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1. Introduction

Over the last decade, developments in molecular biology, X-ray di�raction and nuclear
magnetic resonance (NMR) instrumentation, and computational methods have allowed nearly
exponential growth of macromolecular structural studies. The analysis of data from these
studies generally requires sophisticated computational procedures which culminate in
re®nement and structure validation. These procedures can be formulated as the chemically
constrained or restrained nonlinear optimization of a target function, which usually measures
the agreement between observed data and data computed from an atomic model. The ultimate
goal is to optimize the simultaneous agreement of an atomic model with observed data and
with a priori chemical information.
The target function used for this optimization normally depends on several atomic

parameters, but most importantly on atomic coordinates. The large number of adjustable
parameters (typically at least three times the number of atoms in the model) gives rise to a very
complicated target function. This in turn produces what is known as the multiple minima
problem: the target function contains many local minima in addition to the global minimum.
These local minima tend to defeat gradient-descent optimization techniques such as conjugate
gradient or least-squares methods (Press et al., 1986). These methods are simply not capable of
sampling molecular conformations thoroughly enough to ®nd the most optimal model if the
starting one is far from the correct structure.
Simulated annealing (Kirkpatrick et al., 1983) is an optimization technique particularly well

suited to overcoming the multiple minima problem. Unlike gradient-descent methods,
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simulated annealing can cross barriers between minima and thus can explore a greater volume
of the parameter space to ®nd better models in deeper minima. Following its introduction to
crystallographic re®nement (Brunger et al., 1987), and NMR structure calculation (Brunger et
al., 1986) and re®nement (Kaptein et al., 1985), there have been major improvements of the
original method in four principal areas: the measure of model quality, the search of the
parameter space, the target function, and the modeling of conformational variability.
For crystallographic re®nement, the introduction of cross-validation (the `free' R-value)

(Brunger, 1992) has signi®cantly reduced the danger of over®tting the di�raction data. The
complexity of the conformational space has been reduced by the introduction of torsion-angle
molecular dynamics (Rice and Brunger, 1994), which decreases the number of adjustable
parameters that describe a model approximately tenfold. The target function has been
improved by incorporating the concept of maximum-likelihood which takes into account model
error, model incompleteness, and errors in the experimental data (Read, 1986; Adams et al.,
1997). Advances have also been obtained for NMR structure determination. Cross-validation
has been shown to be valid for NMR structure calculation (Brunger et al., 1993), and the
radius of convergence has been increased by the use of torsion-angle molecular dynamics (Stein
et al., 1997) and the introduction of variable target functions (Braun and Go, 1985; Braun,
1987; Nilges et al., 1988a, 1991). Finally, the sampling power of simulated annealing can be
used for exploring the molecule's conformational space in cases where the molecule undergoes
dynamic motion or static disorder through multi-conformer models for both X-ray
crystallography and solution NMR (Kuriyan et al., 1991; Burling and Brunger, 1994; Bonvin
and Brunger, 1995, 1996; Burling et al., 1996).

2. The target function

In essence, macromolecular structure calculation and re®nement is a search for the global
minimum of a target function,

E � Echem � wdataEdata, �1�
as a function of the parameters of an atomic model, in particular atomic coordinates. Echem

comprises empirical information about chemical interactions; it is a function of all atomic
positions, describing covalent (bond lengths, bond angles, torsion angles, chiral centers and
planarity of aromatic rings) and nonbonded (intra-molecular as well as inter-molecular and
symmetry-related) interactions. Edata describes the di�erence between observed and calculated
data, and wdata is a weight appropriately chosen to balance the gradients (with respect to
atomic parameters) arising from the two terms.

3. A priori chemical information

The geometric energy function Echem (Hendrickson, 1985) consists of terms for covalent
bonds, bond angles, chirality, planarity and nonbonded repulsion. The parameters for the
covalent terms can be derived from average geometry and root-mean-square (rms) deviations
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observed in a small-molecule data base. Extensive statistical analyses were undertaken for the
chemical moieties of proteins (Engh and Huber, 1991) and of polynucleotides (Parkinson et al.,
1996) using the Cambridge crystallographic database (Allen et al., 1983). Analysis of the ever
increasing number of atomic resolution macromolecular crystal structures will no doubt cause
some modi®cations of these parameters in the future (Dauter et al., 1995; Stec et al., 1995;
Sevcik et al., 1996; Vlassi et al., 1998).
In both NMR and X-ray crystallography, it is common to use a purely repulsive quartic

function (Erepulsive) for the nonbonded interactions which are included in Echem (Hendrickson,
1985),

E �
X
ij

��cRmin
ij �n ÿ Rn

ij�m, �2�

where Rij is the distance between two atoms i and j, Rmin
ij is the van der Waals radius for a

particular atom pair ij, cE1 is a constant that is sometimes used to reduce the radii, and n=2,
m=2 or n=1, m=4. Van der Waals attraction and electrostatic interactions are usually not
included in structure calculation and re®nement. These simpli®cations are valid since the
experimental data contains information that is able to produce atomic conformations
consistent with actual nonbonded interactions. In fact, atomic resolution crystal structures can
be used to derive parameters for electrostatic energies (Pearlman and Kim, 1990). If the
experimental information is insu�cient to fully determine the macromolecular structure, use of
electrostatic and simulated solvent interactions can bias the structure towards the theoretical
nonbonded model.
Geometric energy functions are related to empirical energy functions that were developed for

energy-minimization and molecular-dynamics studies of macromolecules (see Karplus and
Petsko, 1990 for a review). These empirical energy functions were not designed for structure
determination, and therefore required some modi®cation for use in macromolecular structure
re®nement (Brunger et al., 1986; Nilges et al., 1988b; Brunger et al., 1989, 1990; Fujinaga et
al., 1989; Weis et al., 1989). Recently, crystallographic simulated annealing re®nement was
implemented with a purely geometric energy function (Adams et al., 1997) which provides
uniformity among di�erent crystallographic re®nement programs and simpli®es the generation
of parameters for new chemical compounds. Similar developments for solution NMR are in
progress (M. Nilges, personal communication).

4. X-ray di�raction data

The conventional form of EX-ray consists of the crystallographic residual ELSQ, de®ned as
the sum over the squared di�erences between the observed |Fo| and calculated |Fc| structure
factor amplitudes for a particular atomic model,

EX-ray � E LSQ �
X
hkl

�jFo j ÿ kjFc j�2, �3�
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where hkl are the indices of the reciprocal lattice points of the crystal, |Fo| and |Fc| are the
observed and calculated structure-factor amplitudes, and k is a relative scale factor.
Reduction of E LSQ can result from improvement in the atomic model, but also from an

accumulation of systematic errors in the model or ®tting noise in the data (Silva and
Rossmann, 1985). The least-squares residual is therefore poorly justi®ed when the model is far
away from the correct one or incomplete (Read, 1986). An improved target for
macromolecular re®nement can be obtained using a maximum-likelihood formulation (Read,
1986, 1990; Bricogne, 1991, 1993; Pannu and Reed, 1996; Murshudov et al., 1997). The goal of
the maximum-likelihood method is to determine the probability of making a measurement,
given the model, estimates of the model's errors and those of the measured intensities. The
e�ects of model errors (incorrectly placed and missing atoms) on the calculated structure
factors are ®rst quanti®ed with sA values, which correspond roughly to the fraction of each
structure factor that is expected to be correct. However, over®tting of the di�raction data
causes the model bias to be underestimated and undercorrected in the sA values. The e�ect of
this over®tting can be reduced by cross-validating sA values, i.e. by computing them from a
randomly selected test set which is excluded from the summation on the right hand side of Eq.
(3) (Brunger, 1992; Kleywegt and Brunger, 1996). The expected values of hFoi and the
corresponding variance (s2ML) are derived from sA, the observed Fo, and calculated Fc (Read,
1986). These quantities can be readily incorporated into a maximum-likelihood target function,

EX-ray � EML �
X

hkl2working set

�1=s2ML��jFo j ÿ hjFo ji�2: �4�

In order to achieve an improvement over the least-squares residual (Eq. (3)), cross-validation
was found to be essential (Adams et al., 1997) for the computation of sA and its derived
quantities in Eq. (4).
For many crystal structures, some initial experimental phase information is available from

either isomorphous heavy atom replacement or multiwavelength anomalous di�raction
methods (Hendrickson, 1991). These phases represent additional observations which can be
incorporated in the re®nement target. The maximum likelihood formulation naturally extends
itself to incorporation of this information (Bricogne, 1997; Pannu et al., 1998). Tests have
shown that the addition of experimental phase information greatly improves the results of
re®nement (Pannu et al., 1998; Adams et al., 1999).
Pannu and Reed (1996) have developed an e�cient Gaussian approximation for the case of

structure-factor amplitudes with no prior phase information, termed the MLF target function.
In the limit of a perfect model MLF reduces to the traditional least-squares residual (Eq. (3))
with 1/s2 weighting. In the case where prior phase information is included, the integration over
the phase angles is carried out numerically, and is termed the MLHL target (Pannu et al.,
1998). A maximum likelihood function which expresses the probability distributions in terms of
observed intensities has also been developed, and is termed MLI (Pannu and Read, 1996).
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5. NMR data

A common form of ENMR describes nuclear Overhauser e�ect (NOE)-derived distance
restraints and scalar J-coupling constants derived dihedral angle restraints using ¯at-bottomed
parabolic functions (Clore et al., 1986),

wNMRENMR � wNOEENOE � wdiheEdihe, �5�

ENOE �
X
NOEs

8<: �dÿ dupper�2
0
�dlower ÿ d�2

dupper<d
dlower<d<dupper

d<dlower

, �6�

Edihe �
X

dihedrals

8<: �fÿ fupper�2
0
�flower ÿ f�2

fupper<f
flower<f<fupper

f<flower

: �7�

Here d denotes the distance between a particular pair of spins in the model, dlower and dupper
are, respectively, lower and upper bounds for the distance restraint derived from the isolated
spin-pair approximation or from NOE-backcalculation (see Nilges, 1996 for a review), f
denotes the dihedral angle formed by four atoms in the model, flower and fupper are,
respectively, lower and upper bounds for the dihedral angle restraint derived from scalar J-
coupling constant measurements and empirical Karplus (Karplus, 1963) relationships. In the
case of ambiguous NOE assignments, overlapping NOEs, or motion of methyl groups and
aromatic rings, appropriate averaging schemes must be used (WuÈ thrich, 1986; Nilges, 1995,
1996) when computing d, dupper, and dlower. Direct re®nement against scalar J-coupling
constant data (Kim and Prestegard, 1990; Garrett et al., 1994; Mierke et al., 1994) or against
empirical 1H and 13C chemical shift databases which correlate molecular conformation and
chemical shifts (Kuszewski et al., 1995a,b; Old®eld, 1995) is also possible. Because early atomic
models can contain very signi®cant violations of experimental distance restraints, ENOE is often
modi®ed so that it becomes linear for large violations: the `soft-square' potential (Nilges et al.,
1988c). This modi®cation is important for convergence ± without it the large violations give
rise to enormous forces which cause numerical instabilities during simulated annealing.

6. Additional information

Additional constraints or restraints may be used to improve the ratio of observables to
parameters. For example, atoms can be grouped so that they move as rigid bodies during
re®nement, or bond lengths and bond angles can be kept ®xed (Diamond, 1971; Sussman et
al., 1977; Rice and Brunger, 1994). In the crystallographic case, the existence of
noncrystallographic symmetry can be used to average over equivalent molecules and thereby to
reduce noise in the di�raction data (Weis et al., 1989). In the NMR case, deuterium exchange
protection can often be used to infer the presence of amide±carbonyl hydrogen bonds. These
inferred hydrogen bonds are then modeled as distance restraints, thereby increasing the
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observable to parameter ratio. Empirical dihedral-angle conformational databases of proteins
have been recently added to the list of possible additional restraints (Kuszewski et al., 1996).

7. Weighting

The weight wdata (Eq. (1)) balances the forces arising from Edata and Echem. The choice of
wdata can be critical: if wdata is too large, the re®ned structure will show unphysical deviations
from ideal geometry; if wdata is too small, the re®ned structure will not satisfy the observed
data. Automated protocols to provide initial estimates for optimal weighting have been
developed (Brunger et al., 1989; Adams et al., 1997). However, independent information must
be used (e.g. cross-validation) to objectively obtain the best possible weight for X-ray
di�raction data (Brunger, 1992) and NMR data (Brunger et al., 1993).

8. Searching conformational space

Annealing denotes a physical process wherein a solid is heated until all particles randomly
arrange themselves in a liquid phase, and then is cooled slowly so that all particles arrange
themselves in the lowest energy state. By formally de®ning the target E (Eq. (1)) to be the
equivalent of the potential energy of the system, one can simulate the annealing process
(Kirkpatrick et al., 1983). There is no guarantee that simulated annealing will ®nd the global
minimum (except in the case of an in®nitely long search) (Laarhoven and Aarts, 1987).
Compared to conjugate-gradient minimization where search directions must follow the
gradient, simulated annealing achieves more optimal solutions by allowing motion against the
gradient (Kirkpatrick et al., 1983). The likelihood of uphill motion is determined by a control
parameter referred to as temperature. The higher the temperature, the more likely it is that
simulated annealing will overcome barriers. It should be noted that the simulated annealing
temperature normally has no physical meaning and merely determines the likelihood of
overcoming barriers of the target function.
The simulated annealing algorithm requires a generation mechanism to create a Boltzmann

distribution at a given temperature T. Simulated annealing also requires an annealing schedule,
that is, a sequence of temperatures T1>T2> . . .>Tn at which the Boltzmann distribution is
computed. Implementations of the generation mechanism di�er in the way they generate a
transition from one set of parameters to another which is consistent with the Boltzmann
distribution at given temperature. The two most widely used generation mechanisms are
Metropolis Monte Carlo (Metropolis et al., 1953) and molecular dynamics (Verlet, 1967)
simulations. For NMR structure calculation, both molecular dynamics and Monte Carlo have
been successfully used (Curro, 1974; Kaptein et al., 1985; Brunger et al., 1986; Ulyanov et al.,
1993; Xu and Krishna, 1995). For X-ray crystallographic re®nement, molecular dynamics
proved extremely successful (Brunger et al., 1987) whereas Monte Carlo methods have yet to
be shown to be e�ective.
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9. Metropolis Monte Carlo

The Metropolis Monte Carlo algorithm (Metropolis et al., 1953) simulates the thermal
equilibrium of a system for a ®xed value of the temperature T. In the limiting case of T = 0,
Monte Carlo is equivalent to a gradient descent method; the only moves allowed are the ones
that lower the target function until a local minimum is reached. At a ®nite temperature,
however, Monte Carlo allows uphill moves and hence allows barrier-crossings.
The advantage of the Metropolis Monte Carlo algorithm is its simplicity. A disadvantage

concerns the e�cient choice of the parameter shifts that de®ne the Monte Carlo move. Ideally,
this choice should in some way re¯ect the topology of the search space. In the case of a
covalently connected macromolecule, random shifts of atomic coordinates have a high rejection
rate: they immediately violate geometric restrictions such as bond lengths and bond angles.
This problem can be alleviated in principle by carrying out the Monte Carlo simulation in a
suitably chosen set of internal coordinates such as torsions about bonds, or normal modes of
vibration, or by relaxing the strained coordinates through minimization (Li and Scheraga,
1987; Saunders, 1987; Abagyan and Argos, 1992).

10. Molecular dynamics

A suitably chosen set of atomic parameters can be viewed as generalized coordinates that are
propagated in time by the classical (Hamilton) equations of motion (Goldstein, 1980). If the
generalized coordinates represent the x, y, z positions of the atoms of a molecule, the Hamilton
equations of motion reduce to the more familiar Newton's second law,

mi
@2~ri
@t2
� ÿriE: �8�

The quantities mi and ri are respectively the mass and coordinates of atom i, and E is given by
Eq. (1). The solution of the partial di�erential equations (Eq. (8)) is achieved numerically using
®nite-di�erence methods (Verlet, 1967). This approach is referred to as molecular dynamics.
Initial velocities for the integration of Eq. (8) are usually assigned randomly from a Maxwell

distribution at the appropriate temperature. Assignment of di�erent initial velocities will
produce a somewhat di�erent structure after simulated annealing. By performing several
re®nements with di�erent initial velocities one can therefore improve the chances of success of
simulated annealing re®nement. Furthermore, this improved sampling can be used to determine
discrete disorder and conformational variability (see below).
Although Cartesian (i.e. ¯exible bond lengths and bond angles) molecular dynamics places

restraints on bond lengths and bond angles (through Echem, Eq. (1)), one might want to
implement these restrictions as constraints, i.e. ®xed bond lengths and bond angles (Diamond,
1971). This is supported by the observation that the deviations from ideal bond lengths and
bond angles are usually small in X-ray crystal structures, and even smaller in NMR structures.
Indeed, ®xed-length constraints have been applied to structure calculation by least-squares or
conjugate-gradient minimization (Diamond, 1971; Braun and Go, 1985), and by Monte Carlo
minimization (Curro, 1974; Ulyanov et al., 1993; Xu and Krishna, 1995). It is only recently,
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however, that e�cient and robust algorithms have become available for molecular dynamics in
torsion-angle space (Bae and Haug, 1987, 1988; Jain et al., 1983; Mathiowetz et al., 1994; Rice
and Brunger, 1994).
Using an approach that retains the Cartesian-coordinate formulation of the target function

and its derivatives with respect to atomic coordinates makes calculations remains relatively
straightforward and topology independent (Rice and Brunger, 1994). In this formulation,
however, the expression for the acceleration becomes a function of positions and velocities.
Iterative equations of motion for constrained dynamics in this formulation can be derived and
solved by ®nite di�erence methods (Abramowitz and Stegun, 1968). This method is numerically
very robust and has a signi®cantly increased radius of convergence in crystallographic
re®nement and NMR structure calculation compared to Cartesian molecular dynamics (Rice
and Brunger, 1994; Stein et al., 1997).

11. Temperature control

Simulated annealing requires the control of the temperature during molecular dynamics. The
current temperature of the simulation (Tcurr) is computed from the kinetic energy,

Ekin �
Xn atoms

i

1

2
mi�@ri=@t�2, �9�

of the molecular dynamics simulation,

Tcurr � 2Ekin

3nkB

: �10�

Here n is the number of degrees of freedom and kB is Boltzmann's constant. One commonly
used approach to control the temperature of the simulation consists of coupling the equations
of motion to a heat bath. A friction term (gi) (Berendsen et al., 1984) to control the
temperature,

ÿmigivi�1ÿ �T=Tcurr��, �11�
where vi are the velocities of the atoms, can be added to right hand side of Eq. (8). This
method generalizes the concept of friction by allowing a negative friction coe�cient and by
determining the friction coe�cient and its sign by the ratio of the current simulation
temperature to the target temperature Tcurr.

12. Why does simulated annealing work?

The goal of any optimization problem is to ®nd the global minimum of a target function. In
the case of macromolecular structure calculation and re®nement, one searches for the
conformation or conformations of the molecule that best ®t the experimental data and that
simultaneously maintain reasonable covalent and noncovalent interactions. Simulated
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annealing re®nement has a much larger radius of convergence than conjugate-gradient
minimization (see below). It must therefore be able to ®nd a lower minimum of the target E
(Eq. (1)) than the local minimum found by simply moving along the negative gradient of E.
Paradoxically, the very reasons that make simulated annealing such a powerful re®nement
technique (the ability to overcome barriers in the target energy function) would seem to
prevent it from working at all. If it crosses barriers so easily, what allows it to stay in the
vicinity of the global minimum?
It is most easy to visualize this property of simulated annealing in the case of molecular

dynamics. By specifying a ®xed temperature, the system essentially gains a certain inertia which
allows it to cross energy barriers of the corresponding target function (Eq. (10)). The target
temperature must be large enough to overcome smaller barriers (e.g. Fig. 1a) but low enough
to ensure that the system will not `climb out' out of the global minimum if it manages to arrive
there. While temperature itself is a global parameter of the system, temperature ¯uctuations
arise principally from local conformational transitions ± for example from an amino acid
sidechain falling into the correct orientation. These local changes tend to lower the value of the
target E, thus increasing the kinetic energy, and hence the temperature, of the system. Once the

Fig. 1. (a) Schematic explanation of molecular-dynamics based simulated annealing. The kinetic energy of the
system allows local conformational transitions with barriers small than the kinetic energy. If a larger drop in energy

is encountered the excess kinetic energy is dissipated through the friction term (Eq. (11)). It is thus unlikely that the
system can climb out of the global minimum once it has reached it. (b) Possible annealing schedules: slow-cooling
and constant temperature followed by quenching.
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temperature coupling (Eq. (11)) has removed this excess kinetic energy through heat
dissipation, the reverse transition is very unlikely, since it would require a localized increase in
kinetic energy where the conformational change occurred in the ®rst place. Temperature
coupling maintains a su�cient amount of kinetic energy to allow local conformational
corrections, but does not supply enough to allow escape from the global minimum. This
explains the observation that on average the agreement with the experimental data will
improve rather than worsen with simulated annealing.

13. Practical considerations

As Fig. 1a illustrates, the simulation temperature needs to be high enough to allow
conformational transitions but not too high to avoid moving too far away from the initial
structure. The optimum temperature for a given starting structure is a matter of trial and error.
We empirically determined starting temperatures for a variety of simulated annealing protocols
(Brunger, 1988; Adams et al., 1997) which should work for the average case. However, it might
be worth trying a di�erent temperature if a particularly di�cult re®nement problem is
encountered. In particular, signi®cantly higher temperatures are attainable using torsion-angle
molecular dynamics. Note that each simulated annealing re®nement run is subject to chance by
using a random number generator to generate the initial velocities. Thus, multiple re®nements
must be run if systematic trends resulting from changes of certain parameters of the annealing
schedule are to be studied. The best structure(s) among a set of re®nements using di�erent
initial velocities and/or temperatures should be taken for further re®nement or averaging (see
below).
The annealing schedule employed can in principle be any function of the simulation step (or

time domain). The two most commonly used protocols are linear slow-cooling or constant-
temperature followed by quenching (Fig. 1b). A slight advantage is obtained with slow-cooling
(Brunger et al., 1990). The duration of the annealing schedule is another parameter. Too short
a protocol does not allow su�cient sampling of conformational space. Too long a protocol
may waste computer time since it is more e�cient to run multiple trials as opposed to one long
re®nement protocol (unpublished results).

14. Crystallographic re®nement

In the crystallographic case, the limited radius of convergence of re®nement arises not only
from the high dimensionality of the parameter space, but also from the crystallographic phase
problem. For new crystal structures, initial electron density maps must be computed from a
combination of observed di�raction amplitudes and experimental phases where the latter are
typically of poorer quality and lower resolution than the former. A di�erent problem arises
when structures are solved by molecular replacement (Hoppe, 1957; Rossmann and Blow,
1962) which uses a similar structure as a search model. In this case the resulting electron
density maps can be severely `model-biased', that is, they seem to con®rm the existence of the
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search model without providing clear evidence of actual di�erences between it and the true
crystal structure. In either case, initial atomic models usually require extensive re®nement.
Many examples have shown that simulated annealing re®nement starting from initial models

(obtained by standard crystallographic techniques) produces signi®cantly better ®nal models
compared to those produced by least-squares or conjugate-gradient minimization. In a realistic
test case (Adams et al., 1999), a series of models for the aspartic proteinase penicillopepsin was
generated from homologous structures present in the Protein Data Bank. The sequence identity
among these structures ranged from 100 to 25%, thus providing a set of models with
increasing coordinate error compared to the re®ned structure of penicillopepsin. These models,
after truncation of all residues to alanine, were all used as search models in molecular
replacement against the native penicillopepsin di�raction data. In all cases the correct
placement of the model in the penicillopepsin unit cell was found.
Both conjugate gradient minimization and simulated annealing were carried out in order to

compare the performance of LSQ (the least-squares residual, MLF (the maximum likelihood
target using amplitudes) and MLHL (the maximum likelihood target using amplitudes and
experimental phase information). In the latter case, phases from single-isomorphous
replacement were used. A very large number of conjugate gradient cycles were carried out in
order to make the computational requirements equivalent for both minimization and simulated
annealing. The conjugate gradient minimizations were converged, i.e. there was no change
when further cycles were carried out.
For a given target function, simulated annealing always outperformed minimization (Fig. 2).

Fig. 2. Simulated annealing produces better models than extensive conjugate gradient minimization. Map correlation

coe�cients were computed before and after re®nement against the native penicillopepsin di�raction data (Hsu et al.,
1977) for the polyalanine model derived from Mucor pusillus pepsin (Newman et al., 1993). Correlation coe�cients
are between sA-weighted maps calculated from each model and from the published penicillopepsin structure. The

observed penicillopepsin di�raction data was in space-group C2 with cell dimensions a = 97.37 AÊ , b = 46.64 AÊ ,
c = 65.47 AÊ and �=115.48. All re®nements were carried out using di�raction data from the lowest resolution limit
of 22.0 up to 2.0 AÊ . The MLHL re®nements used single-isomorphous phases from a K3UO2F5 derivative of the
penicillopepsin crystal structure, which covered a resolution range from 22.0 to 2.8 AÊ . Simulated annealing

re®nements were repeated ®ve times with di�erent initial velocities. The numerical averages of the map correlation
coe�cients for the ®ve re®nements are shown as the hashed bars. The best map correlation coe�cients from
simulated annealing are shown as the white bars.
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For a given starting model, the maximum likelihood targets outperformed the least-squares
residual target for both minimization and simulated annealing, producing models with lower
phase errors and higher map correlation coe�cients when compared to the published
penicillopepsin crystal structure (Fig. 2). This improvement is illustrated in sA-weighted
electron density maps obtained from the resulting models (Fig. 3). The incorporation of
experimental phase information further improved the re®nement signi®cantly despite the
ambiguity in the SIR phase probability distributions. Thus, the most e�cient re®nement will
make use of torsion angle dynamics simulated annealing, and prior phase information in the
MLHL maximum likelihood target function.
Cross-validation is essential in the calculation of the maximum likelihood target (Read, 1986;

Kleywegt and Brunger, 1996; Adams et al., 1997). Maximum-likelihood re®nement without
cross-validation gives much poorer results, as indicated by higher free R-values, higher RfreeÿR
di�erences, and larger phase errors. It should be noted that the normal R-value usually
increases upon using the cross-validated maximum likelihood formulation. This is a
consequence of the reduction of over®tting by this method.
Simulated annealing re®nement is most useful when the initial model is relatively crude.

Given a well-re®ned model, it o�ers little advantage over conventional methods, with the
exception of providing information about the accuracy and conformational variability of the
re®ned structure (see below).

15. NMR structure calculation

NMR experiments provide very speci®c, local information about macromolecules. In
contrast to X-ray crystallography, where each data point contains information about the entire
molecule, NMR spectroscopy provides information about inter-atomic distance pairs and
speci®c dihedral angles (see above). These fundamental di�erences in the experimental data
manifest themselves in fundamental di�erences in re®nement requirements. The global nature
of crystallographic data means that the initial model must not deviate too signi®cantly from
the ®nal, re®ned one. The local nature of NMR data, on the other hand, means that random
initial models can be productively re®ned (Nilges et al., 1988a). Furthermore, molecular-
dynamics based simulated annealing can be used to automate the NOE-assignment process
(Nilges, 1995). It is a testament to the remarkable power of molecular dynamics-based
simulated annealing that it has enjoyed such great success in widely divergent applications.
Recent tests comparing torsion angle molecular dynamics re®nement to Cartesian molecular

dynamics re®nement illustrate the advantages of the reduced variable approach (Stein et al.,
1997). Torsion angle dynamics was compared to commonly used strategies which rely on
Cartesian molecular dynamics, distance geometry, or both. The method has a higher success
rate and e�ciency than conventional simulated annealing algorithms which use Cartesian
molecular dynamics or distance geometry combined with Cartesian molecular dynamics.
The application of torsion-angle molecular dynamics to re®nement of a DNA dodecamer

against NMR data provided even more striking results (Fig. 4). The starting atomic model
consisted of two extended nucleotide strands. The `YASAP' Cartesian molecular dynamics
protocol (Nilges et al., 1991) failed to produce the correct structure whereas with torsion-angle
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Fig. 3. Maximum likelihood targets signi®cantly decrease model bias in simulated annealing re®nement. sA-weighted
electron density maps contoured at 1.25� for models from simulated annealing re®nement with di�erent targets.

Residues 198±205 are shown with the published penicillopepsin crystal structure (Hsu et al., 1977) in black, and the
model with the lowest free R-value from ®ve independent re®nements in red. (a) Initial electron-density map prior to
re®nement, (b) after re®nement with the LSQ target, (c) after re®nement with the MLF target, (d) after re®nement
with the MLHL target.
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molecular dynamics, convergence was achieved in about half of the trials. The method should
be applicable to re®nement of other nucleic acid structures which may adopt noncanonical
structures.

16. Averaging of independently re®ned structures

As mentioned above, multiple simulated annealing re®nements will generally produce
somewhat di�erent structures, some of which may be better (as assessed, for example, in terms
of the free R-value for X-ray structures and NOE violations for NMR structures) than others.
This approach o�ers several advantages. First, a more optimum structure can be obtained

Fig. 4. Average structures from re®nements of the DNA dodecamer (CGCGPATTCGCG) (Clore et al., 1988). No
acceptable (i.e. without NOE violations) structures were generated by methods involving distance geometry or
Cartesian molecular dynamics. In contrast, torsion angle molecular dynamics produced acceptable structures in 52%

of the trials. It should be noted that the original structure was obtained by restrained molecular dynamics
re®nement, starting from canonical A- and B-form DNA. (a) Best structure (i.e. that with the smallest number of
NOE violations) produced using 50 trials of Cartesian molecular dynamics simulated annealing starting from
extended nucleotide strands. (b) Structure produced using torsion angle molecular dynamics starting from extended

nucleotide strands.
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from multiple trials as opposed to a single simulated annealing calculation. This is routinely
done for NMR structure calculation where typically 20±100 trials are performed. Second, each
member of the family of re®ned structures may be better in di�erent regions of the molecule.
Thus, by examining the ensemble during model-building, one may gain insights into possible
local conformations of the molecule. Third, the structure factors of all structures of the family
may be averaged in the X-ray crystallographic case. This averaging will reduce the e�ect of
local errors (noise) that are presumably di�erent in each member of the family.
The e�ect of averaging multiple simulated annealing trials is illustrated in Fig. 5. Each

simulated annealing run employed torsion-angle molecular dynamics with the maximum
likelihood target (Eq. (4)). The calculations were performed on human heterogeneous
ribonucleoprotein A1, hnRNP (Shamoo et al., 1997). Averaging produced the least model-
biased map (as indicated by the lowest free R-value and the lowest RfreeÿR di�erence) with the
polypeptide backbone being completely connected (Rice et al., 1998). This example is another
demonstration that cross-validation of the R-value is essential for assessing model correctness
(Brunger, 1992) since the normal R-value decreases with increasing model-bias of the electron
density maps whereas the free R-value shows the correct behavior.

17. Ensemble models

In cases of conformational variability or discrete disorder, there is not a single correct
solution to the optimization problem Eq. (1). Rather, the X-ray di�raction or NMR data
represent a spatial and temporal average over all conformations that are assumed by the
molecule. Ensembles of structures, which are simultaneously re®ned against the observed data,
may thus be a more appropriate description of the data. This has been used for some time in
X-ray crystallography when alternate conformations are modeled locally. Alternate
conformations can be generalized to global conformations (Gros et al., 1990; Kuriyan et al.,
1991; Burling and Brunger, 1994; Bonvin and Brunger, 1995), i.e. the model is duplicated n-
fold, the corresponding calculated structure factors are added and re®ned simultaneously
against the observed X-ray di�raction data or solution NMR data, and each member of the
family is chemically `invisible' to all other members. The number n can be determined by cross-
validation in the crystallographic case (Burling and Brunger, 1994; Burling et al., 1996).
However, this is di�cult for solution NMR structures (Bonvin and Brunger, 1996) because of
the unfavorable observable to parameter ratio.
An advantage of a multi-conformer model is that it directly incorporates many possible

types of disorder and motion (global disorder, local sidechain disorder, local wagging and
rocking motions). Furthermore, it can be used to automatically detect the most variable
regions of the molecule by inspecting the atomic root-mean-square di�erence around the mean
as a function of residue number. Thermal factors of single conformer models may sometimes
be misleading by underestimating the degree of motion or disorder (Kuriyan et al., 1986) and,
thus, the multiple-conformer model is a more faithful representation of the di�raction data. A
disadvantage of the multi-conformer model is that it introduces many more degrees of
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Fig. 5. Demonstration of the improvement provided by averaging several independently re®ned structures. Five
torsion angle molecular dynamics simulated annealing re®nements using the maximum-likelihood target were carried
out for hnRNP (Shamoo et al., 1997; Rice et al., 1998). Cross-validated sA-weighted electron density maps,

contoured at 1s, are shown for (a) the typical result of re®nement (red line, R= 35.7%, Rfree=41.3%), (b) the best
result of the re®nements (green line, R= 36.2%, Rfree=40.9%), and (c) the average map from averaging structure
factors calculated from the four best models (R= 36.6%, Rfree=38.9% for the average Fc). In all cases the re®ned

structure is shown in black. This ®gure was generated with the program O (Jones et al., 1991).
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freedom. However, cross-validated maximum-likelihood re®nement can address this problem.
For example, the Rfree and R-values were 0.239 and 0.237 for a single conformer re®nement
and 0.231 and 0.230, respectively, for a four-conformer re®nement at 50±1.7 AÊ resolution data
of a fragment of mannose-binding protein A (Burling et al., 1996) illustrating that introduction
of multiple conformers did not increase the amount of over®tting compared to the single-
conformer case (unpublished results).
Although there are some similarities between averaging individually re®ned structures and

multi-conformer models, there are also fundamental di�erences. For example, in the case of X-
ray crystallography, averaging seeks to improve the calculated electron density map by
averaging out the noise present in the individual models, each of which is still a good
representation of the di�raction data. This method is most useful at the early stages of
re®nement when the model still contains errors. In contrast, multi-conformer re®nement seeks
to create an ensemble of structures at the ®nal stages of re®nement which, taken together, best
represent the data. It should be noted that each individual conformer of the ensemble does not
necessarily remain a good description of the data since the whole ensemble is re®ned against
the data. Clearly, this method requires high-quality data and a high observable-to-parameter
ratio.

18. Conclusions

Simulated annealing has improved the e�ciency of macromolecular structure calculation and
re®nement signi®cantly in both X-ray crystallography and solution NMR spectroscopy. A case
in point is the combination of torsion angle molecular dynamics with a cross-validated
maximum-likelihood target for X-ray crystallography which interact synergistically to produce
less model bias than any other method to date. The combined method also increases the radius
of convergence allowing the re®nement of poor initial models, e.g. those obtained by weak
molecular replacement solutions (Rice and Brunger, 1994; Adams et al., 1999). However,
simulated annealing re®nement alone is still insu�cient to re®ne a structure automatically
without human intervention. For example, crystallographic re®nement using simulated
annealing typically cannot correct chain tracing errors such as register shifts. In the NMR case,
it is sometimes necessary to correct misassignments or decide between di�erent models that
both appear to ®t the experimental data equally well although ambiguous NOE restraints can
help automate this process (Nilges, 1995). Fully automatic structure determination remains a
distant goal that will probably require signi®cant new algorithmic developments (Lamzin and
Wilson, 1993; Perrakis et al., 1997).
Simulated annealing can also be used to provide new physical insights into molecular

function which may depend on conformational variability. The sampling characteristics of
simulated annealing allow the generation of multi-conformer models which can represent
molecular motion and discrete disorder, especially when combined with the acquisition of high-
quality data (both X-ray di�raction and solution NMR) (Burling et al., 1996). Simulated
annealing is thus also a stepping stone towards development of improved models of
macromolecules in solution and in the crystalline state.
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