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If  a molecule is either repeated more than once within the same crystallographic asymmetric unit, 
or if more than one crystal form is available, then the phase problem can be reduced to finding the 
set of unknown phases (a's) which gives the largest value of R in the expression 

R = ~ ~7 A~j cos (a~ + al + q~¢) 
i j 

The coefficients A~ i and angles ~ t  are simple functions of the structure amplitudes and overall 
dimensions of the molecule relative to a chosen origin. The matrix [Aij] is populated mainly along its 
diagonal. A general technique for finding the phases from the expression R is given. I t  is applied 
to a two-dimensional case where there are two identical five-atom molecules in plane group pl .  

1. In troduct ion  

Sayre (1952) has given the  crystal lographic inter- 
pre ta t ion  of a theorem of Shannon (1949), which 
has been considered f rom a more general s tandpoin t  
by  Brillouin (1956). The theorem indicates t h a t  if the 
intensities ]F[ 2 could be measured a t  points corre- 
sponding to the reciprocal lat t ice of the  doubled cell, 
direct s t ructure  de terminat ion  could be accomplished. 
A s i tuat ion approaching this arises when two identical 
molecules (or 'sub-units ' )  are contained in the  crys- 
tal lographic asymmetr ic  uni t ;  and  a similar s i tuat ion 
arises when the  identical s t ruc ture  m a y  be crystallized 
in two different unit  cells. I n  each case, for the 
de terminat ion  of a s t ruc ture  of given volume, the 
number  of observable intensities is doubled. 

In  an  earlier paper  (Rossmann & Blow, 1962, 
referred to as R. & B.) we have  described how the 
relat ive angular  orientat ions of the  sub-units  m a y  be 
determined.  We now wish to show how the condition 
t h a t  the  sub-units  shall have  identical s t ruc ture  
provides informat ion about  the  phases. The method  
will be i l lustrated by  a two-dimensional  example  in 
which two sub-units  of five a toms exist in a uni t  cell 
of plane group p l  (Fig. 1). 
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Fig .  1. T e n  a t o m  s t r u c t u r e  s h o w i n g  t w o  i d e n t i c a l  f i ve  a t o m  
m o l e c u l e s  c o n t a i n e d  w i t h i n  t h e  11 /~ r a d i u s  c i rc les  a n d  
r e l a t e d  b y  a r o t a t i o n  of - - 1 4 0  °. 

In  order to solve this problem, it  is necessary to 
be able to define the operat ion which, by  ro ta t ion  and  
t ranslat ion,  brings one sub-unit  into coincidence with 
the  other,  and  to have  a rough idea of how the sub- 
units  are a r ranged  in the uni t  cell. The rota t ional  
paramete rs  can be derived by  the methods  of R. & B. 
In  some cases the t rans la t ional  paramete rs  can then 
be found by comparing the original and ro ta ted  
Pa t t e r son  functions, (this has been done successfully 
for insulin, unpublished),  while, for instance, in plane 
group pl  the t rans la t ion  is trivial,  since the origin 
m a y  be chosen to lie on the rota t ion axis. Whe the r  
the a r rangement  of sub-units  is then  uniquely deter- 
mined will depend on the physical  informat ion avail- 
able about  their  size and shape. For  the purposes of 
this communication,  we shall assume tha t  this problem 
can be solved. 

The ' ro ta t ion function '  described in R. & B. was 
applied to a model s t ructure,  with the result  shown 
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Fig .  2. R o t a t i o n  f u n c t i o n  (2 A re so lu t ion ) ,  RPatt . ,  w h i c h  
m e a s u r e s  t h e  d i f f e r e n t  o v e r l a p  of t h e  P a t t e r s o n  w i t h  a 
r o t a t e d  v e r s i o n  of i tself .  T h e  r e l a t i v e  o r i e n t a t i o n  of t h e  
t w o  f ive  a t o m  m o l e c u l e s  is s h o w n  to  b e  - 1 4 0  ° , - 4 0  ° , 
+ 4 0  ° or  + 140 °. (The  c a l c u l a t i o n  w a s  d o n e  b y  Mr  D.  D a v i e s ,  
t o  w h o m  we  a re  i n d e b t e d . )  
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in Fig. 2. The effect of the ambiguity between rota- 
tions of +_ 40 ° and _ 140 ° will be discussed later. 

The next  step is to specify two areas U, U', which 
are related by the correct rotation and translation 
parameters, and which contain the two molecules. 
Their precise shape is of no great importance, and in 
the model structure circular areas were chosen, as 
indicated in Fig. 1, which together cover an area 
2 U = 9 0 %  the area V of the unit cell. 

2. Equalization of sub-units  

We now wish to apply the condition tha t  the electron 
density at any point within one circle shall equal the 
electron density at an appropriately related point in 
the other circle. This condition is to be used to obtain 
information about the phases. 

Let  

E = I [~(x)--~(x')]  2dx,  (1) 
d U 

where 
x '  = [C]x+  d .  (2) 

x '  is the point in U' which is to be identified with 
x ill U, by the rotation [C] and the translation d. 
E will become a minimum, tending to zero, when 
electron densities of the two sub-units are equalized. 
Then 

E : f  (3) 
u u 

If we make the assumption tha t  all the density of the 
cell lies in either U or U', then the first integral 
becomes equal to 

(1/V") 2~ F~(h) ,  
h 

while the second integral has already been defined 
(in R. & B.) as the 'rotation function' of the electron 
density. If some densit.y lies outside U and U' the 
value of the first integral is changed, but it is readily 
shown (by considering a structure which is identical 
to the real structure within U, but has no density 
outside) tha t  the condition for minimizing E is to a 
good approximation the same as for maximizing the 
second integral R. We shall now consider the variation 
of R as a function of the phase angles. 

I t  is shown in 1%. & B. tha t  if 

R = t q(x).~o(x')dx 
d U then 

R = (U/V a) 2.~ ~ IFnllFvlGnp 
h p 

)<cos ( a ~ + a p + Z Q ~ - 2 ~ p . d )  . (4) 

In this equation IFhl and aa are the magnitude and 
phase of the structure factor associated with h; 
d is the translation vector in equation (2) and Gay 
and ~Qav are the magnitude and phase of the diffraction 

function of the volume U for the reciprocal lattice 
vector h +  [(~]p : 

Ghv exp [iY2hv] = (V/U) f exp { - 2 ~ i ( h + [ ( ~ ] p ) . x } d x .  
¢ U 

Ghp has large values only if the reciprocal space 
vector h is brought close to - p  by the rotation 
expressed by [C] in equation (2), and zQhv is zero if 
the volume U is centrosymmetric about the origin. 
The expression (4) has the disadvantage tha t  it is 
in general not symmetrical about the two variables 
h and p; it can be cast into a symmetrical form by 
writing 

R = 2." ~ Ai~ cos (a~ + cq+¢ij)  (5) 

where 
A~j exp [ i ~ ]  = (U/2V~)[IF~IIF~[G,j 

x exp { i ( -  2~j.  d + Qi,~)} 
+ IF~IIF~iGji exp {i(-- 2~i.  d + Q~,i)}] 

---A~ exp [i~i] . (6) 

The significance of the two contributions in (6), 
with respect to proper and improper rotations, is 
discussed in Appendix I. 

In  order to equalize the sub-units, E must be made 
zero, which means finding a set of phases a~ which 
gives R its largest possible value. This clearly implies 
tha t  for many of the terms with large A,¢ the angle 
( a , + ~ + ¢ ~ j )  must be close to 0 (or 2n~r). Since the 
¢*i can be calculated from the known parameters, 
each term of the summation thus represents a probable 
phase relationship between c~ and aj, whose im- 
portance depends on the magnitude of A~j. Since R 
is a maximum, 

~R/~ai = -2_.,Y Aij sin (c~i+ aj+¢i~) = 0 . (7) 
J 

This condition, satisfied by the same phase relation- 
ships, is necessary but not sufficient, since R when 
plotted as a function of the a 's  has many maxima, 
most of which are small. 

3. Some properties of the equations (7) 

The set of equations (7) may  conveniently be thought  
of as a matrix with elements A ~i, each with an attached 
phase (a~+a~+¢i~).  Any one equation (7) is repre- 
sented by one row of the matrix, and by (6) the matr ix 
is symmetrical. This matr ix does not have the sig- 
nificance of a matrix in the usual linear algebra; 
equations (7) are non-linear, and form a set of simul- 
taneous transcendental equations, for which no direct 
method of solution exists. Before describing the 
approach to solution which has been adopted, we 
shall consider some features of this matrix. 

(i) Matrix populated along the diagonal 
I t  is convenient to assign a number i to each structure 

factor in order of increasing Bragg angle. Associated 
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with each reflexion i is its reciprocal-lattice vector si. 
A~ can only be large if s~ and -s~- (or s¢ and - s d  
are such that  one is brought close to the other by 
the given rotation [C]. Whatever the rotation, this 
can only happen if the terms have a similar Bragg 
angle. Thus if the terms are set in order of increasing 
Bragg angle, all large A~ are near the diagonal of the 
matrix. 

(ii) All phases may be changed by 
One may note that  

cos [ ~  + ~ +¢~]  = cos [ ( ~  + ~) + ( ~  + ~) + ¢ ~ ] ,  

so that  if a set of phases c¢~ satisfies (7) or maximizes 
(5), the set (~ i+~)  will do so equally well. The effect 
on an electron density map of changing all phases 
by ~ is to reverse the sign of the electron density. 
There is one phase, a0 (for the (000) reflexion), which 
it is physically unreasonable to reverse. (There is a 
close analogy to Babinet's principle in Fraunhofer 
diffraction.) This allows us to distinguish between the 
two possible sets. 

(iii) Terms on the diagonal 
In cases of higher symmetry, or with a rotation 

of 180 °, it may happen that  a vector s~ is rotated 
to - s i  or to a symmetry-related position. Under 
these conditions the relevant term in (7), 

A~, sin (a~+ a i+¢i , )  , 

may dominate in the ith row, indicating the phase 
relationship 2 ~ "~ 2 n ~ -  Cu. 

If we define a, by the limits 0 < a~<2~, then 
~__ 1 ~, (z-~¢~,) or (2~-½~**). We now have, instead 

of the usual type of phase relationship, an indication 
of phase, with an ambiguity. This ambiguity will be 
resolved by the effect of the off-diagonal terms in 
the row. 

(iv) Relationship with the 'shrinkage stage' methods of 
Bragg & Perutz (1952) 
As previously indicated, important phase relation- 

"ships will only arise when s~ and s~ both correspond 
to a similar Bragg angle. Bragg & Perutz (1952) ex- 
amined a series of haemoglobin crystals in which the 
unit cell lengths a, b, and c sin fl were scarcely altered, 
but fl varied between 84 ° and 143 °. The corresponding 
hO1 reciprocM-lattice points were all arranged along 
lines of constant h, but the different shrinkage stages 
allowed these lines to be sampled at many more 
points than would be possible with a single-crystM 
form. By comparing intensities at adjacent points, 
they were able to determine where the sign of the 
molecular transform changed, applying the principle 
that  it could not change too rapidly. This is exactly 
analogous to the procedure by which (5) and (7) 
indicate phase relationships between points with sim- 
ilar Bragg angles. The chief differences are 

(a) that  the criterion of equalizing sub-units (1) is 
more stringent than the 'principle of minimum wave- 
length' (Bragg and Perutz, 1952); 

(b) that  by considering a rotation of the three- 
dimensional reciprocal lattice, phase relationships are 
generated through the lattice in a more general way. 

4. Solution of the phase requirements  

I t  is shown in Appendix II  that  the ith row of the 
matrix has a magnitude 

S~ = 2:A~j  cos ( ~ +  ~j+¢~j)  = F ~ / V  2 . (8) 
J 

For convenience, define Oij= ~*+~J+¢*s. If it is 
assumed that  the angles O,¢ are independent of each 
other, each term in the summation over j is like one 
step of a random walk, with the limitation that  the 
sum of steps in a row is Si. 

Let us fix our attention on one term, Ais. If it is 
assumed that  all the other steps in the ith row, 
A iz(k:~j), are in random directions, the probability 
that  their resultant lies between Q and Q + d Q  can 
be calculated by the Markoff method (see Chandra- 
sekhar, 1943). The length of each step, At~, is known, 
but the probability function is unsuitable for rapid 
calculation. A much simpler form is obtained by 
assuming that  the length of each step is governed 
by a Gaussian probability distribution whose mean- 
square length is Ai~. We then have 

P(Q)dQ oc exp {- IQI  2 .XA~k}dQ. 
k * ]  

However, we know that  on taking the final step of 
length Aij in a direction Oij with S,, we must reach 
the end of the vector Si. Hence 

[QI2=A~j+~-2A~jSi  cos O~j, 

and thus it can be shown that  

Pij( O)dO ~: exp { -  (dA, jS , /2  A~k) sin~ ½0} dO . (9) 

Let us first consider the case when j = i for the term 
under consideration, Au. Expression (9) gives the 
probability distribution for Ou based on this diagonal 
term. Here O u = 2 a i + ¢ u .  Thus if p,~(a)da is the 
probability, according to the j th  term of the ith row, 
that  c~, lies between ~ and a + d a ,  then 

p~(~) oc exp {-(dA~,S, /~,  A~k) sin e (a--½¢~d}. (10) 
k ¢ i  

In the general case, i d j, expression (9) gives us 
the probability distribution for a i+aj=Oi j -¢~ j .  
Thus if some probability function P~ (a) is available 
for phase angle j, then this ij term indicates a prob- 
ability distribution for a~ as follows: 

p~j(a) = f P ~ j ( O ) P j ( O - a - ¢ ~ j ) d O .  (11) 
J 0=o 
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The integration over 0 is introduced as all values 
of 0 have a finite probability. Thus 

o k , j  

sin 9" ( ( 0 - ~ - ¢ , ~ ) / 2 ) } d 0  . (12) 

In practice there are several significant terms A~j, 
affecting a~, each giving a different distribution p~(a). 
I t  is to be expected that  these distributions will be 
similar, or, if they are different, then it is hoped 
that  only those distributions with small Ao- will 
differ grossly. Nevertheless it is important to take 
into account all terms in a single row. We may con- 
sider the final distribution for Pi(a)  as the joint 
distribution of all separate distributions from each 
term in an equation. 

• ".Pi(~) = / / { / / p , ~ ( a ) )  
or, from (i i)  J 

I -[f II P~(o~) = I I  P ~ j ( O ) P j ( O - a - ¢ ~ j ) d O  . (13)]- 
m 0 

Let us now consider the total process of determining 
the phase probability distributions, starting only with 
a knowledge of the coefficients A~j and phases ¢~. 
We may write down immediately that  o~0=0 with 
a probability of unity. We as yet know nothing at all 
about any other phase, and express our present 
ignorance by setting the probabilities of all values 
of phase a~ as equal. We then apply (10) to the 
diagonal term of each row (j--i)  and take p~(c~) as 
our first estimate of P~(a). This form of P~(~) can 
now be used in (12) with all ij terms, which are then 
combined by (13) to give improved versions of P~ (~). 
Because of the ambiguity of p~(~), indicating two 
phases 180 ° apart as equally probable, all these 
probability distributions will have two peaks 180 ° 
apart, except where an interaction with a0 exists. 
Where such an interaction does exist, a preliminary 
indication of phase will be given. 

The new joint probability distributions p~(c~) are 
used in a second cycle of refinement, and the initial 
distributions are discarded. In the second cycle, phase 
indications will be obtained for those phases which 
interact with equations whose phases were previously 
determined because of their strong A~o terms. The 
iterative proce~ can be repeated until the phases so 
determined give values of E (equation (3)) approaching 
zero, the phase indications spreading further from the 
origin of reciprocal space with each cycle of refine- 
ment. 

Consider now the case of an equation with a dom- 
inant diagonal term A**. The value of R (equation (4)) 
will be little changed whether a, = g -  ½~** or 2 g -  ~**, 

The phase probabi l i ty  dis t r ibut ion of all m s y m m e t r y  
related phases can be mul t ip l ied  together ,  provided one takes  
care of thei r  re la t ive phases as required  by  any  par t icu lar  
space group. 

that  is to say the probabilities P~(~=g-½¢~t)  and 
P ~ ( ~ - - 2 ~ - ½ ~ )  are almost equal. The simplest ap- 
proach would be to use the phase with the greater 
probability, but should that  not be correct, the error 
introduced into the Fourier summation would be large. 
Blow & Crick (1959) and Dickerson, Kendrew & 
Strandberg (1961) show that  the best approach to 
the formally identical problem of combining the 
information from different isomorphous replacement 
derivatives is to use the centroid of the phase prob- 
ability distribution as Fourier coefficients, ~, in an 
electron-density calculation. 

That is 

~i = [Fil P~(~) exp [i~]dc¢ P i ( ~ ) d ~ .  (14) 
0)0 0 

5. A worked example  

A two-dimensional structure (Fig. 1), in plane group 
pl,  in a cell with a=21.6, b=42.0 A, 7=111.5 °, 
containing two independent, but identical molecules 
each with five equal atoms was chosen as a trial for 
the proposed method. In order to limit the amount 
of computation, calculations were restricted to the 
35 reflexions of lowest Bragg angle. The calculated 
structure amplitudes for these reflexions, correspond- 
ing to 6.2 /~ resolution, were used as 'observed' data 
from which to deduce the phase angles. A Fourier 
synthesis using these structure amplitudes with the 
'correct' calculated phases is shown in Fig. 3. 

/ 
)¢ 

Fig. 3. Elec t ron  dens i ty  map  using only the  innermost  t h i r t y  
five s t ruc ture  ampl i tudes  (6.2 .~ resolution) with s t ruc ture  
factor  calculated phases. 

The equations in Ai~ and ¢ij were now derived and 
solved by the method described in this paper. One 
iteration for thirty-five phases took 20 min. on the 
EDSAC 2. Rotations of both - 1 4 0  ° and +40 ° were 
used, but the latter, incorrect rotation, did not refine 
to a low value of E (Table 1). Rotations of + 140 ° 
and - 4 0  °, represent enantiomorphic solutions. 

The first refinement (seven cycles) using the correct 
rotation of --140 ° led to a recognizable structure 
(Fig. 4). The phases are given in Table 2. The second 
refinement process used [Gapl instead of Ghv in the 
calculation of the coefficients A~j. This can be shown 
to be rather like the physical criterion of minimizing 

--  I [02( x ) -  O2(X')] 2 d x  , E'  
a] U 
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or  m a x i m i z i n g  

R' = I @e(x).@2(x')dx.  (15) 
u 

T a b l e  1. Values of the functions E and R 

Rotat ion Structure 2R × 104 E x 104 

+ 40 ° 'correct' phases 1.41 1.51 
deduced phases 1 1.99 0.93 

-- 140 ° 'correct' phases 2.69 0.23 
deduced phases 2 2.62 0.30 
deduced phases 3 2.76 0.16 

The 'correct' phases refer to the phases given by conven- 
tional structure factor calculations, from the assumed atomic 
positions. 

Deduced phases 1 were found by refining the G criterion 
(maxinlization of R, equation (4)) using the rotation of +40  °, 
which represents an extraneous solution of the rotation 
function. 

Deduced phases 2 were found by refining the G criterion 
(maximization of R, equation (4)) using rotation of --140 °, 
which represents the correct solution of the rotation function. 

Deduced phases 3 were found by refining the IGI criterion 
(maximization of R', equation (15)) using rotation of --140 °. 

T a b l e  2. Comparison of 'correct' structure factor cal. 
culated phases and those found on refinement of the G 
and IGI criteria, corresponding to the 'deduced 2' and 

'deduced 3' phase angles 

Indices ai ° ~i ° a~ ° 
i (h, k) (correct) (deduced 2) (deduced 3) IFi[ 

0 0 0 0 0 0 60 
1 0 1 300 304 308 6 
2 --1 1 321 287 306 21 
3 1 0 181 178 182 17 
4 0 2 195 222 213 17 
5 -- 1 2 22 21 22 41 
6 1 1 192 305 214 11 
7 -- 1 3 288 316 286 22 
8 0 3 233 153 148 3 
9 1 2 39 226 32 10 

10 --2 1 152 88 156 13 
11 --2 2 221 195 209 18 
12 -- 1 4 217 7 229 26 
13 2 0 350 57 1 7 
14 --2 3 345 243 339 23 
15 0 4 51 271 64 20 
16 1 3 36 177 347 6 
17 2 1 310 28 7 14 
18 -- 2 4 52 221 50 8 
19 -- 1 5 13 71 83 12 
20 0 5 20 298 255 1 
21 2 2 228 240 212 24 
22 1 4 262 170 237 28 
23 -- 2 5 290 5 326 14 
24 --3 2 36 339 357 22 
25 -- 3 3 186 85 161 8 
26 -- 3 1 95 39 33 20 
27 -- 1 6 48 193 95 I5 
28 --3 4 274 173 189 15 
29 2 3 342 263 271 16 
30 --2 6 254 308 286 32 
31 3 0 167 282 212 8 
32 1 5 174 237 272 14 
33 0 6 275 241 246 11 
34 -- 3 5 51 26 24 8 
35 3 1 320 242 202 25 

Th i s  c r i t e r i o n  l ed  t o  a s t r u c t u r e  m o r e  n e a r l y  l ike  t h e  
c o r r e c t  s t r u c t u r e  (Fig.  5). T h e  p h a s e s  g i v e n  b y  t h e  
s i x t h  cyc l e  of r e f i n e m e n t ,  a r e  s h o w n  in  T a b l e  2. 

. . . . . .  i . . . . . . . . . . . .  

¢ 

Fig. 4. Electron density map using the innermost th i r ty  five 
structure amplitudes with phases deduced by maximizing 
R (equation (4)). 

: , v , . j  : . .  ~ ~ y  

X 

Fig. 5. Electron density map using the same structure ampli- 
tude but  phases deduced on the basis of maximizing R', 
(equation (15)). 

I t  m a y  be  n o t e d  f r o m  T a b l e  2 t h a t  t h e  p h a s e  
d e t e r m i n a t i o n  d e t e r i o r a t e s  w i t h  i n c r e a s i n g  i. I n d e e d  
a n  e l e c t r o n - d e n s i t y  m a p  i n c l u d i n g  o n l y  t h o s e  t e r m s  
fo r  w h i c h  i _< 23 is s u b s t a n t i a l l y  b e t t e r  t h a n  s h o w n  
in  Fig .  5. I n  t h e s e  p h a s e  p r o b a b i l i t y  c a l c u l a t i o n s  o n l y  
t h e  i n t e r a c t i o n s  b e t w e e n  t h e  35 i n n e r m o s t  r e f l e c t i o n s  
w e r e  c o n s i d e r e d .  As t h e  l a r g e s t  A ij e l e m e n t s  m u s t  lie 
on  or  n e a r  t h e  d i a g o n a l  of t h e  m a t r i x ,  t h e  e f f e c t  of 
n e g l e c t i n g  At j  t e r m s  w i t h  j > 35 b e c o m e s  m o r e  se r ious  
as i i nc reases .  I n  o u r  e x a m p l e  a s i g n i f i c a n t  n u m b e r  of 
t e r m s  h a v e  b e e n  n e g l e c t e d  in  a l a rge  p r o p o r t i o n  of t h e  
e q u a t i o n s  a n d  t h e  e f f e c t  is ser ious .  I t  b e c o m e s  less 
i m p o r t a n t  as t h e  n u m b e r  of u n k n o w n  p h a s e s  b e c o m e s  
l a rge r .  A m e a s u r e  of t h e  s e r iousness  of t h e  e f f e c t  is 
t h e  r a t i o  of t h e  s u r f a c e  a r e a  t o  v o l u m e  of t h e  ' s p h e r e  
of r e f l e c t i o n '  u s e d  t o  t e r m i n a t e  t h e  d a t a .  

A P P E N D I X  I 

T h e  ef fect  of  p r o p e r  r o t a t i o n s  
L e t  

Ch~ = [ - - 2 ~ r p . d + ~ g h p ]  

= -- 2 ~ [ p .  d + (h + h' ) .  S]  

(see R.  & B.)  

w h e r e  h ' =  [C] .  p ,  a n d  S is t h e  p o s i t i o n  v e c t o r  of t h e  
c e n t r e  of t h e  v o l u m e  U o v e r  w h i c h  t h e  i n t e g r a t i o n  
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was performed, and for which Gn~ exp [iD~] represents 
the diffraction function. 

• ". Cn~ = - 2 ~ [ p .  
= - 2 ~ [ h .  
-- -27~[h.  

where S' is the position 
volume U'. That is S ' =  

Now if the rotation is 

d +  h . S +  {[(~]. p}.S] 
S +  p{[C] .S+  d}] 
S + p . S ' ]  

vector of the centre of the 
[C].S-t- d. 
proper we may take S = S' 

and integrate over the volume of both sub-units, 
for it is irrelevant where the boundary between these 
is drawn. Thus for a proper rotation 

Ca~ = - 2 ~ [ ( h +  p). S] = ¢~a, 

but for an improper rotation 

Cap = - 2 ~ [ h . S + p . S ' ] : ~ ¢ p a .  

A P P E N D I X  II 

The  m a g n i t u d e ,  Si, of the  s u m  of the  t e r m s  in a 
r o w  of the  m a t r i x  A 0 cos  (~i + ~j + ~0)  

By definition of a structure factor 

exp [ - i a a ]  --- V t @(x) exp [ - 2 ~ i h . x ] d x  ~F(h)~ 
J v 

where V is the volume of the unit cell. If there is no 
density outside the volumes U and U', and within V, 
then it follows that  

IF(h)[ exp [ - i a a ]  

= V{f @(x) e x p [ - 2 ~ i h . x ] d x  
u 

+ Iu ~(x) exp [-2~ih.x]dx}, 

= V{S ~ ) ( x ) e x p [ - 2 ~ i h . x ] d x  

+ f  u @(x') exp [ -  2~ih .  x'] dx} ,  

since whenever x is in U, x'  (given by equation (2)) 
is within U'. But since ~(x)= ~o(x'): 

U 

÷ Iu ~(x) exp [ - 2  ~ i h . x ' J d x / .  

Substituting a Fourier summation for ~(x); that  is, 
writing 

@(x) = (l/V) ~ IF~[ exp [ i ( c ~ - 2 ~ p . x ) ] ,  

we have 

]F(h)l exp [ - i a h ]  

-- I { ~  IF(P)I exp [ i ( a ~ - 2 ~ p . x ' ) ] } e x p  [ - 2 i h  
u p 

x exp [ - 2 ~ h . x ' ] d x  . 

Making use of (2) to write x '  in terms of x 

• x]dx 

IF(h)l = ~ IF(p)l exp [i(~p+ c~n)] 
p 

× { e x p [ - 2 r d p . d ] f  e x p [ - 2 x d ( h . x + p . [ C ] . x ) ] d x  
U 

i l + e x p [ - 2 ~ i h . d ]  exp [ - 2 ~ i ( p . x + h . [ e ] . x ) ] d x  . 
u 

Since p.[C].x---[ l~]p.x,  the first integral becomes 

f exp [ - 2 ~ i ( h  + [C]p)x]dx = (U/V)Gh~ exp [ iD~],  
u 

by definition. 
Making a similar substitution for the second integral 

leads to 

IF(h)[ = ( U / V )  ~2 IF(p)] exp [i(~p-t- c~h)] 
p 

× (exp [ - 2 ~ i p .  d]Ghp exp [i~hp] 
+ exp [ -  2~ih .  d]G~h exp [ i ~ h )  

IF(h)] 2 = (U/V)  Z ,  ]F(p)[[F(h)] exp [i(~p+ ~a)] 
p 

× {exp [ - 2 ~ i p .  d]Ghp exp [i~hp] 
÷ exp [ -  2~ih .  d]Gpa exp [iQph]} • 

This may be compared with (6), h being replaced by 
i and p by j. I t  is evident that  

[F(i)l 2 = 2 V  2 ,X  Ai~ exp [i(c~i+ ~j+¢i~)] . 
.i 

Using Friedel's Law 

IF(i)[ 2 = 2 V2 ~,  Ai~ cos ( cci + ~ +¢~j) = 2 V U S i  . 

So that  
S ~ - -  (1/2V2)[F(i)t 2. 
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Crystal Structures with a Chabazite Framework.  II. Hydrated Ca-chabazite* 
at Room Temperature  

:BY J.  V. SMITH AND F. RINALDI 

Department of Geophysical Sciences, University of Chicago, Chicago, Illinois, U.S .A.  

AND L. S. DENT GLASSER 

Department of Chemistry, University of Aberdeen, Old Aberdeen, Scotland 

(Received 13 November 1961 and in revised form 24 April 1962) 

The crystal structure of hydrated Ca-chabazite (composition Cal.95A13.98i8.1024.13(?)H20 ) was 
studied from {hk0} data of the rhombohedral cell (R3m(?): a=9.42  A, a = 9 4  ° 28'). The atomic 
coordinates of the Si, A1 and oxygen atoms of the framework were refined without difficulty assum- 
ing space group R3m. Great difficulty was found in locating the calcium atoms and water molecules, 
and the proposed distribution, although giving R = 0-11, is uncertain: consequently, three-dimen- 
sional analyses at both low and room temperatures are being considered. However it is certain that,  
during hydration, the distribution of Ca atoms changes markedly, and the framework changes 
shape. The non-framework peaks in the Fo-synthesis can be interpreted on the basis of thirteen 
water molecules and two calcium atoms per unit cell. There are twelve peaks for the calcium atoms 
and it was postulated that  there are six different types of unit  cells projected onto the pseudo- 
rhombohedral Fo-synthesis. I t  is thought that  the arrangement of the Si and A1 atoms results in 
asymmetric electric fields which cause the water molecules, and especially the calcium ions, to 
move away from positions of rhombohedral symmetry. Ordering of the Si and A1 atoms, together 
with twinning, best explains the X-ray and optical observations: however, other possibilities cannot 
be ruled out definitely. The calcium atoms have four water molecules as nearest neighbours, which 
may be regarded as an incomplete sphere of hydration. 

Introduction 

In  pa r t  I (Smith, 1962) of this series, a general intro- 
duct ion  to the program of studies on ehabazite was 
given, together  wi th  a detai led account  of the struc- 
ture  of dehydrated-Ca-chabazi te .  The more complex 
s tudy  of hydrated-Ca-chabazi te  falls into three par ts :  
(a) de te rmina t ion  of the Si ,A1-0 f ramework from 
two-dimensional  data ,  and  discovery t ha t  at  least 
some of the  calcium atoms and water  molecules 
appear  to be s ta t is t ica l ly  d is t r ibuted in projection,  
(b) de te rmina t ion  of a possible configurat ion of calcium 
atoms and water  molecules on the basis of a symmet ry  
lower t h a n  rhombohedral ,  (c) s tudy  of chabazite by 
three-dimensional  da ta  at  room tempera ture  and below 
- 1 0 0  °C. Because considerable t ime will elapse before 
pa r t  (c) can be completed, and because the conclusions 

* This investigation was partly carried out at the Depart- 
ment of Mineralogy, Pennsylvania State University, College 
of Mineral Industries: Contribution number 61-16. 

reached in par ts  (a) and  (b) are impor tan t ,  an account  
of the pre l iminary  results is given here, even though 
uncer ta int ies  remain.  

Experimental  

Optical examina t ion  of the chabazite showed the 
presence only of rhombohedra l  faces. However,  the  
crystals displayed complex optical  phenomena  in 
polarized light. The ext inct ion was variable in parallel 
light, showing the presence of domains separated 
from each other  by boundaries in which the ext inct ion 
changed abrupt ly .  However,  there were large con- 
t inuous  changes of ext inc t ion  in each domain,  and 
the domain boundaries,  a l though tending to be planar ,  
were curved in an irregular manner .  Examina t ion  in 
convergent  l ight  yielded confused figures because of 
the  summat ion  of effects from several domains;  the  
least confused figures indicated a moderate  optic 
axial  angle (near 50 °) with a posit ive sign. Similar 


