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Abstract 

Analogies between the free R statistic [Briinger (1992). 
Nature (London), 355, 472-474] and the statistical meth- 
ods of cross validation and bootstrap are discussed. Sev- 
eral new applications which make use of the previously 
observed correlation between the free R value and the 
phase accuracy of crystal structures are presented. One 
application concerns the relative weighting of individual 
restraint classes in macromolecular refinement. The free 
R value provides an objective statistical basis for the op- 
timal choice of the weights. The results for the refine- 
ment of a penicillopepsin crystal structure at 1.8 A reso- 
lution indicate that overall bond length and bond angle 
weights, derived from uncertainties observed in small- 
molecule crystal structures, appear to be transferable to 
macromolecules. In another application, the landscape of 
the R value around the crystal structure was investigated 
for unrestrained modeling of diffraction data with equal 
atomic scatterers. Others have suggested applications to 
ab initio phasing because of the simplicity of the liquid- 
like system of equal atomic scatterers. However, there are 
a large number of incorrect configurations of the scatter- 
ers whose R values at 1.8 A resolution are close to that 
of the correct configuration given by the positions of the 
non-hydrogen atoms in the penicillopepsin crystal struc- 
ture. A substantial number of the incorrect configurations 
have higher free R values than the correct one. It is there- 
fore conceivable that the free R value could be used as a 
selection criterion to distinguish between certain incorrect 
configurations and configurations close to the correct one. 

1. Introduction 

The three-dimensional crystallographic structure deter- 
mination of macromolecules involves fitting appropriate 
electron-density models to the observed diffraction data. 
Examples of this highly non-linear and multidimensional 
fitting process include phasing (Hauptman, 1991; Weeks, 
DeTitta, Miller & Hauptman, 1993), molecular replace- 
ment (Hoppe, 1957; Rossmann & Blow, 1962; Briinger, 
1990), computer-graphics modeling guided by density 
maps (Jones, 1978) and restrained refinement (Hendrick- 
son, 1985). As macromolecular diffraction data are usually 
not available to atomic resolution, these optimization pro- 
cedures may become under-determined unless the diffrac- 
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tion data are augmented with information about the chem- 
ical and physical laws (such as atomicity, connectivity, 
geometry, stereochemistry or packing) that govern macro- 
molecular structure. Diffraction data and prior knowledge 
are therefore often combined, for example in restrained 
least-squares refinement (Hendrickson, 1985). 

The most common measure for the agreement between 
an electron-density model and the observed diffraction 
data is the R value, defined as 

R = ~ h  IIE,bdh)l -- klE~lc(h)ll 
E h  IE,b~(h)[ (1) 

where h = (h, k, l) are the reciprocal lattice points of 
the crystal, k is a scale factor, IE,bs(h)l and IE~l,:(h)l 
are the observed and calculated structure-factor amplitudes 
respectively. The R value is closely related to the crystal- 
lographic residual R' which has more convenient mathe- 
matical properties, 

R ' -  y~[ IE ,bs (h ) l -  klFc~l¢(h)l] 2. (2) 
h 

It can be shown that R' is a linear function of the negative 
logarithm of the likelihood of the atomic model, assuming 
that all observations are independent and normally dis- 
tributed (Press, Flannery, Teukolsky & Vetterling, 1986). 
Least-squares refinement minimizes R', thus maximizing 
the likelihood of the atomic model. R' can be made arbi- 
trarily small by increasing the number of model parameters 
and further refinement. The theory of linear hypothesis 
tests has been employed to decide whether the addition 
of parameters or the imposition of fixed relationships be- 
tween parameters results in a significant improvement or a 
significant worsening of the agreement between the atomic 
model and the diffraction data (Hamilton, 1965). This the- 
ory strictly applies to the situation where the restraints can 
be expressed as holonomic boundary conditions, e.g. fixed 
bond lengths, and therefore not to non-linear restraints 
such as repulsive contact functions (Hendrickson, 1985) 
or empirical energy functions (Brooks, Bruccoleri, Olaf- 
son, States & Swaminathan, 1983). 

In an analogy to testing statistical models by cross 
validation, we recently proposed the free R statistic (which 
measures the agreement between the atomic model and the 
diffraction data) for a 'test' set of reflections omitted in the 
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fitting procedure (Briinger, 1992a). A high correlation was 
observed between the free R value and the phase accuracy 
of the atomic model; this was independent of the number 
of model parameters and restraints. 

In this work we review briefly the statistical method of 
cross validation, placing particular emphasis on crystallo- 
graphic applications. We then extend our previous work 
(Briinger, 1992a) to the weighting of individual restraint 
classes such as bond lengths and bond angles. We also 
illustrate the influence of noise in the data on the free R 
value. Finally, we study the landscape of the R value for 
liquid-like models of equal atomic scatterers in the neigh- 
borhood of the crystal structure. 

2. Methods 

2.1. The test case: a crystal structure of  penicillopepsin 
As in our previous paper (Briinger, 1992a), we used 

the penicillopepsin crystal structure from Penicillium jan- 
thinellum (Hsu, Delbare, James & Hofmann, 1977; James 
& Sielecki, 1983) as a prototype for a high-quality crystal 
structure at 1.8 A resolution. The availability of good ex- 
perimental phases obtained from multiple isomorphous re- 
placement with eight heavy-atom derivatives and an over- 
all mean figure of merit of 0.9 for all observed data to 
2.8 A resolution (Hsu et al., 1977; James & Sielecki, 
1983) made this an ideal test case. We used the figure-of- 
merit-weighted mean difference between the most prob- 
able multiple-isomorphous-replacement phases and the 
model phases (IA(I)I) to estimate the accuracy of the model 
phases to 2.8 A resolution. 

2.2. The computer program 
All calculations were carded out with the program X- 

PLOR (Briinger, 1992b). (Requests for X-PLOR should 
be made to the author.) 

3. Theory 

In this section we briefly review classical statistical re- 
gression theory, introduce the modern statistical tools of 
cross validation and bootstrap, and finally discuss their 
application to macromolecular crystallography. 

3.1. Classical statistical regression and significance tests 
Suppose we have a noisy data set consisting of n pairs 

of points 

(xi,Yi); i =  1 , . . . , n  (3) 

where Yi = (Yl , . . .  ,Yn) are the observations and xi are 
the predictor variables, for example the intensities I (h)  
and Miller indices (h) of a crystallographic diffraction 
experiment. 

Least-squares theory assumes a set of model functions 
M(xi,13), i  = 1 , . . . , n  as a function of m parameters 

= (~1, . . . ,  ~m). Ideally, one wants to find parameters 
~3 o ___ ( ~ , . . . , / 3 o )  such that 

Yi = M ( z i , ~  °) + ei (4) 

where ei is an experimental error drawn at random from 
a population with zero mean. In the crystallographic case, 
the model parameters and functions are typically chosen 
to be the atomic coordinates of the crystal structure and 
the computed structure-factor amplitudes respectively. 

It can be shown that the 'best' estimator of ~o is given 
by the minimum Ao of the residual 

n 

L(~) -- ~-~[Yi - M(x i ,~ ) ]  2. (5) 
i = 1  

The estimator G ° is 'best' in the sense that it represents the 
maximum likelihood estimation of ~o (Press et al., 1986). 

Linear regression analysis is a special case of least- 
squares theory in which the model functions are linear 
functions of the parameters ~, 

m 

M ( x i , ~ )  = ~--~/3jFji = (F*~)i (6) 
j = l  

where the asterisk denotes the transposition operation. The 
solution to this linear least-squares problem is the well- 
known 'normal' equation 

Z = (FF*)-~Fy.  (7) 

If the model functions M are not linear, the problem can 
be solved approximately by linearizing M, 

m O M ( x j , ~ ) ( ~  _/3j) ,  (8) 
M ( x i , ~ ' )  ~- M ( x i , ~ ) +  

O~j 
j = l  

and by iterative application of the normal equation (7). 
A classical problem in regression analysis is the deter- 

mination of the optimal number of parameters m in order 
to maximize the information contained in the model. Too 
few parameters will not fit the data satisfactorily whereas 
too many parameters might fit noise. At a first glance, one 
might choose the residual L(~ °) [equation (5)] to assess 
the information content but the problem with this choice 
is that the same data are used both for the least-squares 
estimator ~o and to assess the information content. In fact, 
L(~ °) decreases monotonically as the number of param- 
eters m increase. The classical procedure to circumvent 
this problem is to compute the significance of a change 
in L(~ °) upon changing the number of parameters from 
ml to m2.  The so-called F value plays a pivotal role in 
estimating this significance, 

F - -  L [ ~ o ( m l ) ] -  n[3o(m2)] n -  m (9) 

L[3o(m2)] m2 - -  ml" 

The change is considered insignificant if the F value is 
'close' to unity; whether this is the case can be determined 
from the theoretical distribution of F.  Hamilton (1965) 
expressed the F test in terms of the more widely used 
R values in crystallography. While the F test enjoys 
great popularity, it is strictly limited to linear models and 
normally distributed experimental errors e i .  
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3.2. Cross validation 
Cross validation (Stone, 1974; Efron, 1982, 1988) over- 

comes the limitations of the classical F test. It is based on 
the idea that the information content of the model should 
be related to the residual L computed for some new data 
(i.e. data not involved in the determination of the least- 
squares estimator ~o). It is common, however, to omit a 
single data point i from the original data set and to deter- 
mine the least-squares estimator ~°(i) using equation (5) 
with i omitted rather than obtain new data. As the residual 
for the single data point is prone to large statistical fluc- 
tuations, it is more appropriate to obtain n least-squares 
estimators ~°(i) for each data point i in the original data 
set. The cross-validation residual is then defined as 

n 

Lcv -- E { Y i  - M[x',~°(i)]) 2" (10) 
i = l  

In the case of linear least squares, Lcv can be com- 
puted analytically from a single least-squares solution of 
an appropriately defined residual (Hfirdle, Hall & Mar- 
ron, 1988). However in the general case, n least-squares 
evaluations are required to compute Lcv. 
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Fig. 1. Application of cross validation to the least-squares fitting of the 

noisy data set described in equation (11). (a) Actual data set used 
in the example. (b) Residuals L(~o) obtained by linear least-squares 
fits [equation (7)] using the functions described in equation (12) for 2 
< m < 22; the residuals are plotted as a function of the parameters m 
used in the least-squares fit. (c) Cross-validation residual as defined 
in equation (10). 

Fig. 1 illustrates this procedure with a simple example. 
Consider a hypothetical two-dimensional data set 

[x,y(x) = x + N(0, 20)]; x = 1 , . . . , 200  (11) 

where N is a normal (Gaussian) distribution with a mean 
of zero and standard deviation of 20 (Fig. la). The Gauss- 
ian noise is supposed to simulate measurement errors of 
the observations y. A set of functions 

m 

fm(X) =al  +a2x + E a m s i n ( 2 m - 2 x ) ;  m = 2 , . . . , 2 2  
i = 3  

(12) 

were then titled to this data set by linear least squares 
[equation (6)]. The least-squares residual L(~ °) is plotted 
in Fig. l(b) as a function of the number of parameters 
m for 2 _< m < 22. As expected, the residual can be 
arbitrarily lowered by increasing the number of parameters 
m; yet by definition, the only reasonable fit is the linear 
function f2. 

Fig. l(c) reports the cross-validation residuals Lcv for 
the least-squares fits using equation (6). Note that cross 
validation involved n least-squares evaluations for each 
fitted function, i.e. this required 21 × 200 evaluations of 
equation (6). We choose not to use the analytical for- 
mula of H~dle et al. (1988) as this is not applicable 
to the crystallographic problems discussed below. The 
cross-validation residual tends to increase as the number 
of parameters increase and thus cross validation suggests 
correctly that the functions fm for larger m overfit the 
data. As a result of the small number of data points in the 
test set, the cross-validation residual Lcv in Fig. l(c) is 
too noisy to determine precisely the optimal value of m. 
This situation could be improved by the bootstrap method 
(Efron, 1988). Artificial 'bootstrap' data sets are simulated 
by randomly drawing n data pairs from the original data 
set with replacement. Cross validation is then carried out 
for the bootstrap data sets. The distribution of the result- 
ing cross-validation residuals can be used to compute the 
mean value of Lcv and the standard deviation. 

Cross validation and bootstrap are examples of modern 
statistics where computer experiments produce probability 
distributions (Efron, 1988; Hinkley, 1988; Efron & Tibshi- 
rani, 1991). Raw computing power has replaced tedious 
and often impossible analytical calculations. The beauty 
of this approach is that it can be applied to any statistical 
modeling procedure, not just least-squares fitting. 

Cross validation as described in equation (10) is clearly 
impractical for large data sets and so we propose the 
following modification. The original data set is partitioned 
into t disjoint 'test' sets T,. of equal size obtained by 
drawing them randomly from the original data set, i.e., 

t 

data = U T,. (13) 
r = l  

Ti n T~ =0. 
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Least-squares evaluations are then carded out with the test 
sets T,. omitted. We refer to the least-squares solutions as 
[3°(T,.). In analogy to equation (10), we define the cross- 
validation residual 

LTCV = ~ ~ {Yi - M[xi,~°(T,-)]} 2. (14) 
r=l iET, 

This procedure requires only as many least-squares evalua- 
tions as there are test sets. We suggested earlier (Briinger, 
1992a) that for most crystallographic applications, it is 
sufficient to consider a single test set T and to compute 
the residual for the test set 

L T c v ( T ) -  Z { y i  - M[x,,~o(T)]} 2 (15) 
i E T  

or the corresponding R value. The motivation behind 
equations (14) and (15) is to reduce the number of 
least-squares evaluations needed to compute the cross- 
validation residual. The statistical significance can be 
checked by repeating the procedure with different test sets. 
We expect that the method will work best with data sets 
which exhibit a high degree of redundancy, i.e. where the 
effect of omitting the test sets is small. 

Fig. 2 illustrates cross validation for our example data 
set [equation (11)] using 10 test sets each containing 20 
data points. One of the test sets T is shown in Fig. 2(a) 
and the remaining data (which we refer to as the working 
set) in Fig. 2(b). We borrowed the notion of test and 
training sets from the theory of neural networks (Hertz, 
Krogh & Palmer, 1991). The residuals LTcv(T) for the 
test sets and the cross-validation residual LTCV are shown 
in Figs. 2(c) and 2(d) respectively. The individual test 
residuals [equation (15)] show large statistical fluctuations 
as a result of the small size of the test set. Equation (14) 
therefore has to be applied in order to obtain statistically 
significant results. Fig. 2(d) clearly indicates that functions 
with m >2  overfit the data. The statistical significance of 
LTCV was estimated by repeating the whole procedure 20 
times (Figs. 2e and 2/). 

3.3. Cross validation in macromolecular crystallography 
The fitting of appropriate electron-density models to 

the observed diffraction data can be formulated as a 
least-squares problem [equation (2)]. The cross-validation 
method described in equation (10) is impractical as it 
would involve as many least-squares evaluations as there 
are observed unique reflections. Fortunately, crystallo- 
graphic diffraction data exhibit a high degree of redun- 
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Fig. 2. Illustration of cross validation with test sets that partition the data set [equation (13)]. (a) Example of a test set obtained by randomly selecting 
10% of the data from the data set. (b) The remaining 90% of the data set, referred to as the working set. (c) Residuals computed over the test sets 
after least-squares fits with the corresponding working sets [equation (15)]. (d) Cross-validation residual [equation (14)]. (e) 20 cross validations 
using different test sets for the data partitioning described in equation (13). (f) Mean and standard deviation (or) for the 20 cross validations. 
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dancy, even for macromolecules. We can therefore afford 
to omit more than a single reflection for cross validation 
with test sets [equations (14) and (15)]. In practice, a cer- 
tain fraction of reflections always have to be omitted as a 
result of measurement errors. Thus cross validation could 
be considered as using data-collection equipment that ren- 
ders the reflections belonging to the test set unobservable. 

In our previous work (Briinger, 1992a), we proposed 
the use of a single test set T for cross validation (Fig. 3). 
The remaining diffraction data comprises the working set 
A that is used for any crystallographic fitting procedure. 
We referred to the R value computed for the reflections 
belonging to T 

p ~  = E h e T  IlFo~(h)l - klFc~c(h)ll (16) 

E h e T  IFobs(h)l 

as the free R value. According to the principle of cross 
validation [equation (15)], the model has to be fitted to the 
working set A before the free R value can be evaluated. 
For instance, in the case of crystallographic refinement 
(Hendrickson, 1985) the model is fitted against 

R~t = ~-~[IFob~(h)l- klFcaac(h)l] 2 (17) 
hEA 

The concept of partitioning the data into a test and a work- 
ing set can be applied to any other statistical quantity 
describing the agreement between the atomic model and 
diffraction data, e.g. the standard linear correlation coeffi- 
cient (Stout & Jensen, 1989). It is not restricted to refine- 
ment but can conceivably be applied to any optimization 
problem in crystallography such as density modification 
(Podjarny, Bhat & Zwick, 1987), molecular replacement 

(Hoppe, 1957; Rossmann & Blow, 1962; Brfinger, 1990) 
or ab initio phasing (Hauptman, 1991; Weeks etal., 1991). 

In a different context, the partitioning of observed 
reflections into a basis set with known phases and a neigh- 
borhood set has been used for the multisolution strat- 
egy of phase determination by traditional direct meth- 
ods (Woolfson, 1987) and by a combined maximization 
of entropy and likelihood (Bficogne, 1984; Bricogne & 
Gilmore, 1990). Recently, Karle (1991) proposed using 
'rolling' working sets to aid the convergence behavior of 
least-squares minimization. Refined omit maps (Bhat & 
Cohen, 1984; Hodel, Kim & Brfinger, 1992) can be viewed 
as the real-space analog to cross validation: part(s) of the 
model are omitted and then the remaining model is refined. 

Cross validation with a single test set [equation (15)] as 
opposed to multiple sets [equation (14)] is computation- 
ally not more demanding than a single refinement round. 
Furthermore, R~. ee could be monitored during the process 
of model building and refinement by omitting the test set 
T fight from the start and recording its behavior as the 
refinement progresses. Although the size of the test set T 
should be kept small in order to minimize the impact on 
the fitting procedure, it has to be large enough to produce 
a statistically well defined average for R~ ~. As we have 
previously shown for the penicillopepsin crystal structure, 
test sets that comprise about 10% of the observed unique 
reflections represent a good compromise between these 
two competing effects (Briinger, 1992a). To quantify this 
choice further, we calculated the mean and standard devia- 
tion of repeated P ~  evaluations with different test sets T 
for the penicillopepsin structure. Table 1 reports a standard 
deviation of 0.5% for R~, ~ which is probably acceptable 
for most purposes. It should be pointed out however that 
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Fig. 3. The principle of cross valida- 
tion with a single test set in crys- 
tallography. (a) Reciprocal space 
application; a number of observed 
reflections from an asymmetric unit 
are set aside for the test set and 
the agreement between the observed 
and the computed intensities of the 
test set is used for cross validation. 
(b) Real space application; a por- 
tion of the atomic model is omit- 
ted in the refinement process and the 
agreement between the refined den- 
sity map and the model is checked 
in the omitted region. 
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Table 1. Statistics for cross validation 

Statistics are given for R, p~ee, the mean phase error (IA¢I) and the 
deviation of bond lengths (Abonds) and bond angles (Aangles) from the 
ideal for simulated annealing refinements of penicillopepsin (Hsu et al., 
1977; James & Sielecki, 1983) at 6-1.8 A resoludon. The mean and the 
standard deviation (tr) were computed for a set of ten refinements using 
different working sets comprising 90% of the observed unique reflec- 
tions, p~ee was computed for the corresponding test sets. The weight 
w= [equation (18)] was set to 200 000. The penicillopepsin crystal 
structure without water molecules and unit occupancy values was used 
as the starting point. Each refinement consisted of a slow-cooling proto- 
col (Brfinger, Krukowski & Erickson, 1990) starting at 1000 K, overall 
B-factor refinement and restrained individual B-factor refinement with 
target values for the temperature-factor deviations (Hendrickson, 1985) 
of 1.5, 2, 2 and 2.5 A 2 for bonded backbone, angle-related backbone, 
bonded side-chain and angle-related side-chain atoms respectively. 

Property Mean tr 
R (%) 20.77 0.09 
I~1 (o) 35.55 0.23 
R~ "~ (%). 26.41 0.47 
Abond~ (A) 0.007 0.0001 
A=#~ (o) 0.92 0.01 

this is not a general rule, and the accuracy of R~. ~ depends 
on the number of observed unique reflections; it is a func- 
tion of the resolution of the diffraction data and the size 
of the asymmetric unit of the crystal. Averaging of p~ee 
for multiple test sets may be required to decrease statisti- 
cal fluctuations [cf. equation (14)]. It is clearly desirable 
to refine the final atomic model against all observed data 
after all P ~  evaluations have been completed to remove 
any effect due to the omission of the test set T. 

In this and our previous work (Briinger, 1992a), we 
elected to obtain the test sets by random selection from the 
unique set of observed reflections. It is conceivable that 
selections of reflections with high 'leverage' (Prince & 
Nicholson, 1985) could increase the sensitivity of the free 
R value. This will be the subject of future investigations. 

4. Resul ts  and  d i scuss ion  

4.1. Bias removal 
The principle of cross validation states that the free R 

value is evaluated after the model has been refined with 
the test set omitted from the diffraction data. Thus if a 
crystal structure has been refined with all diffraction data 
included, a procedure is r~uired to remove the 'memory' 
of the test set. A refinement method with a large radius 
of convergence is necessary to accomplish this. Fig. 4 
compares the ability of conjugate gradient minimization 
and simulated annealing to remove bias towards the test 
set. In both cases, the starting structure was the refined 
crystal structure of perdcillopepsin (James & Sielecki, 
1983) but with the cr,/stal waters removed and the atomic 
B factors 2 set to 15 A .  The positional refinements were 
followed by restrained B-factor refinements. 

R a n d / ~  begin to deviate immediately after the first 
few refinement steps. In the case of conjugate gradient 
m i n i m i z a t i o n , / ~  gradually increases while R and the 
mean phase difference (I A¢,J) remain approximately con- 

stant (Fig. 4a); the rate of increase slows over the course 
of the minimization. In the case of simulated annealing, 
both R and/L~ e~ increase sharply as a result of 'heating' of 
the structure (Fig. 4b) and a slight worsening of the phase 
error (1~¢1) in the model is observed. All three quanti- 
ties then show a slow average decrease as the simulated 
annealing refinement proceeds. The value of R~ e~ after 
simulated annealing is around 30% (Fig. 4b) compared to 
just 28.4% (Fig. 4a) after 120 steps of conjugate gradi- 
ent minimization. Subsequent thermal B-factor refinement 
improves R, R~ e~ and IA¢I. One can conclude that an 
extended conjugate gradient refinement round should be 
sufficient to obtain a rough estimate of R~ ee but that a 
round of simulated annealing is required for better con- 
vergence of p~e .  

40 Minimization (120 steps) 

25 t 

20- 

15- 

3@ (°) 

B-factor 
It refinement 
1 '  

x . . . . .  

f 
f 

R?e"(%) 

R (%) 

Refinement steps 
(a) 

Minimization (40 steps) 
;imulated1000_0 K)annealing 1 

B-factor 
refinement 

) 

_ _ _ _  =.4@ (°) 

Ri °, (%) 

R (%) 

L 
Refinement steps 

(b) 
Fig. 4. Course of the refinement of the penicillopepsin structure 

against the working set which consists of a random selection of 
90% of the observed unique reflections. The starting point for both 
refinements is the penicillopepsin structure refined against the full 
data set with all B factors set to 15 A 2. (a) Minimization consisting 
of 120 steps of conjugate gradient refinement using the method of 
Powell (1977), followed by 20-step restrained B-factor refinement. 
(b) Simulated annealing using the slow-cooling protocol of Brfinger 
et aL (1990) starting at 1000 K, cooling to 0 K, followed by 40-step 
conjugate gradient minimization, overall B-factor refinement and 20- 
step restrained B-factor refinement. The R and R~ ee values and the 
mean phase error ([AO D are shown. All refinements were carried out 
with the protein structure without ordered water molecules at 6-1.8 A 
resolution. 
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4.2. Objective choice of  restraint weights for refinement 
We have already shown (Briinger, 1992a) that the R~ ~ 

method can be used to optimize the overall weighting be- 
tween diffraction data and chemical restraints in crystallo- 
graphic refinements. For instance, restrained positional 
refinement (Jack & Levitt, 1978; Hendrickson, 1985; 
Bffmger, 1991) makes use of a target function 

E p°t = wx R ! + Echemical (18) 

where the weight wx, a priori unknown, relates the resid- 
ual R'  to the chemical and geometric restraints Echemical. 
If too small a value is chosen for wx, too much empha- 
sis is placed on the geometry provided in the dictionary 
of the refinement program, resulting in a poor fit to the 
diffraction data. If the chosen value is too large, the struc- 
ture will become 'over-refined'; although the conventional 
R value is very small, the geometry of the structure be- 
comes severely distorted, wx is typically chosen according 
to predefined notions about the allowed geometric distor- 
tions of the structure. This choice is rather subjective and 
published macromolecular crystal structures show a large 
distribution of deviations from ideal geometry. Optimiz- 
ing R r  f~  as function of wz is a more objective method to 
determine wx. Furthermore, we have observed that this 
choice of wz also mardmizes the model's phase accuracy 
(Briinger, 1992a). 

Fig. 5 illustrates the optimization of wx for a differ- 
ent parameter set than the one previously used (Briinger, 
1992a). We used the novel parameter set of Engh & Hu- 
ber (1991) which is contained in the files 'tophcsdx.pro' 
and 'parhcsdx.pro' in X-PLOR (Brfmger, 1992b). This pa- 
rameter set differs from older parameter sets in X-PLOR 
[which were derived from the CHARMM energy functions 
(Brooks et al., 1983)] in terms of bond length and bond an- 
gle constants. The target values for bond lengths and bond 
angles were derived from small-molecule crystal structures 
deposited in the Cambridge Structural Database (Allen, 
Kennard & Taylor, 1983). The weights or 'energy' con- 
stants were derived from the standard deviations of the 
bond lengths and bond angles assuming that the standard 
deviation represents expected deviations from harmonic 
potential minima at 293 K. Additional atom types had 
to be introduced to achieve a good fit to the experimental 
data. From a comparison of Fig. 5 with Fig. 3 of Briinger 
(1992a), it appears that the Engh & Huber (1991) parame- 
ters show wider minima for both p~e~ and I A(I'I. Further- 
more, the deviations from ideal geometry are significantly 
smaller for the optimal choice of wx (the r.m.s, devia- 
tions of bond lengths and bond angles are 0.008 A and 1 o 
respectively). Thus the Engh & Huber parameters allow 
one to fit a model with surprisingly small deviations from 
ideal geometry. 

Fig. 5 compares conjugate gradient minimization and 
simulated annealing in their ability to optimize P ~  as a 
function of wx. The minimum of p~ee is in approximately 
the same position for both methods, although a small shift 
towards smaller values of w~: is observed for minimiza- 

don (Fig. 5a). Simulated annealing produces a much more 
pronounced increase of R~ ~e for small values of wx. In 
this case, too little emphasis is put on the diffraction data 
and the simulated annealing process explores 'incorrect' 
conformations that cannot be reached by conjugate gra- 
dient minimization because they are separated by small 
energy barriers from the correct conformation. In prac- 
tical terms, minimization can be used as a rough guide 
for R~ ee optimization although simulated annealing will 
provide more pronounced results. We therefore used sim- 
ulated annealing to obtain P ~  in the remainder of this 
paper. It should be noted that the empirical 'check' pro- 
cedure in X-PLOR (Briinger, 1992b) typically produces 
values for wx that are between two and three times too 
large compared with those given by the more objective 
method. 

The overall weight wx [equation (18)] is a special case 
of more general weights that apply to subsets of diffrac- 
tion data or particular classes of restraints (such as bond 
lengths, bond angles and dihedral angles). One could 
imagine optimizing R~ ee as a function of all these individ- 
ual weights. In general, this is a rather computer-intensive 
optimization problem as each point in multidimensional 
space would require a complete round of refinement to 
evaluate p~ee. 

We carded out several optimizations of/L~ ee to assess 
the relative weightings of bond length, bond angle, di- 
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Fig. 5. Refinements of penicillopepsin as a function of log w~ [equation 
(18)1 using cross validation. PJr tee (dashed line) was computed for the 
test set T which was obtained by a 10% random selection. R (solid 
line) was computed for the working set A. lAth[ (dotted line) is the 
figure-of-merit-weighted mean phase difference between model phases 
and the most probable multiple-isomorphous-replacement phases at 
6-2.8 A resolution, wx = oo represents the completely unrestrained 
case. (a) Minimization consisting of 120 steps of conjugate gradient 
steps using the method of PoweU (1977), followed by 20-step re- 
strained B-factor refinement. (b) Simulated annealing using the slow- 
cooling protocol of Briinger et aL 0990) starting at 1000 K, cooling 
to 0 K, followed by 40-step conjugate gradient minimization, overall 
B-factor refinement and 20-step restrained B-factor refinement. All re- 
finernents were carried out with the protein structure without ordered 
water molecules at 6-1.8 A resolution. 
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hedral angle and van der Waals restraints in the Engh & 
Huber (1991) parameter set. A two-dimensional optimiza- 
tion of R~ ee as a function of Wbonds and Wangles [equation 
(19)] is shown in Fig. 6 and a two-dimensional optimiza- 
tion of Wconf and Wvdw [equation (20)] in Fig. 7. Finally, 
a one-dimensional optimization of R~ ee as a function of 
Wdihe [equation (21)] is plotted in Fig. 8. 

E p°t --  w=R'  + WbondsEbond s -Jr WanglesEangles 

+ E v d w  + Edihe + Eimproper (19) 

E p°t = w x R  I -~- WvdwEvdw 

+Wconf(Ebonds Jr Eangles -k- Edihe q- Eimproper) 

(20) 
E p°t = w x R '  -4- Ebonds -4- Eangles -~- Evdw 

-f-Wdine (Edine -+- Eimproper). (21)  

The w= weight is always set to its optimal value as 
determined in Fig. 5, i.e. wx  = 200 000. T h e  func-  
tional forms of the various terms of the E p°t function are 
described below. 
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Fig. 6. Refinements of penicillopepsin 
as a function of IogWbonds and 
log wangles [equation (19)] using 
cross validation. Contour plots and 
three-dimensional projections of 
R~  ee and R after simulated an- 
nealing refinement and restrained B- 
factor refinement are shown; these 
were computed for the test set T 
and the working set A. Details of 
the refinement procedure are identi- 
cal to Fig. 5. The weights Wconf 
and Wvdw were modified by using 
the 'constraints interaction weight' 
command in X-PLOR. 

Fig. 7. Refinements of penicil~pepsin 
as a function of log wconf and 
log Wvdw [equation (20)] using 
cross validation. Contour plots 
and three-dimensional projections of 
R~  ee and R after simulated an- 
nealing refinement and restrained B- 
factor refinement are shown; these 
were computed for the test set T 
and the working set A. Details of 
the refinement procedure are identi- 
cal to Fig. 5. The weights l/3conf 
and Wvdw were modified by using 
the 'constraints interaction weight' 
command in X-PLOR. 
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The bond length and bond angle terms are given by 

Eb°nds -- E kb(r - -  T~)2 (22) 
bEbonds 

Ea.gles = E k a ( e  - 0o) 2 (23) 
aEangles 

where ka, kb are constants, r is the actual bond length, r~ 
is the equilibrium bond length, 0 is the actual bond an- 
gle and 0 ° is the equilibrium bond angle. The functional 
form of these terms is identical for empirical energy cal- 
culations (Brooks et al., 1983) and least-squares programs 
(Hendrickson, 1985). Fig. 6 reports a global minimum 
of R~ ee for values of Wbonds and Wa~gles that are close to 
uni ty .  A s  the  cons tan t s  ka, kb, r~, 0 ° [equa t ion  (19)] are  
derived from observed small-molecule geometries (Engh 
& Huber, 1991), one can interpret this result in terms of 
the transferability of the uncertainties in bond length and 
bond angle geometry from small-molecule structures to 
macromolecular structures. P ~  is less sensitive to over- 
weighting the bond or angle terms than to under-weighting 
(Fig. 6). The optimal choice corresponds to r.m.s, bond 
length and bond angle deviations of 0.008 A and 1 ° re- 
spectively from the ideal. 

The Evdw term in equation (20) is a sum over 
Lennard-Jones potentials 

Evdw= E4E i j [ ( ~ )12 - -  (¢YiJ ~ / J / ]  (24) 

where the sum extends over all non-bonded atom pairs 
i j  between atoms i and j .  R q  is the distance between 
the two atoms, eq the minimum value of Evdw and aq  
the intersection of the Lennard-Jones potential with the 
Rij axis. Fig. 7 shows a fairly broad minimal region. A 

significant increase of R~ ~ occurs for an over-weighted 
van der Waals term or an under-weighted conformational 
term. This indicates that, unless it is too heavily weighted, 
the phase accuracy of the model is relatively insensitive 
to the exact choice of the van der Waals term. This result 
could be viewed as an empirical justification for the use of 
the simple repulsive functions described by Hendrickson 
(1985) 

Evdw -- E f l / s i j ) f 2 1 / 6 r r i j  -- Ri j )  4. (25) 
ij 

The dihedral angle terms Edihe + EimpropCr are used to 
restrain the planarity of certain groups of atoms, such as 
aromatic rings and peptide bonds, and to maintain the 
chirality of asymmetric carbon atoms, 

Edihe = E kd[1 q- COS(ndqO q- (~d)] 
dEdihedrals 

Eimpr°per : E ki(q 0 _ ~i)2, (26) 
i E impropers 

where ~ is the actual torsion angle and ka, k~, 6a, 6i, nd 
are appropriately chosen constants. The functional form of 
these restraints is obtained from the CHARMM empirical 
energy function (Brooks et al., 1983), and differs from that 
used in restrained least-squares programs (Hendrickson, 
1985). However, the effect of both functional forms is 
similar provided that the terms are properly weighted with 
respect to the remaining conformational terms. Fig. 8 
shows R~. e~ as a function of Wdih~ [equation (21)]. As the 
differences involved are small, we tested their significance 
by carrying out ten independent R~ ~e evaluations with 
different test sets. The minimum of R~. ~ is approximately 
located at 't/)dihe - -  10 o.75 _~ 5.62. This suggests that the 
dihedral angle terms are somewhat underweighted in the 
Engh & Huber (1991) parameter set. 
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Fig. 8. Refinements of penicillopepsin as a 
function of log Wdihe [equation (21)] using 
cross validation with ten different working 
sets A and corresponding test sets T. De- 
tails of the refinement procedure are iden- 
tical to Fig. 5. (a) R as a function of 
logwdihe computed for the ten working 
sets. (b) P ~  as a function of log waih~ 
computed for the ten corresponding test 
sets. (c) Mean and standard deviation of R. 
(d) Mean and standard deviation of p~ee. 
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4.3. Influence of noise 
The deviation between R and R~ e~ can be caused by 

noise in the data, incompleteness of the atomic model, 
or an unfavorable observable to parameter ratio. Fig. 9 
illustrates the influence of noise on the difference between 
R and R~ ~ as a function of the weight wx [equation (18)]. 
An 'ideal' data set computed from a single structure of 
penicillopepsin (Fig. 9a) is compared to the ideal data 
set with the added noise (Fig. 9b) and to an ideal data 
set computed from a thermal ensemble of structures (Fig. 
9c). For large values of wx, the difference between R and 
/~ee is much larger for the penicillopepsin data set (Fig. 
5) and the ideal data set with noise (Fig. 9b) than for the 
ideal data sets without noise of a single structure (Fig. 9a) 
or of a thermal ensemble (Fig. 9c). Thus, the presence 
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Fig. 9. Simulated annealing refinements of penicillopepsin as a function 

of log w= lequation (18)] using cross validation for ideal data sets. 
Plots for R~ ~ (dashed line), R (solid line) and I A,I,I (dotted line) after 
simulated annealing refinement and restrained B-factor refinement are 
shown. Details of the refinement procedure are identical to Fig. 5. 
(a) Using ideal diffraction data computed from the penicillopepsin 
crystal structure (I-lsu et  al.,  1977; James & Sielecki, 1983) with 
the Fob~ amplitudes set to the Fcalc amplitudes. (b) Using ideal 
diffraction data with Gaussian noise added to the structure-factor 
amplitudes and the standard deviation of the Gaussian distribution set 
to 10 units. (c) Using averaged structure factors computed from an 
ensemble of penicillopepsin structures; the ensemble was generated by 
a 5 ps molecular-dynamics simulation at 300 K with weak harmonic 
restraints applied to the initial C a positions. Computation of the ideal 
data and all refinements were carried out with the protein structure 
without ordered water molecules at 6-1.8/Ik resolution. 

of Gaussian noise in the diffraction data is a possible 
explanation of the observed behavior of R and R~ ~e (Fig. 
5). This clearly does not rule out other explanations 
such as systematic errors during data collection, data set 
merging and reduction, or incompleteness of the atomic 
model, and the subject will need further investigation. 

Thermal motion of the atoms appears to be modelled 
appropriately through thermal B-factor refinement result- 
ing in the relatively small deviation between R and R~ ~e 
in Fig. 9(c). Note that the R~. ~" method probes global 
features of the modelling and refinement procedure. It is 
probably not sensitive enough to detect the inappropriate 
modelling of a few alternate conformations of surface side 
chains through thermal B factors (Kuriyan, Petsko, Levy 
& Karplus, 1986). 

4.4. Testing of unrestrained atomic models 
Unrestrained liquid-like models consisting of equal 

atomic scatterers have been suggested by Subbiah (1991) 
and Karle (1991) in the context of ab initio phasing. 
Sampling of a large number of configurations might be 
achievable as a result of the simplicity of these mod- 
els. Successful application of liquid-like models is resolu- 
tion dependent. Subbiah (1991) used predominantly low- 
resolution data (> 8 A) while Karle (1991) used atomic 
resolution data (,~ 1 A). The application to resolution 
ranges typical for macromolecular crystal structures poses 
a problem; for example, Figs. 5 and 9 show that unre- 
strained refinement (wx ~ c~) can lead to small R values 
at 1.8 A resolution but relatively large phase errors (IA~I). 
Furthermore, we have shown (Briinger, 1992a) that a ran- 
dom configuration of equal atoms can be refined to a very 
low conventional R value at 1.8 A resolution. The ques- 
tion arises whether the 'landscape' of R for a configura- 
tion of unrestrair.ed equal atoms has a single well defined 
global minimum (Fig. 10a) that is 'close' to the actual 
distribution of atoms in the crystal, or whether many false 
minima exist with equal or even lower R values than that 
of the correct distribution (Fig. 10b). 

We probed the landscape of R by setting up unre- 
strained equal atoms, initially positioned at the heavy-atom 

(a) 

(o) 
Fig. 10. Illustration of two possible landscapes for the R value of an 

unrestrained collection of equal arums refined against the diffraction 
data as a function of a fictitious coordinate. The arrow indicates 
the correct configuration with maximum phase accuracy. (a) The R 
landscape provides a unique solution to the phase problem. (b) False 
minima exist with similar low R values and incorrect phases. 
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positions of the penicillopepsin crystal structure, and car- 
rying out simulated annealing refinements at various tem- 
peratures. If the situation corresponded to Fig. 10(a), 
we would expect either to revert to the global minimum 
after simulated annealing or to be stuck in one of the 
higher R minima. Furthermore, we would expect to be 
trapped in increasingly higher minima as the initial sim- 
ulated annealing temperature increased. In contrast if the 
situation corresponded to Fig. lO(b), we would expect to 
find an increasingly large number of 'false' minima with 
low R values corresponding to incorrect configurations of 
the unrestrained atoms. 

Fig. 11 shows R, P ~  and IA¢,I after simulated 
annealing refinements at temperatures between 3000 and 
0 K. The penicillopepsin data set (Hsu et al., 1977; James 
& Sielecki, 1983) and several ideal data sets with and 
without noise were used. The atomic r.m.s, differences 
between the unrestrained atoms and the crystal structure 
range from 0.6 fit for simulated annealing at 0 K to 
4.5 A at 3000 K. In our notation, simulated annealing 
at 0 K corresponds to conjugate gradient minimization. 
The shift of 0.6 A for conjugate gradient minimization 
is remarkably large. Even when using the noise-free 
ideal data set, conjugate gradient minimization at 1.8 A 
produces an r.m.s, shift in the positions of the atomic 
scatterers of about 0.3 fit. This implies that the exact 
atomic positions of the crystal structure do not correspond 
to a local minimum of the crystallographic residual for 
the unrestrained model of equal atoms. It appears that 
the R landscape for both the real and the ideal data set 

with noise is probably best described by Fig. lO(b); the 
higher the initial simulated annealing temperature, the 
larger the phase error of the refined distribution of un- 
restrained atoms while R stays approximately constant. 
The noise-free ideal data sets of both the single structure 
and the thermal ensemble exhibit a slight increase of R 
as the temperature is increased. 

We define the 'correct' configuration of the atomic 
scatterers as the one that is obtained for a conjugate gra- 
dient refinement starting from the crystal structure coor- 
dinates. Despite an r.m.s, difference of 0.6 A from the 
true non-hydrogen-atom positions of the crystal structure, 
the phase accuracy of this configuration is 45 ° (Fig. 1 la) 
which would probably be sufficient for a successful solu- 
tion of the crystal structure. R~Y e assmnes a minimum for 
this configuration regardless of the presence of noise in 
the data (Fig. 11). Furthermore, R~ ~ is correlated with 
the phase accuracy of the unrestrained equal-atom model. 
Thus,/L~ ~e provides a much better measure than R to dis- 
tinguish between incorrect and correct configurations of 
the atomic scatterers. 

5. Concluding remarks 

We have shown in this paper and our previous one 
(Briinger, 1992a) that cross validation is a powerful con- 
cept for macromolecular crystallography which allows one 
to define more objective criteria for the correctness and ac- 
curacy of model representations of crystal structures. The 
free R value is a particular implementation of cross vali- 
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Fig. 11. Simulated annealing refinements of penicillopepsin as a function of the initial annealing temperature (Brfmger et al., 1990) using cross 
validation for various data sets. Plots are shown for R,~ ee (dashed line), R (sofid line) and IA~[ (dotted line) after simulated annealing refinement 
and restrained B-factor refinement. Details of the refinement procedure are identical to Fig. 5. (a) Using the penicillopepsin diffraction data 
(Hsu et al., 1977; James & Sielecki, 1983). (b) Using ideal diffraction data computed from the penicillopepsin crystal structure (Hsu et al., 
1977; James & Sielecki, 1983) with the Fot~ amplitudes set to the Fc~c amplitudes. (c) Using ideal diffraction data with Gaussian noise added 
to the structure-factor amplitudes and the standard deviation of the Gaussian distribution set to 10 units. (d) Using averaged structure factors 
computed from an ensemble of penicillopepsin structures; the ensemble was generated by a 5 ps molecular-dynamics simulation at 300 K with 
weak harmonic restraints applied to the initial C ° positions. Computation of the ideal data and all refinements were carried out with the protein 
structure without ordered water molecules at 6-1.8 A resolution. 
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dation. Owing to the generality of the concept, it can in 
fact be applied to any statistic used both as a target in 
modeling the diffraction data and as a criterion to assess 
the quality of the modeling. Figures of merit or corre- 
lation coefficients in either reciprocal or real space are 
examples that could benefit from cross validation. Re- 
peated application of cross validation can, in principle, be 
used to determine the statistical significance and proba- 
bility distribution of the statistic without needing to de- 
rive difficult analytical formulae. Clearly, repeated cross 
validation involving refinements of high-resolution crys- 
tal structures is only possible for the crystallographer who 
has access to large computing resources. However, the in- 
trinsic parallelism of repeated cross validation means that 
massively parallel computers should alleviate this prob- 
lem in the near future. 

In this paper we illustrate the application of the R~ ~ 
method to verify the recent refinement parameter set of 
Engh & Huber (1991). We wanted to obtain the optimal 
relative weighting between bond length, bond angle, di- 
hedral angle and van der Waals restraints. We found that 
the distribution of bond lengths and bond angles as found 
in the Cambridge Structural Database is in fact optimal 
for the penicillopepsin crystal structure at 1.8 ,~, resolu- 
tion. The deviations from ideal geometry are surprisingly 
small (0.008 A and 1 ° for bond lengths and bond angles 
respectively). However, this is a statement about the fit of 
a single structure to the time- and space-averaged diffrac- 
tion data. It does not imply that the thermal motions of the 
macromolecule are small. We found that dihedral angle 
restraints are probably under-weighted and will have to be 
revised. The weighting of the van der Waals restraints is 
not critical over a wide range of values. 

Our results suggest a project to verify parameter sets 
used in crystallographic refinement. Optimization of 
weights by minimizing R~ ~e could be carded out for 
those crystal structures that have been deposited in the 
Brookhaven Data Bank (Bernstein et al., 1977) together 
with their diffraction data sets. If the protein structure 
data base is sufficiently large, we expect that one could 
address very detailed questions, e.g. the relative weight- 
ing of subclasses of restraints such as the C- -N bond 
length in peptide groups. In this way, one could optimize 
the chemical restraints such that crystal structures refined 
with them would exhibit maximum phase accuracy. 

Unrestrained refinement of equal atoms against the 
1.8 ,/~ resolution data of penicillopepsin causes large phase 
errors, while the conventional R value is lower than that 
for the restrained crystal structure. In fact, many distri- 
butions exist with equally good R values but with arbi- 
trarily large phase errors. This poses a problem for ap- 
plications of liquid-like models of equal atomic scatterers 
(Subbiah, 1991; Karle, 1991) for ab initio phasing at reso- 
lution ranges typical for macromolecules. We generated a 
large number of configurations in the neighborhood of the 
crystal structure with atomic r.m.s, differences between 
0.6 and 4.4 A. Our results indicate that /L~ ee is corre- 
lated with the phase accuracy of these configurations and 

that the correct configuration has the lowest R~ °~ value, 
and we suggest using R~ ~ as a 'score' to check con- 
figurations of the liquid. We anticipate that by choosing 
configurations with the lowest/L~ °~ values, one could sig- 
nificantly reduce the number of incorrect configurations. 
At the present time, the computational requirements of 
the R~, ee evaluation clearly preclude a naive brute-force 
scoring of all possible configurations of the liquid in the 
asymmetric unit for macromolecules. 
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