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ABSTRACT
Motivation: The Monte Carlo fragment insertion method
for protein tertiary structure prediction (ROSETTA) of
Baker and others, has been merged with the I-SITES
library of sequence structure motifs and the HMMSTR
model for local structure in proteins, to form a new public
server for the ab initio prediction of protein structure.
The server performs several tasks in addition to tertiary
structure prediction, including a database search, amino
acid profile generation, fragment structure prediction,
and backbone angle and secondary structure prediction.
Meeting reasonable service goals required improvements
in the efficiency, in particular for the ROSETTA algorithm.
Results: The new server was used for blind predictions
of 40 protein sequences as part of the CASP4 blind
structure prediction experiment. The results for 31 of
those predictions are presented here. 61% of the residues
overall were found in topologically correct predictions,
which are defined as fragments of 30 residues or more
with a root-mean-square deviation in superimposed alpha
carbons of less than 6Å. HMMSTR 3-state secondary
structure predictions were 73% correct overall. Tertiary
structure predictions did not improve the accuracy of
secondary structure prediction.
Availability: The server is accessible through the web
at http://isites.bio.rpi.edu/hmmstr/index.html. Programs
are available upon requests for academics. Licensing
agreements are available for commercial interests.
Supplementary information: http://isites.bio.rpi.edu,
http://predictioncenter.llnl.gov/casp4/
Contacts: bystrc@rpi.edu; shaoy@rpi.edu
Keywords: CASP; CAFASP; protein folding; motifs; hid-
den Markov model; knowledge-based.

INTRODUCTION

Recent progress has been made toward the ab initio
prediction of protein structure from primary sequence
alone. The results from the last two CASP experiments

∗To whom correspondence should be addressed.

(Bonneau et al., 2001; Pillardy et al., 2001; Simons et
al., 1999a, 1997) have singled out the power of protein
folding simulations in reduced representation, such as the
Monte Carlo fragment insertion (MCFI) search method
implemented in the Rosetta algorithm (Simons et al.,
1997), which correctly predicted protein fragments of
up to 107 residues in length with an accuracy of 5Å
root-mean-square deviation in superimposed alpha-carbon
coordinates (RMSD). The strength of the MCFI approach
is its simultaneous but independent predictions of local
structure and tertiary structure. As such, the algorithm is
a model for protein folding that views the local structure
propensities as independent of the tertiary structure to a
large extent.

The throughput of this algorithm is limited due to the
computational burden and the necessity for human input.
Here we investigated the possibility of streamlining and
automating the process, making it possible to offer the
service publicly via the web. The goal was to return a
reasonable tertiary structure prediction in minutes, rather
than hours or days.

Because of the necessary improvements in efficiency,
the automated I-sites/HMMSTR/Rosetta server differs
from the approach of Baker in several ways:

(1) The moveset of predicted fragment comes from
I-sites (Bystroff and Baker, 1998) or HMMSTR
(Bystroff et al., 2000), instead of using a nearest
neighbor approach.

(2) Shorter conformational searches are done, and fewer
repetitions.

(3) Simulations are done on overlapping short segments
of the chain instead of the whole chain or manually
derived segments

(4) Partial predictions are recombined using a simple
genetic algorithm, to produce a set of final tertiary
structure predictions.

(5) The human post-processing and cluster analysis are
omitted.

The current server addresses the ab initio folding problem
only. Users of the server should first determine whether
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a homolog of known structure exists, using a database
search (Altschul et al., 1997). Failing that, a remote
homolog of known structure may sometimes be identified
with a high confidence using fold recognition approaches
(Fischer and Eisenberg, 1996; Jones and Thornton,
1996; Murzin and Bateman, 1997). Failing that, ab initio
structure prediction may provide useful information about
supersecondary structure.

Here we assess the abilities of the streamlined I-
sites/Rosetta server, the first fully automatic ab initio
protein tertiary structure prediction server, using bonafide
results from the CAFASP2 (Fischer et al., 2001) exper-
iment of 2000. In assessing the method, we focus on
structural characteristics that are correctly or incorrectly
predicted. The local and secondary structure predictions
are compared and contrasted with the tertiary structure
predictions.

SYSTEM AND METHODS
Hardware and interface
The server runs on a cluster of 24 Pentium 3 Linux
machines, and typically returns the results (five sets of
coordinates in PDB format, plus other results) in under
30 minutes. A queuing system controls the load, allowing
at most two predictions to run concurrently. Over the last
four months, the server has received an average of 300 jobs
per month.

Figure 1 shows a flowchart describing the input and
output of the programs included in the server. Most of
the methods used by the server have been described
elsewhere, including Psi-Blast (Altschul and Koonin,
1998), the I-sites Library (Bystroff and Baker, 1997,
1998), Rosetta (Bonneau et al., 2001; Simons et al.,
1999a, 1997, 1999b), and HMMSTR (Bystroff et al.,
2000). ISLfrag, FragMaker and GArose are first described
below. The server is written in csh script and perl, and runs
in conjunction with a csh ‘deamon’ script, which handles
job control. The results are returned as a web page and
also via email.

The interface provides options for input formatting
including single sequences, FASTA, ClustalW and SAF
multiple sequence alignments and PDB files. Single
sequences are optionally filtered for low-complexity using
PSEG (Wootton and Federhen, 1996), and submitted to
Psi-Blast, which returns a multiple sequence alignment.
Earlier experiments show a greatly improved performance
in local structure prediction when sequence profiles are
used, as opposed to single sequences (Bystroff and Baker,
1997). No filtering was used for the CASP4 targets
described here.

ALGORITHM AND IMPLEMENTATION
MakeVALL: calculates a sequence profile
The input multiple sequence alignment or the alignment
produced by Psi-Blast is reformatted and converted to a
sequence profile using sequence weights to correct for
redundancy (Vingron and Argos, 1989).

FASTpred: predicts I-sites motifs given a sequence
profile
The sequence profile is compared in a sliding-window
fashion with each of the 261 I-sites Library scoring
matrices (Bystroff et al., 2000). This score is mapped
to a confidence. The server returns a list of fragment
predictions, expressed as backbone angles, sorted by
confidence. The highest confidence fragments are referred
to as ‘I-sites predictions’, the whole list as ‘I-sites
fragments’.

ISLfrag: generates a fragment moveset using I-sites
predictions (Server 1)
For server 1, the I-sites fragment list was converted to a
Rosetta move set. Rosetta uses fragment libraries of length
3 and 9 peptides as movesets for Monte Carlo fragment
insertion. Each I-sites fragment with length L ≥ 9 was
divided into L − 9 + 1 subsegments of length 9 (fragment
moves), each associated with a starting position in the
target. Up to 25 of the highest confidence fragment moves
are kept for each 9-residue window in the query. If not
enough high confidence fragments were found, the list was
augmented by extending 7 and 8 residue I-sites fragments.
A similar procedure was done for the moveset of length 3.

HMMSTR: predicts secondary and local structure
(Server 2)
For server 2, the profile was submitted to each of the
three HMMSTR models, one for prediction of backbone
angles (HMMSTR-r), one for the prediction of secondary
structure (HMMSTR-d), and the third for the prediction
of supersecondary structure 3D context (HMMSTR-c).
In each of these models, the Markov states contain
probability distributions over sets of symbols: 3-state
secondary structure, backbone angle regions, or context
symbols, for models d, r , and c, respectively.

Using the query sequence profile, an a posteriori
probability may be calculated for each Markov state
and each position, using the forward-backward algorithm
(Rabiner, 1989), resulting in a matrix of conditional state
probabilities, γ . The confidence for a predicted symbol,
such as secondary structure symbol (ss) is the γ -weighted
sum over all states, q, as follows:

P(ss | i) =
∑

q

γ (q | i)P(ss | q). (1)
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Fig. 1. See text explanations.

Secondary structure is reported as a string of ss symbols
and a reliability index, which is P(ss | i) multiplied by 10
and truncated to an integer.

FragMaker: generates a fragment moveset using HMM-
STR (Server 2)

γ -matrices were calculated and stored for each of the
794 proteins in the PDBselect database (Hobohm and
Sander, 1994) using dual input data: sequence profiles
and backbone angle symbols. Dual input data assured that
the Markov states at each position are consistent with
both the sequence and structure. The 794 γ -matrices were
compared using a vector product to each 3 and 9-residue
window of the target. The top-scoring 25 PDBselect
segments were saved for each target position. Fragment
moves are expressed as backbone angles.

Rosetta: a conformational search algorithm for
proteins
Rosetta searches protein conformational space using
fragment insertion moves and a Monte Carlo acceptance

critereon. An insertion point in the target is selected at
random, then a fragment (either length 3 or 9) is selected
at random from the move set. The backbone angles are
changed to those of the fragment, new coordinates are
computed from the backbone angles, and the move is
accepted or rejected, using Monte Carlo. The energy func-
tion (Simons et al., 1999b) is composed of structure-based
Bayesian conditional probability expressions, drawn from
the same PDBselect database.

Simulated annealing. The acceptance critereon for
Monte Carlo fragment insertion (MCFI) depends on the
energy and the ‘temperature’ setting (T). T is set initially
set to a high value so that most physically-possible moves
are accepted, then decreased linearly over 12 000 moves
(simulated annealing). The optimal temperature schedule
for simulated annealing depends on the length of the
chain being simulated, or more specifically, the number
of degrees of freedom. For practical reasons, a fixed
temperature schedule is used by the server, and the length
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of the input sequence in restricted to a narrow range.
Those practical reasons included the anticipated avail-

ability of hardware, and the perceived need for speed. Our
server cluster, having 24 nodes, can support about ten si-
multaneous Rosetta jobs per machine before memory is
exhausted. If the jobs are very long or there is a surge
of submissions to the server, it would crash one or more
of the processors, creating a nuisance for the cluster ad-
ministrators. A queuing system now prevents this from
happening. However, users are likely not to want to wait
more than a few hours for results. Therefore, the run length
was fixed at 12 000 MCFI cycles, long sequences were
split into manageable pieces, and the number of replicates
was fixed at 15. An appropriate temperature schedule was
chosen by trial-and-error. These settings were tested on a
small sample of known structures.

Restraining selected backbone angles. High confidence
I-sites predictions were restrained to their predicted back-
bone angles to increase efficiency. Fragment insertion was
allowed in the restrained regions, but moves were rejected
if any angle deviated by more then 60Å from the I-sites
prediction. A maximum of one-third of the residues may
be restrained, because over-restraining was found to im-
pair the search efficiency in test cases.

Splitter: Dividing long sequences into overlapping
segments. If the target sequence had more than 36 un-
restrained residues, then it was divided into overlapping
segments having 36 un-restrained residues each. Adjacent
segments overlap by at least 18 un-restrained residues,
plus any number of restrained residues.

GArose: a simple algorithm for assembling segment
predictions A total of 15 fragment predictions were
produced by Rosetta for each segment. The 5 best
predictions for adjacent segments were re-combined by
exhaustive splicing. Starting with two sets of overlapping
segment predictions, all possible crossover hybrid models
were made and the five with the lowest energy were saved
for the next round, or for final output to the user (See
Figure 1).

RESULTS AND DISCUSSION
Two servers were used in the CASP4 experiment, differing
only in the algorithm for generating the move sets. Server
1, (prediction group ISITES, group 216 in the CASP4
records) used ISLfrag movesets. Server 2 (prediction
group BYSTROFF, group 55) used a moveset generated
by FragMaker. Without further elaboration, it was found
that the two movesets gave essentially equivalent results,
and that the moveset, if it contained a reasonably accurate
set of fragment predictions, was not the limiting reagent
for success.

Tertiary structure predictions by the ISITES group, and
secondary structure predictions by the BYSTROFF group
were sent to CAFASP2 (Fischer et al., 2001). Thus, only
these are truly, bonafide, fully automated. The statistics
and conclusions presented here refer to Server 1 and the
best (model 1) of its five submissions for each target.
Fragments from the other four models are shown for
illustrative purposes. A full and detailed analysis of the
predictions made by the I-sites server and others can be
obtained from the web site for the CASP4 experiment
(http://predictioncenter.llnl.gov).

Of the 40 target proteins predicted by the server,
solved structures were reported for 32 at the time of the
CASP4 meeting (December, 2000). One of these (T0092)
contained only alpha-carbons, and therefore the backbone
angles could not be evaluated. The remaining 31 structures
are discussed here, with an emphasis on overall statistical
results that might be helpful in understanding the strengths
and shortcomings of the prediction protocol.

OVERALL RESULTS
Over the 31 target proteins, 61% of the residues were
found in ‘topologically correct’ large fragments, defined
as fragments of 30 residues or more with RMSD <6Å.
The locations of these fragments and longer fragments
with the same RMSD cutoff are shown in the lower
band of Figure 2, shaded by the length range of the
fragment. At 6A RMSD, the correct overall chain trace
has been reproduced, but not the finer details of structure.
Occasionally beta strand may be out of order in a sheet,
and strands may be substituted for helices.

A smaller percentage of large fragments, 44%, were
predicted with a 5Å accuracy. At 5Å RMSD, secondary
structure is occasionally mispredicted, loop structures may
be wrong in detail, and axial rotations of secondary
structure units are possible. However, much or most of
the non-local packing interactions are faithfully though
roughly reproduced at this level of accuracy, and strand
mispairing is not observed.

In practice, the details of the local structure are often
correctly predicted when a fragment was globally correct,
but the RMSD measure is insensitive to this. Therefore,
another measure is used to evaluate the local accuracy
of the predictions . The maximum deviation in backbone
angles (mda) over a window of 8 residues is usually
∼180Å or small, and serves as a strictly local measure of
correctness. 8-residue peptides that have mda <90Å and
obey all of the stereochemical constraints of a polypeptide,
have an RMSD of 1.4Å at most (Bystroff and Baker,
1998). The top band of Figure 2 shows the locations of
fragments with mda <90Å. It is immediately obvious
that the good local structure predictions do not always
superimpose on the good, large fragment predictions.
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Fig. 2. Locations of correctly predicted local structure (upper band) marked in slashed lines, and topologically correct fragment predictions
(lower band) of length 30–39 (crossed lines), 40–49 (dots), and 50 or greater (slashed lines), for each target (left margin). White bands are
regions that were either not predicted or missing in the target coordinates.

Topologically correct large fragment predictions:
potential improvements

Figures 3–5 show examples of fragments longer than 30
residues with 6Å RMSD. In general, the residues found
in the core were correct, and their 3D arrangement was
roughly correct. In fragments that contained helices, the
N and C capping residues were usually but not always
correctly located, and the direction of the chain coming

off of the helix was generally correct. The orientation of
parallel sheets to helices was reproduced to within about
60Å, and the axial orientation of the helices with respect
to strands was almost always correct, even though rolling
the helix would not greatly effect the RMSD value.

Some characteristics of even the ‘correct’ fragment
predictions suggested ways in which the algorithm could
be improved. The most obvious of these is the distortion
of alpha helices. True native helices retain very straight
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Fig. 3. T0121 residues 126–199, RMSD = 5.9Å. Both the
overall structural orientation and the secondary structures are mostly
correct. Light: true structure, dark: predicted. Here we see a bent
helix in the foreground.

Fig. 4. T0122, residue 57–153, RMSD = 5.9Å. This is a successful
prediction of a repeating beta-alpha-beta motif. All the helices and
strands are correctly predicted. Light: true structure, dark: predicted.

helix axes despite variability in the backbone angles.
Helices in the predictions, however, were often distorted
(see Figure 3), sometimes bending the axis by 90Å over
its length. A combination of factors produce these errors.
Rosetta has no energy penalty for helix distortion, while
it gives a large energetic bonus for packing hydrophobic
residues in the core and for maintaining a low radius of
gyration. Bent helices are found to replace helix kinks and
alpha-alpha corners (Efimov, 1996). Adding a penalty for
helix distortion might fix the problem.

Good local structure prediction correlates weakly
with good tertiary structure prediction
A popular view of protein folding pathways could be de-
scribed roughly as ‘local structure first’ followed by ter-
tiary structure (Nolting and Andert, 2000). If the Rosetta
simulations are following such a pathway, then we would
expect to see good supersecondary structure predictions
coinciding with good local structure predictions. However,
this is not always the case. Figure 1 shows (in top strip,

Fig. 5. T0116, residues 262–322, RMS = 5.9Å. The prediction of
this 3-helix bundle is topologically correct but one of the helices is
mostly unfolded. The core residues are correctly predicted. Light:
true structure, dark: predicted.

yellow shading) the regions of the target where the local
structure predictions were good. Specifically, they show
8-residue or longer segments with no backbone angle de-
viations greater than 120Å. Frequently, the topologically
correct large fragments have the wrong local structure,
even though at least one fragment of correct local struc-
ture existed in the moveset for approximately 90% of the
sequences.

Tertiary structure prediction does not improve
secondary structure prediction
3-state secondary structure (SS) predictions were made
using a version of HMMSTR that was trained on a large
dataset of proteins of known structure with SS states
assigned using DSSP (Kabsch and Sander, 1983). The
accuracy of these predictions over the 31 targets was
73.3%. This is only slightly lower than the state of the
art in SS prediction (Jones, 1998). SS predictions based
on tertiary structure (TS) predictions from Rosetta had
the potential of benefiting from the added TS information,
however this proved not to be the case.

SS assignments for the TS predictions made using
DSSP or STRIDE (Frishman and Argos, 1995), performed
poorly (50–60% Q3), because these programs depend on
precise positioning of the hydrogen-bonding residues in
assigning the strand state (E). Instead, we derived the
SS predictions from the fragments used to assemble the
TS predictions. The fragment SS assignments are derived
from their native proteins. Using this method, the overall
Q3 score improved to 72.4%, but this is no better than the
SS predictions that use sequence alone.

If the simulation were reproducing the folding process,
one might expect that the correctly-predicted tertiary
interactions would add information to the secondary
structure prediction. One explanation for the lack of
improvement in secondary structure, despite some success
in tertiary packing, is that topologically correct tertiary
structures are possible even when the wrong local structure
is used to build it.
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Predictions have lower average contact order than
true structures.
Relative contact order (Plaxco et al., 1998) is calculated
from the coordinates as follows:

C O = 1

L • N

N∑
�Si j (2)

where �Si j is the sequence separation |i − j | � 5,
for residues, i j , that are in contact (Cα − Cα distance
<8Å). N is the number of contacts, and L is the length
of the sequence. The overall average C O in the targets
was 0.252, while the C O for the 32 predictions was 0.119.
The lower C O is mostly the result of an increased number
of beta hairpins. Contacts that are local, such as those in
beta hairpins, are easier to find in a search, and thus may
represent kinetic intermediates, trapped at the end of the
simulation. Kinetic trapping may be exacerbated by the
more computationally efficient server protocol. A possible
solution is to do more replicates and rely on cluster
analysis to identify the global energy minimum. Practical
limitations currently stand in the way of implementing
this.

Alternatively, the predominance of beta hairpins may
reflect an error in the energy function with regard to
the backbone angles. Positive φ angles, favored only in
glycine residues and usually required for turns, are found
in the same proportion in the targets (8%) and in the
predictions (7%), but in the targets, 44% of these turn
residues are glycines, while in the prediction only 16% are
glycines. This suggests that a larger energetic penalty for
positive φ angles in non-glycine residues, might correct
the overabundance of hairpin turns.

CONCLUSIONS
Our results suggest that a combination of improvements
in efficiency may increase the potential of the Rosetta al-
gorithm as a high-throughput engine for tertiary structure
prediction at the 30–100 residues length scale. We sug-
gest that a combination of structure comparison metrics
be used for the evaluation of correctness; a low RMSD
in the context of low backbone angle deviations is shown
to identify predictions that were ‘correct for the right rea-
sons’.

Secondary structure assignments were not improved by
the use of tertiary structure predictions, partly because it
was possible to obtain a globally correct tertiary structure
prediction by inserting fragments of the wrong local
structure.

An overall low contact order was observed in the
predictions relative to the true structures. This is at least
partly due to the absence of an energetic penalty for
unfavorable backbone torsion angles. These may also

represent kinetically-trapped intermediate structures from
a simulation that was too short.
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