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COMMUNICATION

An alternative derivation of the equations of motion in torsion
space for a branched linear chain
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Torsion space molecular dynamics may be more efficiently
encoded if the global motions are separated from the
internal motions. The equations of motion for single, non-
cyclic chains are shown to be first order in the backbone
angle parameters when the global frame of reference is
ignored and second order otherwise. Adding a simple
heuristic substitute for the global motions enables the
encoding of dynamics for mixed constrained/unconstrained
model systems.
Keywords: angle space/internal coordinates/molecular
dynamics/peptides/proteins

Introduction

The natural coordinate system for simulations of conforma-
tional changes in single-molecule, branched–linear systems is
the space of all dihedral angles or torsion space, where bond
lengths and bond angles may be fixed to their equilibrium
values. Nonetheless, the majority of molecular simulations
today are still done in Cartesian space and geometrical con-
straints are handled using harmonic distance restraints and/or
numerical coordinate resetting (Ryckaert et al., 1977). This
paper introduces a simpler, exact solution to the problem of
encoding the torsion space equations of motion. The new
approach is more computationally efficient than existing torsion
space solutions.

Previous formulations of the equations of motion for internal
coordinates were rigorously derived using LaGrange multi-
pliers (Bae and Haug, 1987; Mazur and Abagyan, 1989). The
resulting equations describe the gradient of atomic shifts
relative to a fixed frame of reference, with respect to internal
coordinates, including bond lengths, bond angles and dihedral
angles. The solution is exact and completely general and may
be applied to any system that can be described as a branched
linear chain (or ‘BKS tree’), even when such chains connect
non-bonded atoms or have no geometric constraints. However,
the power of the method exists in its ability to freeze out
geometrical constraints, thus potentially speeding the computa-
tion. The method is not exact for covalent cycles, such as the
cyclic peptides oxytocin and bacitracin, but there is a numerical
solution to this problem (Abagyan and Mazur, 1989).

The shortcoming of the general formulation is its second-
order dependence on the parameters, which requires non-linear
least-squares or numerical integration for the solution of the
torsion space gradient at each step of the simulation. Here it
is noted that by separating the global motions from the internal
motions, one can partition the second-order problem into two
first-order problems. The first part is the solution of the torsion
space gradient for pairwise internal distances, which is sensible
because the energy calculations commonly used in molecular
simulations are functions of pairwise distance, not absolute
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position. The second part is the recovery of the global reference
frame by least-squares superposition. The new approach
amounts to solving two sets of linear equations at each step
of the simulation.

Internal coordinate molecular dynamics has been imple-
mented in several molecular simulation programs, especially
as a tool in X-ray and NMR structure refinement of proteins
(Guntert et al., 1997; Rice and Brünger, 1994). It has been
shown to be robust and fast relative to the Cartesian space
equivalent, providing the twin advantages of a longer time step
and freedom from geometric distortion at high temperatures.

Methods
The following is the derivation of the differential equations
for the torsion angle energy gradient, as a function of the
energy gradient in Cartesian space.

Newton’s second law may be expressed as

F
→

idx→i�v→idt � dt2 (1)
2mi

where x, v, F and m are the coordinates, velocity, force and
mass for atom i and t is time. The change in internal distances,
D, is

dDij�(dx→j – dx→i)•ûij (2)

where uij is a unit vector from atom i to atom j. The same
quantity may also be expressed as the sum of the contributions
of infinitesimally small torsion angular shifts over the set of
all intervening rotatable bonds Kij:

dDijdDij �Σ
k∈Kij

dθk (3)
dθk

where θk is the kth rotatable bond. In Equation (3), the
molecular topology is taken into account, so that only rotatable
bonds Kij that occur along the covalent connection from atom
i to atom j are used in the sum. The derivative in Equation
(3) is calculated as (see Figure 1)

dDij
� ûij•(ûk⊗r→kj) (4)

dθk

where ûij is a unit vector from xi to xj, ûk is a unit vector along
the axis of right-handed rotation (i.e. along the chemical bond
between the atom closest to i along the chain to the atom
closest to j along the chain, see Figure 2) and rkj is a vector
from any point on the axis of rotation to xj. By substitution,
we obtain

(dx→j – dx→i)•ûij � Σ
k∈Kij

ûij•(ûk⊗r→kj) dθk (5)

All terms except dθ can be computed from the coordinates.
For example, the Cartesian space energy gradient F may
be computed using the non-covalent terms in an AMBER
(Cheatham et al., 1999) or CHARMm force field (Lazaridis
and Karplus, 1999). There are as many such Equations (5) as
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there are internal distances Dij, which in principle number
N(N – 1)/2 where N is the number of atoms. In practice,
bonded atoms and atoms separated by only one atom along
the chain do not have intervening rotatable bonds and thus
have zero terms on the right-hand side of Equation (5). The
same is true for atoms that are both part of the same rigid
group, such as a phenyl ring.

Least squares
The torsional shifts dθ are solved using linear least squares.
To do so, the set of Equations (5) is multiplied by the transpose
of the matrix on its right-hand side:

mk(ij) � ûij•(ûk⊗r→kj) (6)

Note that the indices of m are k and ij, where the latter index
represents an atom pair; thus the double sum in the equation
below. Next we define the squared matrix M, whose ele-
ments are

Mki � Σ
i
Σ

j

mT
k(ij)mk(ij) �Σ

i
Σ

j

[ûij•(ûk⊗r→kj)] [I ûij•(ûl⊗r→lj)] (7)

Fig. 1. The geometry of torsional rotation, projected along the rotation axis
(center). The derivitive of the atom pair distance is the height of the triangle
ikj projected on a plane perpendicular to the rotation axis.

Fig. 2. The set Kij of torsion angles to be included in the summation for the internal distance i–�j in Equation (5) are the rotatable bonds along the
intervening covalent path (thick lines).
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and we define the vector A:

A
→

k � Σ
i
Σ

j

mT
k(ij) (dx

→
j–dx

→
i)•ûij � Σ

i
Σ

j

[ûij•ûk⊗r
→

kj)](dx
→

j–dx
→

i)•ûij (8)

Using Equations (7) and (8), the products of Equations (5)
and the transpose of (6), summed over all atom pairs ij, becomes

A
→

� Mdθ
→

(9)

Inverting M and multiplying, we obtain

M–1A
→

� dθ
→

(10)

A unique solution exists if the number of equations exceeds
the number of variables θ. However, care must be taken to
remove equations for torsion angles which have no dependent
internal distances. The only step left out in this derivation is
the matrix inversion in Equation (10), which is done using the
Cholesky decomposition (Press et al, 1992).

Note that the least-squares solution is an exact (within
numerical limits) correction for the angular decoupling effect,
also known as the Coriolis force, whereas previous, fast
heuristic approaches do not account for coupling between all
angular shifts simultaneously (Jain et al., 1993). In the absence
of an exact solution, the approximation errors (sinx µ x)
accumulate along the chain, manifesting in unstable behavior
at the ends of the chain and forcing a much smaller time step.

Generating Cartesian coordinates from torsion angles
The method has been applied to proteins. Using idealized
templates for the amino acids, the torsion-shifted protein
coordinates (x→T) may be quickly regenerated from the torsion
angles one residue at a time. The frame of reference for the
first residue is defined by the first three atoms in the chain.
The template coordinates are rotated and translated to the
reference frame and torsional rotations are applied to the
appropriate atoms. A set of three ‘dummy’ atoms, attached to
the carbonyl carbon, define the frame of reference for the next
residue and the cycle is repeated. At the end of the chain, the
first dummy atom becomes the terminal oxygen.



Derivation of equations of motion

Cartesian space velocities [vi, see Equation (1)] may be
calculated in the usual way,

v→i(t) � v→i(t – 1) � [F
→

i(t – 1)/mi]∆t

or numerically,
v→i(t) � [x→i(t) – x→i(t – 1)]/∆t

from the coordinates after least-squares superposition (see
below). The numerical method has the advantage of including
the effects of the constraints.

Global frame of reference
The previous derivations of these equations considered a global
frame of reference by linking the first atom in the chain to the
origin by its polar coordinates and two angles of global
orientation (Mazur et al., 1989; Jain et a.l, 1993). Since there
are no forces between the atoms and the origin, the least-
squares approach described above breaks down. In a single
molecule system, there is no potential energy difference
between globally rotated or translated molecules that are
otherwise identical. However, a global frame of reference must
be considered, even in a single molecule system, to account
for velocity-dependent forces.

The local frame of reference for each molecule may be
defined, arbitrarily, as the reference frame of the first residue
in the first cycle of the simulation. For subsequent cycles, the
coordinates, x→T(t), are least-squares superimposed (Kabsch,
1976) on the Cartesian-shifted coordinates, x→T(t – 1) � dx→.
This gives the model the same global translational and angular
momenta as an equal time step in Cartesian space, while
enforcing torsional constraints, since least-squares superposi-
tion effectively cancels overall translational and angular
momenta (Zhou et al., 2000).

Using this two-step approach, a torsion space molecular
dynamics simulation should conserve momentum to the degree
that a Cartesian space simulation conserves momentum, since
the torsion space shifts have been fit to the Cartesian space
shifts. Conservation of energy was demonstrated for an earlier
implementation of constrained torsion space dynamics (Mazur
et al., 1992), even for time steps that are an order of magnitude
longer than the longest Cartesian space time step.

This treatment of the global motions in Cartesian space is
preferable to the alternative of treating the molecule as a rigid
body and using Euler’s equations to apply the overall motions.
A rigid body model of the intermolecular collisions is likely
to be a poor approximation, since such flexible-chain collisions
are likely to be more inelastic than elastic.

Results and discussion
By simply converting the problem to internal distances, solving
the equations of motion in torsion space becomes a linear
least-squares problem that is easily and rapidly computed at
each step of a constrained molecular dynamics simulation.

Although bond stretching and bond bending were omitted
for simplicity, a close analogy of Equation (3) can be drawn
for these types of motion. Since both stretching and bending
are linear sums over the set of intervening bonds in the chain,
the derivation proceeds as for torsion angles and only the book-
keeping of angle/distance dependences is changed. (Bending is
identical with torsional rotation, but with a different axis
of rotation.) However, the best justification for the extra
computational expense of using internal coordinate equations
of motion is that bond bending and stretching, the fastest
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Fig. 3. Runtime complexity of program PROTEAN. CPU time per cycle
(ms) was averaged over 1000 cycles using a typical protein sequence, using
a 733 MHz Pentium III computer running Linux 7.0. Runtime is O(NlogN)
for short chains and O(N2) for longer chains.

oscillating and perhaps least interesting of the internal motions,
are easily eliminated from the equations. Eliminating the fastest
motions from the simulation allows a longer time step to be
used and may speed up the simulation by as much as 10-fold
(Mazur et al., 1992).

Implementation
Torsion space dynamics using the new formulation are imple-
mented in a new Fortran program (PROTEAN) that simulates
polypeptide chains in implicit solvent. Testing on well-studied
peptide systems and a comparison with AMBER 6.0 using
will be published separately. The torsion angle to atom-pair
dependences (the lists Kij of intervening torsion angles) are
‘hard-wired’ for non-cyclic polypeptides, enforcing the require-
ment that the sum in Equation (5) is carried out over only the
torsion angles that fall between the two atoms in the chain.
Cyclic structures (i.e. the proline pyrolidine ring ) are treated
as rigid bodies and disulfide bonds, which would create
covalent cycles, are not constrained but instead restrained to
their ideal bond lengths. Flexible bond lengths and angles are
not allowed in the current implementation.

Runtime complexity
The runtime complexity for this algorithm is quadratic in the
number of atoms [note the double sum in Equations (7) and
(8)] and of order O(NlogN) in the number of variable torsion
angles (the runtime order of the Cholesky decomposition).
These runtimes represent sequential program units and are
therefore additive rather than multiplicative. Since the summa-
tion step is generally fast relative to the matrix inversion step,
the effective runtime order is NlogN for chains up to 40 amino
acid residues in length and thereafter quadratic. Figure 3
shows actual runtimes in milliseconds/cycle for variable-length
fragments of a compact 60-residue protein, performed using a
733 MHz Pentium machine running Linux 7.0.
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