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ABSTRACT Recently, the target function for crystallo-
graphic refinement has been improved through a maximum
likelihood analysis, which makes proper allowance for the
effects of data quality, model errors, and incompleteness. The
maximum likelihood target reduces the significance of false
local minima during the refinement process, but it does not
completely eliminate them, necessitating the use of stochastic
optimization methods such as simulated annealing for poor
initial models. It is shown that the combination of maximum
likelihood with cross-validation, which reduces overfitting,
and simulated annealing by torsion angle molecular dynamics,
which simplifies the conformational search problem, results
in a major improvement of the radius of convergence of
refinement and the accuracy of the refined structure. Torsion
angle molecular dynamics and the maximum likelihood target
function interact synergistically, the combination of both
methods being significantly more powerful than each method
individually. This is demonstrated in realistic test cases at two
typical minimum Bragg spacings (dmin 5 2.0 and 2.8 Å,
respectively), illustrating the broad applicability of the com-
bined method. In an application to the refinement of a new
crystal structure, the combined method automatically cor-
rected a mistraced loop in a poor initial model, moving the
backbone by 4 Å.

The aim of macromolecular crystallography is to obtain an
accurate atomic model based on the observed diffraction data.
This model needs to be optimized to obtain the best agreement
with the observed diffraction data. Several specialized opti-
mization methods have been developed to refine macromol-
ecules, including partial and full matrix least-squares (1, 2),
conjugate gradient minimization (3), and molecular dynamics-
based simulated annealing (4, 5). However, the refinement of
macromolecular structures is often difficult for several rea-
sons. First, the data-to-parameter ratio is low, creating the
danger of overfitting the diffraction data. Therefore, the
apparent ratio of data to parameters is often increased by
incorporation of chemical information, i.e., bond length and
bond angle restraints obtained from ideal values seen in high
resolution structures (1). Second, the initial model is often
poor because of the typically limited quality of experimental
phases, and there is, therefore, some discrepancy to the actual
structure of the crystallized molecule. Third, local (false)
minima exist in the target function. The more local minima
there are and the deeper the minima are, the more likely
refinement will fail. Fourth, model bias in the electron density
maps complicates the process of manual refitting between
cycles of automated refinement. This problem is exacerbated
by overfitting the diffraction data in the refinement process.

Methods have been devised to address these difficulties.
Cross-validation, in the form of the free R-value, can be used
to detect overfitting (6–8). The radius of convergence of
refinement can be increased by the use of stochastic optimi-
zation methods such as molecular dynamics-based simulated
annealing (4). Introduction of torsion angle-based approaches
(9, 10) reduce the number of degrees of freedom bymaking the
reasonable assumption that bond lengths and angles are ap-
proximately constant. The implementation of this method
within the framework of molecular dynamics has been shown
to increase dramatically the radius of convergence of refine-
ment and to decrease overfitting (10, 11).
As with any optimization problem, the efficiency of the

refinement method depends on the complexity of the land-
scape of the target function. This landscape is also influenced
by the way model incompleteness and errors are modelled. The
most commonly used target function (ELSQ) for macromolec-
ular refinement employs the least-squares residual for the
diffraction data,

ELSQ 5 Erestraints 1 waO
hkl

~uFou 2 kuFcu!2 [1]

where uFou and uFcu are the observed and calculated structure-
factor amplitudes, k is a relative scale factor, wa is a weight, and
Erestraints are geometric (bond length, bond angle, and atomic
repulsion) restraints. A decrease of this function can some-
times be due to accumulation of systematic errors in the model
without improvement or even a worsening of the model (12).
The underlying reason can be found in the fact that the
least-squares residual does not account for the effects of phase
errors in the calculated structure factors, so it is poorly justified
when the model is far away from the correct answer or
incomplete (13). A more appropriate target for macromolec-
ular refinement can be obtained through a maximum likeli-
hood formulation (14–16), and such implementations have
been recently described (13, 17, 18).
The goal of the maximum likelihood method is to determine

the probability of making a set of measurements, given the
model, and estimates of its errors and of errors in the measured
intensities. The effects of model errors (misplaced atoms and
missing atoms) on the calculated structure factors are first
quantified with sA values, which correspond roughly to the
fraction of each structure factor that is expected to be correct
(13, 19). To achieve an improvement over the least-squares
residual (Eq. 1), cross-validation (6, 8) was used for the
computation of sA, necessitating its calculation with a ran-
domly selected test set of diffraction data that was never
included in the refinement process (13). The need for cross-
validation is demonstrated in Results. The cross-validated sA
values (s A

cv) are then used to compute the expected value of
^uFou&cv and the corresponding variance (s MLcv

2 ) (13). ^uFou&cv for
the acentric case is given by
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^uFou&cv 5 @Î~p«sD
2 !y2#F(21y2, 1, 2D2uFcu2y«sD

2 ). [2]

For the centric case, the expected value is

^uFou&cv5 @Î~2«sD
2yp!#F(21y2, 1y2,2D2uFcu2y2«sD

2), [3]

where « is the expected intensity factor, s D
2 5 SN 2 D2SP, SN

is the distribution parameter of the Wilson intensity distribu-
tion for uFou (20) and SP is the distribution parameter of the
Wilson intensity distribution for uFcu, and F(a, b, x) is Kum-
mer’s confluent hypergeometric function. The parameters SN,
SP, andD are calculated using cross-validated data. ^uFou&cv and
s MLcv
2 can be readily incorporated into a maximum likelihood
target function,

EML 5 Erestraints 1 wa O
hkl[working set

S 1

sMLcv
2 D ~uFou 2 ^uFou&cv!2.

[4]

Fig. 1 shows the improvement of the target function by
maximum likelihood; the false minimum is less pronounced
compared with the least-squares residual. Despite this major
improvement, local minima still exist (Fig. 1), which causes a
limited radius of convergence when gradient descent optimi-
zation methods are used. Here we show that torsion angle
molecular dynamics and the cross-validated maximum likeli-
hood target EML, each of which independently improves the
refinement of poor models, combine synergistically to signif-
icantly improve macromolecular crystallographic refinement.

METHODS

Refinement Protocol. Amaximum likelihood function using
cross-validated sAweighting (19) and experimental amplitudes
has been described previously (13). Several improvements to
the original method were implemented for the smoothing of

the cross-validated sA function, the determination of the
optimal weight between experimental and geometric restraints
(wa), and automation of the refinement procedure.
The sA function is used to obtain an estimate of the effect

of model errors and incompleteness. To make this estimate as
unbiased as possible, cross-validation is used by setting aside a
randomly selected set of typically 10% of the diffraction data
for the calculation of s A

cv, while the remaining 90% is used in
the target function (‘‘working set,’’ Eq. 4) (6, 8, 13). The
relatively small number of reflections in the test set results in
large fluctuations in the s A

cv values when calculated as a
function of resolution. Therefore, during the optimization of
likelihood as a function of sAcv, a harmonic term is added to the
target to restrain the resolution-dependent s A

cv values to the
average of the two neighboring resolution bins. This restraint
serves to smooth the s A

cv function.
The optimal weight (wa) between the x-ray and geometric

terms (Eqs. 1 and 4) was estimated by

wa 5
1
2

Î^~¹Echem!2&

Î^~¹Exray!2&
[5]

after an unrestrained (i.e., with wa set to 0 in Eqs. 1 and 4)
molecular dynamics simulation (4). For the maximum likeli-
hood target (Eq. 4), it became clear that the choice of wa is very
important, in contrast to least-squares residual based refine-
ments where changes of up to a factor of 2 in wa make little
difference (unpublished data). Therefore, an automated
method was developed to adjust wa during the course of
refinement. At stages in the refinement protocol where the
model may have significantly changed, the new weight (wa)
between the geometric and x-ray terms was recalculated (using
Eq. 5). For the maximum likelihood target, the sA values were
recalculated before recalculation of wa. The points at which
model changes were greatest were after initial minimization
and simulated annealing (Fig. 2).
Details of this new highly automated protocol are shown in

Fig. 2. Note that the protocol does not require any ‘‘prepara-
tion’’ stage, minimizing the possibility of user error. Simulated
annealing refinements were repeated 10 times with different
initial velocities. A modified version of the parameter set of
Engh and Huber (21) was used for all refinements, where the
nonbonded terms were modified to be similar to those imple-
mented in PROLSQ using a quartic, repulsive nonbonded energy
function (1, 22). Temperatures during simulated annealing
were maintained at a constant value by coupling to a temper-
ature bath (23).
Refinements were carried out with a developmental pro-

gram that combines the maximum likelihood target with both
simulated annealing using torsion angle molecular dynamics
and conjugate gradient minimization (which will be made
available upon request from A.T.B.).
Test Cases. Test refinements were carried out using the

crystal structure of amylase inhibitor (24). Unit cell dimen-
sions in spacegroup P212121 are a 5 61.76 Å, b 5 40.73 Å, and
c5 26.74 Å. Diffraction data were measured for the resolution
range 17–2.0 Å, and all data with uFu , 2sF were discarded for
comparison with the published refined structure (24). Refine-
ments using the maximum likelihood target (Eq. 4) used all
data from 17- to 2-Å resolution. For this test case, use of the
bulk solvent model with the least-squares residual gave worse
results than use of a truncated data range. This was probably
due to the large coordinate error for many of the starting
models and the relatively low solvent content (30%) of the
crystal. Therefore, no bulk solvent model and a truncated data
range of 8–2 Å was used in the least-squares refinements
described below.
Models with increasing coordinate error were generated by

performing an unrestrained molecular dynamics simulation at

FIG. 1. A comparison of the energy landscapes of the least-squares
residual (dashed line) and the maximum likelihood target (solid line).
An asparagine residue was placed in a P1 unit cell of size a 5 40 Å,
b 5 40 Å, and c 5 40 Å. Diffraction data from 20- to 2-Å resolution
were calculated from the structure in its initial conformation. These
data were modified by addition of Gaussian error (6 10% of uFu). A
single value of sF, 10% of the average amplitude, was used for all
reflections. The x2 dihedral was then rotated in 58 steps, and the value
of the x-ray target (Eqs. 1 and 4), compared with the model diffraction
data, was calculated at each position. The two minima correspond to
the correct solution (a) and a false minimumwith the positions of OD1
and ND2 inverted (b). The maximum likelihood target clearly shows
sharper minima, broader, f latter maxima, and a less deep false
minimum.
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600 K starting from the published crystal structure (10). The
resulting scrambled models were energy minimized to achieve
starting models with good geometry and nonbonded interac-
tions. Five models were obtained with rms backbone (C, CA,
N) errors between 0.6 and 1.9 Å from the crystal structure.
Molecular Replacement Is Successful with the Models

Scrambled by Molecular Dynamics. To ensure that the result-
ing scrambled models represent realistic starting structures,
molecular replacement was carried out using the experimental
amylase inhibitor data. The molecular replacement protocol
consisted of the direct rotation function (25) followed by
translation searches (26) around the top 10 grid points of the
rotation function computed using data from 15- to 3.5-Å
resolution. Briefly, a 108 grid search in Euler angle space using
58 steps was carried out around each of the top 10 grid points,
resulting in 1,250 translation searches. The top translation
function solutions were rigid body refined and scored accord-
ing to the Patterson correlation coefficient (27). The correct
solution was obtained in all five cases studied both with a
full-atom and a poly-alanine model. The signal-to-noise ratio
(ratio of the Patterson correlation coefficient for the correct
and highest incorrect solution) ranged from 1.44 for the best
model to 0.93 for the worst model. The correct solution was
always the top translation search peak except in the case of the
worst search model, which had a backbone coordinate rms
deviation of 1.9 Å. However, torsion angle molecular dynamics
simulated annealing refinement, using the maximum likeli-
hood target, of the top two peaks for the worst model clearly
indicated that the correct solution was the second peak, as
assessed by both the R-value and free R-value. Thus, all five

scrambled models contain sufficient information to solve the
crystal structure through an extensive molecular replacement
search.
The models after refinement were compared with the

published amylase inhibitor crystal structure (24). The un-
weighted phase error was calculated for all data (17–2 Å or
17–2.8 Å). The rms error for backbone atoms (excluding
residues 1–4, which are very flexible as indicated by their high
B-values) was also calculated.
Application to a New Crystal Structure. A partially refined

model of the recently solved crystal structure of human hnRNP
A1 (28) was used. This small RNA binding protein was
crystallized in spacegroup P21 with unit cell dimension a 5
38.1 Å, b 5 44.0 Å, c 5 56.1 Å, and b 5 94.88. The initial free
R-value for the model, against a lower resolution data set to 2.2
Å, was 46.9%, and the R-value was 38.6%. Conjugate gradient
minimization and simulated annealing using torsion angle
dynamics from a starting temperature of 10,000 K were carried
out. The full resolution range of 35–2.2 Å, with no weak data
excluded, was used in refinements using either the least-
squares or maximum likelihood targets. A bulk solvent cor-
rection (29) was applied (ksol 5 0.42 electronyÅ3 and Bsol 5
154.8 Å2), resulting in a major improvement in both R-value
and free R-value, in contrast to the amylase inhibitor test case.
Refinements were repeated five times, with different initial
velocities.

RESULTS

Test Case with All Atoms. The models placed according to
the molecular replacement search solutions were used as
starting points for refinement against the amylase inhibitor
diffraction data. Both conjugate gradient minimization and
simulated annealing with torsion angle molecular dynamics
were carried out to compare the performance of the maximum
likelihood target against the least-squares residual. Fig. 3
shows that the maximum likelihood target produces models
with lower phase error. For conjugate gradient minimization,
the average phase improvement, compared with the least-
squares residual, is approximately 58. It can also be seen that
torsion angle molecular dynamics using the least-squares re-
sidual has a larger radius of convergence than minimization
with the maximum likelihood target, and that the convergence
of torsion angle molecular dynamics is further improved by the
use of the maximum likelihood target (Fig. 3). For the most
scrambled model, an average phase improvement, compared
with the least-squares residual, of more than 158 is obtained.
The resulting structures are very close to the published crystal

FIG. 2. Automated torsion angle dynamics simulated annealing
protocol for maximum likelihood-based refinement. Refinements with
the maximum likelihood target calculated initial sA values that were
used through an initial 200 conjugate gradient minimization steps,
after which the estimates of sA and the weight (wa) were updated.
Torsion angle molecular dynamics in combination with simulated
annealing started from a temperature of 5,000 K and decreased in 25
K steps to 300 K, and 12 steps of dynamics with a timestep of 2 fs were
carried out for each temperature drop. After torsion angle molecular
dynamics 200 steps of Cartesian molecular dynamics were carried out
at a constant temperature of 300 K followed by 100 steps of conjugate
gradient minimization. A final 100 steps of minimization were per-
formed after a final update of the sA and wa values.

FIG. 3. Final phase error for the least-squares residual target, Eq.
1 (dashed line), and the maximum likelihood target, Eq. 4 (solid line),
for refinements of the scrambled amylase inhibitor structures against
diffraction data at dmin 5 2.0 Å, with respect to the published crystal
structure. (Left) Results for conjugate gradient minimization. (Right)
Results for 10 simulated annealing runs with torsion angle dynamics.
The simulated annealing graph shows the average of 10 refinements
with different initial velocities. Error bars indicate the maximum and
minimum phase errors obtained with 10 simulated annealing runs. The
best structures are readily identified by the lowest free R-value. Initial
phase errors are shown by the upper dotted line.
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structure (Fig. 4). The large spread in structures observed for
the least-squares residual refinement is due to limited radius of
convergence and, in this particular case, should not be inter-
preted as conformational variability in the structure.
Local minima cause gradient descent methods to become

trapped, whereas simulated annealing-based methods can
partially overcome this problem. This clearly also applies to the
maximum likelihood target (Fig. 3). Extensive minimization
consisting of 10 macrocycles of conjugate gradient minimiza-
tion, each of 200 steps followed by an update of sA and its
derived quantities, was carried out for the model with 1.53 Å
rms initial backbone coordinate error (a total of 2,000 steps of
minimization, with the estimates of s A

cv being updated every
200 steps). The free R-value and phase error were decreased
(Table 1). However, the resulting structures are much poorer
than those obtainable by simulated annealing (Fig. 3).
Cross-validation is essential in the calculation of the maxi-

mum likelihood target (8, 13). Its importance was demon-
strated by using all reflections in the calculation of s A

cv.
Repeated conjugate gradient refinements were performed as
above, interspersed by s A

cv and wa updates, for the model with
1.53 Å rms initial backbone coordinate error. The refinement
without cross-validation gave much poorer results, as indicated
by the high free R-value and phase error (Table 1). In addition,
the difference between the R-value and free R-value is signif-
icantly larger (8.1%) compared with the refinement where

cross-validation was used (6.6%). Therefore, cross-validation
is essential to obtain good results with this maximum likeli-
hood target.
Test Case with Low Resolution Data. The molecular re-

placement solutions for the five scrambled structures were
used also in test refinements against lower resolution diffrac-
tion data that were created from the observed amylase inhib-
itor amplitudes by the application of a B-factor of 45 Å2 to both
amplitudes (uFu) and sF values. Refinements were carried out
as before, starting with the 3.5-Å molecular replacement
solution, but at the reduced resolution range of 17–2.8 Å for
the maximum likelihood target and 8–2.8 Å for the least-
squares target against this lower resolution data set. As for the
higher resolution refinements, the maximum likelihood target
produces models with lower phase error in most cases (Fig. 5).
For smaller initial coordinate error, the results for either target
are comparable. However, at higher initial error, maximum
likelihood only gives superior results when used in combination
with simulated annealing.
Test Case with Poly-Alanine Models. To thoroughly test the

limits of the methods, both molecular replacement and refine-
ment were repeated using poly-alanine-only models. Molecu-
lar replacement was successful in all five cases (with signal-
to-noise ratios ranging from 1.57 to 1.07). After refinement
against the amylase inhibitor diffraction data, the final phase
errors show that the combination of simulated annealing and
the maximum likelihood target are again consistently better
except for the worst initial model (Fig. 6). In this latter case all
methods fail to converge. However, torsion angle molecular
dynamics simulated annealing in combination with the maxi-
mum likelihood target is able to successfully refinemodels with
initial rms deviation errors of between 1.3 Å and 1.5 Å (Fig.
6). The least-squares residual is unable to improve these
models.
Application to a New Crystal Structure. A partially refined

model of the recently solved crystal structure of human hnRNP
A1 (28) was refined at 2.2-Å resolution using simulated
annealing with both the least-squares residual and the maxi-
mum likelihood target. This structure had proved difficult to
refine, partially because of some large initial errors in the
model. Refinement of the structure was only successful using
a combination of simulated annealing, torsion angle molecular
dynamics and multiple refinements followed by averaging
(L. M. Rice, Y. Shamoo, and A.T.B., unpublished work). A
model from the early stages of refinement, therefore, provided
a good test case for the new maximum likelihood target.

FIG. 4. (a) Result of 10 simulated annealing refinements with the
maximum likelihood target (solid lines), compared with the published
amylase inhibitor crystal structure (dashed line with Ca atoms shown
as solid circles). (b) Same results for 10 refinements with the least-
squares residual. The startingmodel has an rms deviation of 1.9 Å from
the published crystal structure. This figure was created with the
program MOLSCRIPT (30).

FIG. 5. Final phase error for the least-squares residual target, Eq.
1 (dashed line), and the maximum likelihood target, Eq. 4 (solid line),
for refinements of the scrambled amylase inhibitor structures against
lower resolution diffraction data at dmin5 2.8 Å (see text), with respect
to the published crystal structure. (Left) Results for conjugate gradient
minimization. (Right) Results for 10 simulated annealing runs with
torsion angle dynamics. The simulated annealing graph shows the
average of 10 refinements with different initial velocities. Error bars
indicate the maximum and minimum phase errors obtained with 10
simulated annealing runs. The best structures are readily identified by
the lowest free R-value. Initial phase errors are shown by the upper
dotted line.

Table 1. Comparison of simulated annealing with torsion angle
dynamics and repeated conjugate gradient minimization
interspersed by sA updates

Refinements
Free

R-value, % R-value, %
Phase
error, 8

TAD-SA
Initial 55.4 53.4 76.7
Average 40.8 36.4 42.1
Best 37.7 35.5 37.9

Minimization
CV 43.2 36.6 48.0
No CV 51.5 43.4 64.0

Ten independent simulated annealing refinements were carried out
with different initial velocities on the scrambled amylase inhibitor
model with 1.53 Å rms initial coordinate error; averages refer to the
numerical average of the 10 refinements. Ten cycles of conjugate
gradient minimization, each of 200 steps, were performed. Minimi-
zations were repeated with and without cross-validation (CV) to
calculate the maximum likelihood target. TAD-SA, torsion angle
dynamics.
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Conjugate gradient minimization refinement with the
maximum likelihood target and the least-squares residual
target both reduced the free R-value to 44.4%. The maxi-
mum likelihood target, however, reduces the amount of
model bias to the incorrect initial model (Fig. 7b). This is
apparent in the smaller difference between the free R-value
and R-value (6%) compared with the least-squares residual
target (9%).
Torsion angle molecular dynamics simulated annealing re-

finements with the maximum likelihood target and the least-
squares residual target both reduced the free R-value com-
pared with conjugate gradient minimization, with average
values over five refinements of 42.4% and 42.9%, respectively.
However, the structure with the lowest free R-value was
produced by torsion angle dynamics with the maximum like-
lihood target (free R-value5 40.9%, R-value5 36.2%). In this
structure, a mistraced loop was automatically corrected by a
backbone movement of 4 Å (Fig. 7d), with a resulting rms
deviation from the final model for Ca atoms in this loop region
of 0.98 Å. In contrast, refinements with the least-squares
residual made no significant change to this loop, with the
resulting rms deviation for Ca atoms being 2.5 Å. In addition,
the lowest free R-value from the least-squares target (free
R-value 5 41.8%, R-value 5 33.7%) shows a high level of
model bias in the electron density map (Fig. 7a). The other
torsion angle refinements with the maximum likelihood target,

despite only small movements in this loop region, show sig-
nificantly less model bias than the least-squares refinements
(Fig. 7c).

DISCUSSION

The cross-validated maximum likelihood target (Eq. 4) is
most powerful when used in combination with torsion angle
simulated annealing. Although this new target also improves
conjugate gradient minimization based refinement, the ra-
dius of convergence is still smaller than that of torsion angle
simulated annealing. Even with the least-squares residual
(Eq. 1), simulated annealing is superior to minimization with
maximum likelihood. However, the addition of the maximum
likelihood target significantly improves the radius of con-
vergence of torsion angle simulated annealing and reduces
overfitting. In this series of tests, refinement of structures
with initial rms backbone errors up to 1.8 Å converge to the
correct solution. These examples are typical for weak mo-
lecular replacement solutions where the initial phases are so
poor that the refinement method has to be relied upon to
fully solve the structure.
A fundamental problem with the least-squares residual (Eq.

1) is the danger of overfitting the diffraction data. Systematic
errors that reduce the difference between uFou and uFcu can be
introduced into the model. This is of particular concern in
macromolecular crystallography, where repeated cycles of
manual rebuilding and refinement are performed. A signifi-
cant advantage of the maximum likelihood formulation is that
the amount of overfitting is reduced (Table 1). In general the
maximum likelihood target produces higher R-values, but
more accurate models and lower or equal free R-values,
compared with the least-squares target. This reduced overfit-
ting serves to reduce model-bias in electron density maps, of
crucial importance during the manual rebuilding stages of
refinement (Fig. 7).
The cross-validated maximum likelihood target tested here

is shown to be superior to the standard least-squares residual.
Final phase errors are reduced and the convergence of mac-
romolecular refinement is improved. The direct incorporation
of model errors using the sA function into the maximum
likelihood target makes it most powerful for high initial phase
errors, when the model is often incomplete and has significant
deviations from the crystal structure. This is the case at both
medium (2.0 Å) and lower (2.8 Å) resolution. The maximum
likelihood target allows all diffraction data to be used without
the need for artificial resolution or uFouysF truncations and
without the need for bulk solvent correction at the early stages
of refinement. This and the larger radius of convergence make

FIG. 7. Electron density maps for a loop region of human hnRNP A1 comprising residues 141–143 (all maps sA weighted and contoured at 1.0 s).
In all cases, the final refined structure is shown in black. (a) Best model (shown in red) from five simulated annealing refinements using the least-squares
target. The connected density in the region of the model and the broken density in the region of the correct solution is due to model bias. (b) Model
(shown in blue) from conjugate gradient minimization using the maximum likelihood target. Reduced model bias due to the maximum likelihood target
results in connected electron density in the region of the correct solution. (c) Representative model (shown in orange) from five simulated annealing
refinements using themaximum likelihood target. The combination of torsion angle simulated annealing and themaximum likelihood target reducesmodel
bias even further. (d) Best model (shown in green) from five simulated annealing refinements using themaximum likelihood target. The correct placement
of the residues has been automatically achieved. These images were created with the program O (31).

FIG. 6. Final phase error for the least-squares residual target, Eq.
1 (dashed line), and the maximum likelihood target, Eq. 4 (solid line),
for refinements of the poly-alanine only scrambled amylase inhibitor
structures against diffraction data at dmin 5 2.0 Å, with respect to the
published crystal structure. (Left) Results for conjugate gradient
minimization. (Right) Results for 10 simulated annealing runs with
torsion angle dynamics. The simulated annealing graph shows the
average of 10 refinements with different initial velocities. Error bars
indicate the maximum and minimum phase errors obtained with 10
simulated annealing runs. The best structures are readily identified by
the lowest free R-value. Initial phase errors are shown by the upper
dotted line.
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the combination of cross-validated maximum likelihood and
torsion angle simulated annealing an important new tool for
macromolecular crystallography.
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Mol. Biol. 189, 383–386.
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