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Introduction
Over the past decade, developments in molecular biology,
X-ray diffraction and nuclear magnetic resonance (NMR)
instrumentation, and computational methods have allowed
nearly exponential growth of macromolecular structural
studies. The analysis of data from these studies generally
requires sophisticated computational procedures culminat-
ing in refinement and structure validation. These proce-
dures can be formulated as the chemically-constrained or
restrained non-linear optimization of a target function,
which usually measures the agreement between observed
data and data computed from an atomic model. The ulti-
mate goal is to optimize the simultaneous agreement of an
atomic model with observed data and with a priori chemi-
cal information.

The target function used for this optimization normally
depends on several atomic parameters, but most impor-
tantly on atomic coordinates. The large number of adjus-
table parameters (typically at least three times the number
of atoms in the model) gives rise to a very complicated
target function. This in turn produces what is known as the
multiple minima problem: the target function contains
many local minima in addition to the global minimum.
These local minima tend to defeat gradient-descent opti-
mization techniques, such as conjugate gradient or least-
squares methods [1]. These methods are simply not
capable of sampling molecular conformations thoroughly
enough to find the most optimal model if the starting one
is far from the correct structure. 

Simulated annealing [2,3] is an optimization technique
particularly well suited to overcoming the multiple minima
problem. Unlike gradient-descent methods, simulated
annealing can cross barriers between minima and thus can
explore a greater volume of the parameter space to find
better models in deeper minima. Following its introduc-
tion to crystallographic refinement [4], and NMR structure
calculation [5] and refinement [6], there have been major
improvements of the original method in four principal

areas: the measure of model quality, the search of the para-
meter space, the target function, and the modeling of con-
formational variability. 

For crystallographic refinement, the introduction of cross-
validation (the ‘free’ R value) [7] has significantly reduced
the danger of overfitting the diffraction data. The com-
plexity of the conformational space has been reduced by
the introduction of torsion-angle molecular dynamics [8],
which decreases the number of adjustable parameters 
that describe a model approximately tenfold. The target
function has been improved by incorporating the concept
of maximum likelihood which takes into account model
error, model incompleteness, and errors in the experimen-
tal data [9,10]. Advances have also been made for NMR
structure determination. Cross-validation has been shown
to be appropriate for NMR structure calculation [11], and
the radius of convergence has been increased by the use of
torsion-angle molecular dynamics [12] and the introduc-
tion of variable target functions [13–16]. Finally, the sam-
pling power of simulated annealing can be combined with
multiconformer models for exploring the molecule’s con-
formational space in cases where the molecule undergoes
dynamic motion or static disorder for both X-ray crystal-
lography and solution NMR [17–21]. 

Setting the stage: the target function
In essence, macromolecular structure calculation and
refinement is a search for the global minimum of a target
function (E) which is a function of the parameters of an
atomic model, in particular atomic coordinates,

E=Echem +wdata Edata (1)

Echem comprises empirical information about chemical
interactions; it is a function of all atomic positions, describ-
ing covalent and nonbonded (intramolecular as well as
intermolecular and symmetry-related) interactions. Edata
describes the difference between observed and calculated
data, and wdata is a weight appropriately chosen to balance
the gradients (with respect to atomic parameters) arising
from the two terms. 

A priori chemical information
Echem consists of terms for covalent bonds, bond angles,
chirality, planarity and nonbonded repulsion [22]. The
parameters for the covalent terms can be derived from
average geometry and root mean square (rms) deviations
observed in a small molecule database. Extensive statis-
tical analyses were undertaken for the chemical moieties
of proteins [23] and of polynucleotides [24] using the



Cambridge Crystallographic Database [25]. Analysis of the
ever increasing number of atomic resolution macromolec-
ular crystal structures will no doubt lead to some modifica-
tions of these parameters in the future [26–28]. 

In both NMR and X-ray crystallography, it is common to use a
purely repulsive quartic function (Erepulsive) for the nonbonded
interactions which are included in Echem [22], 

Erepulsive =Σ
ij

((cRij
min)n –Rn

ij)
m (2)

where Rij is the distance between two atoms i and j, Rij
min

is the van der Waals radius for a particular atom pair ij, c≤1
is a constant that is sometimes used to reduce the radii, 
and n=2, m=2 or n=1, m=4. Electrostatic interactions and
van der Waals attraction are usually not included in struc-
ture calculation and refinement. These simplifications are
validas the experimental data contains information that is
able to produce atomic conformations consistent with actual
nonbonded interactions. In fact, atomic resolution crystal
structures can be used to derive parameters for electrostatic
energies [29]. If the experimental information is insuffi-
cient to fully determine the macromolecular structure, use
of electrostatic and simulated solvent interactions can bias
the structure towards the theoretical nonbonded model. 

Geometric energy functions are related to the empirical
energy functions that were developed for energy mini-
mization and molecular dynamics studies of macromol-
ecules (see [30] for an introduction). These empirical
energy functions were not designed for structure deter-
mination, and therefore required some modification for
use in macromolecular structure refinement [5,31–35].
Recently, crystallographic simulated-annealing refine-
ment was implemented with a purely geometric energy
function [10], which provides uniformity among different
crystallographic refinement programs and simplifies the
generation of parameters for new chemical compounds.
Similar developments for solution NMR are in progress
(M Nilges, personal communication). 

X-ray diffraction data
The conventional form of Exray consists of the crystallo-
graphic residual ELSQ, defined as the sum over the squared
differences between the observed (Fo) and calculated (Fc)
structure-factor amplitudes for a particular atomic model: 

Exray =ELSQ =Σ
hkl

(|Fo|–k |Fc|)2 (3)

where hkl are the indices of the reciprocal lattice points 
of the crystal, Fo and Fc are the observed and calculated
structure-factor amplitudes, and k is a relative scale factor. 

Reduction of ELSQ can result from improvements in the
atomic model, but also from an accumulation of systematic
errors in the model or fitting noise in the data [36]. The

least-squares residual is, therefore, poorly justified when
the model is incomplete or far away from the correct one
[9]. An improved target for macromolecular refinement 
can be obtained using a maximum-likelihood formulation
[37–39,9,10]. The goal of the maximum-likelihood method
is to determine the probability of making a measure-
ment, given the model, estimates of the model’s errors and
estimates of the errors of the measured intensities. The
effects of model errors (incorrectly placed and missing
atoms) on the calculated structure factors are first quanti-
fied with sA values, which correspond roughly to the frac-
tion of each structure factor that is expected to be correct.
However, overfitting of the diffraction data causes the
model bias to be underestimated and undercorrected in
the sA values. The effect of this overfitting can be reduced
by cross-validating sA values (i.e. by computing them 
from a randomly selected test set which is excluded from
the summation on the right-hand side of Equation 3
[7,40]). The expected values of 〈Fo〉 and the corresponding
variance (s2

ML) are derived from sA, the observed (Fo), 
and calculated (Fc) structure-factor amplitudes [9]. These
quantities can be readily incorporated into a maximum-
likelihood target function: 

Exray =EML =    Σ
hkl∈working set

(1/s2
ML) (|Fo|– 〈|Fo|〉)2 (4)

In order to achieve an improvement over the least-squares
residual (Equation 3), cross-validation was found to be
essential [10,40] for the computation of sA and its derived
quantities in Equation 4.

Figure 1 illustrates the improvement of the crystallographic
target function by maximum likelihood for a test case: the
false minimum is less pronounced compared to the least-
squares residual. Despite this major improvement, local
minima still exist (Fig. 1) which cause a limited radius of
convergence when gradient-descent minimization is used.

NMR data
A common form of ENMR describes nuclear Overhauser
effect (NOE) derived distance restraints and dihedral
angle restraints derived from J-coupling constants using
flat-bottomed parabolic functions [41]: 

wnmr Enmr =wNOE ENOE +wdihe Edihe (5)
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ENOE 0= Σ
NOEs

(d – dupper)2

(dlower– R)2

dupper < d

dlower < d < dupper

d < d lower

(6)

Edihe 0= Σ
dihedrals

(φ – φupper)2

(φlower– φ)2

φupper < φ

φlower < φ < φupper

φ < φ lower

(7)



Here d denotes the distance between a particular pair of
spins in the model, dlower and dupper are, respectively, the
lower and upper bounds for the distance restraint derived
from the isolated spin-pair approximation or from NOE
backcalculation (see [42] for a review), φ denotes the dihe-
dral angle formed by four atoms in the model, φlower and
φupper are, respectively, the lower and upper bounds for
the dihedral-angle restraint derived from scalar J-coupling
constant measurements and empirical Karplus [43] rela-
tionships. In the case of ambiguous NOE assignments,
overlapping NOEs, or motion of methyl groups and aro-
matic rings, appropriate averaging schemes must be used
[42,44,45] when computing d, dupper and dlower. Direct
refinement against scalar J-coupling constant data [46–
48], or against empirical 1H and 13C chemical shift data-
bases which correlate molecular conformation and chemi-
cal shifts [49–51] is also possible. Because early atomic
models can contain very significant violations of experi-
mental distance restraints, ENOE is often modified so that
it becomes linear for large violations (‘softsquare’ potential
[52]). This modification is important for convergence —
without it the large violations give rise to enormous forces
which cause numerical instabilities during simulated
annealing.

Additional information
Additional constraints or restraints may be used to
improve the ratio of observed data to refined parameters.

For example, atoms can be grouped so that they move as
rigid bodies during refinement, or bond lengths and bond
angles can be kept fixed [8,53,54]. In the crystallographic
case, the existence of noncrystallographic symmetry can
be used to average equivalent molecules, and thereby to
reduce noise in the diffraction data [33]. In the NMR case,
deuterium exchange protection can often be used to infer
the presence of amide–carbonyl hydrogen bonds. These
inferred hydrogen bonds are then modelled as distance
restraints, thereby increasing the observable to parameter
ratio. Empirical dihedral angle conformational databases
of proteins have been recently added to the list of possible
additional restraints [55]. 

Phase information can be incorporated into Exray in order
to improve the ratio of observables to parameters and,
thus, to obtain a more accurate model especially when
only low-resolution diffraction data is available [8]. As the
experimental phase information for macromolecules is
usually not very accurate, the errors of the phase observa-
tions have to be taken into account. Ideally, this can be
accomplished by computing a phase probability distribu-
tion for each reflection and by refining the model phases
against these distributions (ATB, unpublished results).
Several approximations to this computationally expensive
procedure have been developed. A simple representation
of the phase probability distribution consists of a square-
well potential around the phase centroid, where the width
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Figure 1

A comparison of the energy landscapes of the
least-squares residual (Equation 3, dotted
line) and the maximum-likelihood target
(Equation 4, solid line). An asparagine residue
was placed in a P1 unit cell of size a = 40 Å,
b = 40 Å, c = 40 Å. Diffraction data from 20 to
2 Å resolution were calculated from the
structure in its initial conformation; this data
was modified by addition of Gaussian error
(±10% of |F|). A single value of sF, 10% of
the average amplitude, was used for all
reflections. The χ2 dihedral was then rotated
in 5° steps and the value of the X-ray target
(Equations 3 and 4) compared to the model
diffraction data calculated at each position.
The two minima correspond to the correct
and incorrect rotamers with the positions of
OD1 and ND2 inverted. The maximum-
likelihood target clearly shows sharper
minima, broader, flatter maxima, and a less
deep false minimum relative to the global
minimum.
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of the square-well is determined by the individual figure
of merit [56]. For well defined phases, for example those
obtained from highly redundant virus crystal structures,
structures solved by multiple wavelength anomalous dis-
persion (MAD) phasing [57], or good multiple isomor-
phous replacement (MIR) solutions, one can restrain the
real and imaginary parts, A and B, of the structure factor
simultaneously [58,8]. When phase information is incom-
plete, as is often the case, the phase-restraint target can be
combined with an amplitude-based target using figure of
merit weighting [59] (LMR, Y Shamoo and AJB, unpub-
lished data).

Weighting
The weight (wdata; Equation 1) balances the forces arising
from Edata and Echem. The choice of wdata can be critical: if
wdata is too large, the refined structure will show unphysi-
cal deviations from ideal geometry; if wdata is too small, the
refined structure will not satisfy the observed data. Auto-
mated protocols to provide initial estimates for optimal
weighting have been developed [32,10]. However, inde-
pendent information must be used (e.g. cross-validation)
to objectively obtain the best possible weight for X-ray
diffraction [7] and NMR data [16]. 

Searching conformational space
Annealing denotes a physical process wherein a solid is
heated until all particles randomly arrange themselves in a
liquid phase, and then is cooled slowly so that all particles
arrange themselves in the lowest energy state. By formally
defining the target E (equation 1) to be the equivalent of
the potential energy of the system, one can simulate the
annealing process [2]. There is no guarantee that simu-
lated annealing will find the global minimum (except in
the case of an infinitely long search) [3]. Compared to
conjugate-gradient minimization, where search directions
must follow the gradient, simulated annealing achieves
more optimal solutions by allowing motion against the 
gradient [2]. The likelihood of uphill motion is deter-
mined by a control parameter, referred to as temperature.
The higher the temperature, the more likely it is that 
simulated annealing will overcome barriers. It should be
noted that the simulated annealing temperature normally
has no physical meaning and merely determines the likeli-
hood of overcoming barriers of the target function. 

The simulated-annealing algorithm requires a generation
mechanism to create a Boltzmann distribution at a given
temperature T. Simulated annealing also requires an
annealing schedule, that is, a sequence of temperatures
T1 ≥T2 ≥…Tl at which the Boltzmann distribution is com-
puted. Implementations of the generation mechanism
differ in the way they generate a transition, or move, from
one set of parameters to another, which is consistent with
the Boltzmann distribution at given temperature. The two
most widely used generation mechanisms are Metropolis

Monte Carlo [60] and molecular dynamics [61] simulations.
For NMR structure calculation, both molecular dynamics
and Monte Carlo have been successfully used [6,5,62–64].
For X-ray crystallographic refinement, molecular dynam-
ics has proven to be extremely successful [4], whereas 
the Monte Carlo methods have yet to be shown to be
effective.

Metropolis Monte Carlo
The Metropolis Monte Carlo algorithm [60] simulates the
thermal equilibrium of a system for a fixed value of the
temperature T. In the limiting case of T=0, Monte Carlo is
equivalent to a gradient-descent method; the only moves
allowed are the ones that lower the target function until 
a local minimum is reached. At a finite temperature,
however, Monte Carlo allows uphill moves and hence
allows barrier crossings. 

The advantage of the Metropolis Monte Carlo algorithm 
is its simplicity. A disadvantage concerns the efficient
choice of the parameter shifts that define the Monte Carlo
move. Ideally, this choice should in some way reflect the
topology of the search space. In the case of a covalently
connected macromolecule, random shifts of atomic coordi-
nates have a high rejection rate: they immediately violate
geometric restrictions such as bond lengths and bond
angles. This problem can be alleviated in principle by
carrying out the Monte Carlo simulation using a suitably
chosen set of internal coordinates, such as torsions about
bonds, normal modes of vibration, or by relaxing the
strained coordinates through minimization [65–67]. 

Molecular dynamics
A suitably chosen set of atomic parameters can be viewed
as generalized coordinates that are propagated in time by
the classical (Hamilton) equations of motion [68]. If the
generalized coordinates represent the x, y, z positions
of the atoms of a molecule, the Hamilton equations of
motion reduce to the more familiar Newton’s second law:

mi (∂2 →ri /∂t2)=–tiE (8)

The quantities mi and ri
→ are the mass and coordinates of

atom i, respectively, and E is given by Equation 1. The
solution of the partial differential equations (Equation 8) is
achieved numerically using finite difference methods [61].
This approach is referred to as molecular dynamics [61]. 

Initial velocities for the integration of Equation 8 are
usually assigned randomly from a Maxwell distribution 
at the appropriate temperature. Assignment of different
initial velocities will produce a somewhat different struc-
ture after simulated annealing. By performing several
refinements with different initial velocities, one can there-
fore improve the chances of success of simulated-anneal-
ing refinement. Furthermore, this improved sampling can
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be used to determine discrete disorder and conformational
variability (see below). 

Although Cartesian (i.e. flexible bond lengths and bond
angles) molecular dynamics places restraints on bond
lengths and bond angles (through Echem, Equation 1), one
might want to implement these restrictions as constraints
(i.e. fixed bond lengths and bond angles [54]). This is sup-
ported by the observation that the deviations from ideal
bond lengths and bond angles are usually small in X-ray
crystal structures, and even smaller in NMR structures.
Indeed, fixed length constraints have been applied to
structure calculation by least-squares or conjugate-gradi-
ent minimization [54,11], and by Monte Carlo minimiza-
tion [62–64]. It is only recently, however, that efficient
and robust algorithms have become available for molecular
dynamics in torsion-angle space [8,69–72].

We chose an approach that retains the Cartesian-coordi-
nate formulation of the target function and its derivatives
with respect to atomic coordinates so that calculation
remains relatively straightforward and topology inde-
pendent [8]. In this formulation, however, the expression
for the acceleration becomes a function of positions and
velocities. Iterative equations of motion for constrained
dynamics in this formulation can be derived and solved by
finite difference methods [73]. This method is numeri-
cally very robust and has a significantly increased radius 
of convergence in crystallographic refinement and NMR
structure calculation, compared to Cartesian molecular
dynamics [8,15]. 

Temperature control
Simulated annealing requires the control of the tempera-
ture during molecular dynamics. The current temperature
of the simulation (Tcurr) is computed from the kinetic
energy (Ekin):

Ekin =   Σ
i

natoms
1/2mi (∂ ri /∂ t)2 (9)

of the molecular dynamics simulation, 

Tcurr =2Ekin /3nkb (10)

Here n is the number of degrees of freedom and kb is
Boltzmann’s constant. One commonly used approach to
control the temperature of the simulation consists of cou-
pling the equations of motion to a heat bath. A ‘friction’
term (gi) [74] can be added to the right-hand side of Equa-
tion 8 to lower the temperature:

–migivi (1– (T/Tcurr)) (11)

where vi is the velocity of atom i and mi is the mass. This
method generalizes the concept of friction by determining

the friction coefficient and its sign by the ratio of the
current simulation temperature (Tcurr) to the target tem-
perature T. 

Why does simulated annealing work?
The goal of any optimization problem is to find the global
minimum of a target function. In the case of macromolec-
ular structure calculation and refinement, one searches for
the conformation, or conformations, of the molecule that
best fit the experimental data and that simultaneously
maintain reasonable covalent and noncovalent interac-
tions. Simulated-annealing refinement has a much larger
radius of convergence than conjugate-gradient minimiza-
tion (see below). It must therefore be able to find a lower
minimum of the target E (Equation 1) than the local
minimum found by simply moving along the negative gra-
dient of E. Paradoxically, the very reasons that make sim-
ulated annealing such a powerful refinement technique
(the ability to overcome barriers in the target energy func-
tion) would seem to prevent it from working at all. If it
crosses barriers so easily, what allows it to stay in the vicin-
ity of the global minimum?

It is most easy to visualize this property of simulated
annealing in the case of molecular dynamics. By speci-
fying a fixed temperature, the system essentially gains a
certain inertia which allows it to cross energy barriers of
the corresponding target function (Equation 10). The
target temperature must be large enough to overcome
smaller barriers (e.g. Fig. 2) but low enough to ensure that
the system will not ‘climb out’ out of the global minimum
if it manages to arrive there. While temperature itself is a
global parameter of the system, temperature fluctuations
arise principally from local conformational transitions —
for example from an amino acid sidechain falling into the
correct orientation. These local changes tend to lower the
value of the target E, thus increasing the kinetic energy,
and hence the temperature, of the system. Once the tem-
perature coupling (Equation 11) has removed this excess
kinetic energy through ‘heat dissipation’, the reverse tran-
sition is very unlikely, as it would require a localized
increase in kinetic energy where the conformational
change occurred in the first place. Temperature coupling
maintains a sufficient amount of kinetic energy to allow
local conformational corrections, but does not supply
enough to allow escape from the global minimum. This
explains the observation that, on average, the agreement
with the experimental data will improve rather than
worsen with simulated annealing. 

Practical considerations
As Figure 2a illustrates, the simulation temperature needs
to be high enough to allow conformational transitions but 
not too high so as to avoid moving too far away from the
initial structure. The optimal temperature for a given start-
ing structure is a matter of trial and error. We empirically
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determined starting temperatures for a variety of simu-
lated-annealing protocols [10,56], which should work for
the average case. However, it might be worth trying a dif-
ferent temperature if a particularly difficult refinement
problem is encountered. In particular, significantly higher
temperatures are attainable using torsion-angle molecular
dynamics. Note, that each simulated-annealing refine-
ment calculation is subject to ‘chance’ by using a random
number generator to generate the initial velocities. Thus,
multiple refinements must be run if systematic trends
resulting from changes of certain parameters of the anneal-
ing schedule are to be studied. The best structure(s)
among a set of refinements using different initial velocities

and/or temperatures should be taken for further refine-
ment or averaging (see below). 

The annealing schedule employed can, in principle, be
any function of the simulation step (or ‘time’ domain).
The two most commonly used protocols are linear slow
cooling or constant temperature followed by quenching
(Fig. 2b). A slight advantage in terms of final R values is
obtained with slow cooling [34]. The duration of the
annealing schedule is another parameter: too short a proto-
col does not allow sufficient sampling of conformational
space; too long a protocol may waste computer time as it 
is more efficient to run multiple trials as opposed to one
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Figure 2

Simulated annealing. (a) Schematic
explanation of molecular dynamics-based
simulated annealing. The kinetic energy of the
system allows local conformational transitions
with barriers smaller than the kinetic energy. If
a larger drop in energy is encountered the
excess kinetic energy is dissipated through
the friction term (Equation 11). It is thus
unlikely that the system can climb out of the
global minimum once it has reached it.
(b) Possible annealing schedules: slow
cooling and constant temperature followed by
quenching. 
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long refinement protocol (PDA, LMR and ATB, unpub-
lished results). 

Crystallographic refinement
In the case of crystallographic refinement, the limited
radius of convergence arises not only from the high dimen-
sionality of the parameter space, but also from the crystal-
lographic phase problem. For new crystal structures, initial
electron-density maps must be computed from a combi-
nation of observed diffraction amplitudes and experimen-
tal phases, where the latter are typically of poorer quality
and lower resolution than the former. A different problem
arises when structures are solved by molecular replace-
ment [75,76] which uses a similar structure as a search
model. In this case the resulting electron-density maps 
can be severely ‘model biased’, that is, they seem to
confirm the existence of the search model without provid-
ing clear evidence of actual differences between it and the
true crystal structure. In either case, initial atomic models
usually require extensive refinement. 

Many examples have shown that simulated-annealing
refinement starting from initial models (obtained by stan-
dard crystallographic techniques) produces significantly
better final models compared to those produced by least-
squares or conjugate-gradient minimization. In recent tests
[8,10], arbitrarily ‘scrambled’ models were generated from
an initial model of a-amylase inhibitor built using experi-
mental phase information from MIR. Scrambling of this
initial model was obtained by using increasingly long mol-
ecular dynamics simulations at 600K, computed without
reference to the X-ray diffraction data. These scrambled
structures were energy minimized in order to provide
chemically reasonable starting models. It was shown that
these models represented realistic test cases for phasing by
molecular replacement: the scrambled structures con-
tained sufficient information to solve the crystal structure
through an extensive molecular replacement search [10]. 

Both conjugate-gradient minimization and simulated
annealing were carried out in order to compare the per-
formance of the maximum-likelihood target against the
least-squares residual. Figure 3 shows that the maximum-
likelihood target produces models with lower phase error.
For conjugate-gradient minimization the average phase
improvement, compared to the least-squares residual, is
approximately 5°. It can also be seen that simulated
annealing with the least-squares target has a larger radius
of convergence than minimization with maximum likeli-
hood, and that this convergence is further improved by
the use of the maximum-likelihood target (Fig. 3). For the
most scrambled model, an average phase improvement of
more than 15° is obtained, compared to the least-squares
residual. The resulting structures are very close to the
published crystal structure (Fig. 3). Similar results were
obtained for a test case at lower (2.8Å) resolution and for a

real case involving a new crystal structure starting with an
initial model built into a poor electron-density map [10]. 

Cross-validation is essential in the calculation of the
maximum-likelihood target [9,10,40]. Maximum-likelihood
refinement without cross-validation gives much poorer
results, as indicated by higher free R values, higher Rfree–R
differences, and higher phase errors [10]. It should be
noted that the normal R value in general increases upon
using the cross-validated maximum-likelihood formulation.
This is a consequence of the reduction of overfitting by
this method. 

Simulated-annealing refinement is most useful when the
initial model is relatively crude. Given a well refined
model, it offers little advantage over conventional methods,
with the exception of providing information about the
accuracy and conformational variability of the refined struc-
ture (see below). 

NMR structure calculation
NMR experiments provide very specific, local information
about macromolecules. In contrast to X-ray crystallography,
where each data point contains information about the
entire molecule, NMR spectroscopy provides information
about interatomic distance pairs and specific dihedral
angles (see above). These fundamental differences in the
experimental data manifest themselves in fundamental dif-
ferences in refinement requirements. The global nature of
crystallographic data means that the initial model must not
deviate too significantly from the final refined one. The
local nature of NMR data, on the other hand, means that
random initial models can be productively refined [13].
Furthermore, molecular dynamics-based simulated anneal-
ing can be used to automate the NOE assignment process
[45]. It is a testament to the remarkable power of molecular
dynamics-based simulated annealing that it has enjoyed
such great success in widely divergent applications.

Recent tests comparing torsion-angle molecular-dynamics
refinement to Cartesian molecular-dynamics refinement
illustrate the advantages of the reduced variable approach
[15]. Torsion-angle dynamics was compared to commonly
used strategies which rely on Cartesian molecular dynam-
ics, distance geometry, or both. The method has a higher
success rate and efficiency than conventional simulated-
annealing algorithms, which use Cartesian molecular
dynamics or distance geometry combined with Cartesian
molecular dynamics.

The application of torsion-angle molecular dynamics to
the refinement of a DNA dodecamer against NMR data
provided even more striking results (Fig. 4). The starting
atomic model consisted of two extended nucleotide
strands. The ‘YASAP’ Cartesian molecular-dynamics pro-
tocol [14] failed to produce the correct structure whereas
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with torsion-angle molecular dynamics, convergence was
achieved in about half of the trials. The method should be
applicable to the refinement of other nucleic acid struc-
tures which may adopt noncanonical structures. 

Averaging of independently refined structures
As mentioned above, multiple simulated-annealing refine-
ments will generally produce somewhat different struc-
tures, some of which may be better than others (e.g. as
assessed in terms of the free R value for X-ray structures,
and NOE violations for NMR structures). This approach
offers several advantages. Firstly, a more optimal structure
can be obtained from multiple trials as opposed to a single
simulated-annealing calculation. This is routinely done for
NMR structure calculation where typically 20–100 trials
are performed. Secondly, each member of the family of
refined structures may be better in different regions of 
the molecule. Thus, by examining the ensemble during
model building, one may gain insights into possible 
local conformations of the molecule. Thirdly, the structure
factors of all structures of the family may be averaged in
the X-ray crystallographic case [8]. This averaging will
reduce the effect of local errors (noise) that are presum-
ably different in each member of the family. 

The effect of averaging multiple simulated-annealing trials
is illustrated in Figure 5. Each simulated-annealing run

employed torsion-angle molecular dynamics with the
maximum-likelihood target (Equation 4). The calculations
were perfomed on human heterogeneous ribonucleopro-
tein A1 (hnRNP), a recently solved crystal structure [77].
Averaging produced the least model-biased map (as indi-
cated by the lowest free R value and the lowest Rfree–R
difference) with the polypeptide backbone being com-
pletely connected (LMR, Y Shamoo, ATB, unpublished
results). This example is another demonstration that cross-
validation of the R value is essential for assessing model
correctness [7], as the normal R value decreases with
increasing model bias of the electron-density maps whereas
the free R value shows the correct behavior. 

Ensemble models
In cases of conformational variability or discrete disorder,
there is not a single correct solution to the optimization
problem, Equation 1. Rather, the X-ray diffraction or NMR
data represent a spatial and temporal average over all con-
formations that are assumed by the molecule. Ensembles
of structures, which are simultaneously refined against the
observed data, may thus be a more appropriate description
of the data. This has been used for some time in X-ray
crystallography when alternate conformations are modelled
locally. Alternate conformations can be generalized to
global conformations [17,18,20,78], that is the model is
duplicated n-fold, the corresponding calculated structure
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The radius of convergence. The final phase error for the least-squares
residual target, Equation 3 (dashed line) and the maximum-likelihood
target, Equation 4 (solid line) for refinements of the scrambled
a-amylase inhibitor structures against diffraction data at dmin = 2.0 Å,
with respect to the published crystal structure [80]. (a) The results for
conjugate gradient minimization for the least-squares target (CG-LSQ)
and the maximum-likelihood target (CG-ML). (b) The results for ten

simulated-annealing runs with torsion-angle dynamics with the least-
squares target (SA-LSQ) and the maximum-likelihood target (SA-ML).
The simulated-annealing graphs shows the average of ten refinements
with different initial velocities. Error bars indicate the maximum and
minimum phase errors obtained with ten simulated-annealing runs. The
best structures are readily identified by the lowest free R value. Initial
phase errors are shown by the upper dotted line (marked ‘initial’) in (a).



factors are added and refined simultaneously against the
observed X-ray diffraction data (or solution NMR data) 
and each member of the family is chemically ‘invisible’ 
to all other members. The number n can be determined 
by cross-validation in the crystallographic case [18,19].
However, this is difficult for solution NMR structures [21]
because of the unfavorable observable to parameter ratio. 

An advantage of a multiconformer model is that it directly
incorporates many possible types of disorder and motion
(global disorder, local sidechain disorder, local wagging and
rocking motions). Furthermore, it can be used to automati-
cally detect the most variable regions of the molecule by
inspecting the atomic rms difference around the mean as a
function of residue number. Thermal factors of single con-
former models may sometimes be misleading by underesti-
mating the degree of motion or disorder [79] and, thus, the
multiconformer model is a more faithful representation of
the diffraction data. A disadvantage of the multiconformer
model is that it introduces many more degrees of freedom.
However, cross-validated maximum-likelihood refinement
can reduce the danger of overfitting. For example, intro-
duction of multiple conformers into refinement of a frag-
ment of mannose-binding protein did not increase the
amount of overfitting compared to the single-conformer
case (FT Burling and ATB, unpublished results). 

Although there are some similarities between averaging
individually refined structures and multiconformer models

there are also fundamental differences. For example, in the
case of X-ray crystallography, averaging seeks to improve
the calculated electron-density map by averaging out the
noise present in the individual models, each of which is
still a good representation of the diffraction data. This
method is most useful at the early stages of refinement
when the model still contains errors. In contrast, multi-
conformer refinement seeks to create an ensemble of
structures at the final stages of refinement which, taken
together, best represent the data. It should be noted that
each individual conformer of the ensemble does not neces-
sarily remain a good description of the data as the whole
ensemble is refined against the data. Clearly, this method
requires high-quality data and a high observable-to-para-
meter ratio. 

Conclusions
Simulated annealing has improved the efficiency of macro-
molecular structure calculation and refinement significantly
in both X-ray crystallography and solution NMR spec-
troscopy. A case in point is the combination of torsion-angle
molecular dynamics with a cross-validated maximum-likeli-
hood target for X-ray crystallography, which interact syner-
gistically to produce less model bias than any other method
to date. The combined method also increases the radius of
convergence allowing the refinement of poor initial models
(e.g. those obtained by weak molecular replacement solu-
tions [8,10]). However, simulated-annealing refinement
alone is still insufficient to refine a structure automatically
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Figure 4

Average structures obtained from refinements
of the DNA dodecamer (CGCGPATTCGCG)
[81]. No acceptable structures (i.e. without
NOE violations) were generated by methods
involving distance geometry or Cartesian
molecular dynamics. In contrast, torsion-angle
molecular dynamics produced acceptable
structures in 52% of the trials. The original
structure [80] was obtained by restrained
molecular dynamics refinement, starting from
canonical A-form and B-form DNA. (a) The
best structure (i.e. that with the smallest
number of NOE violations) produced using 50
trials of Cartesian molecular dynamics
simulated annealing, starting from extended
nucleotide strands. (b) The structure
produced using torsion-angle molecular
dynamics starting from extended nucleotide
strands.  



without human intervention. For example, crystallographic
refinement using simulated annealing typically cannot
correct chain tracing errors, such as register shifts. In the

case of NMR, it is sometimes necessary to correct misas-
signments or decide between different models that both
appear to fit the experimental data equally well, although
ambiguous NOE restraints can help automate this process
[45]. Fully automatic structure determination remains a
distant goal that will be likely to require significant new
algorithmic developments.

Simulated annealing can also be used to provide new
physical insights into molecular function, which may
depend on conformational variability. The sampling char-
acteristics of simulated annealing allow the generation 
of multiconformer models which can represent molecular
motion and discrete disorder, especially when combined
with the acquisition of high-quality data [19]. Simulated
annealing is thus a stepping stone towards the develop-
ment of improved models of macromolecules both in solu-
tion and in the crystaline state. 
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