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A new atomic-parameters least-squares refinement method is presented which makes use of the fast Fourier 
transform algorithm at all stages of the computation. For large structures, the amount of computation is 
almost proportional to the size of the structure making it very attractive for large biological structures such as 
proteins. In addition the method has a radius of convergence of approximately 0.75/~, making it applicable at 
a very early stage of the structure-determination process. The method has been tested on hypothetical as well 
as real structures. The method has been used to refine the structure of insulin at 1.5/~ resolution, barium 
beauvuricin complex at 1.2/~ resolution, and myoglobin at 2 A resolution. Details of the method and brief 
summaries of its applications are presented in the paper. 

Introduction 

The conventional least-squares refinement method is 
prohibitively expensive for large structures such as 
proteins. In this paper, we present a new method which 
is inexpensive even for a very large structure. 

The least-squares minimization 

The process of least-squares minimization is discussed 
in International Tables for  X-ray Crystallography 
(1959), RoUett (1965) and Lipson & Cochran (1966). 
It is being restated here to provide a uniform notation 

* Present address: Centre for Applied Research in Electronics, 
Indian Institute of Technology, New Delhi 110029, India. 

for the paper. In least-squares minimization, one 
minimizes the sum of squares of N error functions (dif- 
ferences between the observed and the calculated 
values) E(s) with respect to (w.r.t.) R variables ur(N > 
R). The function to be minimized is called P and is 
given by 

P= ½ Y E2(s). (1) 
$ 

In (1), we have introduced the factor of ½ to simplify the 
expressions for the derivatives. In normal least-squares 
minimization, the error function is approximated as a 
linear function of the variables as given by: 

~E(s) 
~JE(s) = Z ~ •Ur (2) 

r OUr 
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where AE(s)  is the change produced in E(s)  due to 
small changes Au r in u r. Defining 

(2) becomes 

,gE(s) 
J(s,  u~) = - - ,  (3) 

OUr 

AE(s) = Y d(s ,u , )Au  r (4) 
r 

We would like a solution of (4) such that E(s) + AE(s) 
= 0, or in other words we would like to solve the 
following set of linear equations for Au,: 

-E(s)  = Z J(S, U3,~Ur; (5) 
r 

or, in matrix notation 

--E = aAu (6) 

where E is the length-N error vector, An is the length-R 
vector of desired displacement in variables, and $ is the 
N × R Jacobian matrix. Equation (6) is a set of N over- 
determined equations in R unknowns. According to 
linear algebra, the least-squares solution of (6) which 
minimizes P is obtained by premultiplying (6) by the 
transpose of the Jacobian matrix and solving the 
resulting normal equations: 

Let us define 

and, 

--JrE = JTJAu. (7) 

G --- JTE (8) 

H -- jr j ,  (9) 

where G is a length-R gradient (derivatives) vector and 
H is an R x R normal matrix. Then (7) becomes 

--G = HA~ (10) 

These are R normal equations which can be solved by 
matrix inversion. 

Au = --H-~G. (11) 

This solution of Au will minimize P if the linearity 
assumption of (2) is valid, i.e. if the required displace- 
ment Au is small. The following are explicit expressions 
for G and H: 

G(u~)= ~ J(s,  ur)E(s)  (12) 
$ 

H(uq, Ur)= ~ J(s,  uq)J(S, Ur). (13) 
$ 

If one wishes to minimize a weighted least-squares 
function as given by 

P = ½  Z W(s)EE(s),  (14) 
$ 

then (12) and (13) become 

G(u~)= ~ J(s ,u~)E(s)  W(s) (15) 
$ 

H(Uq, U r ) :  ~ J(s,  Uq)J(s, Ur) W(s). (16) 
s 

Now, we apply this to the problem of least-squares 
refinement of the atomic parameters. 

Least-squares refinement of  the atomic parameters 

In least-squares refinement of the atomic parameters, 
we minimize the following function, 

" P=½ Y W(hkO[~Fc(hkO~ -~Fo(hkl)~] 2 (17) 
h k l  

where W(hk l )  is any desired weighting function. 
Strictly speaking, the summation in (17) should be 
carried out over only the unique reflections but, in order 
to derive simple closed-form expressions for the 
gradient and normal matrix terms, we consider the 
summation over all the reflections. This gives math- 
ematically identical results. Also for brevity, most of 
the time we will denote (hkl) by (s), where s represents 
a point in the reciprocal lattice and Fc(s) by simply F(s). 
In this notation, (17) becomes: 

P--½ Y W(s ) [ IF( s ) l -  IFo(s)ll 2. (18) 
s 

This equation is similar to (14) with 

E(s)= IF(s) l -  IFo(s)t. (19) 

Let us assume there are M atoms in the asymmetric 
unit of the structure. Their thermal motion is assumed 
to be isotropic. In this ease, there are 3M positional and 
M thermal parameters (B's). Equation (18) can be 
minimized w.r.t, these 4M variables. It is assumed that 
the number of unique reflections N is much larger than 
4M variables. For the time being, we assume that all 
atomic sites have full occupancies, although partial 
occupancies can be easily taken into consideration. 
Also, at present we assume that the structure is in space 
group P1, although similar expressions can be derived 
for other space groups also. We introduce the following 
notations: 

r,, =- (Xm,Y,,,zm) - fractional cell coordinates of the 
ruth atom, 

B,. - isotropic thermal parameter of the mth atom, 
s =-- h k l -  a diffraction point in reciprocal space, 
ft.(s) - f m ( h k l )  - scattering factor of the ruth 

atom at reciprocal distance s, 
s. r m ~-- hx m + ky m + lZm, 

S 2 ---- I Sl 2 = (4 sin 2 @/2 2. 
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With this notation the expression for calculated 
structure factors is 

F(s)  = ~ fro(s) exp (-Bins2~4) exp (i2~rS.rm). (20) 
m 

To simplify the equations further, we introduce the 
notation 

gm(S) =fro(S) exp (--Bins2/4). (21) 

Here gin(s) represents the contribution of the mth atom 
to structure factors after taking into account its thermal 
motion. This notation greatly simplifies the expressions 
for gradient and normal-matrix terms. With this 
notation (20) becomes 

F(s)  = Y gin(s) exp (i2zcs. rm). (22) 
m 

To evaluate the gradient vector and the normal matrix, 
we need expressions for the Jacobian as given by (3). 
First, consider the Jacobian w.r.t, positional 
coordinates: 

,gE(s) 
J(s,  Xra ) = 

COX m 

Because Fo(S) is independent of the atomic variables, 

cOlF(s)l 
J(s,  Xm) -- _ _  

OX m 

1 

21F(s)l 

6~[F(s)I 2 

cqx m 

In our derivations, we neglect the effect of anomalous 
dispersion. The atoms having anomalous dispersion 
can be treated separately. Neglecting anomalous 
dispersion, because of the Hermitian symmetry F ( - s )  
= F*(s), where * represents the complex conjugate, 
giving 

1 cg[F(s) F(--s)] 
J(s,  Xm) -- _ _  

21F(s)I O x  m 

1 IF 0F(--s) 
- 21F(s)l (s) C0Xm 

Since, F(--s) = F(s)*, J(s,Xm) can be rewritten as 

J(s'Xm)- 21F(s)----~ (s) [-~Xm ] 
c~F(s)~. 

+ F*(s) ~ j  (23) 

Taking the partial derivative of (22) w.r.t. Xm, we obtain 

0F(s)  

cox m 
- gm(s)(i2nh) exp (i27rs. rm). (24) 

Let ~o(s) be the phase associated with F(s), then 

F(s) = IF(s)l exp[i¢(s)] 

F(--s)  = IF(s)l exp [--i(o(s)]. 

Substituting these in (23) and after simplification, we 
obtain 

J(s,  Xm) = ½g,,,(s)(i2~rh) {exp[-irp(s)] exp (i21rS.rm) 

- exp [itp(s)] exp ( - i21rs . r  m ] }. 
(25) 

Similar expressions can be obtained for J ( s d ' ~  and 
J(s,Zm). Also similarly we derive the expression for 
J(s,  Bm): 

J(s ,B m) = ~gm(S)(--s2/4) {exp [iq~(s)] exp (--i2~¢S.rm) 

+ exp [--itp(s)] exp (i2~zs. rm) }. 
(26) 

Substituting (25) in (15), we obtain the expression for 
gradient w.r.t. Xm : 

G(Xm)= ~. ½gm(S)(iErLh) W(s)E(s){exp[--i~o(s)] 
s 

× exp (i2zrs. rm) -- exp [i~p(s)] 

× exp (--i2zcs. rm) }. 

The above equation can be simplified to 

G(xm)= Y gm(S)(-iZrdO W(s)E(s )  exp[i~p(s)] 
s 

× exp (--i2~rs. rm). (27) 

In the above two equations if the summation terms 
corresponding to s and - s  are grouped together, it can 
be easily proved that they are identical. Similar 
expressions can be derived for G(y m) and G(zm). The 
expression for G(Bm) is as follows. 

G(B m) = Y. gm(S)(--s2/4) W(s)E(s )exp  [i~p(s)] 
s 

× exp (--i27rs. rm). (28) 

By substituting (25) in (16), we can derive expressions 
for the normal-matrix terms corresponding to inter- 
action between x m and x,:  

H(Xm, Xn) = Y ¼gin(s) gn(S)(-47r 2 h z) W(s) 
s 

x {exp [i2~p(s)] exp [--i27rs. (r m + rn)] 

+ exp [--i2~p(s)] exp [i27rs. (r m + rn)] 

-- exp [i2zrs. (r m -- r,)] 

-- exp [--i2zrs. (r m -- rn)] }. 

Again, as above, by grouping together the summation 
terms corresponding to s and - s ,  this simplifies to 

H(Xm, X,,) = Y ½gm(s)g,(s)(47r 2 h 2) W(s) 
$ 

x {exp [i27rs. (r m -- rn)] -- exp [i2~p(s)] 

× exp [--i27rs. (r m + r,)l }. (29) 
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We introduce another notation. Normal-matrix terms 
are written as the sum of two terms HI, corresponding 
to r n - r n, and H 2 corresponding to r m + r n. 

n(ur, Uq) = nl(ur, Uq) + n2(Ur, Uq). (30) 

With this notation, expressions for H~(Xm, X ~) and 
H2(Xm, Xn) are as follows: 

nl(xm, Xn) = ~. ½gm(S)gn(S)(47~ 2 h 2) W(S) 
$ 

× exp [i27rs. (r m -- rn)] (31) 

H2(Xm, Xn) = ~ ---~gm(S) gn(s)(4rc 2 h 2) W(s) 
$ 

× exp [i2tp(s)] exp [--i27rs. (r m + rn)]. (32) 

Expressions for H(Ym,y,, ) and H(zm,Z~) are similar. 
Similarly, we derive an expression for H(Bm, Bn). Below 
are expressions for the two parts of H(Bm,B~): 

H~(Bm, Bn)= ~. ½gm(S)gn(S)(S4/16) W(s) 
$ 

× exp [i27rs. ( r  m - -  rn)] (33) 

H2(Bm, Bn) = ~. --½gm(S) gn(s)(s4/16) W(s) 
$ 

× exp [i2¢p(s)] exp [--i27rs. (r m + rn)]. 

(34) 

Expressions for H(xm,Y n) are identical to those of 
H(Xm,X,, ) with h 2 replaced by hk: 

Hl(Xm, Y n) = ~. ½gm(S)gn(S)(47r 2 hk) W(s) 
$ 

× exp [i27rs. (r m -- r~)] (35) 

H2(Xm, Yn) = Z ---~gm(S) gn(S)(47r 2 hk) W(s) 
$ 

× exp [i2tp(s)] exp [--i27rs. ( r  m + rn ) ] .  

(36) 

Expressions for H(Xm,Bn) are given below: 

nl(xm, Bn) = ~. ½gm(S) gn(s)(iTrhs 2) W(s) 
$ 

× exp [i27rs. ( r  m - -  rn) ]  (37) 

H2(Xm, Bn)  = ~. --~gm(S) gn(S)(iT~hs 2) W ( s )  
$ 

× exp [i2tp(s)] exp [--i2zcs. ( r  m + rn ) ] .  

(38) 
This completes closed-form expressions for all entries in 
the normal matrix. 

Fast computation of structure factors 

Structure factors are three-dimensional Fourier trans- 
forms of the real-space electron density. Therefore, 

structure factors can be calculated by Fourier inver- 
sion of a model electron density map. With the advent 
of the fast Fourier transform (FFT) algorithm (Cooley 
& Tukey, 1965), the Fourier inversion of the model 
electron density can be carried out very efficiently. To 
make use of the FFT method, electron density must be 
sampled on a uniform grid parallel to the cell axes. In 
order to reduce the amount of computation, the number 
of grid points should also be reduced. This introduces 
the sampling problem caused by overlapping of the 
periodic Fourier spectrum. Sayre (1951) first discussed 
these problems. Recently, Ten Eyck (1977) discussed 
the FFT computation of structure factors in great 
detail, including discussion of the sampling problem. He 
also suggests a method of reducing the number of grid 
points by artificially increasing the B values of all the 
atoms by a fixed value. The reader is urged to read this 
paper. In the FFT computation of structure factors, a 
major computational step is setting up the model 
electron density map. This aspect of the structure factor 
computation has not received enough attention. In this 
section, we will discuss it in detail. 

Modeling of the atomic electron density 

As shown by (21), gin(s) represents the contribution of 
the mth atom to structure factors. This is a product of 
two functions, the atomic form factor fro(s) and the 
Gaussian function exp(-BmS2/4) representing iso- 
tropic thermal motion of the atoms. Gaussian functions 
have two important properties which make them very 
useful in modeling atomic electron density. First, the 
product of two Gaussian functions is another Gaussian 
function. Thus, if f(s) is modeled as a sum of two 
Gaussian functions, g(s) is also a sum of Gaussian 
functions. Secondly, the Fourier transform of a 
Gaussian function is also a Gaussian function. Thus, 
the atomic electron density p(r), which is the Fourier 
transform of g(s), is also modeled as a sum of Gaussian 
functions. The amount of computation involved in 
setting up the electron density array is proportional to 
the number of different Gaussian functions used in 
approximating g(s). 

V and, Eiland & Pepinsky (1957) approximated f ( s )  
as a sum of a constant and two Gaussian functions. 
Forsyth & Wells (1959) further improved on their 
approximation. For this approximation, after account- 
ing for the thermal motion of the atom, g(s) is repre- 
sented as a sum of three Gaussian functions. Thus, for 
the purpose of computation, this approximation is 
equivalent to a three-Gaussian approximation. In 
deriving optimal parameters for the approximation, 
Forsyth & Wells (1959)used a weighting function w(s) 
of the form exp [ - ( s  -- 1)2]. For this approximation, 
they calculated the weighted and normalized (divided 
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by the number of electrons) root-mean-square (r.m.s.) 
error, defined as 

tr= {[~w(s )A f2(s ) l / [~w(s ) ] ) ' / /Z ,  (39) 

where A f ( s )  is the difference between tabulated and 
approximated values of  the atomic form factors, and Z 
is the number of electrons in the atom. For atoms of 
biological significance (C, N, O and S) tr ranges from 
0.0039 to 0.0052. 

International Tables for X-ray Crystallography 
(1974) gives another approximation to atomic form 
factors as a sum of  a constant and four Gaussian 
functions. For  this approximation, tr values are much 
smaller, but at the cost of  increased computation. 

For most biological structures, observed X-ray 
intensities do not extend beyond 1.5 A resolution. It is 

possible  to get a better approximation to atomic form 
factors in this limited region of reciprocal space. For 
biological structures, we propose a two-Gaussian 
approximation to the form factors as given by (40) 

f ( s )  ~_ C ~ exp(--Bls2/4) + C 2 exp(--B2s2/4) (40) 

where C 1 + C 2 is not necessarily equal to Z. The four 
parameters (CI,C2,B1,B 2) associated with this approxi- 
mation are chosen so as to minimize the weighted sum 
of  squared differences ~ $ W ( $ ) A f 2 ( s ) .  Since the number 
of  reflections in each shell is proportional to s 2, the 
weighting function w(s) is taken as s 2. This weighting 
function gives very low weights to low-resolution form 
factors; to avoid this, we use a fixed value of 0.04 for 
w(s), for s values up to 0-2. We carried out the minimi- 
zation to obtain the parameters for some common 
atoms and biologically significant ions. The values of 

f ( s )  used were taken from Table 2.2A of International 
Tables for X-ray Crystallography (1974). Since we 
were primarily concerned with protein crystallog- 

raphy, we used the scattering data only up to 
s = 0.68, corresponding to 1.47 A resolution. Table 1 
summarizes the results of  this approximation. Column 
7 gives the values of tr as defined by (39), with w(s) as 
explained above. The normalized average error in the 
approximation is given in column 8. In column 9, we 
give the normalized maximum error in the approxi- 
mation. Since low-resolution form factors are given 
very low weights, the maximum error in the approxima- 
tion tends to occur in that region. For protein crystal- 
lography, because of the disordered solvent structure, 
observed data up to about 10 A resolution (s < 0.1) are 
highly erroneous and are of little interest. Therefore, we 
have taken IAflma x as the maximum error in the range 
of 2 sin 0/2 = 0-10 to 0 . 6 8 / k  -1 (corresponding to 10 to 
1.47 /k resolution). The corresponding value of 
2 sin 0/2 is given in column 10. For all atoms in the 
table except Cva I the tr values in this approximation are 
less than 0-001. This is a much better approximation 
than that of Vand et al. (1957) and Forsyth & Wells 
(1959) and it requires about one third less com- 
putation. 

We have also developed a single-Gaussian approxi- 
mation for the atomic form factors. Most of  the atoms 
in a protein molecule are C, N, O and S. The atomic 
form factors for these atoms are similar and to a first 
degree they can be approximated as the product of  the 
number of electrons and a normalized form-factor 
curve. To further improve this approximation, we 
multiply this normalized form-factor curve by a 
Gaussian function which depends on the atom type. 
Thus we propose the following approximation 

f ( s )  ~--fnorm(s)C 3 exp (--B3s2/4), (41) 

where f ,  orm(S) is common to all the atoms and C a and 
B 3 depend on the atom type. In this approximation only 
C3exp(--B3s3/4) is accounted for in the electron 
density computation. After the F F T  computation of  the 

Table 1. Two-Gaussian approximation of atomic form factors for 0.0 < (2 sin 0)/2 < 0.68 A -1 

1 2 3 4 5 6 7 8 9 

Number of I A f l  ave IAflmax* 

Atom electrons tr Z Z 
type Z C l B 1 C 2 B 2 × 10 -4 × 10 -4 × 10 -4 

H 1 0-4866 34.1284 0.5098 8.8996 9.78 I 1-50 21.0 
C 6 3.0102 29.9132 2.9705 2.8724 8.34 10.36 21.7 
Cva I 6 3-1055 30-1306 2.8623 2.4793 13 "54 16.83 33"8 
N 7 3.0492 25.0383 3.9432 3-4059 3-75 4.10 8.8 
O 8 3-2942 20.0401 4.6968 3.1184 3.16 3.78 6.9 
S 16 5.6604 33.0400 10.3140 1.8160 5.36 6.07 12.5 
Fe 3+ 23 10.3568 8.1324 12.6329 0.8137 1.81 2.01 2-9 
Fe 2÷ 24 11.6635 9-0361 12.3057 0.5749 5.13 5- 57 7.4 
Zn 2÷ 28 5-7826 11-7082 22.2163 1.8234 0.32 0-27 0.8 
Ba 2+ 54 12.1432 21.7090 41.8442 1.4090 2.68 2.69 3.2 

10 

(2 sin 0)/2 
at 

laflmax (A-') 

0.24 
0.22 
0-24 
0.22 
0.26 
0.22 
0.32 
0"34 
0"42 
0-48 

* The maximum is for 0.10 < (2 sin 0)/2 < 0.68 A -~. 
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structure factors, all structure factors are multiplied by 
f~orm(S). For C, N, O and S we obtainedfnorm(S), given 
in Table 2, and the parameters (C a and B a) of the 
single-Gaussian approximation which minimize the 
least-squares error in the approximation. For this 
approximation w(s) was unity. Table 3 summarizes the 
results of the approximation. The errors in the approxi- 
mation are about 1%. This may be acceptable in the 
early stages of the refinement when the errors in the 
structure factors are very high. This approximation 
requires only about half the computation required for 
the two-Gaussian approximation. In this approxi- 
mation, the FFT  computes Fc(s)/f,  orm(S). As a function 
of s, these do not drop as fast as Fc(s); therefore this 
approximation has somewhat more aliasing error. This 
can be compensated for either by reducing the grid 
spacing or alternatively by artificially increasing the B 
values of all the atoms (Ten Eyck, 1977). Also, this 
approximation will be used only in the early phase of 
the refinement when somewhat more error in high- 
order F~ would be permissible. For some of the heavier 
atoms the single-Gaussian approximation is very poor. 
Since a protein molecule has only a few heavy atoms, 
their contribution to the structure factors can be 
computed using the direct method and then added to 
the contribution (computed by the FFT  method) from 

Table 2. Normalized atomic form factors for the single- 
Gaussian approximation 

(2 sin 0)/2 (2 sin 0)/2 (2 sin 0)/2 
(]k-l) fnorm (]k-l) fnorm (]k-l) fnorm 
0.02 1.0000 0.26 0.8114 0-50 0-5487 
0.04 0.9934 0.28 0-7881 0.52 0.5308 
0.06 0.9866 0.30 0.7645 0-54 0.5141 
0-08 0-9773 0-32 0.7410 0.56 0.4975 
0.I0 0.9657 0.34 0.7176 0.58 0.4824 
0-12 0-9518 0-36 0.6945 0.60 0.4674 
0.14 0.9357 0.38 0.6718 0-62 0.4539 
0.16 0.9181 0.40 0.6496 0.64 0.4404 
0.18 0.8988 0.42 0.6283 0-66 0.4283 
0.20 0.8784 0.44 0.6071 0.68 0.4164 
0.22 0.8567 0.46 0.5873 
0.24 0.8344 0.48 0.5674 

R E F I N E M E N T  T E C H N I Q U E  

the rest of the atoms. Alternatively, they can be 
approximated by fnorm(S) times a sum of two Gaussian 
functions. 

R a d i u s  o f  the m o d e l  a t o m s  

Deciding the radius of the model atoms is the next 
important step in setting up the electron-density array. 
The radius of the mth atom, rad m, is defined as the 
maximum distance from its center beyond which its 
contribution to the electron density is neglected. The 
computation time in setting up the array is pro- 
portional to the number of grid points encompassed by 
a sphere of radius radm. Therefore, to minimize the 
computation, we should choose the minimum possible 
radius without leaving out too much electron density. 
If we decide the fraction of the number of electrons 
which may be left out, we can analytically compute the 
required radius of the atom. To compute this, we need 
the expression for the model electron density. 

The Fourier relations for a Gaussian function are as 
follows: 

real space 

electron density 

p(r) ,- FT --, 

(4zc/B) 3/2 exp (--4z~r2/B) ,-- FT --, 

reciprocal space 

atomic scattering 
factors 

f ( s )  

exp (--Bs2/4) 

where r represents the distance from the center of the 
atom. Using the two-Gaussian approximation, the 
contribution of the mth atom to structure factors is 
obtained by multiplying (40) by the isotropic thermal 
motion term exp (-BmS2/4): 

gin(s) ~_ C~ exp [--(B~ + B~)s2/41 
+ C 2 exp [ - ( B  2 + Bm)S2/4l. (42) 

By taking the Fourier transform of gin(s), using the 
above Fourier relations, we obtain the expression for 
the model electron density of the ruth atom. 

1 1 Bm)13/2 p=(r) = Cm[4z~/(B m + exp [--41t2r2/(B~ +Bm)] 
2 2 Bin)]3/2 + Cm[4n/(B = + exp[--4zt2r2/(B 2 + B~)]. (43) 

Table 3. Single-Gaussian approximation of  atomic form factors for 0.0 < (2 sin 0)12 < 0.68 A -1 

1 2 3 4 5 6 7 8 

Number of IAflave IAflmax* (2 sin 0)/2 
Atom electrons o Z Z at 
type Z C 3 B 3 x I0 -3 x 10 -3 x 10 -3 IAflm~ , (A -1) 

C 6 5"9074 1.2913 10.70 9"55 18.00 0-68 
N 7 7.0411 0.2065 3.11 2.72 4.43 0-68 
O 8 8-1561 -0.8941 12.40 11.06 20-87 0-68 
S 16 15-8448 -2.1392 5.55 4.85 8.25 0.32 

* The maximum is for 0.10 < (2 sin O)/;L < 0.68 A -1. 
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If we omit the electron density beyond r = radm, the 
number of electrons left out (due to the truncation of 
the atom) is obtained by integrating (43) from r = rad m 
to oo: 

130 

A Z  m = f pro(r) 4nr 2 dr. (44) 
r a d  m 

For reasonable values of rad m, A Z  m can be approxi- 
mated by the following expression 

z~Z m "~' 4(n)'/2radm (Blm + Bin) -'`2 Clm exp \ B~ + B m ] 

+ (BE +B~- I /EC~exP \ B ~  + B m] " (45) 

Since B~m >> B2m (see Table 1), the second term in this 
approximation is much smaller compared with the first 
term. Thus, it can be further approximated to 

/--4n2 rad2~ 
AZ m "~ 4(701/2 radm(Blm + Bin) -1/2 C1m expl--ffi- - - - / .  

\ B m + B m ]  

(46) 
Let 

then 

d = 4n2 rad2m (47) 

Blm + B m 

AZm ~-- 2C~(d/n) '/2 exp(-d) .  (48) 

The fraction of the number of electrons left out is given 
by 

AZm/Z m ~ 2(d/n) '/2 exp (--d)Clm/Zm, (49) 

where Z m is the number of electrons in mth atom. This 
equation can be solved for the required radius radm for 
a desired value of AZm/Z m and other parameters of the 
atom. For some of the atoms, Table 4 gives the fraction 
of electrons left out for some values of d. Table 5 gives 
the required radius rad m for carbon atoms for some 
values of B m and AZm/Z m. For other atom types (N, O, 
S, etc.) the required radius will be even smaller because 
for these atoms both B~m and C~m/Zm are smaller. 

A similar analysis can be carried out for the single- 
Gaussian approximation. For this approximation, 
Table 6 gives the required radius radm for carbon atoms 

for some values of B m and Z ~ Z m / Z  m. For other atom 
types also the required radius would be about the same. 
Comparing Tables 5 and 6 we note that the single- 
Gaussian approximation requires a much smaller 
radius compared with the two-Gaussian approxi- 
mation. This results in further savings in computation 
time for setting up the electron-density array. The 
reason for this is that B 3 is much smaller than B 1. 

To summarize, the fast computation of structure 
factors consists of two steps. (1) Building up of the 
electron-density array by adding up the contribution 
from each atom. (2) Three-dimensional FFT of the 
electron-density array to give F e. The amount of 
computation required in the first step is clearly 
proportional to the number of atoms and the amount of 
computation required in the second step is propor- 
tional to N s log Ns where N~ is the number of grid 
points. For most of our refinement work the computa- 
tion time required in both the steps was about the same. 
For most space groups (perhaps for all space groups) in 
step 1, only the atoms lying in the asymmetric unit of 
the unit cell need be considered. [For example in R 3 the 
asymmetric unit chosen was (0 - ], 0 - ], 0 - 1).] This 
also minimizes the storage requirement to that for the 
asymmetric-unit grid points only. Also, in most cases 
symmetries in the space group can be very well utilized 
in the FFT computation. See the excellent paper by Ten 
Eyck (1973). The computation of electron density 
using (43) requires many exponential computations. To 
reduce computation, exponentials can be precomputed 
in the form of a table of exp ( - a )  for a = 0 to 7.0, at an 
interval of 0.002 or more depending on the desired 
accuracy. For purposes of density computation 

Table 5. The required radius tad  m ( A ) f o r  carbon 
atoms for  some values of  ,dZm/Z m and Bm, for  the two- 

Gaussian approximation 

AZm/Z m 0.02 0.01 0.005 0.002 

Bm 
0 1.74 1-90 2.06 2.24 
5 1.89 2-06 2.22 2.42 

10 2.02 2.21 2.38 2.58 
20 2.26 2.47 2-68 2.89 
50 2.84 3.12 3.36 3.65 

Table 4. The fraction o f  the electrons left out (AZm/Z m) 
(× 10 3) for  some values o f  d for  the two-Gaussian 

approximation 

d 5.0 5.5 6.0 6.5 7.0 
Atomtype 

C 8.5 5.4 3.4 2.2 1.4 
N 7.4 4.7 3.0 1.9 1.2 
O 7.0 4.4 2.8 1.8 1.1 
S 6.0 3.8 2.4 1.5 1.0 

Table 6. The required radius rad m ( A ) f o r  carbon 
atoms for  some values o f  AZm/Z  m and Bin, for  the 

single-Gaussian approximation 

ZZm/Zm 0.02 0.01 0.005 

Bm 
10 1.17 1.26 1.37 
20 1.61 1.74 1.89 
50 2.50 2.69 2.93 
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exp (--a) can be considered 0 for a > 7.0. Also, since 
each atom has hundreds of sampling points, the 
constants of (43) which are independent of r should be 
computed only once for each atom. Also some savings 
can be achieved during the three-dimensional FFT 
computation. Since the sampling interval is approxi- 
mately one third of the resolution of the data, after FFT 
computation along one dimension superfluous data in 
reciprocal space are obtained along that index, which 
need not be carried over for FFT computation for the 
next dimension. For example, if the first FFT is 
computed along x, after the FFT computation the h 
index will run up to approximately 1.5 hmax, where hma x 
is the maximum h index in the F o. Therefore, for the 
next transform computation, data beyond hma x can be 
discarded, resulting in a computational saving. This 
concludes the discussion on fast computation of 
structure factors. 

Fast eomputation of gradient 

Fast computation of gradient is similar to fast 
computation of structure factors, but, in this case the 
order of computation is reversed. First, a three- 
dimensional FFT is computed for each set of param- 
eters (i.e. all x parameters) followed by individual 
computation for each atom in real space. Equation (27) 
is a closed-form expression for gradient w.r.t, x param- 
eters. This equation can be rewritten as 

G(Xm)= Y Dx(s)gm(s)exp(--i2zcs.rm) (50) 
$ 

where Dx(s) is a function common to all the atoms and 
is defined by: 

Dx(s) ~ (--i2zch)W(s)E(s) exp[iq)(s)]. (51) 

The subscript x denotes gradient w.r.t, x parameters. 
Equation (50) represents the Fourier transform of the 
product of two functions D~(s) and gn(S), evaluated at 
r m (position of mth atom). According to the convolu- 
tion theorem, multiplication in reciprocal space is 
equivalent to convolution in real space. Let dx(r ) be the 
Fourier transform of Dx(s). Since D~(s) contains 
E(s) exp [iq~(s)], dx(r) can be thought of as a modified 
difference density function. As before Pn(r) given by 
(43) is the Fourier transform of gn(S). Then by the 
convolution theorem G(x~) is the convolution of dx(r ) 
and Pn(r), evaluated at r = rm: 

G(xm)= f dx(r) fin(r- rn)dr. 

For computation purposes, the integration can be 
replaced by a summation: 

G(Xn) = ~. dx(r ) fim(r - -  rn ) .  (52) 
r 

Here summation is to be carried out over all grid points 
in real space and r -  r n is the distance of the grid point 
from the center of the ruth atom. Since atomic electron 
density fim(r- rm) is assumed to be non-zero only for 
grid points within a distance rad n from r n, the sum- 
mation of (52) needs to be carded out only within the 
radius of the atom. 

The computation of all x derivatives can be 
summarized as follows. (1) Compute a three- 
dimensional FFT of Dx(s) to obtain a modified 
difference density function dx(r). (2) For each atom, 
integrate dx(r ) with atomic electron density function as 
given by (52). Note that these steps are similar to those 
required for fast computation of structure factors, but 
in reverse order. The computation required in these 
steps is also identical. Computation in the first step is 
proportional to N~ log N~ and in the second step is pro- 
portional to the number of atoms. Steps 1 and 2 have to 
be repeated for each set of parameters with different 
D(s) functions which are given below: 

Dy(s) = (--i2z&)W(s)E(s)exp[iq~(s)] (53) 

Dz(S) = (--i2zd)W(s)E(s)exp[igo(s)] (54) 

DB(s) = (--sZ/4)W(s)E(s)exp[iq~(s)l. (55) 

In computing the FFT of D(s) functions their space 
group symmetries should be properly accounted for. 
DB(s ) has space group symmetry identical to that of 
F(s), but for many space groups, symmetries in Dx(s), 
Dy(s), or Dz(s ) are different. Therefore, FFT computa- 
tion for these may have to be modified somewhat. For 
both space groups (P2~ and R3) for which we have pro- 
grammed, the FFT computation is about the same as 
that for structure factor computation. Also, since the 
accuracy requirement in the gradient computation is 
not as great as in the structure factor computation, for 
this purpose, the single-Gaussian approximation (41) 
can be used and the grid size and radii of the atoms can 
be somewhat reduced, all resulting in reduced com- 
putation. For the single-Gaussian approximation, 
fnorm(S), which is a part of gm(s), has to be lumped with 
Dx(s) so that f i n ( r )  continues to remain a Gaussian 
function. 

Approximation and fast computation of the normal 
matrix 

In conventional least-squares refinement, the calcula- 
tion of the normal-matrix terms accounts for most of 
the computation time. Therefore, it is very important to 
understand the nature of the normal-matrix terms and 
devise fast algorithms to calculate them. As shown in a 
previous section [equations (29)-(38)], a normal matrix 
can be represented as a sum of two terms; the H~ term 
which is independent of the phases and is a function of 
(r n - r n ) ,  the vector distance between two atoms, and 
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the H 2 term which depends on the phases and is a 
function of (r n + rm). To illustrate the nature of these 
terms, we will consider H(Xm,X~) the normal-matrix 
term corresponding to the interaction between the x 
parameters of the rnth and nth atoms. This is written as 
the sum of Hl(Xm, X,) and H2(Xm, Xn) which are given 
by (31) and (32) respectively. These can be rewritten as 

H~(xm, X,) = ~ A,:,:(S)gm(s)gn(s) exp[-i2~zs. (r n - r,n)] 
s (56) 

n2(xm, Xn) = ~ --hxx(S) gm(S)gn(S) exp [i2(p(s)] 
$ 

x exp [--i2zrs. (rn + rm)], (57) 

where 

Axx(S) =-- 27t2h2W(s). (58) 

The subscripts xx  denote interactions between x 
parameters. 

H~(x,n,X,, ) represents the Fourier transform of 
Axx(S)gm(s)gn(s) evaluated at (r n - r~ ,  the vector 
distance between two atoms. Since Axx(S)gm(S)gn(S ) is 
always real and positive, its Fourier transform has a 
very large positive peak at the origin (corresponding to 
diagonal terms or r n - r m = 0) and then drops rapidly 
and alternates in sign, as the distance between the 
atoms increases. Our test results show that even for the 
nearest-neighbor atoms H~(Xm,X,) terms are very small 
in magnitude compared with the diagonal terms 
[Hl(xm, Xm) and Hl(xn,x~]. The HI terms corre- 
sponding to interactions between atoms other than 
nearest neighbors are much smaller and can be 
neglected. The magnitude distribution of H~ terms is 
heavily concentrated near the diagonal of the matrix 
and drops sharply as we go away from the diagonal. 
This is characteristic of all H~ terms [(31), (33), (35), 
and (37)]. 

H2(Xm,X n) represents the Fourier transform of 
--Axx(S)gm(S)gn(s)exp[i2(p(s)] evaluated at (r m + rn). 
Since this Fourier transform involves the phase term 
also, unlike Hl(Xm,Xn) , H2(Xm, Xn) terms have no signifi- 
cant peaks. The magnitude distribution of H E terms is 
likely to be the same in all parts of the normal matrix. 
Diagonal or near-diagonal H 2 terms are not likely to be 
any bigger than off-diagonal terms. This is particularly 
true for large structures. These influences have been 
confirmed by test calculations. Therefore, unless one is 
calculating the entire normal matrix, it is not 
worthwhile to calculate any H E terms. This argument 
applies to all H E terms [(32), (34), (36), and (38)]. 
Therefore, in subsequent discussion, we will entirely 
neg lec t  H 2 terms and approximate the normal matrix 
by only H~ terms. The resulting inaccuracy in the 
normal matrix affects only the rate of convergence, not 
the final result. 

Next we discuss fast algorithms to calculate H~ 
terms. For this two possibilities exist. Either we 

calculate only the diagonal terms (interactions between 
parameters of the same atom) or we compute off- 
diagonal terms (interactions between parameters of two 
different atoms) also. In all our refinement work we 
used only the diagonal terms because they require 
much less computation, and in addition the inversion of 
the normal matrix becomes trivial. We will discuss both 
these alternatives. 

Fast computation of the diagonal terms 

First, we discuss the computation of the diagonal terms 
only. For this case m = n and (56) becomes 

H I ( X m ,  Xm) = ~. Axx(S)g2m(S). (59) 
$ 

Since gin(s) is modeled as a sum of two Gaussian terms 
(42), g2m(S ) becomes a sum of three Gaussian terms as 
shown below: 

3 

g2(s )=  Y ciexp(-bis2/4),  (60) 
i=1  

where ct's and bl's depend on the atomic parameters 
and are given below: 

c I = C~ 
b I = 2Blm + 2B m 
C 2 : C 22 

b E : 2B 2 + 2B m 
1 2 c a = C m Cm 

b3= B~m + B2m + 2B m. (61) 

Let us define 

A'x(bi)=-- ~ Axx(S) exp(-bis2/4). (62) 
$ 

Then Hl(xm,Xm) beomes the sum of three terms 

3 

H I ( X m ,  Xm) = Z ¢iarxx(bi) • ( 6 3 )  
i=1 

We calculate and tabulate A'xx(b ~ for several dummy 
values of b~ in the expected range of b{s, which can be 
obtained from (61). Then Hl(Xm, Xm) Can be calculated 
using (63). For this purpose the values of A'x(bl), for 
actual values of b t, have to be obtained by linear inter- 
polation between two nearest tabulated dummy values. 

Most of the computation in deriving H~(Xm,Xm) 
terms is in computing A'x(bi) for dummy values of b i. 
This computation is proportional to the number of 
dummy b t values selected. Therefore, to minimize the 
computation in this phase, the fewest possible dummy 
b i values should be selected. A'x(bt) is a monotonically 
decreasing function of b i. For large values of b i (say 
greater than 100.0) A'xx(b ~ becomes very small and can 
be neglected. For small values of b i A'xx(b ~ changes 
faster than for large values of b i. Therefore, to reduce 
error in the linear interpolation and at the same time to 
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reduce the computation, we suggest that A'xx(bi) be 
tabulated at a small interval for small values of b i (say 
an interval of 1.0 up to b t = 20.0) and a larger interval 
for large values of b~ (say an interval of 5.0 up to b t = 
100.0). 

There are some relations between H 1 terms corre- 
sponding to interactions between coordinates of the 
same atoms: 

Hx(Xm, Xm) H,(Ym, Ym) Ht(Zm, Zm) H,(xm, Ym) 
a 2 b 2 c 2 ab cos 7 

H,(Xm, Zm) H,(Ym, Zra) 
-- (64) 

aecosfl becos a 

where a, b, c, a, fl and 7 are the conventional cell 
parameters. These relations can be derived by assuming 
that the number of reciprocal-lattice points in reci- 
procal space are infinitely dense, thus, converting a 
summation in reciprocal space to an integration. For 
most practical situations, the above relations hold to a 
fairly good degree of accuracy. These relations can be 
used to compute other diagonal H~ terms from only one 
set of H~ terms [say H~(Xz,X~)]. This further reduces 
the computation in this step. Another implication of 
(64) is that for an orthogonal set of coordinates, there is 
no interaction between different coordinates of the 
same atom. This is an expected result. 

The expressions for the H~ terms involving the iso- 
tropic thermal parameters are similar with Axe(S) 
replaced by 

Ann(s) = (sa/32)W(s) (65) 

Anx(S) = (1/2)(inhs2)W(s), (66) 

where the subscripts are self explanatory. The ex- 
pressions for Any(s) and Anz(S) are similar to (66) with 
h replaced by k and l respectively. Since Anx(S ) is an 
odd (antisymmetric) function, it can be proved that 
HI(Bm,xm) = 0. Therefore, we only need to calculate 
HI(Bm,Bm), which can be calculated similarly to 
H,(xs ,X m) as outlined above. 

The computation in calculating the diagonal terms is 
proportional to the number of unique reflections. Our 
results indicate that this computation is a very small 
fraction of the total least-squares computation. If one 
wants to reduce further this computation, the single- 
Gaussian approximation (41) can be used. 

As pointed out before, an important advantage of the 
diagonal approximation is that the computation of the 
inverse of the normal matrix becomes trivial. In this 
approximation, the only terms which are not self inter- 
actions a r e  Hl(Xm,Ym) , Hl(Xm, Zm), Hl(Ym, Zm). These are 
non-zero only if the unit-cell axes are non-orthogonal. 
Even in that case, the normal matrix consists of 3 x 3 
diagonal blocks which are easy to invert. If the 
weighting function W(s) and the thermal parameters do 
not change for the next refinement cycle, the diagonal 

H1 terms remain the same and a precomputed inverse 
of the normal matrix can be used. 

Fast computation of  off-diagonal terms 

Fast computation of off-diagonal terms is similar to the 
fast computation of the gradient. Equation (56) is very 
similar to (50) with Dx(s) replaced by Axx(s), gin(s) 
replaced by gm(s)g,,(s), and r m replaced by r n - r  m. If 
the two-Gaussian approximation (42) is used for the 
form factors, gm(S)gn(S) is represented as a sum of four 
Gaussian functions. On the other hand if the single- 
Gaussian approximation (41) is used, gm(s)gn(s) is 
represented aSf~orm(S) times a single Gaussian function. 
Computation of off-diagonal terms takes much more 
time than the computation of gradient or the diagonal 
terms, but we do not need very good accuracy in their 
computation. Because of these two reasons, to reduce 
significantly the computation time, we recommend 
using the single-Gaussian approximation. Our further 
discussion will be based on this approximation, in 
which, gm(s)gn(s) is represented by 

gm(s)gn(s) = f2 C 3C 3 
d norm ~m~n 

x exp[--(B3m + B 3 +Bm + B.)S2/4]. (67) 

Since fn2orm is independent of the atoms, similar to the 
gradient computation, we will lump it together with 
Axx(S ). For the purpose of this section, let us redefine 
Axx(S) as 

Axx(S  ) = 27c2h2W(s)fn2orm(S). (68) 

With this notation (56) becomes 

I-II(Xm, X.) = Y Axx(S)C~ C3. 
S 

x exp [--(B~ + B3. + B m + B.) s2/4] 

x exp [--i2~zs. (r. -- rm)]; (69) 

HI(x,r~x .) is the Fourier transform of Axx(S) times 
3 3 CmC" exp[--(B 3 + B~ + B m + Bn)s2/4] evaluated at 

(r. - rm). Let axx(r) be the Fourier transform of Axe(S), 
and pm.(r), the 'joint' Gaussian electron density 
function of mth and nth atoms, be the Fourier 
transform of CmC 3 exp [ - (B~ + B3. + B m + B.)sZ/4]. 
Then by the convolution theorem, H~(Xm, X ~) is the 
convolution of axx(r) and pm.(r) evaluated at r = r. - 
r m. Similar to (52), this can be expressed as a 
summation, 

H,(Xm, X.) = Y a~(r) p m . ( r -  r. + rm). (70) 
r 

Here the summation is to be carried out over all the 
grid points in real space and (r - r.  + rm) is the 
distance of the grid point from the point (r. - rm). 
Again as before, the joint electron density pm.(r - r. + 
r m) is assumed to be non-zero only for the grid points 
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within some radius from the point (r n - r,n). The sum- 
mation of (70) needs to be carried out only within this 
radius. 

The computation of all Hl(xm, Xn) terms can be 
summarized as follows. (1) Compute a three- 
dimensional FFT of Axx(S ) to obtain axx(r ). (2) For 
each pair of atoms for which H~(xm,X~) is desired, 
integrate axx(r) with the joint electron density function 
pmn(r) as given by (70). Note that these steps are similar 
to those required for fast computation of gradient. The 
computation required in these steps is also similar. 
Computation in the first step is proportional to 
N s log N s and in the second step is proportional to the 
number of atom pairs for which Hl(Xm,Xn) values are 
desired. Thus, r ~ -  r,, is only of the order of inter- 
atomic distances. Therefore, for the purpose of cal- 
culating the summation of (70), in real space axx(r) is 
needed only for a small fraction of the unit cell around 
the origin. This will further reduce the FFT compu- 
tation of axx(r). If W(s) does not change then the 
axx(r) function also does not change and can be used 
for the next cycle, but off-diagonal terms have to be 
recalculated if (r, - rm), B m, or B,  change. 

For non-diagonal terms, there is no relation similar 
to (64) and Ht(Bm,X ~) terms are in general non-zero. 
Therefore H~ terms corresponding to interactions 
between other parameters have to be computed similar 
to H~(x,~x~) with Axe(S) replaced by an appropriate 
function. As in the case of the gradient computation, 
the space group symmetry of  Ann(s) is the same as that 
for the space group. But for other functions [for 
example, Am(s), A~y(s), Anx(S) etc.] the space group 
symmetries may be different and the FFT computation 
for these may have to be modified. 

Much more computation is required for non- 
diagonal H~ terms than for the rest of the computation 
in least-squares refinement. Also for this case, the 
normal matrix cannot be decomposed in diagonal 
blocks, thus, requiring inversion by an iterative 
process. For these reasons, we opted for the diagonal 
approximation for which the convergence is somewhat 
slower, but perhaps the overall computation time is less. 

The H 2 terms can also be computed by the FFT 
method in a manner similar to that used for the H~ 
terms. 

Weighting function and the limits of the data to be used 

For a successful least-squares refinement, starting from 
large errors in atomic coordinates, it is necessary that 
the data used for the refinement be properly restricted 
and an appropriate weighting function be used.* This 
also helps in increasing the radius of convergence of the 

* This was suggested by Dr R. L. Garwin. 

refinement technique, making it applicable at an early 
stage of the structure determination process. 

The least-squares refinement is based on the 
assumption that errors in the structure factors are 
linearly related to errors in the parameters of the 
refinement. If the linearity assumption breaks down 
then the least-squares refinement would not give correct 
results. The structure factors are related to atomic 
positions by a sinusoidal function exp (i27ts. r) which is 
linearized around the position of the atom. If Ar is the 
error in the position then the linearity assumption 
approximates exp (i27ts.Ar) = cos (27ts.Ar) + 
isin(2z~s.Ar) by 1 + i27rs.Ar. The validity of this 
assumption depends on how close 27ts.Ar is to zero. If 
27ts.dr is greater than 7t/2 then clearly the reflection is 
meaningless for refinement of that atom. Since we do 
not know the magnitude and direction of Ar for each 
atom we cannot decide if that reflection should be used 
for refining a particular atom. But, if we know the r.m.s. 
(root-mean-square) error in coordinates (or), we can 
calculate the r.m.s, value of 27ts.Ar and then decide the 
maximum s value of the data to be used for the refine- 
ment. Assuming that Ar is a vector with random 
orientation, for a three-dimensional structure.it can be 
proved that the r.m.s, value of 2zcs.Ar is 27rStrr/V/3. This 
increases linearly with s = (2 sin 0/2). Therefore, the 
linearity assumption is very good for small values of s 
but breaks down for high-angle terms if o, is large. For 
a meaningful refinement (number of unique reflections 
>> number of parameters) we need at least 2 /k data 
(Sma X = 0"5). If o, = 0"75 A and Sm~ = 0"5, the 
maximum value of 2~tr , / x /3  becomes 78 °. This is 
about the maximum value of 27rstrr/V/3 which can be 
tolerated. Thus with 2 A data, one can refine structures 
with a r.m.s, positional error of 0.75 A. In our test 
refinements we have achieved this radius of con- 
vergence. As the refinement progresses the value of a r 
will decrease and we can gradually increase the limit of 
data used (Smax) and towards the end of the refinement 
we can use all the available data. Similarly, for the 
refinement of isotropic thermal parameters, the linearity 
assumption holds better for small values of s and for 
small errors in the parameters. 

In conventional least-squares refinement, the '20' 
criterion (tr values of the observed data) is used to 
discard reflections. For protein crystallography work 
this means discarding a large fraction of the reflections. 
For most proteins, the ratio of unique reflections meas- 
ured to the number of parameters is not very large and 
if a large number of reflections are discarded based on 
the 2a criterion, this ratio becomes even smaller. There- 
fore, we suggest an alternative criterion to discard a 
reflection, which can be used by itself or along with the 
2a criterion. If the ratio of F o to F c (or F c to Fo) is very 
high then it indicates one of two possibilities: the value 
of F o is incorrect, or because of errors in parameters F c 
is highly erroneous. In any case, either AF or ~c would 
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be highly erroneous, making the reflection unsuitable for 
the purpose of calculating the gradient. At the 
beginning of the refinement the limiting ratio should be 
set at a high value (3 to 4) and then as the refinement 
progresses it should be gradually reduced to say about 
2. 

As mentioned above, for large errors in parameters 
the linearity assumption holds better for low-angle 
reflections. This suggests that at the beginning of the 
refinement the weighting scheme should give higher 
weights to low-angle terms and lower weights to high- 
angle terms. Towards the end of the refinement when 
the errors in the parameters are small the linearity 
assumption holds for all reflections and therefore they 
should all be unit weighted. The weighting scheme 
which seems to work best is of the form W(s) = Is I-". 
If the initial errors in the parameters are very large then 
an n value of 1 to 1.5 should be used. As the refine- 
ment progresses this should be gradually reduced, 
making it zero (corresponding to unit weights) towards 
the end of the refinement. This weighting scheme can be 
used in conjunction with weights based on a values. 

Other steps in the least-squares refinement 

For the diagonal approximation of the normal matrix 
there is no interaction between positional and thermal 
parameters. Therefore we can refine coordinates (xyz)  
and thermal parameters (B) separately. There are 
several reasons for doing this. (1) Because of the non- 
linearity in high-angle terms, it is not advisable to refine 
B until tr r has reduced appreciably. (2) Usually many 
fewer cycles of B refinement are required compared 
with x y z  refinement. Therefore, on the whole this may 
reduce the total computation. (3) Since xyz  and B are 
different kinds of parameters the optimum step sizes 
(to be discussed below) for them are different. There- 
fore it is difficult to determine the optimum step size 
while refining all parameters at the same time. For 
these reasons we decided to refine xyz  and B in 
separate cycles of the refinement. 

There are some other steps in the least-squares 
refinement and these are discussed below. 

Scale factor calculation 

To match better the relative magnitudes of the observed 
and calculated data, the optimum scale factor k should 
be determined so as to minimize P = ~.s[klFc(s)l - 
IFo(S)l]2: 

Y. IF~(s)l[IF~(s)l- IFo(s)l} 
k =  1 -  s (71) 

$ 

Throughout a refinement cycle F c should be multiplied 
by this scale factor, which should be calculated at the 
beginning of the cycle. Another method to calculate k is 
to make ZsklFe(s)l = ZslFo(s)l. 

Modifications of the displacement vector 

In conventional least-squares refinement the new 
parameter vector u' is given by u + Au, where Au is the 
displacement vector given by (11) and u is either the co- 
ordinates vector or the thermal parameter vector. Be- 
cause of the nonlinearity" and the approximation of the 
normal matrix, this An may not be the optimum 
displacement. If errors in the parameters are large, this 
may even lead to instability. For fast convergence of 
the refinement and to increase its radius of con- 
vergence, we suggest the following modifications to the 
displacement vector. 

Truncation of the displacement vector 

If an atom has a large B value, its diagonal normal- 
matrix terms are small and for a diagonal approxi- 
mation of the normal matrix, the shifts in its param- 
eters may be large. These large shifts may lead to 
instability or oscillations. The least-squares procedure 
is not valid for large displacements and they should be 
avoided. If an atom needs a large shift, it is safer to 
achieve this by small shifts in many cycles. For each 
cycle of refinement, we decide that the shift for any 
atom will not be more than a 'ratio' times the r.m.s. 
shift for all the atoms. If the calculated shift for any 
atom is more than this maximum, its magnitude is 
truncated to the maximum allowed. In the initial stages 
of the refinement, when errors in the parameters are 
large, shifts also tend to be large. Since we do not want 
any atom to move 'too far' from its position, we set this 
ratio 'tight' (1.5 to 2.0). In the final stages of the refine- 
ment most of the atoms have refined fairly well and do 
not move much, making the r.m.s, shifts small. At this 
stage we make the ratio loose (3 to 4) so that poorly 
refined atoms or atoms with reassigned positions can 
move towards their 'correct' positions. 

For xyz refinement we consider the magnitude of the 
displacement vector IArl for each atom and set IArlma x 
< ratio x )Arlr.m.s.. For B refinement, atoms with large 
B's tend to have large AB's  and those with small B's 
tend to have small AB's.  Therefore a meaningful 
criterion is to consider IAB/BI and set IAB/Blma x < 
ratio x I A B / B  I r . m . s . .  

Optimum step size calculation 

Let Au' be the truncated version of Au, after truncating 
large shifts. Even this may not be the optimum 
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displacement. A displacement of the form aAu' will be 
optimum, where a is the optimum step size (a scalar 
and not to be confused with the cell parameter a) which 
minimizes P(u + aAu'), the minimization function. The 
optimum step size has to be obtained by a linear search 
(Luenberger, 1973) along the search direction. At this 
point we introduce another notation which will be 
helpful for the next subsection. We denote the search 
vector by S. For the time being S is taken as Au'. Our 
displacement will be along the search direction S with a 
step size a, to be determined by a linear search so as to 
minimize P. All this can be expressed as follows 

S = Au' (72) 

u' = u + aS (73) 

where u' is the new parameter vector and a is chosen to 
minimize P(u'). 

The minimization function P plotted as a function of 
a typically looks like Fig. 1. For small values of a the 
function can be assumed to be quadratic. A quadratic 
function can be completely specified by three param- 
eters. One of the parameters is the original value of the 
function P0 (corresponding to a = 0), the second 
parameter is chosen as the slope of the function at 
a -- 0 which is the slope of the line Po A and is given by 
the inner product of the gradient vector and the search 
direction vector: 

SLOPE 0 = G.S. (74) 

For a non-orthogonal coordinate system, care should 
be taken to include cross-terms also in computing (74). 
The third parameter is obtained by calculating the 
function Pt corresponding to a step size at (point B on 
the curve). This involves calculating the structure 
factors with parameters u' = u + OlS. With these three 
parameters we can reconstruct the parabolic function 
and obtain its minimum /°opt corresponding to the 

p 

p, . . . . .  B 

PoPT . . . . . .  I C 

Z, A .Co,., 

Fig. 1. P lot  o f  the min imiza t ion  func t ion  P vs the step size a.  Po A is 
the t angen t  to  the  funct ion  at a = 0. 

optimum step size O:op t (point C on the curve). Let 
SLOPE 1 be the slope of the line Po B. 

SLOPE1 = ( e o -  e,)/a,. (75) 

Then we define a relative slope by 

RSLOPEt = SLOPEx/SLOPE 0, (76) 

and it can be proved that the optimum step size is given 
by 

al (77) 
aopt - 2(1 -- RSLOPEa) 

For a very small step size the relative slope is close to 
1.0 and for the optimum step size it is 0.5. The initial 
step size a 1 should be chosen close to the optimum step 
size, which is around 1.0. If the initial step size is too 
far from the optimum step size, we recommend that 
another trial step size, close to the optimum step size, 
be chosen and the above calculation be repeated. As 
shown in Fig. 1, in the neighborhood of the optimum 
step size the function is very shallow. Therefore, we 
recommend taking the actual step size aact (for the 
purpose of calculating the parameters for the next 
refinement cycle) as about two thirds of aop r With this 
step size we avoid large shifts and at the same time 
achieve about 91% of the maximum possible drop in 
the minimization function. Corresponding to this step 
size, the relative slope is about 0.67. 

Conjugate directions 

For the diagonal approximation of the normal matrix, 
this refinement method behaves somewhat like the 
steepest-descent method (Luenberger, 1973). There- 
fore, in the first few cycles, this method gives a very 
good drop in the minimization function, but after that 
the convergence becomes slow. Also, the optimum step 
size deviates widely from cycle to cycle. If many cycles 
of the refinement are to be carried out without ideali- 
zation of the structure or manual adjustment in the 
parameters, it is advisable to use some kind of conju- 
gate-directions method (Luenberger, 1973), to increase 
the rate of convergence. In the conjugate-directions 
method the search direction vector S is modified to 
include part of the search direction vector from the 
previous refinement cycle: 

S = Au' + flS', (78) 

where S' is the search direction vector from the 
previous cycle and fl (not to be confused with the cell 
parameter fl) is a scalar which can be calculated by 
many different methods. The definition of fl which 
seems to work in our refinement is 

S'.  S' 
fl = - -  (79) 

Au' .Au' 



804 A NEW LEAST-SQUARES REFINEMENT TECHNIQUE 

This is the square of the ratio of the norm of the old 
search direction vector to the norm of the present Au'. 
In addition, we put a constraint that fl be no greater 
than 0.4. This ensures that the present search direction 
vector is not greatly influenced by previous search 
direction vectors. The optimum step size is calculated 
using the modified search direction vector of (78). The 
conjugate-directions method should not be used (S' 
assumed to be zero) in the following situations: if the 
parameters are changed manually or by some other 
program or if the previous refinement cycle was on 
parameters of different type (for example, xyz  refine- 
ment followed by a B refinement). 

Results on hypothetical test structures in spaee group 
P I  

Before using the method on real data, we gained 
experience of the method by using it on hypothetical 
test structures in space group P 1 with orthogonal axes. 
The test structures were generated by a program of 
Sayre (1972). They obeyed simple requirements on 
bond lengths and distances between non-bonded atoms. 
All atoms had Gaussian electron density with atomic 
form factors (including thermal parameters) of the form 
exp (-Bs2/4) with B having a uniform distribution in 
the range of 6.0 to 18.0 with an average value of 12.0. 
In all the test refinements all structure factors up to a 
given Sma x value were used, the scale factor was not 
varied and a value of unity (the correct value) was used. 
A weighting function of the form W(s) = I sl -n was 
used, with the initial value of n being 1.5 which was 
gradually reduced to zero, the diagonal approximation 
of the normal matrix was used, and as discussed before 
the maximum displacement of an atom was restricted 

to twice the r.m.s, displacement. To test the method, at 
the beginning of the refinement the starting coordinates 
were those of the test structure plus random positional 
errors for all atoms. For all the cases, the initial r.m.s. 
error IArlr.m.s. was about 0 . 7 / k  while the initial peak 
error IArlpeak varied from 1 .0 /k  to 1.24/k.  Through- 
out the refinement, none of the positions were changed 
manually or by any other program. In all cases, this 
method moved all the atoms close to their correct 
positions, indicating a radius of convergence of at least 
0 . 7 / k  for the method. This is significantly higher than 
for a conventional method. 

The results on some of the test cases are summarized 
in Table 7. Most of the entries in the table are self- 
explanatory. For the purpose of this table the R factor 
(the agreement index or residual) is defined as 

Z IIFo(S)t - IFc(s)ll  
$ 

R - ( 8 0 )  
Y IFo(S)l 

s 

The CPU time per cycle quoted is on an IBM 370/168 
with virtual memory. In cases 5 through 8, the 
refinement was still progressing when it was terminated 
because it had served its purpose. Next, we discuss this 
test experience in detail. 

First, we discuss cases 1 through 4. For all these 
cases, correct F o values (calculated from the correct 
positions of the atoms) and correct B values were used 
for the refinement, only atomic positions were refined, 
and conjugate directions were not used. Case 1 is for a 
40-atom structure with 1 /k data and is typical of a 
small structure. For this case also the method worked 
successfully, starting with very large initial errors, 
showing its effectiveness on a small structure. Case 3 is 

Table 7. Summary  o f  some results on hypothetical test structures in space group P 1 

See the text for a detailed discussion of these cases. 

1 2 3 4 5 6 7 8 9 

Number Number 
Number Resolution of Initial values of CPU 

Case of of data unique refinement time per 
no. atoms 1/Sma x reflections I Arlr.m.s. I Arlpeak R factor cycles cycle 

(A) (A) (A) (s) 
1 40 1-0 2147 0.721 1.009 0.546 15 23 
2 100 1-5 1523 0-719 1.170 0.500 20 22 
3 400 1.5 6156 0-702 1.160 0.541 21 67 
4 400 2.0 2610 0-702 1.160 0.450 25 49 
5 100 1.5 1523 0.712 1.240 0-502 13 22 
6 b 100 1.5 1523 0-712 1.240 0.502 13 22 
7 c 100 1-5 1523 0.712 1.240 0.526 10 22 
8 a 100 1.5 1523 0-712 1.240 0-484 12 22 

10 11 12 

Refined values a 

I Arl r.m.s. I Arl peak R factor 
(k) (k) 

0.025 0-093 0.018 
0.019 0.087 0.008 
0.020 0.125 0.009 
0.087 0.312 0.018 
0.068 0.289 0.038 
0-038 0.210 0.019 
0.171 0.746 0.091 
0.074 0.366 0.042 

Notes:  (a) In many cases the refinement was still progressing when it was terminated. (b) This case is same as case 5 but with the use of 
conjugate directions, also used for all the eases following it. (c) In this case initial Fo values were incorrect. After six cycles of the refinement 
correct F o values were used. (d) In this case initially all atoms were assigned the average B value. After nine cycles of the refinement correct 
B values were used. 
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typical of a small protein. Case 4 is of particular 
interest for proteins with limited data. In this case, 
with only 2 /~, data, the method was able to refine all 
atomic positions within tolerable errors in the co- 
ordinates. For this case although the final R factor was 
less than 2%, the positional errors were much higher 
than for cases 1 through 3. This shows the problem of 
limited data in protein crystallography. In such situa- 
tions, since the ratio of the number of unique reflections 
to the number of parameters is low, even though the R 
factor can be reduced to a fairly low value, the corre- 
sponding errors in the parameters tend to be relatively 
high. 

Cases 5 and 6 show the effect of the conjugate- 
directions method. These cases are similar to cases 1 
through 4 in all respects except that conjugate directions 
were used for case 6. Starting with identical initial 
errors, after 13 cycles of the refinement, case 6 
achieved lower errors and a lower R factor compared 
with case 5. Also for cases 1 through 5, where the 
conjugate-directions method was not used, the op- 
timum step size fluctated widely, while for case 6 it was 
fairly close to unity. Because of these reasons, in all our 
further work we used the conjugate-directions method 
wherever applicable. 

Case 7 shows the effect of errors in observed 
diffraction data. For this case, we used incorrect data, 
F ' ,  which were obtained from the correct data, Fo: 

F'(s)  = Fo(s) x (1 + Isl x ERROR), (81) 

where ERROR is a uniformly distributed random 
variable with zero mean and a tr value of 0.4. The 
above relation introduces more error in high-angle 
reflections compared with low-angle reflections. The R 
factor of F" [obtained by replacing F c by F" in (80)] 
was 0.147. After six cycles of the refinement with the 
incorrect data, IArl r m s, IArlpeak, and the R factor 
decreased to 0-362 A~ 0"-852/~, and 0.229 respectively. 
At that point all these parameters were consistently 
decreasing and they would have decreased much 
further. This shows that a meaningful refinement can be 
carried out with somewhat incorrect data. After cycle 
6, correct Fo were used. The refined values indicated in 
Table 7 are after four more cycles of the coordinate 
refinement. The use of correct F o increased the pace of 
the refinement. At this stage also the refinement was 
progressing smoothly. 

Case 8 shows the effect of incorrect B values on the 
refinement. For this case, initially all atoms were 
assigned the average B value of 12.0 and only the 
positional refinement was carried out using correct F o 

values. The R factor due to incorrect B values was 
0.127 (F c calculated with correct positions and 
incorrect B values). After nine cycles of the refinement, 
IArlr.m4., IArlpeak, and the R factor had decreased to 
0.149 A, 0-555 A, and 0.135 respectively, and were 
decreasing consistently. This shows that a meaningful 

positional refinement can be carried out with only 
average B values and in the initial phase of the refine- 
ment the B refinement is not necessary. As discussed 
before, the B refinement with large positional errors 
could actually lead to instability. After cycle 9, correct 
B values were used which immediately reduced the R 
factor to 0-094. The refined values indicated in Table 7 
are after three more cycles of the coordinate refine- 
ment. Again the correct B values increased the pace of 
the refinement. 

In case 9 (not shown in the table), B values were also 
refined in addition to the coordinates. For this case the 
initial parameters were identical to those for case 8. 
But, in this case, later in the refinement, instead of using 
the correct B values we refined B values also. The 
progress of this refinement is shown in Fig. 2. Cycles 7, 
11, 12, 16, 17 and 20 were B refinement and the 
remaining 15 cycles were the coordinate refinement. 
The initial values of IABIr.m.s. and IABIpeak were 3.55 
and 6.0 respectively. After cycle 21, the values of 
IArlr.m.s, IArlpeak, IABIr m s , IABIpeak and the R factor 
were 0.04 A, 0.20 A, 0.29, 1.39 and 0.017 respec- 
tively. In this case, the conjugate-directions method was 
not used for cycles 7, 8, 11, 13, 16, 18, 20 and 21, 
because the refinement cycles previous to these were on 
parameters of different type. 

In case 10, we refined both coordinates and B values 
using incorrect data. The starting atomic parameters 
for this case were the same as in case 9. But, for the 
purpose of refinement, F" values (81), with the tr value 

~n 0.40. 

"~ 0.30- 

u tr 0.20 

0.10] 
I'rlrm s 

REFINEMENT CYCLE 
2~ 

Fig. 2. Progress of the test refinement in case 9. Horizontal 
segments of the I A r l r . m . s .  curve indicate B refinement. 
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of ERROR being 0.3, were used. The R factor of F" 
was 0.11. The progress of the refinement is shown in 
Fig. 3. Cycles 6, 10, 14, 19, 20 and 24 were B 
refinement and the remaining 18 cycles were co- 
ordinate refinement. At the end of cycle 16, I Arlr.m.s., 
IArlpe~k and the R factor had reduced to 0.152 /~, 
0.586 J~ and 0-122 respectively. This value of the R 
factor is very close to the R factor of the incorrect data. 
This indicates that the refinement can be carried out to 
the limits of the accuracy of the data. This is a very 
encouraging result. After cycle 16, we used correct F o 
values. After eight more cycles of the refinement the 
values of IArl r m s , IAr[peak, [Anlr .m.s. ,  [ABlpeak and the 
R factor were 0.'0"62 A, 0.367 A, 0.82, 4.08 and 0.033 
respectively. If we had carried out the refinement 
further, all these parameters would have significantly 
decreased. In this case the conjugate-directions method 
was not used for cycles 6, 7, 10, 11, 14, 15, 17, 19, 21 
and 24. 

Programming in space group R3 

We programmed the new algorithm in space group R3. 
These programs were used for the refinement of insulin 
(Isaacs & Agarwal, 1978) and for a test refinement of a 
small structure. Here we mention some of the main 
features of the R3 programs. 

For these programs, we used the hexagonal set of co- 
ordinates (a = b, a = fl = 90 °, ~ = 120 °) and selected 
( 0 -  ~, 0 -  l, 0 -  1) as the asymmetric unit. For the 
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Ib ib z'o z~ 
REFINEMENT CYCLE 

Fig. 3. Progress of the test refinement in case 10. Horizontal 
segments of the IArl r.m.s, curve indicate B refinement. Incorrect 
F o were used up to cycle 16. 

purpose of electron density computation, the grid 
points were selected parallel to the axes and included 
the xy  edges of the asymmetric unit (x = 0, y = 0, 
x = ~, y = ~). Part of the electron density contribution of 
the atoms lying close to the xy  edges may fall outside 
the asymmetric unit. By applying proper symmetry 
operations, this contribution is added to equivalent grid 
points within the asymmetric unit. Since the atoms on 
the z axis have only three symmetry positions in the 
unit cell, compared with nine for other atoms, they were 
assigned occupancies of 3/9 to account for this. The 
two-Gaussian approximation of the atomic form 
factors was used for the purpose of structure factor 
computation. In the FFT computation of electron 
density, the first transform was computed along the z 
axis for all grid points in the asymmetric unit. After this 
step, the transform points beyond/max were discarded. 
Next, for each I index, transforms in the xy  plane were 
computed, making full use of the symmetries. This 
approach minimizes the storage and computation 
requirement. The data expansion, beyond the asym- 
metric unit, is only for a plane at a time. 

For the gradient computation, the single-Gaussian 
approximation of the atomic form factors was used. In 
R3, Dz(s ) and DB(s ) [(54) and (55)] have symmetries of 
R3 and their FFT computation is identical to the 
electron density map calculation in R3. For this 
purpose the steps outlined above can be repeated in the 
reverse order. But, Dx(s ) and Dy(s) do not have the 
symmetries of R3. Therefore the FFT routines for 
these have to be modified somewhat. In addition, this 
creates a problem for atoms lying close to the xy  edges 
of the asymmetric unit. In this situation the grid points 
outside the asymmetric unit cannot be brought inside 
by applying symmetry operations. Therefore dx(r ) and 
dy(r), the Fourier transforms of Dx(s ) and Dy(s), have 
to be calculated for - 6  _< x _< ~ + 6, - 6  _< y _< 1 + 6, 0 
< z < 1, where 6 is the width of the rim around the 
asymmetric unit and is set approximately equal to the 
maximum diameter of the atoms. This is shown 
graphically in Fig. 4. Therefore, for Dx(s ) and Dy(s), 
after computing the transform in the xy plane, the 
'electron density' was retained for the larger area 

/ 
. . . .  _/ 

X 
Fig. 4. xy plane of the asymmetric unit in R3. Solid heavy lines 

indicate the boundaries of the asymmetric unit and dashed lines 
indicate the boundaries of the rim used for the purpose of 
gradient computation; 6 is the width of the rim. 
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(shown by dashed lines in Fig. 4) and the transforms 
along the z axis were computed for all grid points 
within this area. The additional computation because of 
this is very small. 

The single-Gaussian approximation was also used 
for computing the diagonal normal-matrix terms. The 
interaction between the x and y terms of the same atom 
was accounted for. Their fast computation was carried 
out according to (62) and (63). Since the single- 
Gaussian approximation was used, the summation in 
(63) consisted of only one term. The multiplicities of the 
symmetries were accounted for by multiplying (62) by 
an appropriate constant. 

Test refinement of  a small structure 

We used the R3 programs to test the radius of 
convergence of the method on a small structure, 6- 
acetyldolatriol, C2zH3404. The hexagonal cell param- 
eters for this structure are a = 24.124 and c = 9.552 
A. This structure has been solved by Von Dreele (1977) 
using anisotropic least-squares refinement. He kindly 
supplied us with the X-ray diffraction data and the 
anisotropicaUy refined atomic parameters. Although the 
diffraction data extended up to Sma x = 1.69 (0.77 A 
resolution data), the R factor v s  s curve for the aniso- 
tropically refined structure appeared most consistent 
only up to s = 1.0. Therefore, for our refinement we 
used only 1 /t~ data ($max = 1.0). The anisotropically 
refined structure had an R factor of 0.07 for all 1054 
reflections up to $max = 1.0. For the test refinement, we 
introduced random errors (IArlr.m.s. = 0"75 ]~, IArlpeak 
= 1.27 A) in the positions of all non-hydrogen atoms of 
the structure, assigned the average B values to these 
atoms, and removed all hydrogen atoms from the 
structure. Because of the large errors, the starting 
model bore no resemblance to the actual structure and 
did not even look like a model of an atomic structure. 
In this structure, some of the bonds were as short as 
0.64 A, some atoms had as many as five atomic 
contacts of less than 2 A, three of those with non- 
bonded atoms, many of the bonded atoms were more 
than 2 A apart. We refined this structure initially using 
sins x = 0.55 (1 .82/~  data) and as the refinement pro- 
gressed this was gradually increased to 1.0 (1.0 A 
data). The initial R factor was 0.475 for the 1.82,4, 
data and 0.5 for the 1A data. After ten cycles of the 
x y z  refinement and one of B, the R factor for 1041 
reflections (Sma x = 1.0, limiting value of I F o l / I F c l  = 
4.0) dropped to 0.138. At this stage, we included 34 
hydrogen atoms at appropriate positions, which reduced 
the R factor to 0.129. Three more cycles of the x y z  
refinement and one of B reduced the R factor to 0.096, 
to be compared with the value of 0.07 for the aniso- 
tropically refined structure. The refinement converged 
to essentially the same positions. This test shows that 

the structures with very large initial errors could be 
refined without any human intervention as long as all 
non-hydrogen atoms are included in the model. The 
average CPU time per cycle for the refinement was 20 s 
on an IBM 370/168. 

Use of  the method to obtain a higher-resolution protein 
map 

The large radius of convergence of the method can be 
used to obtain a high-resolution protein map starting 
from a low-resolution map. The method consists in 
refining by this least-squares method the positions and 
thermal parameters of a set of dummy atoms placed in 
the initial low-resolution electron density map. Phases 
calculated from these refined atomic positions are used 
to extend the resolution and improve the quality of the 
electron density map. The large radius of convergence, 
together with the severe restrictions placed on the initial 
positions of the dummy atoms by the requirement that 
they lie within limited regions of the isomorphous 
electron density map account for the success of the 
method. The method has been successfully used to 
phase the structure factors of 2-zinc insulin at a 
resolution of 2 A and 1.5/~, starting from a set of iso- 
morphous phases at 3 A resolution. The details of the 
method are covered in the paper by Agarwal & Isaacs 
(1977). 

Refinement of  the insulin structure at 1-5/~  resolution 

The R3 programs were also used to refine the crystal 
structure of 2-zinc insulin at 1.5 A resolution. The 
details of the refinement are contained in the paper by 
Isaacs & Agarwal (1978). Rhombohedral 2-Zn insulin 
crystallizes in the space group R3, with hexagonal cell 
parameters a = 82.5 and c =  34.0 A. There are two 
zinc atoms and two insulin molecules each of MW 
5780 daltons in the asymmetric unit. The stoichio- 
metric solvent content of the asymmetric unit is 
equivalent to 280 water molecules. Data to a resolution 
of 1.5 A were available. For the refinement, the initial 
model consisted of 853 non-hydrogen atoms including 
74 solvent atoms. The refinement gave consistent 
convergence from an initial R factor of 0.282 for 6572 
reflections at 1.83 A resolution, to a final R factor of 
0.113 for 11890 terms (limiting ratio of I F o l / I F c l  = 
1.8) to 1.5 A resolution (0.148 for all 13424 terms). 
The final refined model consisted of all 813 non- 
hydrogen protein atoms (including 2 zinc atoms and 10 
atoms assigned half occupancy), 264 solvent atoms (of 
which 82 were assigned half occupancy), and 749 
hydrogen atoms. The average CPU time per cycle was 
3 min on an IBM 370/168. 



808 A NEW LEAST-SQUARES REFINEMENT TECHNIQUE 

Programming in space group P21 

We programmed the method in space group P21 also. 
These programs were used for the refinement of 
beavuricin barium complex and myoglobin. Here we 
mention some of the main features of the P2 t programs. 
We used the two-Gaussian approximation for all 
calculations and selected (1,½,1) as the asymmetric unit. 
For atoms close to the y = ½ plane, the part of the 
electron density contribution lying outside the asym- 
metric unit was added to equivalent grid points within 
the asymmetric unit, by applying the symmetry opera- 
tion (:~, ½ + y, ~). In P2~, Dy(s) and Ds(s) have 
symmetries of P2t and their Fourier transforms are 
computed in a normal manner. But Dx(s ) and Dz(s ) do 
not have the symmetries of P21; therefore the FFT 
computation for these had to be modified somewhat. 
Both Dx(s) and D~(s) have twofold symmetries, but of 
different types. Their Fourier transforms have the 
symmetry relation, dx(xd,,z ) = -dx(YC, ½ + y, ~), (similar 
expression for d,). Therefore, in the computation of 
G(Xm) and G(zm) (52), for points outside the 
asymmetric unit, dx(r ) and d~(r) were obtained by the 
above relation. The normal-matrix terms corresponding 
to the interaction between the x and z coordinates of the 
same atom were also calculated. 

increasing the sampling interval, by using the method of 
Ten Eyck (1977), xyz refinement time was 38 s per 
cycle. 

Preliminary refinement of myoglobin at 2 ,~ resolution 

Preliminary results with sperm whale myoglobin (~ 
1400 atoms, ~9000 reflections to 2 A resolution, data 
supplied by Dr T. Takano, MRC, Cambridge) show 
that the method is very effective with more limited data 
also. Starting with the coordinates refined by Takano 
(1977) using the Diamond method (1966, 1971, 1974), 
four xyz and three B refinement cycles reduced the R 
factor from 0.265 to 0.165, with very little distortion. 
The r.m.s, shift for all the atoms including solvent was 
about 0.26 A. The refinement time was about 80 s per 
xyz cycle on an IBM 370/168. Use of the Ten Eyck 
(1977) method to increase the sampling interval could 
reduce this time to 55 s per cycle and extrapolations 
indicate that times for 1.5 A data (~19 000 reflections) 
and 1.2/~ data (~37 000 reflections) would be about 2 
and 4.2 min respectively. 

Summary and conclusions 

Refinement of the barium beavuricin complex at 1.2 .~ 
resolution 

The barium complex of the antibiotic beavuricin (space 
group P21, data supplied by Dr Geddes, Leeds Uni- 
versity) has been refined by this procedure and in an 
independent study by Dr Geddes using conventional 
methods. The manuscript comparing results is in 
preparation. The asymmetric unit contains 370 non- 
hydrogen atoms (628 total) and there are 7352 unique 
reflections in the 1.2 A data set used. The starting 
model for this refinement had an R factor of 0.206 
(7178 reflections, limiting ratio ofFo/F c = 4.0) and the 
conventional individual-atom least-squares refinement 
had failed. This refinement procedure was used on this 
model in a straightforward fashion, six cycles of xyz 
and seven of B refinement brought the R factor down to 
0.13 (6677 reflections, limiting ratio ofFo/F c = 4.0, 20 
criterion used). Adding two solvent molecules (ben- 
zene), obvious from the F o - F~ map, further refinement 
with eight xyz and three B cycles (with regularization 
before the last two cycles) produced an R factor of 
0.121. Randomizing these coordinates with the intro- 
duction of a r.m.s, error of 0-15 A (peak error of 0.25 
/~) five times, followed by three xyz cycles each, brought 
the atoms to the original positions with an average 
(over all atoms) r.m.s. (over five cycles) difference of 
0.029 A. The refinement times for each cycle were 59 s 
for xyz and 45 s for B on an IBM 370/168. After 

In this paper a new least-squares atomic-parameter 
refinement technique has been presented for which the 
computation requirement is K t N  log N + K2M, where 
K 1 and K 2 are constants, and N and M are numbers of 
reflections and atoms respectively. The technique uses 
the fast Fourier transform algorithm (FFT) at all stages 
of the computation, K1N log N represents the FFT 
computation and K2M represents the computation 
required in setting up the electron density array etc. The 
tests of the method indicate a radius of convergence of 
approximately 0-75 ,/k, which is considerably greater 
than that for the conventional least-squares refinement 
method. The method has been successfully applied for 
the refinement of insulin at 1.5 ,~, resolution (Isaacs & 
Agarwal, 1978) and barium beavuricin complex at 
1.2 A resolution (manuscript in preparation), and has 
also been used for preliminary refinement of myoglobin 
at 2 A resolution. 

Our experience with the method indicates that it is 
not very effective in refining atoms with high B values. 
The reason for this is that the scattering contribution of 
high-B atoms drops very sharply with the s value. The 
scattering intensity [g2(s)] of a carbon atom with a B 
value of 30 drops to 0.56% (at 2 A resolution) and 
0.02% (at 1.5 A resolution) of its value at s = 0. The 
corresponding numbers for an atom with a B value of 5 
are 13% (at 2 A resolution) and 5% (at 1.5 A resolu- 
tion). Thus, in effect high-B atoms are refined using 
only low-resolution data. This makes a very strong case 
for collecting low-temperature X-ray diffraction data. 
This has two advantages. First, at low temperatures the 
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B values are lower, making it easier to refine a structure. 
Second, at low temperatures the data extends to a 
higher resolution thus increasing the ratio of the 
number of observations to parameters, leading to a 
higher accuracy in refined parameters. The tests of the 
method also indicate that the accuracy of the refine- 
ment is largely limited by the accuracy of the data 
available. Therefore, we also recommend that the data 
be collected on the fewest possible number of crystals 
and over the shortest possible time, thus leading to a 
more consistent data set. 

I am very grateful to Drs Richard Garwin and David 
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also thank them for continued guidance, encourage- 
ment, and many useful suggestions. Thanks are also 
due to Drs Karl Hardman and Neil Isaacs for many 
fruitful discussions and suggestions. Professor Dorothy 
Hodgkin of Oxford University and Dr Guy Dodson of 
York University provided the moral support and the 
data for insulin refinement. Dr. A. J. Geddes of the Uni- 
versity of Leeds provided the data on barium 
beavuricin complex, Dr T. Takano of Cambridge Uni- 
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Correlation between Third Cumulants in the Refinement of Noneentrosymmetrie 
Structures 
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It is shown that correlation between the third-cumulant coefficients in noncentrosymmetric structures 
restricts the number of coefficients which can be refined. In the space group P1 all ten coefficients of one atom 
have to be kept fixed. 

With the accurate neutron diffraction data that is now 
becoming available, it is possible to refine third- (and 
even tburth) cumulant coefficients. This note is con- 
cerned with the restriction on the number of refinable 
third-cumulant coefficients, arising from correlation 
between those coefficients in noncentrosymmetric 
structures. The symmetry restrictions on cumulants for 
atoms at special positions are tabulated in 

*Permanent address: Materials Physics Division, AERE Hat- 
well, Didcot, Oxfordshire OX 11 0RA, England. 

International Tables for X-ray Crystallography (1974) 
(IT) and by Birss (1964) (who works in a Cartesian 
coordinate system). 

The structure factor equation including third cumu- 
lants is of the form 

F ( H ) =  ~ f~ exp(27dxihl-  bijhihj-- icijkhihjhk) , (1) 

where H is the diffraction vector, and h i (i = 1, 2, 3) are 
the Miller indices. If the third-cumulant coefficients cij k 


