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Abstract
A review of recent work toward modeling the protein folding pathway using a bioinformatics
approach is presented. Statistical models have been developed for sequence-structure correlations in
proteins at five levels of structural complexity: (1) short motifs, (2) extended motifs, (3) non-local
pairs of motifs, (4) three dimensional arrangements of multiple motifs, and (5) global structural
homology. Here we review statistical models, including sequence profiles, hidden Markov models
and interaction potentials, for the first four levels of structural detail. The I-sites Library (folding
Initiation sites) models local structure motifs. HMMSTR (Hidden Markov Model for STRucture) is a
hidden Markov model for extended motifs. HMMSTR-CM (Contact Maps) is a model for pairwise
interactions between motifs. And SCALI-HMM (HMMs for Structural Core Alignments) is a set of
hidden Markov models for spatial arrangements of motifs. Global sequence models have been
extensively reviewed elsewhere and are not discussed here. The parallels between the statistical
models and the theoretical models for folding pathways are discussed.

Access to the data used and algorithms presented in this paper are available at
http://www.bioinfo.rpi.edu/~bystrc/ or by request to bystrc@rpi.edu. HMMSTR predictions may be
obtained from this web site: http://www.bioinfo.rpi.edu/~bystrc/hmmstr/server.html

Introduction

Proteins fold through a hierarchical accumulation of order, from short-ranged to long-ranged -- local to
global. The folding pathway is somehow encoded in protein sequences. Recurrent patterns in the
database of known proteins tell the story of the folding pathway and of its evolutionary history, but these
are two entirely different stories. Evolution takes place on the time scale of millions of years, while
protein folding happens in milliseconds. Most methods for predicting protein structure implicitly model
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the evolutionary process. For example, a typical algorithm would compare two sequences and calculate
a score based on the number and type of sequence differences. But we are interested in the folding
process, not the evolutionary process. How can we find sequence-structure correlations in proteins so
that they tell us about the folding process and not the evolutionary process?

Through a series of statistical models, we have constructed a picture of the protein folding pathway
that agrees with theoretical models. Each statistical model measures the degree of a specific type of
sequence-structure correlation in the database of known structures. From the perspective of statistical
thermodynamics, a database correlation implies that the observed sequence pattern and structural
conformation are associated energetically.  A strong correlation represents a strong energetic interaction.
Sequence structure correlations may therefore represent energetically stable states, such as intermediates
along the protein folding pathway.

A folding pathway may be viewed as starting from folding initiation sites, which are local pieces of
the chain that have a strong preference to fold into a certain structure. The chain then collapses locally,
around the initiation sites – a process called “propagation.”  Pairs of collapsed structures on the chain
may then “condense,” or join together, subject to energetic considerations. Finally, in the last stages of
the folding pathway, topological constraints predominate in dictating the packing of the preformed units
along the chain (Riddle, Grantcharova et al. 1999; Plaxco, Simons et al. 2000), since at this point in
folding not all pieces of the chain can reach each other.

This is a working model for the folding pathway. Based on this model, Table 1 lists five hierarchical
levels of sequence-structure correlations that should exist in all globular proteins. Each level depends on
the one above it.

Table 1. Five stages of the folding pathway

Folding stage Type of structure Model(s)
(1) initiation local I-sites1

(2) propagation extended local HMMSTR2

(3) condensation non-local pairwise HMMSTR-CM3

(4) packing non-local multibody SCALI-HMM4

(5) final global Pfam, etc.

Global sequence-structure correlations, as detected by global sequence alignments or profile hidden
Markov models, such as Pfam (Sonnhammer, Eddy et al. 1998), SUPERFAMILY (Gough and Chothia
2002), and SAM (Karplus, Barrett et al. 1998), tell only the story of the last step in folding. To find the
parts of the chain that define the earlier steps in folding, we have developed the models listed in the third
column. A library of motifs called I-sites (Bystroff and Baker 1997; Bystroff and Baker 1998) consists
of sequence-structure motifs that occur frequently in the database and which are thought to be initiation
sites for protein folding. The I-sites library was extended and generalized by HMMSTR (Bystroff,
Thorsson et al. 2000; Bystroff and Shao 2002), a hidden Markov model of local sequence-structure
correlation, to model the prpagation of protein folding along the chain. HMMSTR-CM(Shao and

                                                  
1 I-sites: initiation sites, a library of short sequence-structure motifs.
2 HMMSTR: a hidden Markov model for local protein sequence-structure correlations.
3 HMMSTR-CM: a contact map prediction method using HMMSTR.
4 SCALI-HMM: a hidden Markov model for protein structure core alignment.
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Bystroff 2003), a contact map prediction method using HMMSTR, goes one step further to predict non-
local inter-residue contacts. Finally, SCALI (Yuan and Bystroff 2004), a hidden Markov model for
protein structure core alignment, models protein folding at the multibody-level.  In this paper, we
consider how these models work together to build a picture of the folding process.

Protein Folding Pathways, a Brief History
The early work of Levinthal and Anfinsen established that a protein chain folds spontaneously and

reproducibly to a unique three-dimensional structure when placed in aqueous solution. Levinthal proved
beyond the shadow of a doubt that the folding process cannot occur by random diffusion(Levinthal
1969). Anfinsen proposed that proteins must form intermediate structures in a time-ordered sequence of
events, or "pathway" (Anfinsen and Scheraga 1975). The nature of the pathways, specifically whether
they are restricted to partially native states or whether they might include non-specific interactions, such
as an early collapse driven by the hydrophobic effect, was left unanswered.

Over the years, the theoretical models for folding have converged (Baldwin 1995; Colon and Roder
1996; Oliveberg, Tan et al. 1998; Pande, Grosberg et al. 1998) due to a better understanding of the
structure of the “unfolded state" (Dyson and Wright 1996; Gillespie and Shortle 1997; Mok, Kay et al.
1999) and to a more detailed description of kinetic and equilibrium folding intermediates (Eaton,
Thompson et al. 1996; Houry, Rothwarf et al. 1996; Gulotta, Gilmanshin et al. 2001). An image of the
transition state of folding can now be mapped out by point mutations, or "phi-value analysis" (Fersht,
Matouschek et al. 1992; Nolting, Golbik et al. 1997; Mateu, Sanchez Del Pino et al. 1999; Grantcharova,
Riddle et al. 2000; Gromiha and Selvaraj 2002; Heidary and Jennings 2002; Garbuzynskiy, Finkelstein
et al. 2004). The "folding funnel" model (Chan, Bromberg et al. 1995; Onuchic, Luthey-Schulten et al.
1997) has been reconciled with the “hydrophobic collapse” and “nucleation-condensation” models
(Nolting and Andert 2000) by envisioning a distorted, funicular energy landscape (Laurents and Baldwin
1998) and a "minimally frustrated" pathway (Shoemaker and Wolynes 1999; Nymeyer, Socci et al.
2000), where the rate limiting step is a counter-entropic search for the hole in the funnel ((Zwanzig
1997). As such, the important role of the protein topology, especially as measured by the contact order,
in determining the rate of folding is understood(Plaxco, Simons et al. 1998; Miller, Fischer et al. 2002;
Ivankov, Garbuzynskiy et al. 2003). Our set of statistical models is consistent with current thinking
about folding pathways.

Systems and Methods

Knowledge-based methods for protein structure prediction assume that the frequency of an observed
property in the database is a measure of its free energy, provided the database has been properly
corrected for redundancy and over-counting. For example, the knowledge-based free energy of a contact
between a glycine and an alanine is found by counting the frequency of finding those two amino acids in
contact over a database of known protein structures. In the four models presented here, we have derived
Bayesian conditional probabilities for local sequence motifs (I-sites ((Bystroff and Baker 1998)), for
sequential strings of multiple motifs (HMMSTR (Bystroff, Thorsson et al. 2000)), for non-local pairwise
contacts between motifs (HMMSTR-CM (Shao and Bystroff 2003)), and for non-sequential three-
dimensional packing arrangements of multiple motifs  (SCALI (Yuan and Bystroff 2004)). The
hierarchy of models can be roughly described as “local to global”, mirroring the nucleation/condensation
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mechanism for protein folding. For each model the prediction results are an ensemble of conformational
states. "Local " in this context means nearby along the chain.

Each of these models has been described elsewhere. Here we will review each model and discuss how
they are related, and how the structure of the models may reflect the structure of the physical process
that they are intended to represent.

The I-sites Library of Folding Initiation Site Motifs
The role of local structure motifs with regard to the initiation of folding has been discussed by

Baldwin, Rooman and others (Rooman, Rodriguez et al. 1990; Efimov 1993; Baldwin and Rose 1999).
Recurrent local structure motifs might exist because they fold into a specific structure independent of
their context, and since the structure is small and local, the folding is fast. I-sites is a library of 262 local
sequence/structure motifs. A motif is expressed as a position-specific scoring matrix, a structural model,
and a “confidence curve” which maps the sequence score to a probability or “confidence.” Recurrent
sequence patterns of various lengths were found by first exhaustively clustering short segments of
sequence families in a non-redundant database of known structures (Han and Baker 1995; Bystroff,
Simons et al. 1996; Han and Baker 1996; Han, Bystroff et al. 1997), then optimizing the sequence
structure correlation using reinforcement learning (Bystroff and Baker 1998). I-sites motifs have been
used in blind prediction experiments (Bystroff and Baker 1997; Bystroff and Shao 2002) and have
inspired several experimental studies (Jacchieri 2000; Mendes, Guerois et al. 2002; Northey, Maxwell et
al. 2002; Skolnick and Kolinski 2002; Steward and Thornton 2002).

The confidence of an I-sites prediction is defined as the probability of the prediction being correct,
given the sequence score. A score-to-confidence mapping was found by making predictions on a large
test set of proteins that were not used to build the model. Only about one-third of all residues in all
proteins are found in high-confidence (>70%) I-sites motif regions. But nearly all residues in all proteins
(98%) belong to one or more of the I-sites motif structures, although many are difficult to predict.

I-sites motifs include alpha helix, helix caps, beta strands, beta hairpins and other loop structures. Fig.
1 shows one of the I-sites motifs, the alpha-alpha corner, and the sequence pattern that predicts it.

5 10

5 5

10 1010

5

a. b.

Fig. 1.  a. I-sites profile for alpha-alpha corner motif. Boxes are shaded lighter in proportion to the log-
likelihood ratio of each amino (Y axis) acid at each position (X axis) relative to the start of the motif.
b. Stereo image of the alpha-alpha corner motif showing conserved H-bonds and sidechains interactions.
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Peptide sequences that match the I-sites motifs have been shown to be structurally stable in isolation in
both NMR studies (Blanco, Rivas et al. 1994; Munoz, Blanco et al. 1995; Viguera and Serrano 1995; Yi,
Bystroff et al. 1998) and in molecular dynamics simulations (Krueger and Kollman 2001; Gnanakaran
and Garcia 2002; Bystroff and Garde 2003). Mutations in high-confidence I-sites motif regions are
found to have dramatic effects on folding (Mok, Elisseeva et al. 2001; Northey, Maxwell et al. 2002).
These experiments are consistent with I-sites being early folding intermediates, or initiation sites of
folding.

HMMSTR: A model for propagation
Folding initiation sites are marginally stable, but they are stable enough to provide a starting place for

the propagation of structure up and down the chain. The sequence dependence of these extensions can
be found by labeling all of the I-sites motifs in the database and drawing connections between them
wherever they occur adjacent to each other in the sequence. I-sites motifs that are adjacent to each other
“extend” each other. For example, the amphipathic alpha helix motif extends the alpha-alpha corner
motif (Fig. 1).

All adjacencies of I-sites motifs in known structures were found, counted, and the motif-motif
transition probabilities were condensed into a single, non-linear hidden Markov model (HMM) called
HMMSTR ("hamster") (Bystroff, Thorsson et al. 2000). The sequence preferences and the inter-motif
transitions were trained on a non-redundant database of protein structures. HMMSTR models the ways
that local structure can be arranged along the sequence, modeling the way an initiation site motif is
likely to affect the conformation of residues that are adjacent to it in the sequence. Fig. 2 shows the
highly branched and cyclic state connectivity. Note the region containing a cycle of helix states,
representing the well-known heptad repeat motif of the amphipathic alpha-helix structure.

Each state in HMMSTR represents the structure (as backbone angles) of one residue. An unbroken
string of states represents a local structure motif. A branching chain of states represents two or more
alternative adjacent motif structures. The result of a HMMSTR prediction is a matrix of Markov state
probabilities. We may use the model to sample from this distribution, or we can choose a single
structure prediction for each position by a voting procedure as described previously (Bystroff, Thorsson

Fig. 2.  HMMSTR model “R” represented as a directed graph. The symbol shape represents the
secondary structure type; circles: helix; rectangles: beta sheet; diamonds: other motifs. Shading
represents the amino acid preference; dark grey: non-polar; grey: polar; light-grey: proline; lightest
grey: glycine; white: no preference. Only high-probability transitions are shown.
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et al. 2000). HMMSTR predictions average 60% accuracy in predicting 8-residue fragments with RMSD
< 1.4Å.  HMMSTR has been used for local and secondary structure prediction (Bystroff, Thorsson et al.
2000; Rost 2001), inter-residue contact prediction (Zaki, Shan et al. 2000; Shao and Bystroff 2003), and
as the source of a fragment library for Rosetta (Bystroff and Shao 2002) folding simulations.

Fig. 3.  HMMSTR-CM prediction of a CASP5 target.
The structure of hypothetical protein HI0073 from H. influenzae was successfully predicted using
the HMMSTR-CM method. HI0073 (PDB code 1JOG, true structure shown in (b)) has 116 residues
arranged in a three-layer all-parallel α/β sandwich. The contact potential map (a) shows that most
of the true contacts were assigned favorable (red) contact potentials. However, there are also
favorable regions that are non-contacts. After selecting a nucleation site, β2α2β3, contacts were
assigned or erased in a 4 step pathway, as follows:

(1) Parallel β contacts were assigned for β2 to β3.

(2) Anti-parallel β contacts were assigned for β1 and β2. All other β contacts to β2 were erased (Rule

3).
(3) There were two choices for a right-handed crossover from β3 to β4, as shown in (c) and (d).

Since β1 was more hydrophobic than β3, we paired β1 and β4. All other β contacts to β1 were

erased, and contacts between α2 and α3 were erased (Rules 8, 10).

(4) α1 was placed on the opposite side of the sheet from α3, since α3 extends across the sheet.

Contacts were assigned between α1 and α2 and erased between α1 and α3 (Rule 9).
(c) The completed TOPS diagram and contact map (outlines) match the true structure. The contact
map prediction has 42% contact coverage and 29% accuracy, or if we count near misses (±1
residue), then the coverage is 75% and the accuracy is 57%. (d) The wrong choice at step (3) would
give this structure.
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HMMSTR-CM: Pairwise condensation of motif structures
HMMSTR-CM is a model for pairwise interactions between local structure motifs. Pairwise

interactions are represented as a probabilistic contact map. Contact maps are square symmetrical
Boolean matrices that represent pairs of residue positions that close in space (within 8Å). A contact map
may be projected into three-dimensions if it obeys certain mathematical constraints (Brunger, Clore et
al. 1986; Crippen 1988; Aszodi, Munro et al. 1997; Vendruscolo, Kussell et al. 1997; Wintjens, Wodak
et al. 1998; Miyazawa and Jernigan 2003; Selvaraj and Gromiha 2003). Previous contact map prediction
methods have used neural nets (Fariselli and Casadio 1999; Pollastri and Baldi 2002), correlated
mutations (Olmea and Valencia 1997; Ortiz, Kolinski et al. 1998; Singer, Vriend et al. 2002), and
association rules (Zaki, Shan et al. 2000; Hu, Shen et al. 2002). Neural net based predictions had an
average accuracy of about 21% overall (Fariselli, Olmea et al. 2001), while higher accuracies were
reported for local contacts (Pollastri and Baldi 2002).   Contact potential has been used for many protein
structure methods(Jones, McGuffin et al. 1999; Skolnick, Zhang et al. 2003).

The first step in predicting a contact map is to assign a probability to each potential contact. The
probability in this case is the database-derived likelihood of contact between any two local structure
motifs. This implies that the local structure motif forms first, then these sub-structures condense to form
larger units. The database statistics give us a free energy of interaction, similar to a binding energy. But
each residue is represented not as a single motif but as a probability distribution of motifs. We may
envision pairs of flickering local structures, interacting in proportion to their structural content.

 The interaction potential between any two motifs is modeled as the statistical interaction potential
between two corresponding Markov states. Knowledge-based Markov state “pair potentials” (actually
log-likelihood ratios) were summed from the CATH database of protein domain structures(Orengo,
Michie et al. 1997). Each domain was first preprocessed into HMMSTR Markov state probability
distributions using the Forward/Backward algorithm (Rabiner 1989) to get the position-dependent
Markov state probability distribution of states γ (Eq. 1).

γ i q P q i, ( | )( ) = Eq. 1
The pairwise contact potential between any two HMMSTR states p and q (G(p,q,s)) was calculated as

the negative log of the mutual probability of these two states in contacting residues (defined as having
Cα -Cα distance < 8Å) (Eq. 2).

G p q s

i p i s q

i p i s q

i D ÅCATH

iCATH

i i s( , , ) log

( , ) ( , )

( , ) ( , )

,= −
+

+

∋ <+

∑∑

∑∑

γ γ

γ γ

8  , Eq. 2

where  s=|j-i| is sequence separation. There is one G value for each pair of HMMSTR’s 282 states and
each sequence separation, from s=4 to 20, a total of 1037153 potential functions.  (For s > 20, we used G
for s=20) Using G and a target sequence, we may sum the contact potential map E(i,j), which is a matrix
of contact potentials between every residue pair ij in a target sequence.  Fig. 3 shows a contact potential
map, E, for a protein that was one of the targets in the CASP5 prediction experiment. In this map we see
patterns for super-secondary structure motifs and possible β strand pairings.
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Nearly all of the true pairings are given a high score (i.e. low energy) by HMMSTR-CM, but too many
high scores are given. Spatial constraints prevent many of the predicted contacts from happening. For
example, at most two beta strands may pair with any one beta strand. Other rules enforce the physically
possible density of contacts and mutual contacts, and the triangle inequality. Common sense rules such
as these were used to extract a self-consistent set of contacts from the high scoring ones. Simple rules
were sufficient to extract the correct set of contacts for some but not all of the CASP5 targets(Shao and
Bystroff 2003). However, these rules only approximate the complex topological constraints on the
protein chain. A multibody model is needed to capture this higher level of organization.

SCALI: Multibody packing arrangements of local structure motifs

HMMs have been used to predict protein structure at both the local sequence level (Bystroff, Thorsson
et al. 2000) and the global level (Karplus, Barrett et al. 1998; Sonnhammer, Eddy et al. 1998; Gough and
Chothia 2002). But there are interesting recurrent features in proteins that are neither global nor local,
specifically, three-dimensional packing arrangements in the hydrophobic core regions. Common
secondary structure types have characteristic ways of arranging themselves in globular proteins (Murzin
and Finkelstein 1988; Efimov 1994; Murzin, Lesk et al. 1994; Ruczinski, Kooperberg et al. 2002). If we
take away the connections between the secondary structure units, we find that virtually all ways of
packing secondary structures have already been seen in the protein database. When proteins are
discovered to have a “new fold”, it is often found to be a permuted version of an “old” fold. If so, then a
method for finding non-sequential (i.e. permuted) alignments would be useful for structure prediction.

Recently, we described SCALI, a new algorithm for aligning structures without sequential constraints.
SCALI was compared to several structure-based alignment programs, including CE, DALI, and

Fig. 4. Non-sequential alignment of conserved core packing arrangement. Two proteins of very
different overall topology, Alkaline phosphatase (1alk, green) and Vp39 from vaccinia virus (1vpt,
red) share eleven superimposable secondary structure elements despite having no sequence similarity
and different topologies. (a) Superimposed secondary structure elements. (b) TOPS diagrams
showing topological connections. Topology is conserved only in the shaded region.

(a) (b)

6 1 5 3 42 7

23

4 1

5 4 1 2 36 7

34

1 2

1alk

1vpt
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KENOBI, but none of these programs were able to find conserved core packing arrangements
consistently when the component parts were not arranged sequentially along the chain.  For example,
SCALI was able to align the structures 1ALK and 1VPT and found that the positions of its secondary
structure elements were superimposible with a RMSD of 4.3Å (Fig. 4) even though they are arranged
very differently along the chain.

The topological constraints on folding, given the pairwise energies of interaction, may be modeled by
finding all of the common ways that local structure units are arranged in space. That is, we identify the
commonly recurring core packing arrangements (i.e. superimposable sets of secondary structure
elements). By looking at each example protein that contains a common packing arrangement, we may
trace the sequential order of the secondary structure elements by drawing connections wherever they are
adjacent in the sequence. The result is a hidden Markov model.  In this model a state has a specific
location in space, relative to all other states. A pathway through this HMM is a structure prediction.

Recurrent core packing arrangements were found by clustering SCALI non-sequential structure-based
alignments. Using a simple greedy algorithm, we found regions of proteins that occurred in multiple
SCALI alignments, each protein having a different connectivity.  For example, we did an all-against-all
pairwise structure comparison for the 61 representative structures of the 3-layer α/β/α class, a total of
1830 alignments.  56 out of 61 structures were clustered into four subclasses using a simple greedy
algorithm. The structures that clustered together conserved the same core. Fig. 5 shows two of the
resulting HMMs.

For each SCALI-HMM, certain topological connections are observed and others are not, probably
reflecting the physical constraints on secondary structure packing. Certain recurrent substructures are
found in these models, for example the right-handed parallel βαβ motif, and the shaded region in Fig. 4,
a helix-hairpin-helix motif.  SCALI-HMMs have been built for several recurrent classes of proteins
including the “up-down bundle” alpha proteins, beta “sandwich” proteins, beta “jelly-roll” and 3-layer
αβα proteins. Refinement and analysis of these conserved core packing arrangements is ongoing.

Fig. 5. Diagrammatic hidden Markov
models for the two sub-classes of the 3-
layer αβα class of proteins based on
SCALI alignments In each subclass, the
upper panel shows the topology diagram
without connectivities for that core
structure. (strands are arrows pointing up
or down, helices are circles. Circles with
arrows are helices pointing down) The
lower panel is the hidden Markov model
for that core, drawn as a TOPS diagram.
Thicker lines indicate more frequent
connections. (a) Largest sub-class 37
proteins (b) Next largest, 9 proteins.
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Relevance of Approaches and Results

Using database statistics in a heirarchical way, we have shown that specific recurrent themes exist at
different levels of structural generality. It is reasonable to assume that an underlying physical model
exists for these statistical observations. A physical model for folding has been proposed that explains the
speed with which proteins fold (Nolting and Andert 2000), despite the enormous theoretical size of the
conformational space to be searched. They fold fast because there is no combinatorial explosion in the
number of conformational states, because at each stage of the folding pathway only a small number of
options are available. The situation is similar when considering the four statistical models together.

At the stage of initiation, there are only about 40 choices. This is approximately the number of
different sequence-structure patterns in I-sites, once overlap is accounted for (Bystroff and Baker 1998;
Bystroff, Thorsson et al. 2000).

At the second stage, propagation, there are even fewer choices. HMMSTR (Bystroff, Thorsson et al.
2000), the model that represents the ways that structure can propagate up and down the chain, is a
sparsely branching HMM, reflecting the paucity of choices of different ways of adding structure onto
structure, locally.

At the third stage of folding, condensation, the number of possibilities is not the square of the number
of local motifs, because some pairs of motifs cannot physically fit together due to differences in their
shape and in their surfaces. HMMSTR-CM models this by assigning a near-zero probability for many of
the potential pairwise interactions (Shao and Bystroff 2003).

And at the last stage of folding, the number of ways that pairwise interactions can be combined is
much less than the number of secondary structure elements “choose two”, because the interaction of any
two elements restricts the possibilities for the third and so on, in a process of elimination. The number of
possible tracings through the HMMs produced by SCALI(Yuan and Bystroff 2004) is fewer than
expected because only “self-avoiding” paths are physically possible. Each secondary structure element
has an assigned location in space, and therefore that element cannot occur twice along the chain.

The absence of a combinatorial explosion in the physical folding model may explain the absence of a
sparse data problem in our hierarchy of statistical models. Although the database is a fixed size, we still
see recurrence as we model increasing larger pieces of protein chain.  Even at the global level, there are
recurring themes in the database (Orengo, Jones et al. 1994; Russell, Sasieni et al. 1998; Zhang and
DeLisi 1998; Gough and Chothia 2002). For example, the 8-stranded alpha-beta barrel (“TIM barrel”)
seems to have independently evolved many times, as has the 7-helix topology called the “globin fold.”
In many cases, there is no support for these analogous proteins having a common ancestor. Rather, they
are likely to have arisen independently, by “convergent evolution.”  If so, if certain topologies have been
sampled many times in evolutionary history, then perhaps the total number of ways that a protein chain
can fold is not so large as we have previously supposed.
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