values of the ®rst four eigenpara-
meters of the distance matrix. (a) is the eigenparameter corresponding to
the largest eigenvalue, followed by (b), (c) and (d), respectively.



conformation of the nearest matching segment of the true

structure, with ®lled dots representing helices in the correct

direction, open dots representing reversed helices and trian-

gles for all other features.

In Fig. 3(a) it can be seen that without ®ltering of the map

density no correct matches are found. When density ®ltering is

introduced (Fig. 3b) three correct matches are found to the

best helix in the true structure; however, the remaining helices

are lost amongst the noise peaks. The statistical target function

in Fig. 3(c) further improves the results, with the proportion of

correct matches being increased. Correct matches are found to

three of the six helices in the structure before the ®rst incor-

rect match, with a fourth appearing in the next cluster of

results. Similar results are obtained with SIR maps at 6.0 AÊ

resolution; however, at higher resolutions little bene®t it seen

over the conventional search function.

Once the search has been run, it is usually possible to ®lter

out most of the incorrect solutions by selecting connected

overlapping fragments and deleting inconsistently overlapping

fragments. An automated utility, `ffjoin', has been written for

this purpose.

4. Conclusions

Methods for interpretation of crystallographic data in terms of

protein structure have been considered. An electron-density-

based search has the advantage that the search target can be

calculated to match the changing topology of the density as a

function of resolution. This technique has been implemented

in the program FFFEAR and optimized to provide rapid

results for small- to medium-sized proteins. The implementa-

tion of electron-density ®ltering improves the results of the

method in the presence of noise and missing data.

The approach has been extended by the construction of a

simple statistical search function which can be cast into the

same form as the FFFEAR search function for ef®cient

computation. Whilst this is not a full statistical treatment, since

it ignores the information from unphased structure-factor

magnitudes and is susceptible to phase bias, this approach has

been shown to be bene®cial at lower resolutions.

Methods have been described for the ef®cient identi®cation

of structural motifs in the Protein Data Bank. These have been

demonstrated in the construction of a statistical target for the

location of small helix fragments. It is hoped that the methods

described may also prove useful in other data-mining

problems.
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