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(1) the components of the vectors hs seminvariantly 
associated with h--(h, k, l); it can be useful to preserve 
this information in the symbol of the H - K  group. 

(2) The type of the cell (P primitive, etc . . . .  ): 
following Rogers (1950, 1965), the lattice symbol is 
underlined if the point group is centrosymmetric. 

(3) The seminvariant modulus o~s. 
The meaning of the symbols (I]2H, Ilooll, . . . )  used in 

the Tables 1-4 is the same as in Karle (1970). 
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Linear equations are derived in direct space, which express the relation between the electron densities of 
crystals built from the same molecule, but with different lattices or several identical subunits in their 
asymmetric units. They are shown to be equivalent to the most general 'molecular-replacement' phase 
equations in reciprocal space. The solution of these phase equations by the method of successive pro- 
jections is discussed. This algorithm, best implemented in direct space by averaging operations, is 
shown to be convergent for over-determined problems, and to be equivalent to a least-squares solution 
of the phase equations. 

Introduction 

I'he 'molecular-replacement' method has now a well 
documented literature, which has recently been collect- 
ed in a book (Rossmann, 1972). It aims at exploiting 
the redundancies of geometrical origin which may be 
present in X-ray intensity data, in order to determine 
or refine phases. Such redundancies arise if a protein 
can crystallize with several identical molecules in the 
asymmetric unit, or in several crystal forms. 

The basic equations expressing the phase constraints 
thus generated were derived by Rossmann & Blow 
(1963), Main & Rossmann (1966), and Crowther 
(1967). Their implementation was investigated by Ross- 
mann & Blow (1963, 1964), Main (1967), Crowther 
(1969) and Jack (1973). All this work was done in reci- 
procal space only, although Main (1967) aria Rossmann 
(1972) suggested that direct-space methods should be 
formally equivalent but of greater practical utility. 

In this work, a rigorous proof of this formal equiv- 
alence is presented. The equations are first written in 
direct space, using an adequate linear operator form- 
alism. A Fourier transformation then yields equations 
in reciprocal space, which are found to be the most 
general molecular-replacement equations in Crow- 

ther's linear formulation. This proves the equivalence 
in question. 

In both direct and reciprocal spaces, the equations 
express the fact that a certain vector, representing a 
set of structures built from a common subunit, is con- 
strainea to lie in the eigenspace of a certain orthogonal 
projector. In reciprocal space, this projector is repre- 
sented by a matrix. In direct space, the projection op- 
eration consists in averaging the electron densities of all 
the crystallographically independent molecules present 
in all crystals, then rebuilding each crystal from this 
averaged molecule, the density outside the molecular 
boundaries being set to a uniform background value. 
The direct-space method has considerable computa- 
tional advantages. Indeed, averaging is a simple opera- 
tion, and the molecular boundaries can easily be given 
any desired shape. 

If N subunits are thus averaged, the signal-to-noise 
ratio of the electron-density maps will increase, by a 
factor of at least I/N since we also remove noise from 
the solvent regions. Therefore, combining the experi- 
mental amplitudes with the phases recomputed from 
these averaged maps - or, equivalently, with the phases 
of the projected structure factors - may be expected to 
give improved maps. 
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This algorithm will be shown to be convergent for 
over-determined problems having a unique solution, 
and to be equivalent to a least-squares solution of the 
phase equations in which the constraints of geometric 
redundancy and agreement with observed amplitudes 
are treated separately. 

1. Geometric sources of redundancy 

1.1 Redundancy and its sources 
A crystal structure is defined at resolution A by 

those structure factors Fhk~ for which dh*kt < A -t.  In 
most cases, we find that not all these structure factors 
need to be determined separately, because relations 
exist between them. Thus, if the structure has no anom- 
alous scatterers, Friedel's law applies; and if it has 
symmetry other than P 1, structure factors with point- 
group-related indices differ only by known phase 
shifts. In both cases, these relations between structure 
factors can be decomposed into two sets of relations, 
one involving moduli only, the other involving phases 
only. We shall say that relations between structure 
factors are split if they can be decomposed in this way 
into separate relations between the moduli and the 
phases. Friedel's law and space-group symmetries are 
the only general sources of split relations. 

Other relationships between structure factors may 
follow from the positivity of the electron density, the 
existence of equal resolved atoms in a structure, the 
existence of molecular boundaries, local symmetries 
and polymorphism. These relations cannot be decom- 
posed into separate relations between moduli and 
phases: such relations will be called mixed. A set of 
mixed relations will be called irreducible if it cannot be 
factored into a smaller mixed set, and a split set. In- 
tensity data will be called redundant if they are involved 
in an irreducible set of mixed relations. 

Of the types of redundancy mentioned, only those 
which follow from molecular boundaries, local symme- 
tries and polymorphism, and which may be called 
geometric, will be considered in this paper. As the 
positivity of electron density is ignored, the Fo00 term 
will be adjusted so that the mean electron density out- 
side molecular boundaries is zero. When several crystal 
forms are involved, it will be assumed that this mean 
density is the same for all. 

1.2. A quantitative estimate o f  redundancy 
A real structure with unit cell V in space group P 1 is 

defined, at resolution A, by those structure factors 
Fhk~ for which d ~  < A-~. By Friedel's law, their num- 
ber is: 

4z~:: / 1 ,  a 1 2~z 
NA(V)= 1 • - - y }  I,-XJ • v ----~ = 3 2 ¢ "  v = k ~ .  v-~ 

I" More exactly, Na(V)=[k,~. V], i.e. the greatest integer 
less than ka • V. But we gloss over that point. 

so that such a structure may be considered as a system 
with ka complex (hence 2k,~ real) degrees of freedom 
per unit volume of its unit cell. An X-ray study of this 
structure will yield Nobs = N~ (V) independent and non- 
redundant real parameters: the moduli IF~kz[. If a 
space group of multiplicity m is present, all these num- 
bers are to be divided by m, which can be done by 
formally substituting the asymmetric unit v for the 
unit cell V in the preceding formulae; thus, we have 
Nobs=N~ (v) independent moduli, while the number 
Nfree of actual real degrees of freedom is 2N,~(v). 

If the electron density is zero in part of v owing to 
molecular boundaries, or if local symmetries relate 
different parts of v, Nrree will decrease; indeed, if U is 
the volume of the subunit from which v is built, the 
preceding rule of formal substitution yields the estim- 
ate: Nr,ee -2N~(U).  Conversely, observation of 
several crystal forms containing the same structural 
unit will increase Nob~. The phase problem will become 
over-determined if Nobs >- Nf~ee. 

We may define a redundancy criterion a by: 

= 2 .  Nobs 1 . 
Nfree 

For non-redundant data, a = 0 ,  and over-determina- 
tion will occur for a > 1. 

2. Notations and preliminaries 

Paradoxically enough, writing equations in direct 
space is more difficult than in reciprocal space, if we 
want them to be amenable to mathematical manipula- 
tion. Indeed, functions in direct space, and especially 
linear operations on them, have to be thought of ab- 
stractly; whereas in reciprocal space we can handle 
Fourier coefficients and matrices. 

The aim of these sections is to introduce the sym- 
bolism which will be used in writing these equations, 
and to illustrate how it makes some invariance prop- 
erties expressible in the form of eigenvalue equations. 
The use of distributions at an elementary level, and of 
their convolutions and Fourier transforms, yields a 
convenient notation for periodic electron densities and 
their diffraction patterns. We shall use these notations, 
but with as little reference to distribution theory as 
possible. 

2.1. Projectors 
Let E be ordinary (direct) space, and C (E) be the 

vector space of complex-valued functions over E. A 
linear operator P in C (E) will be called a projector if 
p 2 = p .  An eigenvalue 2 of P has to satisfy 22=2, so 
that 2 equals 0 or 1. Any function f e e ( E )  can be 
written uniquely as: f = f 0  +7"1, with Pf0 =0  and Pf~ = 
f~; indeed, fo = f -  P f  and f~ = Pf. 

Let L2(E) be the subspace of C (E) formed by those 

functions f for which the integral ,J(EIf(x)12dax conver- 
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ges. We can define in LZ(E) the notion of orthogonality, 
using the scalar product: 

( f ig)= I f(x)g(x)d3x 

where the bar denotes complex conjugation. A projec- 
tor P will then be called orthogonal if any eigenvector 
of P for eigenvalue 1 is orthogonal to any eigenvector 
of P for eigenvalue 0. A linear operator A in L2(E) is 
called Hermitian if 

(Af lg)= (f lAg) for allf,  g~L2(E). 

A projector is orthogonal if and only if it is Hermitian. 

2.2. Indicators and envelopes 
If U is any domain of E, we shall call the indicator 

of U the function Zv defined by: 

Zu(x) = 1 if x~U,  Zv(x)=0 if xq~U. 

The operation of multiplication by Zv is a linear opera- 
tor in C (E), which is Hermitian in LZ(E) since 

(zvflg) = ( f lzvg)= Ivf(x)g(x)d3x . 

This operator will be denoted by Zv.. 
The identity , ~  =gv  implies that (;~v.) z =Xo., so that 

Zv. is a projector in C (E), orthogonal in LZ(E). 
We shall say that a functionf~C(E) admits U as an 

envelope if f vanishes identically outside U. This can be 
written: 

Zv. f = f  

which states t h a t f i s  an eigenfunction of projector Zu. 
for eigenvalue 1. 

2.3. Functional representation of geometrical operations 
To any invertible transformation T of E we can as- 

sociate a linear transformation T* of C(E), defined by: 

(T ' f )  ( x ) = f ( T - l x )  for all f~C(E) .  

This correspondence has the property that: 

(T~T2)*= T~' T~,  (T-1)*=(T*)  -* . 

Therefore, if we have a group ~' = {T~, . . .  T,} of trans- 
formation of E, the set f ¢ * = { T ] , . . .  T,*} will also be a 
group. 

If T is a translation by a vector u ( T x = x + u ) ,  T* 
will be denoted z(,). If T is a displacement ( T x =  C x +  
d, where C is a rotation), and i f f a n d  g are in LZ(E), we 
have the identity (proved by simple change of variable): 

( f l  T'g)  = (( T -  *)* f lg)  . (JO 
The invariance of a function f~C(E) under a trans- 

formation T can be written: T ' f  =f, which states that 
f is an eigenfunction of T* for eigenvalue 1. 

The invariance o f f  by a group f¢={T1 , . . .  T,} of 
transformations of E is equivalent to its invariance by 

the operator G =  1 ~ T~';this follows easily from 
n 1=1 

identity: 
T ] G = G  for all j = l , . . . n  (J2) 

as TsfY= {TjTx, . . . ,  TjT,}= fY by the group property. 
This same identity shows that G2= G, and (o¢1) shows 
that G is Hermitian in LZ(E) since as well G =  
1 

(T~-X) *. Thus G is a projector in C(E), ortho- 
n k = l  

gonal in L2(E). The invariance of f under group fY 
reads Gf=f ,  i.e. states that f is an eigenfunction of 
projector G for eigenvalue 1. 

2.4. Convolution and lattices 
The convolution of two functions f a n d  g, if defined, 

will be denoted by f , g :  

( f ,g)  (x) = SEf(y)g(x-- y)day. 

Dirac's ~ distribution is the unity of convolution: 

O , f = f  for all f ' s .  

and one has the identity: Z(u)f= 5(a), f if 6ca ) = zc~)6. 
This yields a concise notation for the electron den- 

sity Q in a crystal with lattice ~ and motif Q0. Indeed, 
we can write: 

4 = ~ ~u)Q °=  ~ 6~,,)*~o °=  R,o  ° 

where R is the lattice-distribution associated with ~': 

R =  ~ 6(.)= ~ ~O,a+,b+vc) i f ~  is based on (a,b,c) .  
u~o~, m,  n, p 

in t ege r s  

We shall also need the 'unit lattice-distribution" 
r =  ~ 6(ml+,j+vk), where (i, j, k) is a right-handed 

m, n, p 

orthonormal frame. 

2.5. Fourier transform and reciprocal lattices 
We shall denote as ~" and o~- the Fourier transform 

and its inverse respectively: 

~-[~o](~) = Ie~0(x) exp ( - 2 ~ i ~ .  x)dax 

~[~0](~) = I ~o(x) exp (+  2zff~. x)d3x 
,J E 

and use their extensions to distributions (see Schwartz, 
1966, chap. 7). 

If T is an invertible linear transformation of E, one 
has the identities (Schwartz, 1966, p. 252)" 

o~[T*~0] =(det  T) .  (CT)*~'[~p] 

~-[T*~0]= (det T) .  (C T) *~-[~0] (J3) 

where CT=tT -1 is the inverse of the transpose of T. In 
particular, if T is a rotation, det T =  1 and T=CT, so 
that 

o~-[T*~p]= T*o~-[~0], o~-[T*~p]= T*~-[~p]. 
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With the notations of § 2.4, we can write: 

R = T*r 

where T is defined by T i=  a, Tj = b, Tk = c. Using 
identities (J3) and the fact that ~ - [ r ]= r  (Schwartz, 
1966, p. 254), we have 

o~-[R]=(det T) .  (~T)*r= V. R ' ,  

where V is the volume of the unit cell of ~ ,  and R ' =  
(~T)*r is a lattice distribution. Indeed, 

where ~ ' ,  the reciprocal lattice of ~ ,  is based on vec- 
tors a*=~Ti, b*=~Tj, c*=~Tk. 

This yields the well-known expression for the dif- 
fraction pattern F of a crystal 0 = R . f "  

F = ~ [ 0 I = ~ - [ R ] .  ~[00] = V. R ' .  ~[0°1. 

2.6 Shannon's (1949) interpolation formula 
Let ~o be a function whose Fourier transform 
= o~'[~0] vanishes identically outside the unit cell V of 

a lattice ~ .  This can be written: 

¢ = X v .  ( R , ¢ ) .  

Transforming both sides by ~ yields the formula" 

1 - -  
~= - f  ~[Xv]*(R'.  ~) 

which shows that ~0 can be calculated everywhere once 
its values on ~ '  are known, since it can be written" 

1 
¢o(~)= --~ ~ ~[Zv] (~-P)(P(P) for all ~ E .  

p ~ . ~ '  

In particular, this formula enables us to calculate 
'structure factors' at non-integral points of reciprocal 
space from the usual structure factors. 

3.2. Equations in direct space 
The first two assumptions are fully expressed in the 

formulae: 

o , = R , . o  ° ~= 1 , . . .  v (3.1) 
nat 

o . . .  (3.2) 
i ~ = l  

The third one can be expressed by writing that the 
* . content of each envelope Tj~U is equal to Tjd~, i.e. 

there is no contribution from neighbouring molecules: 

Zrj~u • Oat = Tj~/2 e = 1 , . . .  v; jat = 1 , . . .  nat. (3"3) 

A relation between Oat and Qo will result if we elimi- 
nate/2 between (3.1) and (3.2) written for c~ and fl, using 
(3.3) written for ft. The latter yields" 

so that" 

/2= (TFa~)*(Xr~ov. Qa)=Zv. (T~I)*Q0 (3.4) 

T/at 

Q,,=Rat* ~= T*atZv. (T~X)*Qo (3.5) 

for all ~, fl = 1 , . . .  v and i a = 1 , . . .  n o. 
We shall write these equations in condensed form as: 

o~= B~a'O o (3.6a) 

and visualize them on the diagram: 

Q~ 

Z v._ ( T ~ )  * _  l 

nty 

R,,* ~ Tl* / / . / 2  

eat Zo.(  ~)  

n~ 

3. Deduction of the equations in space group P 1 

For the sake of clarity, structure factors, their moduli 
and phases, will be written as explicit functions of vec- 
tors of the reciprocal lattice, e.g. F(P)=IFI(p) 
x exp [i~0(p)]. 

3.1. Hypotheses 
A molecule M is able to crystallize in v (v> 1) 

different forms, with lattices ~ and motifs Qo(e= 
1 , . . .  v). This molecule is described, in a reference posi- 
tion, by electron density /2 with envelope U. Each 
motif Qo consists of n~ such molecules, in positions 
deduced from the reference position by a set of local 
transformations Tj~ (jat = 1 , . . .  n~), such that their enve- 
lopes TjatU be non-overlapping. 

This constitutes a general statement of the types of 
redundancies envisaged by Rossmann & Blow (1963). 

f applied to an arbitrary function f, the linear operator 
IB~a) would build a structure of type c~ from that part of 
f contained in T~aU, brought back to the reference 
position. 

This makes obvious the following fundamental iden- 
tity: for any i o = 1 , . . .  no, one has 

~(io) 12~(i~)_ R(i~) 

for all 

~ , f l , ~ = l , . . . v ,  i ~ = l , . . . n ~ .  (3.7a) 

The independence of i 0 comes from the fact that all the 
intermediate subunits produced by R(*~) are identical. ~ 'O ' /  

This identity will enable us to condense system (3.6a) 
into an equivalent system of v equations, by two aver- 
aging operations: over i 0, for constant ~ and fl; then 
over fl, for constant c~. 
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1 no 

Indeed, let us define" B~e- ~ B~ °). We shall 
n O i O = l = n  

use later the explicit expression: 

?I0~ ?/0 

B~° f  =R~* ,~,=lZ r ; z v  . -~al ,7=1 (TVal)*f (3"8) 

which shows that the action of B, 0 on an arbitrary 
function f is to build a structure of type a from the 
average of the contents of the T~aU's, brought back to 
the reference position. 

By successively averaging identities (3.7a) over i~ and 
i 0, one gets: 

B(~O)n = B~,~ for any i o 1 n o (3"7b) aO a"O~ : , ' ' "  

and 
B, oBo~=B, ~ . (3.7c) 

If a = f l = y ,  identities (3.7c) show that B ~ = B , , ,  so 
that the B,~'s are projectors. 

We can now proceed to condense system (3.6a). 
The exactness of this system obviously implies that 

of the system: 

O~ = B~ooo o~,fl = 1 , . . .  v . (3.6b) 

To show that the converse is true, we suppose that 
(3.6b) is satisfied, so that C0 = Bo~o~ for all fl, y = 1 , . . .  v, 
then multiply both sides by B~  °) and use identity 
(3.7b): 

B(ia),, _ u(t~)u ~ ,.  -o ~o-'-'~o "'o~ = B,~O~ = 0~ for any i o = 1 .. n o 

so that (3.6a) is fully verified. 
The exactness of system (3.6b) in its turn implies that 

of system: 

1 
B~ooo o~= 1 , . . .  v . (3.6c) 

1 ~ BB~O ~ Conversely, if(3.6c) is satisfied, we have 0o = ~-  ~ = 1 

for all 13= 1 , . . .  v; multiplying both sides by B~ o and 
using identity (3.7c) yields: 

B~oOO= v B~oBo~o,~= v B~O~=O~ by (3.6c) 
' I=i  "~=1 

which shows that (3.6b) is fully verified. 
Thus system (3.6c) still expresses all the initial 

hypotheses. It can be rewritten: 

using the notation: 

~=B~ (3.6d) 

~= (11)v fly ) and B =  1 • 
V 

\ B v l  • • vv 

B operates in the product C =  C(EO x . . .  x C(E~), 
and identities (3.7c) imply that it is a projector in this 
space. Indeed, if we call {B}, 0 the element of line e and 
column/3 of B, we have: 

that is" 

{B%= e.. B., 
7 =  1 7 =  1 P l) 

Bc~o 

v2 -{B}~o 

BZ=B. (3.7d) 

3.3. Equations in reciprocal space 
Equations may be obtained in reciprocal space by 

Fourier transformation of the direct space equations. 

3.3.1. Deduction 
Let F~ be the column vector of structure factors of 

@,,: 

F,~,) = ~-[~,](p,)= V,. ~[0°](p,), p , ~ .  

Then systems (3.6a), (3.6b) and (3.6d) are respectively 
equivalent to" 

F,=H<~°)Fo a, f l = l , . . ,  v; i o = l , . . . n  o (3.9a) 

F , = H ~ F  o o~,fl= 1 , . . .  v (3.9b) 

F = H F  (3.9d) 

where we have used the notation: 

aB - -  o. .u  aO ':~ 

H~ = ~B~o~ .~ 

(which shows that the H ' s  and the B's are related by a 
similarity transformation) and: 

F= 
/HII . . . . .  Hlv 1 

Hvl. " V " 

The evaluation of the matrix elements of these linear 
operators is immediate. For instance, using (3,8), we 
can write for H~p = ~ B ~ 0 ~  the explicit expression" 

1 nO n~ __ 

H~o= V~. ? ~, ~ T * ~ x v .  (TGI) .3~" • (3.10) R L ~  =,, =, 

The basis vectors in the space of structure factors for 
crystal ~ are the fi(p~), where p~ runs through . ~ ;  their 
Fourier transforms are" 

1 
~[6(p~)J(x ) = ~ exp ( -  2nip~. x). 

Using identity (J1) of § 2.3 and the definition of a 
matrix element, we have" 

A C 30A - 7 
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H,,a(P,,, qa) = <dO~)lH~a6(qa)) 

1 "a "~ 

--V""-~-~ i - -  ~=1,=1~ <a(P'°I°~T'*Xu" (T~l)*°~a'q"') 

1 n= "B 
-- nt~Vt~ ,~1 ,~1 ((Tgl)* exp {-2nip=.  x}lxv(Tr~l)*exp { -2n iqa .  x}) 

/In, 

- exp {2hi(p,. T~,,x-q,. T~ax)} @x. 
nfV# = t =t u 

We can rearrange the scalar product, if we write 
TKX = CKX -1- dK, as" 

(p~. dt,,--qB, d~B)+ (rCi~p~-'Ciaqt~). x ,  

whence 
1 .~ .B 

H'~(P~"qt~)- n~Vt~ ,~l .Tt 
x exp {2ni(p~,. d~,~-qa, d~)} 

x ~-[Xo] ( 'G=p~- 'Gaqa) .  (3.11) 

This expression, which could be put in an explicitly 
adimensional form using the 'interference function' 
G=(1/U)~[Zv], generalizes both those given by 
Crowther (1967) and Main & Rossmann (1966). 

It also shows that we may write: 

with 

h~t~ /-/=~ - 
?/#Jr# ' 

h*=a=hB~ (3.12) 

where I" denotes Hermitian conjugation. Therefore, the 
matrices H= are Hermitian, whereas matrix H is not. 

Identities (3.7a) to (3.7d) between B operators give 
rise to similar identities among the H operators, since 
the two families correspond to each other by a similarity 
transformation. In particular: 

H~aHa~=H=~ (whence H2~=H=) (3.13c) 

H 2 = H .  (3.13d) 

This shows that the H,, 's  and H are projectors in 
their respective spaces. The H='s have Hermitian ma- 
trices, and are therefore orthogonal projectors for the 
ordinary scalar products defined by: 

(F~IF~)= ~ F,(p,)F~,(p,). 

To make H orthogonal, let us introduce the weighted 
scalar product: 

, t l  (F~IF;) 

Then, using (3.12), it is easily seen that <HFIF')w= 
<FII-IF'>w, so that H is Hermitian - hence orthogonal 

- for this product. 

If we now define the scalar product of two crystals 
0, and 0~ having the same lattice ~ by" 

<Q=10~) = Ie0°(x)0~°(x)dax 

we have by Plancherel's theorem: <F, IF~)= V2(Q=]0~), 
(see Titchmarsh, 1933). Therefore, we see that the 
B='s are orthogonal, and that B is orthogonal for the 
weighted scalar product: 

<olo'>w= Z <odo:>. 
~=I n , ,  

3.3.2. Case of 'proper' symmetries 
Let us consider the particular case where the motif 

0 ° of a crystal 0 is invariant under a group i f =  
{ C , , . . . ,  C,,} of local rotations around a point, which 
we shall take as the origin for convenience. As we have 
seen in § 2.3, this is equivalent to the invariance of 0 ° 
by 

6 =  1 , . _  
H i = l  

n 

The logical union ~ =  w Ci U of the n molecular enve- 
1 = 1  

lopes is also invariant under if, which can be written" 

Gy~=yqe, with zoa,= ~ C~Zv since the envelopes are 
i = 1  

non-overlapping. 
Then we have" B = GZo~. =Xqe" G,t whence" 

1 ~ N[Zqel(Cj.lp_q ) 1-I(p,.3= j = l  

which gives to equation F - - H F  the aspect of a convo- 
lution equation: 

1 ~ ~ 15[z~l(CZlp_q)F(q ) (3.14) 
F(p)= n -V j = l  q ~ '  

This can be interpreted as an averaging in reciprocal 
space by the group f¢ of local rotations. Indeed, o-~[0 °] 
is also invariant by G, i.e." 

J[0°] ({)=  n J[00](c/-l{) for all { .  
l = l  

i" It is clear, here, that B is an orthogonal projector, since 
it is the product of two commuting orthogonal projectors, G 
and Zqz" 
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But equation (3.14) can be written identically: 

1 ~ F(C/.~p),  
F (p )=  n ,=1 

where the structure factors at those points CT~p 
which do not belong to ~ '  are calculated by Shannon's 
interpolation formula (§ 2.6): 

1 
F(~)=  --~ ~ J [ z ¢ l ( ~ - r ) F ( r ) .  

IrE,~ t 

Here, the use of Zo-g instead of Zv expresses the enve- 
lope constraints.]- 

3.3.3. Reduction of  the equations by Friedel's law 
All the equations written so far are valid even for a 

complex electron density. If Q is now supposed to be 
real, these equations are reducible (in the sense of § 
1.1). 

For each crystal, we choose a 'positive' half in recip- 
rocal space, containing the origin. We denote by F + 
the column vector of structure factors belonging to this 
half-space, with F=(0) divided by 2, and define F~- as 
ff +. We define in the same way the matrices H ~  +, 
H ~ - ,  H ~  +, H ~ - ,  according to whether their argu- 
ments are in positive or negative half-spaces, and with 
the convention that a matrix element is to be divided by 
2 whenever one of its arguments is 0. Then, by Friedel's 
law, the system 

F2] = ~H~ + H ~ - ]  ~F 7] (3.15b) 

is equivalent to system (3.9b). Indeed, they differ only 
in the fact that the equation for F= (0) is duplicated in 
(3.15b). 

But equation (3.11) shows that: 

H ~ a - = H ~  + and H~a+=H~ - 

so that equations (3.15b) separate into two groups, 
which are equivalent since related simply by complex 
conjugation. We have therefore factored equations 
(3.9b) into the split equations expressing Friedel's law, 
and the smaller system: 

where 
F + = H~F" a (3.16b) 

+_ ++ +_ F, a [F~] H,,a-(H=B H=a )and  = \Fy]  . 

System (3.16b) is irreducible, since no relation exists 
between H=a(p~, qa) and H=a(p=, - qa). 

Similarly, system (3.9d) can be reduced to: 

F + = H + F  ' (3.16d) 

where 

t The results of this section were obtained independently by 
Dr Peter Colman (private communication). 

and 

F + = , F '  = 

\ F : /  k; 
H . . . . .  H + )  

H + = I  " 
p 

,,,s-s+ . . . . .  ST+l. 

3.3.4. A reciprocal-space estimate o f  redundancy 
Any line of matrix H + has an infinite number of 

non-zero elements, unless all the crystals are identical 
and all the local symmetries and envelope constraints 
are trivial. Thus, equations (3.16d) constitute an irre- 
ducible set of mixed relations between structure factors, 
so that intensity data from these crystals are indeed re- 
dundant in the sense of § 1.1. 

The fact that H and the H=='s are projectors gives a 
means of computing the number of actual complex 
degrees of freedom of our structures. Indeed, as the 
eigenvalues of a projector are 0 or 1, its trace will be 
equal to the complex dimension of the subspace onto 
which it projects. 

Thus, ignoring Friedel's law, structure ~ will possess, 
at resolution A, N~a =) complex degrees of freedom, with 

N(a =) N Tr ( H ~ ) .  
a ~ 0  

H~= is the matrix obtained by truncating H== at resolu- 
tion A, that is" 

{ H==(p=,q=) if llp=ll-<A -1 and IIq=ll- < A - 1  
HA=(P='q=)= 0 otherwise 

and we take the limit as A -+ 0 to eliminate truncation 
errors which will result in H=~ not being exactly a pro- 
jector. 

We then have: 
n0~ 11~ 

Tr (H=a=)= ~ n~V= ~ j~__ exp{2rcip=. (d , -d j )}  
iip~.ll_<A- x i=x 

x o~[Zv]{t(C , -  G)P=} • 

As o~[Xu] is very small for large moduli of its argument, 
the only terms which will contribute to the sum at large 
values of Ilp=ll will be those where i=j; they are all 
equal to U, and their number-is 2n=Na(V=). Therefore, 

Tr (H~=) ~ 2Na(V=) U =2Na(U) 
A - * 0  " K 

which is independent of c~. 

1 v 
Since Tr (H a) = v =~--1 Tr (H~), we also have" 

Tr (H a) ~ 2Na(U).  
zl -~0 

A C 3 0 A  - 7* 
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If we now recall Friedel's law, this result confirms our 
direct-space estimate of § 1.2 for the number of real 
degrees of freedom of our set of structures. These de- 
grees of freedom have now been identified as being the 
coordinates of F in a basis of eigenvectors of H for 
eigenvalue 1. 

We shall introduce for later use the relative complex 
dimensions of the eigenspaces of H and the H~'s,  de- 
fined by: 

Tr (H~a~) 
x~= lim 

,t-,o 2Na(V,) 
and 

By the preceding results" 

Tr (H) 
~ =  lim 

,t-,0 ~ 2N~(V,) 
e t = l  

U U 
- -  ° 

V,,' 

We shall call these ratios the convergence indices of 
projectors H~, and H, for reasons which will become 
clear later. 

The ratio NtredNor,~, which Crowther (1967, 1969) 
calls the 'gradient of the (m, N) plot', is thus" 

2U 
2x~ = ~ for structure c~, 

2U 
2 ~ -  for the set of structures, 

so that overdetermination of the phase problem will 
occur for ~ < x. 

4. The equations for non-trivial space groups 

When space-group symmetries are present in the set of 
structures of § 3, equations can be written in a reduced 
form involving only !ndependent reflexions of each 
crystal. 

4.1. Preliminary identities 

Let F be a displacement in E ( F x =  Gx+g) ,  ¢ any 
function of C(E).  Then the following identities are 
readily proved" 

(~-1"*~(/)) (~)=exp (2zci~. g)(G*(/)) (~) (4.1) 

( ~ ' ( r -  1 ) , ~ )  (~) = exp (2xi(G~). g)((G - ~)* ~b)(~). (4.2) 

If moreover rotation G belongs to the point group 
of a crystal 0 = R.0  °, that is if G*R = (G - t)*R = R, we 
have the identity" 

R . ( F * o  °) = F*(R ,o° )  , (4.3) 

i.e. 1" 'commutes'  with the lattice. 

4.2. The equations 

Let us suppose that each of the crystals of § 3.1 has a 
non-trivial space group, so that its motif Qo is built 

from the asymmetric motif 0 °° by m, operations 1"K, - 
explicitly FK~x=Gr~X+gK~. The identity operation 
corresponds to K , =  1. The asymmetric motif f 0  is in 
its turn built, as in § 3.1, by n, local operations T~, - 
explicitly T~ ,x=C, ,x+d t~ , -  from molecule M, de- 
scribed in a reference position by density/1, with enve- 
lope U. 

We therefore have: 

Z rL( Z 
K n = l  l a=  l 

or, using (4.3): 
ran, / lg  

Q~= Z F[~(R~, ~, T,*#). (4.4) 
K c t = l  ia = l 

The non-overlapping of the various envelopes reads: 

F* T* ZUK~.i,. Q~= K~ tdZ for all K,, i, (4.5) 
with 

UK,, i, = FK~ T~, U. 

Reasoning from (4.4) ano (4.5) as in § 3.2, and with 
the same notations, it is easily shown that the system of 
equations: 

m g  

Q "  Z * - 1  , _ (Kt~) = FK~B~(FKa) e ~ = ~  0B for all K a (4.6a) 
K a = l  

expresses all our hypotheses, and that equivalent sys- 
tems are obtained by successive averagings over Ka and 
fl, namely: 

. . . . . . . . .  (4.6b)  

and  

1 " 
~ = ~ ( 4 . 6 d )  where ' ~ =  v 

X # v l  . . . . .  VV " 

Here again, ~ and the ~ '~ 's  are projectors. The ~ ' s  
are orthogonal (since Hermitian), and ~.~ can be made 
orthogonal for a suitably weighted scalar product. 

The corresponding equations in reciprocal space are 
readily obtained. We shall therefore limit ourselves to 
the calculation of some matrix elements to be used in 
their reduction. 

Equations (4.6a) become: 

F _ ~a~cKt3) ,.z" (4.7a) 
with 

m ~  

s" ¢tO - -  ~ "r"rtB " ~  - -  ~.¢ 

K ~ t = l  

(4.8) 
whence, using (4.1) and (4.2)" 

m g  

j/g,(Ka)r,, ,, ~ ~ exp (2zip,,. gK,,) ctO kl 'ct,  l i B / =  
K a r l  

x H~a(G~.~p~, GfCqa)ex p (-2rciqe.  gKa). (4.9) 
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This expression can be used to show, as in § 3.3.3, 
that the projectors ~/f== and .YC all have eigenspaces for 
eigenvalue 1 whose dimensions are asymptotically 
equal to 2Na(U) as A ~ 0, and whose convergence in- 

dices are x= = - -  and ~ = U/ v= . 
V a  ~t=l 

4.3. The reduction of  equations in reciprocal space 
Let ~¢'~ be the reciprocal asymmetric unit of crystal a 

(ignoring Friedel's law), and let us define the partial 
column vectors F~ r=) by: 

F~r=)(p=) = F=(p=) for p ~ G ~ ' ~ .  

Equations (9a) can then be written: 

= 

\ l T ( m a ) ]  \ ~ /p (KB)  ( m a r l )  
\ ~t ~t / \ ~.v aB • • • 

~¢,0(K[3) (ma,  m[]>/ \F[m.)/ 
• ~ t ,  ot[J 

for all K~ (4.10) 
with 

~((,(r~) (z=, _ ~ = ~  (p~, q~) 

for po, sGt,rs~'~ and qa~Gza~'a. 

But this system (4.10) can be deduced from its first 
line by applying to it the operators o~-F~=~-; also, 
operators o~(Ff¢)*~- induce the same permutation on 
the lines of the r.h.s, vector and the columns of the 
matrix, leaving the F~r~')'s unchanged. 

It is therefore equivalent to its first line written for 
Ka = 1. Using the identity" 

F~t~)(q~)=exp (2rciqB . g,B)F~I)(G~lq~) if q~Gt~.~'a, 

we obtain the reduced equation: 

F(=I) _ ~/~<R)~(~) (4.11) 
where 

m# 
(R) ? (1) 

Ye'=B (P=' qa) =r  =1 yF=B (p=' GKaqD) 

i.e. 
× exp {2ni(Gr,qa). g~a}, 

mo~ rn B 

~/~(R,r,,=B w=, qe) =r=~__l xa~__exp (27ziP= • gr~) 

× H=B(Gf~p=,GKaqB) exp {2rci(Grtjqa). gK/~} (4-12) 

with 

This matrix can in its turn be reduced by Friedel's 
law, as explained in § 3.3.3. 

5. Discussion 

5.1. Summary of  the main results 
Relations have been obtained between structure fac- 

tors of crystals built from the same molecule, but with 
different lattices or with several identical subunits in 

their asymmetric units. These relations are of the 
general form: 

F = H F  (5.1) 

where F is a vector of structure factors, and H is an 
orthogonal projector (for a suitable scalar product 
(FIG)). They are mixed (see § 1.1) since each line of 
matrix H has an infinite number of non-zero elements. 
Therefore, they constitute constraints imposed upon 
the phases of the structure factors, once the moduli 
are known. 

Equation (5.1) has been shown to be equivalent to 
the direct-space equation: 

~ = B ~  (5.2) 

where 0 is a column vector of electron densities, and B 
is an orthogonal projector (for a suitable scalar prod- 
uct (0[a)) which rebuilds each crystal from the aver- 
age of all the molecules present in all the crystals. 

The relative dimension of the subspaces onto which 
B and H project is what we have called their conver- 
gence index: 

x=U/~v~. 
t x = l  

A Fourier transformation connects these two for- 
mulations, as illustrated by the diagram: 

~ B~ 

H 

F , I-IF (5.3)  

5.2. The method of  successive projections 
Relations (5.1) considered as phase equations, form 

a system of simultaneous transcendental equations, for 
which no general method of solution exists. But advan- 
tage can be taken of the fact that H is an orthogonal 
projector to solve these equations iteratively. 

5.2.1. Outline o f  the method 
Crowther (1969) has proposed such an iterative pro- 

cedure, in which the current phases are combined with 
the observed moduli, and the structure factors thus 
obtained are projected; the phases of the projected 
vector are then taken as the current phases for the next 
cycle. This method was used successfully by Jack to 
calculate ab initio signs for a centric projection of the 
disks of tobacco mosaic virus protein (Jack, 1973) and 
to refine single isomorphous replacement phases for the 
enzyme barnase (Jack, 1972). 

5.2.2. Direct-space vs. reciprocal-space implementa- 
tion 
In Crowther's method the projection operation con- 

sists in multiplying the vector of structure factors by 
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matrix H. From the computational point of view, this 
is a source of severe limitations. As shown in § 4.3, 
the minimum size to which an H matrix can be reduced 
is N x 2N for N independent reflexions. Moreover, it is 
natural to ask that the shape of the molecular boun- 
daries be defined with at least the resolution A at which 
we want to determine phases. This implies that the 
function ~-[Zv] should not be truncated for arguments 
less than A- 1 in length, which means that almost all the 
matrix elements should be used. This becomes imprac- 
tical as soon as more than about 2000 reflexions are 
present. Neglecting all but the largest elements of H 
introduces errors which are difficult to estimate and 
certainly harm the convergence of the process. 

Also, if the matrix elements are to be easily com- 
puted, the molecular envelope U has to allow an 
analytical expression of ~-[Zv]. It is then difficult to 
avoid the overlapping of such crude envelopes, which 
will make the equations inaccurate. 

If the local symmetries are proper, an intermediate 
expansion of the structure factor vectors on suitable 
eigenvectors of the H matrix can reduce the amount of 
permanent storage required by a factor of x -1, and the 
amount of calculation by ½x -1 (Jack, 1973). But both 
of these quantities will still vary as/I  -6 . 

These difficulties can be overcome if the projection 
is performed in direct space, using the correspondence 
between H and B illustrated by diagram (5.3). Indeed, 
since H = ~ B ~ - ,  we can project F in three steps" 

step (~)"  

step (B): 

w 

step (~)"  

a set of electron density maps ~ is computed 
from F; 
the electron densities of all crystallographi- 
cally independent molecules are averaged, 
and each crystal is rebuilt from this aver- 
aged molecule; the density outside the mole- 
cular boundaries is set to its average value; 
structure factors are recomputed from these 
averaged densities. 

Fast Fourier transform programs can be used in 
steps ( ~ )  and (~) .  The electron densities can be over- 
sampled in step (,~), so that all the averaging operations 
in step (B) can be performed using linear eight-point 
interpolations. Then the amounts of permanent storage 
and calculation involved in (B) both vary as A-3. Also, 
no restrictions whatsoever are imposed on the shape of 
the molecular envelope. 

Therefore, this direct-space procedure will be con- 
siderably more powerful and more flexible than its 
reciprocal-space counterpart. Its superiority ultimately 
lies in the fact that it handles the envelope constraints 
by multiplication, whereas in reciprocal space this is 
done by convolution. 

5.2.3. Convergence of the algorithm 
Crowther (1969) has given some numerical counter- 

examples in one dimension, which show that the prob- 

lem of phase determination using geometrical redun- 
dancies may not have a unique answer. 

He also discussed the problems which may arise if a 
non-centrosymmetric structure possesses a centrosym- 
metric arrangement of subunits. We shall limit our 
attention to the case where a unique solution exists, 
and show that the algorithm will converge for small 
enough values of the convergence index K(K -1 is at 
least equal to the number of independent molecules 
present in the crystals). 

Indeed, we can separate in the current structure fac- 
tors a 'signal' (the solution) and a 'noise' (the dif- 
ference). If the noise can be assumed to be white, i.e. to 
have a uniform power spectrum over the eigenvectors 
of H (or B), each projection will increase the signal-to- 
noise ratio by a factor K-1/2. The convergence problem 
can then be phrased: will the recombination of the 
phases of the projected vector with the observed 
moduli reintroduce more or less noise than the projec- 
tion has removed? 

Let p be any reciprocal-lattice point. We denote (see 
Fig. 1): 
by Fi(p) the structure factor estimate for cycle i; 
by 6Fi(p) the correction to be added to the projected 

structure factor HFi(p) to obtain F~+ I(P); 
by F(p) the solution; 
by AFt(p) the difference F(p)-HFi(p) ;  
by e~ the quadratic error for step i, defined by 

~= (F- F,IF- V,). 
Writing F -  F~ + 1 = ( F -  HF~) - (F~ + 1 - HF~) = AFt - 

~iF~, we have: 

e~ + 1= (AF,IAF,) + (~iF, l~iF,)- (AF,ISF,) -  (SF,IAF,). 

Since the noise F - F ~  has been supposed to be white, 
and AFi = H ( F - F i ) ,  we have 

(AF,IAF,) = K .  e~. 

Also, since F~+I(p) is the nearest point to I-IF~(p) on the 
phase circle, we have the rigorous inequality: 
ISFi(p)l < IAFi(p)I for all p. We can in fact average on 
angle 0, and obtain the better estimate: 

K 
(SF,15F,),-~½(AF, IAF,)--- ~ e 2 . 

~ l=i (P) 

Fig. 1. Notation in reciprocal space. 



G. B R I C O G N E  405 

The last two scalar products can be estimated as fol- 
lows: from the definition of AFt we have HAFt = AFt, 
so that: 

(AFd6Ft) = (HAF,I~Ft) = (AFtlH~Ft) since His  Her- 
mitian. If ~iFt is also supposed to be a white noise, 
(HiiFtlH~iFt)=K(~iFtl~iFt) and Schwarz's inequality 
gives: 

I<AFdH6Ft)I _< <AFtlAFt)I/2<H,SFdH,SF,) in 

Since 
I<~iFtlAFt)l = I<AFtl~iFt>l, 

we finally have: 

e~+ <K [ 3 +  (2)1/21 1 - -  • d ° 

For K<½, we have K + < 1. Therefore as 

soon as the problem is overdetermined (i.e. K < ½), the 
quadratic error will decrease geometrically from one 
iteration to the next. The same applies to the 'quadratic 
R value' (~iF~I~iFt)/(FIF). 

5.2.4. Relation to the least-squares method 
An alternative method of solution of equations (5.1) 

was used by Main (1967) on a trial structure. Phases 
9care are determined iteratively in order to minimize 
the quadratic lack of closure (AIA), where 

A = [FlobseXp (iq~calc) - -  a[IFIobsexp (iq~cale)] • 

This is a least-squares phase refinement under the 
joint constraints of geometric redundancy and agree- 
ment with the observed moduli. 

It is easily seen that the method of successive pro- 
jections is also a least-squares method. However, it 
treats the two types of constraints separately. 

Indeed, let us consider the cycle illustrated in Fig. 1 : 

(H) (3) 

--~ Fl --~ HFt -+ F~+I --~. 

Since H is an orthogonal projector, HFz is the best 
least-squares fit to Fg which satisfies the geometric re- 

dundancy constraints. Similarly, because of the ex- 
tremal property of the ~iFt's already mentioned, Fl +1 is 
the best fit to HFt having the required moduli. Thus, 
steps (H) and (6) are two least-squares fittings, treating 
separately the two constraints between which a com- 
promise is sought. 

Therefore, Main's method should in principle be the 
more powerful. But in practice, this theoretical superio- 
rity will be outweighed by the inherent computational 
inaccuracies of reciprocal-space methods (Main, 1967). 

5.3. Conclusion 
The molecular replacement equations can be solved 

by the method of successive projections as soon as they 
are overdetermined, i.e. if more than two crystallo- 
graphically independent copies of the same molecule 
can be observed. This method can be applied most 
easily if the projections are performed in direct space. 
The solution may not be unique, but as in any least- 
squares method, false solutions will play no role if the 
starting phases are close enough to the true one. 

I am grateful to Dr D. M. Blow, Dr R. A. Crowther 
and Dr A. Klug for their helpful comments on the 
manuscript, and to the British Council for financial 
support. 
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