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ABSTRACT Knowledge-based potential func-
tions for protein structure prediction assume that
the frequency of occurrence of a given structure or a
contact in the protein database is a measure of its
free energy. Here, we put this assumption to test by
comparing the results obtained from sequence-
structure cluster analysis with those obtained from
long all-atom molecular dynamics simulations. Sixty-
four eight-residue peptide sequences with varying
degrees of similarity to the canonical sequence pat-
tern for amphipathic helix were drawn from known
protein structures, regardless of whether they were
helical in the protein. Each was simulated using
AMBER6.0 for at least 10 ns using explicit waters.
The total simulation time was 1176 ns. The resulting
trajectories were tested for reproducibility, and the
helical content was measured. Natural peptides
whose sequences matched the amphipathic helix
motif with greater than 50% confidence were signifi-
cantly more likely to form helix during the course of
the simulation than peptides with lower confidence
scores. The sequence pattern derived from the simu-
lation data closely resembles the motif pattern de-
rived from the database cluster analysis. The difficul-
ties encountered in sampling conformational space
and sequence space simultaneously are discussed.
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INTRODUCTION

How is a database like a force field? It sounds like a
riddle, but knowledge-based empirical energy functions
make an implicit assumption that the database is, in some
sense, an equilibrium sample of states. We assume this
when we derive “energies” from database counting statis-
tics. By directly comparing a physics-based force field to
one derived from database statistics, we can test this
assumption.

The helix propensity of a short sequence may be derived
from the statistics of sequence-structure correlations, ei-
ther using neural nets, profiles, or hidden Markov mod-
els.1–6 These methods have been shown to predict helices
accurately in short windows of protein sequences. This

suggests that the energetic stability of the helix is intrinsic
to the helix sequence, and does not come from tertiary
interactions.

However, helices in proteins are mostly amphipathic,
with a characteristic “heptad repeat” sequence pattern.7

One side of the helix has hydrophobic side-chains that
pack against another hydrophobic surface on the protein,
such as another helix or a sheet. The tertiary hydrophobic
interactions would stabilize the helical structure even if it
were not stable on its own. We may call this the “template
effect,” similar to the concept of “induced fit” in substrate
binding. Either the template effect or intrinsic helicity
would equally well explain the success of knowledge-based
helix prediction methods, because the proteins used to
validate the methods generally also have the hydrophobic
template. Figure 1 illustrates the template concept by
showing the location of the surrounding protein relative to
30 superimposed amphipathic helices, chosen at random.

Can a knowledge-based method predict helix propensity
in short peptides, where there is no template effect?
Structures of short peptides, and especially peptides that
do not form a stable structure, are not readily available,
despite considerable effort using nuclear magnetic reso-
nance (NMR8–12). Therefore, to answer this question, we
compare the knowledge-based helix predictions of the
I-sites library3,13 with helix content estimates derived
from explicit molecular dynamics (MD) simulations, per-
formed using AMBER.14,15

AMBER uses pairwise atom–atom distance-based en-
ergy functions, including harmonic restraints on covalent
geometry, torsion angle potentials, van der Waals interac-
tions, and Coulomb’s law to simulate the trajectory of a
peptide in explicit aqueous solvent. We may estimate helix
propensity by counting the occurrence of helix in a long
simulation of a fully solvated peptide. As the length of the
simulation increases, so does the reproducibility of the
propensity measure. Several recent articles have reported
simulation studies of short peptides over timescales rel-
evant to the peptide folding process that are also beginning
to overlap with the timescales of fast experimental meth-
ods.16–20
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I-sites is a library of sequence motifs, described as
20-by-L log-likelihood matrices, where L is the length of
the motif (3 � L � 19). Each motif is derived by summing
the frequencies of each of the 20 amino acids at each of the
L positions over a large set of protein fragments with the
same three-dimensional structures. Using the motif for
eight-residue amphipathic helix (I-sites motif 8055), we
may estimate helix propensity of an eight-residue peptide
sequence by summing the log-likelihood score. I-sites
predictions have been validated in “CASP” experiments,13

and several short peptides with known solution structures
fold to the conformation predicted by I-sites.9,10,21–25 The
structure of a seven-residue I-sites “diverging turn” motif
has been solved by NMR12 and was also found to be stable
using free-energy calculations.26

Knowledge-based and physics-based potentials have
been previously compared in their application to the fold
recognition problem.27,28 But in this arena, the physics-
based potentials have a distinct disadvantage, because no
simulation of the equilibrium distribution of conforma-
tional states is possible. Detailed simulations using physics-
based potentials such as AMBER or CHARMm29 are
limited to fairly short peptides, the longest attempted
being 36 residues.30

In this study, we selected 64 eight-residue peptide
sequences from proteins of known structure. About half of
these sequences match the amphipathic helix motif with a
high score. If the intrinsic stability hypothesis holds true,
then the high-scoring group should be more helical in the
MD simulations than the low-scoring group.

We are aware of many difficulties involved in performing
meaningful comparisons of the sort proposed here. Both
MD and bioinformatics have their limitations. For ex-
ample, the validity of classical force fields used in MD
simulations for peptide structure predictions as well as the

ability of conventional MD simulations to sample conforma-
tion space has not been firmly established. Statistical
approaches, however, are computationally efficient but do
not have access to the underlying physical sources of the
statistics. Sparse sampling of sequence space means that
only general patterns may be discovered, and we are forced
to assume that different positions contribute indepen-
dently (additively) to the “energy.” The currently used
knowledge-based approaches are imperfect31 and continue
to be developed.

Despite the difficulties, we find that there is much to be
learned from combined MD/bioinformatics approaches. We
comment on ways to overcome the aforementioned difficul-
ties and present suggestions for improving the existing
I-sites library for better peptide local structure predic-
tions. Connecting the protein database with the fundamen-
tal forces of nature may eventually tell us something about
how proteins fold.

METHODS
The Sequence and Structure Database

The database for the development of the I-sites library,
including the motif studied in this work, consists of 471
protein sequence families from the HSSP database.32 Each
sequence family contains a known structure from the
Protein Data Bank (PDB).33 These 471 families are a
subset of the PDBSelect25 list of non-redundant sequence
families32 (October 1997 release), having no more than
25% sequence identity between any two families. Families
in the PDBSelect25 list were excluded if the parent
structure was not well determined, if the protein was
membrane-bound, or if it contained a large number of
disulfide bonds. Disordered loops were omitted. Gaps and
insertions in aligned sequences were ignored.

The I-sites Library

The I-sites library is a collection of short sequence
patterns that correlate with local structure.3 They are
“motifs” in the sense that they map sequences to struc-
tures. The motifs were learned from the database using an
iterative clustering/reenforcement learning approach. In-
cluded in the library are a total of 262 sequence patterns
for beta-turns, bulges, half-turns, loops, strands, helix
caps, and alpha helix. Sometimes more than one sequence
motif maps to the same structure type. In this study, we
discuss only the amphipathic helix motif with the I-sites
identifier 8055. For more information, see http://isites.bio.
rpi.edu.

Peptide Selection

All-eight-residue sequence segments from the non-
redundant database of known protein structures were
scored versus the motif 8055, as described below. The 64
sequences selected for study were chosen at random from
this list, with a bias toward the higher-scoring peptides,
such that both extremes of the confidence range (0–1.0)
are well represented.

Fig. 1. The database-averaged environment of an amphipathic helix.
Dots represent the positions of non-local alpha carbons relative to an
amphipathic helix. One hundred examples of amphipathic helix were
superimposed with the nonpolar side up. This illustrates the conserved,
nonspecific interactions that may have a role in inducing helix formation.
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Estimation of I-Sites Confidence for Helix
Formation

The method for obtaining an I-sites score has been
described previously,3 and is repeated here for clarity.

The I-sites confidence score for amphipathic helix is
calculated in four steps. First, the sequence of the protein
is aligned to its homolog sequences using Psi-Blast.34

Then, the multiple sequence alignment is condensed to an
amino acid probability profile,35 using sequence weights to
correct for evolutionary biases in the homolog set.36 Third,
each eight-residue window of the profile PT is scored
versus the motif profile PM using the following equation:

S�t� � �
i�0,7

�
a�1,20

log�P�t � i�a
T � �Fa

�1 � ��Fa
�log�Pia

M � �Fa

�1 � ��Fa
� (1)

where Pia is the probability of amino acid a at position i.
Superscript T denotes the target sequence, t is the start of
the eight-residue window in T, and superscript M denotes
the I-sites scoring matrix for motif 8055. Fa is the overall
frequency of amino acid a in the database. � is a
“pseudocount” used to buffer the effect of low counts. � �
0.5 was used.

Finally, the score S(t) is mapped to a confidence using a
precalculated histogram of scores for known proteins,
plotted against the fraction helical. Figure 2 shows a plot
of points representing bins of similar-scoring sequences,
their average score versus percent helix. This curve maps
each score (S) to a confidence.

Note that the information used in this scoring method
normally comes from a sequence family, not from a single
sequence. Implied in this approach is the idea that all
homologs have the same local structure in the aligned
positions. This is a common assumption in deriving knowl-
edge-based potentials, and will be discussed later.

Simulation Details

MD simulations were performed at constant tempera-
ture (340 K) and pressure (1 atm) for a solution containing

one peptide, solvated by approximately 850 TIP3P water
molecules and sodium or chloride ions required to neutral-
ize the charge on the peptide. Peptides were N-terminally
acetylated and C-terminally methyl-amidated, or un-
capped, as indicated under “capped” in Table 1. Simula-
tions were performed using AMBER6.014,15 with the
“parm94” forcefield.37 The simulation temperature, 340 K,
was found to maximize conformational sampling without
unfolding helices. At lower temperatures (280–320 K), we
observed high barriers to backbone conformational shifts.

Periodic boundary conditions were applied, and electro-
static interactions were calculated using the particle mesh
Ewald (PME) method.38 Bonds involving hydrogens were
constrained using the SHAKE algorithm39 and Berends-
en’s coupling algorithms were used to maintain constant
temperature and pressure.40 Either extended or a random
initial configuration was equilibrated for at least 1.0 ns.
Productions runs of 10 to 30 ns were then performed, and
configurations were stored every picosecond for further
analysis.

Clustering of Trajectories

Clustering was done to evaluate the sampling of confor-
mational space. Conformations of a given peptide in a
molecular dynamics trajectory were clustered using a
modified “greedy” approach. Two metrics were used to
assess the similarity between any two peptide conforma-
tions: first, the maximum difference between backbone
phi/psi angles (mda) over the central six residues,

mda �
max
i�2,7 ���i, ��i� (2)

and second, the root-mean-square difference between inter-
nal C�–C� distances, or “distance matrix error” (dme):

dme �
��

i�4

8 �
j�1

i�3

�dij
s1 � dij

s2�2

15 (3)

where dij
s1, dij

s2 are the distances between alpha-carbons i
and j in conformations s1 and s2, respectively. The dme
and mda were calculated between each pair of configura-
tions and a cutoff was applied. Pairs of configurations were
linked by an edge if both metrics fell below their respective
threshholds (dmecut, mdacut); otherwise they were un-
linked. The configuration with the greatest number of
edges was selected as the center of the first cluster, and
every configuration with an edge to the center was placed
into a cluster. The cluster was removed, and the process
was repeated until no configurations remained.

The combination of the two metrics (dme and mda) was
found to be the best descriminator for finding correlations
between sequence and structure.3 The cutoff values
(dmecut, mdacut) were refined by inspecting the clusters.
The cutoff values were raised if two clusters seemed to be
too similar, or lowered if a single cluster was found to
contain two or more dissimilar conformations. The optimal
cutoff values, found by trial and error, were dmecut � 1.3
Å and mdacut � 60°.

Fig. 2. Confidence curve for I-sites motif 8055. The top-scoring 52000
sequence profile segments of length 8 in the dataset that was used for
training the I-sites library were sorted by score, and separated into bins of
500. Each point represents the average score (see Eq. 1) of one bin (S)
versus the fraction of those 500 peptides whose backbone angles
matched the helix motif (confidence).
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TABLE I. Sixty-Four Peptides Studied by MD, Sorted by Confidence†

Peptide sequence I-sites confidence Helicity Length of trajectory (ns) Helix in context? Capped?
1 YESHVGCR 0.03 0.21 14.00 No No
2 KQDKHYGY 0.03 0.00 16.28 No Yes
3 IEHTLNEK 0.03 0.04 21.93 Yes No
4 TLNEKRIL 0.03 0.36 15.99 Yes Yes
5 DELTRHIR 0.04 0.74 11.32 Yes No
6 PLQHHNLL 0.04 0.35 21.00 No No
7 KKYRPETD 0.04 0.00 13.49 No No
8 IQNGDWTF 0.04 0.31 20.21 No Yes
9 KPMGPLLV 0.04 0.06 28.00 No Yes

10 KSYLRSLR 0.05 0.59 19.81 Yes Yes
11 LDLHQTYL 0.05 0.06 20.21 Yes No
12 AKELVVVY 0.05 0.00 17.97 Yes No
13 QDDARKLM 0.06 0.24 21.00 Yes No
14 SCDVKFPI 0.06 0.00 21.00 No No
15 AFDGETEI 0.06 0.24 21.94 No No
16 FYSSYVYL 0.06 0.16 27.20 Yes No
17 NETHSGRK 0.06 0.00 16.90 No No
18 KNPDNVVG 0.07 0.00 15.96 No No
19 FSVMNDAS 0.09 0.82 10.66 No Yes
20 EKPFGTSY 0.10 0.00 14.00 No No
21 NFLEVGEY 0.11 0.19 27.84 Yes Yes
22 CNGGHWIA 0.12 0.04 21.77 No No
23 RGERRGAP 0.12 0.14 28.00 No Yes
24 KQAHPDLK 0.14 0.02 14.00 No No
25 RIILDRHR 0.16 0.80 21.00 No No
26 YASLRSLV 0.17 0.91 11.10 Yes Yes
27 PRDANTSH 0.21 0.15 21.00 No Yes
28 AANRSHMP 0.23 0.13 18.24 No No
29 FHMYFMLR 0.23 0.86 20.10 Yes Yes
30 AKGVETAD 0.28 0.03 20.19 Yes No
31 RVLGRDLF 0.46 0.20 21.55 Yes No
32 AARYKFIE 0.54 0.05 14.00 No No
33 GQLMALKQ 0.54 0.88 20.66 Yes Yes
34 HNLIEAFE 0.62 0.75 21.00 No Yes
35 DYVRSKIA 0.70 0.59 14.76 Yes No
36 TEVMKRLV 0.78 0.28 14.00 Yes No
37 QGIIDKLD 0.86 0.44 21.78 Yes No
38 DEAIDAYI 0.86 0.60 15.14 Yes Yes
39 RDFEERMN 0.93 0.42 11.59 Yes Yes
40 RPIARMLS 0.93 0.48 20.34 Yes No
41 KAAIAQLR 0.93 0.76 17.28 Yes Yes
42 EKLLESLE 0.93 0.95 21.50 Yes Yes
43 PAIISAAE 0.93 0.58 17.56 Yes Yes
44 NAIIQELE 0.93 0.21 30.06 Yes No
45 AAALDRMR 0.93 0.93 20.54 Yes Yes
46 GALLDMIQ 0.93 0.77 20.08 No Yes
47 KRIIDGFK 0.93 0.25 14.00 Yes No
48 QDMANWVM 0.93 0.51 11.68 Yes Yes
49 QVFMRIME 0.93 0.00 17.23 Yes Yes
50 VQTLAAYE 0.93 0.46 14.59 Yes Yes
51 EEMVSKLK 0.93 0.75 17.40 No Yes
52 EKLEATIN 0.93 0.63 13.70 Yes Yes
53 EQMQREIF 0.93 0.48 15.91 Yes No
54 ESMAERFA 0.93 0.60 21.00 Yes Yes
55 KELQRIFW 0.93 0.60 13.05 Yes Yes
56 NDFEDMMT 0.93 0.91 17.41 Yes Yes
57 RAFQELLE 0.93 0.82 22.00 Yes Yes
58 RSFDDAMA 0.93 0.58 14.00 No No
59 SRTRELLA 0.93 0.63 21.00 Yes No
60 ADFKAAVA 0.93 0.86 21.00 Yes Yes
61 EDLVERLK 0.93 0.00 17.52 No Yes
62 KKLQKLID 0.93 0.01 26.41 Yes No
63 QTLAQLSV 0.93 0.83 13.50 Yes No
64 ADFKAQFT 0.93 0.83 10.40 Yes Yes
Total simulation time � 1175.8
†Columns are as follows: (1) Amino acid sequence. (2) Confidence: I-sites score for motif 8055. (3) Helicity: fraction helix observed in the
MD simulation. (4) Length of the simulation. (5) Yes if the sequence is a helix in the parent structure; otherwise, no. (6) Yes if the peptide
had acetyl and methyl amide capping groups; otherwise, no.
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Measuring Helicity in MD Trajectories

A configuration was considered to be alpha-helical if its
backbone atoms (N, CA, C, and O) deviated from an ideal
helix by 	1.5 Å root-mean-square distance (RMSD).

The total helical content (helicity) of the trajectory was
the number of alpha-helical configurations divided by the
total number of configurations.

Total helicity (H) for a set of peptides k was calculated by
summing the total time spent in the helix conformation, as
follows:

H �

�
k

h�k�*t�k�

�
k

t�k�
(4)

where h(k) is the helicity of peptide k, t(k) is the length of
the trajectory.

AGADIR predictions

AGADIR41 predictions of helicity were calculated using
the March 2001 version of the web-server (http://www.embl-
heidelberg.de/services/), pH 7.0, T � 278 K, ionic strength
� 0.1. Both un-capped and N-terminally acetylated, C-
terminally amidated sequences were submitted. Logistic
regression analysis of the combined AGADIR and I-sites
predictions was done using Excel (Microsoft, Redmond,
WA) and other programs.

Correlations

Pearson correlations (r) are calculated using the stan-
dard equation:

r �

�
i

�xi � x���yi � y��

��
i

�xi � x��2 �
i

�yi � y��2
(5)

The significance of the correlations can be measured by
computing the probability, P, of finding a correlation r,
given that the true correlation is zero, and having N
observations:

P � erfc��r��N/2� (6)

where erfc is the complementary error function.

RESULTS AND DISCUSSION

Table I summarizies the data for the 64 peptides stud-
ied. Here we present evidence that the simulations were
sufficiently equilibrated to draw broad conclusions over
groups of peptides. Then we show that the observed
helicities correlate with I-sites confidence values as well as
with AGADIR helix propensity values. We also show that
capping the ends of eight-residue peptides increases helic-
ity.

Conformational Equilibrium

The measure of helicity in the simulations is accurate to
the extent that the conformational space of the peptides is
representatively sampled. Although individual peptides

may not have been well sampled, the collective sampling of
groups of peptides is likely to have been good, and conclu-
sions can be drawn about the collective energy landscape,
for example, of all peptides with higher than 0.50 confi-
dence, or all capped peptides.

Molecular dynamics trajectories can be used to character-
ize the energy landscape of the system.42 A qualitative
assessment of the degree of equilibrium for each peptide
was made as follows. The time course of the simulations
was plotted using the clustered conformational states,
numbered by cluster size with number one being the
largest cluster. Figure 3 illustrates clustered trajectories
for eight representatives of the 64 simulations. The trajec-
tory was then divided into two equal parts and the first
part compared with the second. Some simulations clearly
converged, sampling from the same set of conformations in
the first half of the trajectory as in the second half (for
example, see GALLDMIQ). Other peptides showed rough
energy landscapes where trapped conformations persisted
for many nanoseconds (see NAIIQELE).

We defined three degrees of roughness (or equivalently,
degrees of equilibrium) based on the cluster analysis: (1)
“Rough” energy landscapes had different first (largest)
clusters in the first and second halves of the simulation.
Overall, 29 of the 64 peptides had rough energy landscapes
similar to the peptides NAIIQELE, KKLQKLID, and
RPIARMLS in Figure 3. (2) “Medium” energy landscapes
had the same first cluster in both halves, but different
second clusters. Twenty-two of the 64 peptides had me-
dium degrees of roughness, like RAFQELLE and DEL-
TRHIR in Figure 4. (3) “Smooth” energy landscapes had
the same first and second clusters in both halves. Thirteen
of the 64 had “smooth” landscapes, similar to peptides
AAALRPMR and GALLDMIQ.

Example of a Peptide Energy Landscape

Figure 4 shows the trajectory for a typical peptide,
RPIARMLS, in greater detail. The boxed stereo images
show a sampling of the six largest clusters. The clusters
satisfy the two clustering conditions defined in Methods,
that no two clusters look similar, and no single cluster
looks like two species (only the backbone atoms are
considered). In some cases, the difference between the
cluster conformations is subtle, involving only one or two
backbone angles. The arrows indicate the flow of simula-
tion time. Some transitions between conformational states
are one-way, suggesting that a transition was made from a
metastable state to a significantly lower free-energy state.
In other cases, two clusters interchange frequently, sug-
gesting a low barrier and similar energies. In this ex-
ample, after about 7 ns, the remaining trajectory can be
described as “smooth” (see Fig. 3).

Despite the appearance of the trajectory as smooth, one
can never be sure that the equilibrium state has been
sampled. It is possible that metastable trapped states may
have persisted throughout the length of the simulation in
some cases (see discussion of EDLVERLK, below). How-
ever, this is increasingly unlikely as the length of the
simulation increases, and even less likely to be significant
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when considering collective statistics summed over many
peptides.

Confidence Versus Helicity

Table I lists the I-sites confidences and the helicities in
MD simulations for 64 peptides. Thirty-three of these
peptides had confidences 
0.50 and 31 had confidences
	0.50. For the low confidence set (594 ns total simulation
time), the total helicity was H � 0.23. For the high-
confidence set (582 ns), H � 0.56. Unweighted averages of
the helicity are similar to the weighted averages, 0.25 for
the low-confidence set, 0.56 for the high-confidence set.
The probability that the two sets of data are drawn from
the same distribution, calculated using the Student’s t
test,43 is P � 1.94E-05. Figure 5a shows the boxed 95%
confidence regions for each set.

Although significant differences can be found between
two classes of peptides (greater than and less than 0.50
confidence), the data are insufficient to find a significant
intermediate class. Better sampling of peptides of interme-
diate confidence might eventually make this possible. But
the two-state result is not unexpected given the two-state
behavior of cooperative folding units such as helices.

Helicity in Simulations Versus Helicity in Context

The overall helical content of peptide simulations was
found to be 30–70% of the value expected based on
database statistics. The range depends on the choice of
cutoff value for defining a helix. The low end (30%) uses the
definition of helix described in the methods (RMSD 	 1.5
Å), whereas the high end (70%) also includes all non-
helical members of “helical” clusters—clusters for which

Fig. 3. Sampling of the five largest clusters, plotted versus time (nanoseconds), for selected peptide
simulations. The first 1 ns is omitted in all figures and in the cluster analysis. Cluster 1, the largest cluster, is
helical for all peptides shown here except FYSSYVYL and KKLQKLID.
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the cluster paradigm is helical in residues 2–7. These
“near-helix” conformations might collapse to a helix at
lower simulation temperatures. The temperature, 340 K,
was chosen to improve sampling. By either measure, the
PARM94 force field37 seems to underestimate helix, con-
trary to popular belief.44 Alternatively, the underestima-
tion might be attributable to the absence of the “template
effect” in the simulations, as discussed above.

The accuracy of MD as a predictor of helix can be
assessed for the peptides studied here. Of the 32 peptides
with the lowest helicity (average helicity � 0.12), 44% are
helix in context. Of the 32 peptides with the highest
helicity (average helicity � 0.71), 81% are helix in context.
If the cutoff for helix prediction is set at 0.16 helicity (the
optimal setting), then the two-state prediction accuracy is
75% and the false-negatives approximately balance the

Fig. 4. The rough-energy landscape of peptide 40, RPIARMLS. Each boxed stereographic figure contains a randomly selected sample of the cluster,
least-squares superimposed. Side-chain atoms are in yellow. Arrows show the direction of simulation time. Dotted lines surround pairs of clusters that
interchange reversibly.
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false-positives. This result is comparable to the accuracy of
the I-sites method on the 64 peptide set (73%). These
numbers cannot be directly compared with the accuracy of
secondary structure prediction algorithms1,2,5,6 which use
three single-residue states, whereas here we have two
eight-residue states.

If we accept the results of the simulations as the gold
standard for helicity of peptides in isolation, then the
missing overall helicity, and the missed predictions, must
be attributable to the missing tertiary interactions. How-
ever, the simulations are imperfect. The presence of a
large fraction of near-helix conformations suggests that
the underprediction is mostly a temperature effect. Also,
many of the missed predictions can be rationalized without
invoking the template effect. Five representative cases are
discussed in detail further on.

Capping and Helicity

A significant increase in helicity of eight-residue pep-
tides is seen upon capping the ends N-terminally with an
acetyl group and C-terminally with a methyl-amide (Fig.
5b). The test for independence (t test) of helicity values (H)
indicates that capped versus un-capped helicity values are
unlikely to be chance occurences (P � 1.0E-05).

This result can be partially explained by salt-bridge
interactions with the charged ends. Some of the uncapped
peptides are observed in trapped non-helical states involv-
ing salt-bridges with the charged termini. These conforma-
tions would be impossible if the ends were capped (see
discussion of NAIIQELE, below). There is no correlation

between capping and confidence. Therefore, the confidence/
helicity statistics reported above are not the result of
capping.

AGADIR and Helicity

AGADIR is a knowledge-based potential function for
helix prediction. It is trained on experimental data for
designed short peptides (circular dichroism and NMR).
Helix propensity predictions using the AGADIR method
can be compared to helicity in the same way as the I-sites
confidence values. The 30 peptides with the lowest propen-
sities (	0.05) had significantly lower (P � 1.95E-05)
helicities than the 34 peptides with high propensities
(�0.05). Figure 5c shows the boxed 95% confidence regions
for helicity of peptides of low and high AGADIR propen-
sity. Interestingly, there is little correlation between the
I-sites confidence values and the AGADIR helix propensi-
ties (r � 0.33).

AGADIR predictions were low in general (2.5% over the
whole set), compared with the helicity observed in the
simulations (21% overall). I-sites predictions are high
(52% overall). AGADIR helicity predictions for uncapped
sequences had lower values and lower correlations. The
low correlation between I-sites and AGADIR propensity
measures (r � 0.33) is not surprising because the dataset
of peptides used to develop the AGADIR potential con-
sisted of mostly non-natural sequences and I-sites uses
only natural sequences. An optimized linear combination
of the two methods gave a better correlation between a
sequence score and helicity. A slightly better helix predic-

Fig. 5. Statistics for helicity of approximately equal-sized sets of peptides. (a) Low confidence (	0.50)
versus high confidence (
0.50) peptides; boxes mark the 95% confidence intervals. The horizontal line within
the box marks the median. The vertical I-beams show the extremes of the data, excluding outliers, circles.47 (b)
Helicity for low-propensity (	0.2) and high-propensity (
0.2) peptides accoridng to AGADIR. (c) Helicity for
uncapped versus capped peptides.
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tion score can be obtained using a linear combination,
0.25c � 0.75a, where c is the I-sites confidence and a is the
AGADIR propensity. The t test is significantly improved,
P � 4.52E-07, indicating that the two prediction methods
are probably complementary.

Helix Amino Acid Profile From MD

Figure 6a shows the amino acid probability profile for
helices in the context of proteins, summed using the
protein structure database as described earlier. We can do
a similar summation using the 64 MD simulations. To
illustrate the sequence sampling at each position, we
simply count the occurences of each amino acid at each
position. To get the profile for helix, we weight each count
by the helicity of that peptide. The results show that
certain generalities that we are familiar with in helix
sequences also show up in the sequence space of peptide
simulations.

Figure 6b shows the profile of the unweighted peptides
using a color scale. The overall sampling of amino acids is
fairly flat, with a slight bias toward nonpolar side-chains
at positions 3 and 7, and polar side-chains at positions 1
and 5, because of the oversampling of higher-confidence
sequences (see Methods).

Figure 6c is the profile with helicity weighting. The
weighted profile resembles the I-sites motif profile (Fig.
6a). Glycines are less probable in all positions except the
first. Position 3 prefers hydrophobic side-chains and posi-
tion 5, polar side-chains. The weighted profile predicts
helix in the database much better than the unweighted
profile (data not shown), even when the peptides used here
were removed from the database.

Rules and Exceptions

The general trend in this study is that peptides that
match the amphipathic helix sequence pattern form more
helix in MD simulations. However, some of the “outlier”
peptides point to problems and possible improvements in
the bioinformatics-based method as well as new strategies

for peptide simulations. Here we discuss first a typical
case, then some of the more obvious false-negatives and
false-positives.

A Typical Case
RPIARMLS

This peptide is predicted to be helical (cf � 0.93), and
does form a helix after 7 ns of a 20-ns trajectory. Clustering
of conformations of this peptide identifies six distinct
conformational states that account for 72% of the conforma-
tions observed in the trajectory. These six conformational
states are shown in Figure 4. One of the trajectory images
in Figure 3 shows the order of occurrence.

We find relatively quick back and forth exchanges
between clusters 2 and 5 as well as between 1 and 3,
indicating lower energy barriers between these states.
States 2 and 5 have a salt-bridge interaction between R1
and the (un-capped) C-terminal carboxylate, but lack the
I3, M6, L7 hydrophobic cluster. Although the charge
repulsion is present between residues R1 and R5 in the
helical state, it is minimized by the rotation of R1 psi
angle. This leads to sacrifice of one i � i � 4 backbone
H-bond but does not disrupt the helical state.

We also observe (in Fig. 3) that once states 2 and 5 are
visited, there are no back transitions to state 4, indicating
that state 4 may have considerable higher energy com-
pared with 2 and 5. A similar lack of back transitions is
also observed from states 1 and 3 to 2 and 5. A more careful
analysis of first passage times and related survival prob-
abilities may provide a complete picture.

False-Negatives: Sequences That Formed Helix but
Were Predicted Not to Form Helix
DELTRHIR

In the zinc-finger protein (PDB code IZAA, chain C,
residues 20–27), this sequence forms a helix with an
internal salt-bridge (D1-R5) and a hydrophobic contact
(L3-I7). The simulation reproduces the structure in the
context of the protein, but the I-sites confidence is low

Fig. 6. A survey of eight-residue sequence space explored in this study condensed to sequence profiles by
summing the frequencies of each of the 20 amino acids at each position. Position is left-to-right along the
bottom, and the color scale is blue (	0.5 times the average amino acid probability), through green (average
probability), to red (
2 times the average). Green is the average frequency. (a) The I-sites motif 8055 scoring
matrix, (b) The unweighted amino acid profile of the 64 peptides selected for study. (c) The helicity-weighted
amino acid profile.
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because many of the sequence homologs of IZAAC do not
conserve a hydrophobic side-chain at position 26 (peptide
residue I7); instead, Q and other polar residues align to
that position. If all homologs are ignored, then the confi-
dence increases to 0.49. This outlier points to a possible
error in assuming that the local structure is conserved in
homologs. It also points to an underestimation of the
importance of salt-bridging side-chains in the I-sites score.

KSYLRSLR

This sequence comes from the tyrosine kinase domain
(PDB code IIRK, residues 1085–1092) where it forms a
helix. The 19.8-ns trajectory contained 65% helix. This
false-negative I-sites prediction (cf � 0.05) resulted from
bad alignment data and the assumption that aligned
sequences have the same structure. If the peptide is
considered on its own, the helix confidence is much higher
(cf � 0.44). Closer inspection of the sequence alignment
reveals gaps and insertions in this eight-residue window.
The homolog sequences cannot have a helix in this same
position, because gaps or insertions would disrupt the
helix. A suggested improvement would be to trim se-
quences from the alignment wherever gaps or insertion
occur, and only consider the gapless alignments. This
might amplify the true conservation pattern and improve
the accuracy of the confidence estimations.

False-Positives: Sequences That Were Predicted to
Form Helix But Did Not
QVFMRIME

This peptide is predicted to form helix (cf � 0.93), and
does so in context (2DLD, 159A–166A), but forms 	1%
helix in the simulation. The largest cluster is helix on both
ends, but the central methionine (M4) has a positive phi
angle, which is energetically unfavorable. The AMBER
parm94 forcefield assigns an energetic penalty to positive
phi angles for non-glycine residues, but it is not known
whether the energy balance is correct.

EDLVERLK

Residues 2–8 of this peptide are helical in the context of
the protein (PDB code 1QOR, residues 195A–202A), but
residue 1 is not. The 17.5-ns-long MD simulation, however,
shows no helix formation at all. Like charges occurring at
positions 1 and 5 would in principle repel each other in a
helix, but in the native conformation they do not, because
the side-chain of E1 can rotate away from E5. However,
positions 2,6 and 5,8 are oppositely charged pairs, forming
salt-bridges that would stabilize a helical state. Positions
3,4 and 7 would fall on one side of helix forming a
hydrophobic cluster. Despite the circumstantial evidence
of intrinsic helicity, the simulation converged on a non-
helical conformation in which the two native salt-bridges
form (D2-R6, and E5-K8) but the hydrophobic cluster does
not. By eyeball inspection, this state seems like it would
have a higher free energy than the native state, which has
the hydrophobic cluster in addition to the two salt-bridges.
If so, then the simulation after 17.5 ns is still trapped in a
local minimum. Several other high-confidence peptides are
also found in putative “trapped” states (NAIIQELE and

RPIARMLS), which may be identified as long-lived, non-
native conformations stabilized by favorable interactions,
usually salt-bridges.

NAIIQELE

This peptide is predicted to form helix (cf � 0.93), and
forms helix in the context of the protein (1BGW 1047–
1054). But the peptide forms helix in the simulation only
after about 16 ns of a 30-ns trajectory. In the first 16 ns, it
passes through two trapped states (clusters 2 and 3 in Fig.
3), both involving a salt-bridge between the un-capped N
and C termini. The C-terminal glutamate provides two
carboxylate groups to pair with the free N-terminus,
increasing the chances of this interaction. These interme-
diates do not form a hydrophobic core. A sharp transition
occurs at 13 ns with the flipping of a single dihedral. A 180°
flip of the Q5 backbone psi angle allows two helical
H-bonds to form and brings together the I4 and L7
side-chains to form a native contact that persists for the
remainder of the simulation. However, the peptide per-
sists in a second trapped state resembling a broken helix
for another 3 ns. This is attributable to the continued
formation of a salt-bridge between the termini. The pres-
ence of trapped states over several nanoseconds simula-
tion time indicates relatively high barriers (�several kT)
between these states and the helical state. A better
sampling of such energy landscapes will require new
approaches, such as the replica exchange method.45

Potential Improvements in I-sites and Other
Knowledge-Based Scoring Functions

To better match the results of simulations and experi-
ments, the statistical score should approximate a free
energy. Missing in the current scoring function is the
pairwise covariance between positions in the sequence. A
covariance-based score would capture not only charge–
charge interactions but also the general non-additivity of
probabilties in pairwise and multibody interactions. Even
two-body interactions are not additive by nature. For
example, it is obvious that the loss of one of the two
side-chains forming a hydrophobic contact does not just
cut the interaction term by half.

The presence of conformational traps, even for a short
peptide, indicates a need for better simulation strategies,
such as the replica exchange method,45 that allow much
more efficient sampling of a rough-energy landscape.
Implicit solvent models could also speed the sampling of
the peptide conformational spaces.

CONCLUSIONS

Meaningful correlations between conformational space
and sequence space of short peptides have been found by
sampling both spaces, but the correlations are broad in
nature because of the sparcity of sampling in both spaces.
Amphipathic helices fold primarily via intrinsic, local
interactions, not through the template effect of its context
in the protein. The image of folding painted by Anfinsen46—
helices and other local structure motifs “flickering” in and
out as cooperative tertiary contacts lock them into place—is
supported by our findings.
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