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ABSTRACT

| mprovementsto the Pseudospectral Electronic
Structure M ethod and Experimental Protein Model

I nitiation

Burnham H. Greeley

This dissertation comprises two works in the field of molacmhodeling. First,
it presents improvements and a significant reformulatiofrreésner’s pseudo-
spectral method for Hartree-Fock electronic structureuwations into a hybrid
method using both analytic and grid-based integrationreelse The improve-
ments are applicable to othab initio electronic structure methodologies as well.
It describes the use of and improvements to a new approa@ngrating integrals
required for the core grid-based method. Additionally, enptex reformulation
relying on fast analytic methods and an efficient selectioth @ntrol structure
allows the inclusion of selected analytic correction tergneatly reducing the
required grid density. Absolute energies agree with cotiweal basis set codes
to within 0.25 kcal/mole, and relative energies agree ttebéhan 0.1 kcal/mole
for a wide variety of test molecules. Accelerations of CRds of as large as a

factor of 6.5 are obtained as compared tauUSsIAN 92, with the actual timing



advantage increasing for larger basis sets and larger mekecThe method is
shown to be highly reliable and capable of handling exterdesis sets.

Second, it presents an investigation into a novel methoxlitéi model build-
ing through fragment placement. Despite continuing effgtotein structure de-
termination from X-ray crystallography data at lower reg@ns usually requires
manual intervention. Placement of atoms in the partialcttine at the start of
model building can be particularly critical since errors dg self-reinforcing in
ensuing work. The approach uses a coarse six-dimensialapace search fol-
lowed by a constrained minimization. Results are given imgarison to a tool
based on an exhaustive six-dimensional search alone froopalar crystallog-
raphy package using ten sets of experimental data. Placevhanstandard set
of fragments shows equal or often significantly improvedeagrent with final

independently solved models.
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INTRODUCTION

With the enormous success of quantum mechanics and staltigtiysics in the

early 1900s there came the perception that the fundamentatigre was in place
that would allow, at least in theory, a detailed understagdi cellular processes
at a molecular level. This is among the most exciting of hus@entific endeav-

ors; the possibility of understanding how we ourselves tiondn the most basic
terms.

In this work we address advances in two areas applicables@Werarching
theme. We present significant improvements to the Pseudiwap&S) method
for solving the Hartree-Fock (HF) equations for the eleticcstructure of mol-
ecules. These advances are shown to achieve superiormarfoe and scaling
compared to conventional electronic structure codeswallgptheab initio mod-
eling of larger molecular systems than would otherwise k&sitsbe. This work
has already found application in areas such as the develdpheew polariza-
ble force-fields for use in protein chemistry, studies oatigke peptide energies,
protein solvation and mixed quantum mechanics/molecuéatanics (QM/MM)
simulations®™® We also present an investigation into an improved method for

building initial models from protein X-ray crystallograplidata. Proteins carry



out the bulk of the critical processes in the cellular maehiGreat strides have
been made in the past few decades in the ability to obtaictsiial models ex-
perimentally, but the model building stage can still be arggiand often requires

prolonged and close attention by a highly skilled crystgispher.

1.1 Large Scale Electronic Structure Calculations

Researchers made significant advances in the calculatiategfals fundamental
to the Hartree-Fock and related methods, based on the appficf recurrence
relationships. In chapter 2 we present two important appbas to the improve-
ment of the PS method. We show that modifications to a nucktacton in-

tegral (NAI) method increases the efficiency of the core eleetron integrals at
the heart of the numerical integration terms of the PS amprod/e also present
an algorithmic strategy which substantially reduces thalmer of grid points per
atom required to achieve accurate relative energies aatldonergies for calcu-
lations on large molecules. This method employs a largerbaurof analytical

integrals in the assembly of the Coulomb and exchange apsrtitan previously
used. The development of efficient recurrence schemesdaaluation of two-
electron repulsion integrals (ERIs) has significantly atlithe computational
effort required per integral, in part by reducing operatioants, in part by achiev-
ing better performance from reorganization of data stmestuAs we utilize only
two-center and a selected set of three-center ERIs, the ewailntegrals to be
evaluated in our formalism is orders of magnitude less thartonventional elec-
tronic structure codes. At the same time, this small subisettegrals includes
the largest (by at least an order of magnitude) terms in teetrelstatic energy;

we are therefore able to substantially reduce the numberidfpgints that we



employ, as the precision required of the numerical intégmatcheme to achieve
equivalent accuracy decreases accordingly. The overadise for applying two-

electron corrections to the pseudospectral calculatiahsw referred to as the
two-electron correction (TEC) algorithm in what follows.

We show the results of the accuracy and efficiency on a largeoeuof mol-
ecules and molecular conformations. These improvemeatsiescribed in the
context of HF theory, but similar results have been obtafbetiigher order cor-
relation methods. Formally PS methods scale computatioatilone order of
magnitude less than those of conventional solutions, &yversusN* for HF,
whereN is the system size. Careful implementation of cutoffs redube actual
scaling even further. This reduction allows treatment stemns much larger than
conventional codes, while maintaining chemical accuracy.

The chapter is organized as follows. Section 2.2 preseetgyémeral for-
malism for the HF solution to the Schrodinger equation. i8ac2.3 describes
the method that became the basis for most common convehsioladéions. Sec-
tion 2.4 gives a brief discussion of gradient calculationthie interests of moti-
vating the inclusion of first derivative terms in the TEC aigun. Section 2.5
discusses the computational issues faced by the convahsiolutions.

Section 2.6 provides an overview of the development of thioRBalism. The
full PS method is a complex, hybrid approach. We present arvaw with con-
centration on the structure necessary to understand théisamce of the work
described. Details of other aspects of the PS method carube fa previous pa-
pers!®16n section 2.7, we present the formalism associated witiT&@ algo-
rithm. Section 2.8 introduces recurrence formalism andudises some common

features, while the following section describes some basiomon definitions



and notation.

The complete formalism and our modifications to the Obai&eS@currence
techniques for NAl-type terméand a detailed analysis of the computational con-
siderations are given in section 2.10. Gill, Head-Gordoth Raple described an
algorithm for the efficient generation of general two-aleatintegrals and their
derivatives'® Our implementation differs markedly from theirs. Sectioh2fol-
lows the derivation of the subset of relations relevant ® TEC algorithm, and
describes the implementation in detail. Section 2.12 ptss&ccuracy and timing
tests, comparing our results with those obtained fronv &sI1AN 92.

In previous work, we have emphasized agreement with analytiethods of
the total energy, typically achieving a 0.1 kcal/mole levehgreement. However,
in reality, the only relevant quantities are total energifedences. By relaxing
the constraint on such close agreement of the total eneaytidplarly for large
molecules) but insisting on maintaining agreement fortredaenergies (easily
tested by studying a series of molecular conformations),aveeable to make
significant reductions in our computational effort. Withhne new framework,
we developed a parameter set which display very small totatgy deviations
(less than0.25 kcal /mole) from GaussiaN 92 for the small and medium-size
molecules we report here (the largest is porphine, with 88aj.

The methods implemented here form major parts of the comalgravail-
able PS-GVB/Jaguar package. Jaguar is widely used by batteatc and in-
dustrial institutions, further proving the stability, acacy and practical benefits
of the PS method.



1.2 Automated Feature Detection in Protein Crystallography

Despite a large amount of active research, methods foranieity deriving pro-
tein models from X-ray data automatically still do not workilenough at lower
resolutions € 2.7A and worse). Pushing the limits of resolutions at which $ool
can reliably solve structures automatically past the 3Akmesuld be a tremen-
dous boon to the field. In chapter 3 we present an investigatito a novel
approach to beginning model building through feature ragam. We present
an algorithm that performs a six-dimensional search thnaagelectron density
map (EDM), combined with functional minimization, capabfgositing accurate
placement of fragments of any arrangement of atoms. We shatttis method
produces substantially better initial fragment placermehain current methods,
using a much coarser sampling of trial poses.

The chapter is organized as follows. Section 3.1 gives d bvierview mo-
tivating the study of X-ray crystallography techniqued|deed by section 3.2
which details the theoretical framework of crystallogragnd problems pre-
sented by it. In section 3.3 we summarize the major effontg&rforming au-
tomated protein structure assignment to date. Sectiom8dduces the specifics
of our study and lays the mathematical groundwork. Sectibrd8scribes in de-
tail the algorithm we developed, while the following seatfarther discusses key
considerations. We present our results and compare thersitoilar approach,
FFFEAR part of the popular CCP4 crystallographic toolkit, in s&tt3.7. We
show that our approach achieves a more robust result whierdl tegainst a set of
ten X-ray data sets, albeit at the cost of substantially nsoreputer time. Sec-

tion 3.8 summarizes our conclusions, and suggests a dinefcti future work.



PSEUDOSPECTRAL ELECTRONIC STRUCTURE
CALCULATIONS

2.1 Overview

In the following pages, we describe our advances in elerstnucture calcu-
lations the context of Hartree-Fock (HF) theory. The HF agpnation is both
useful in its own right, and serves as a starting point foreramrcurate methods
that include higher-order electron correlation effectse Tact that these technolo-
gies apply to many correlation methods and, alternatelhealensity functional
approach to electronic structure calculations is an ingmigpoint that should not
be overlooked*2” However, we focus on single point and gradient HF calcula-
tions. The extensive body of knowledge in place, the redaimplicity of the HF
equations, and the fact that HF theory remains a basic pveltabl makes it the
best and most appropriate proving ground for our research.

As a matter of completeness, we begin in section 2.2 by tgati@ now stan-
dard derivation of the Hartree-Fock equations, startirfy Wie time-independent
Schrédinger equation. We complete the section by pregethia so-called re-

stricted closed-shell form of the equations. Section Z8ulises the usual method



of solution first proposed by Roothaan. We show how the intctidn of a set of
known basis functions converts the HF equations into a sggebraic equations.
We include a brief discussion of energy gradients in the Raar formulation
next. These equations are the foundation of the purely spegiproaches. Sec-
tion 2.5 analyzes the formal computational scaling of spéatethods based on
the Roothaan equations. These first sections follow therig¢isn of Szabo and
Ostlund closely®

Section 2.6 presents an alternate method for solving théhRan equations
that uses both the usual basis sets and a numerical gridaftegreeferred to as
the pseudospectral (PS) technique. Pseudospectral nsdthud been developed
and applied previously in solving other non-linear systepasticularly in fluid
mechanic€®3! We describe the PS formalism as it relates to the HF problem,
with special emphasis on the portions of the theory that een advanced by
the research described in this work. We discuss the fornadilngcof this newer
method and contrast it with that of the spectral approach.

Sections 2.8 and 2.9 lay a bit of groundwork for the analysisotlow by
describing general considerations regarding recurreacleniques and defining
some common terms. Sections 2.10 and 2.11 cover the detdlie advances
presented here in depth. Section 2.12 presents the re$@tsextensive set of
tests and comparisons. Section 2.13 concludes the chapter.

In presenting the background theory and new developmemtgronary goal
is to make clear the impediments to creating a computalpeéicient general
purpose program for solving the HF and related equationse érhphasis will

tend toward practicality on modern day computer architestu



2.2 TheHartree-Fock Equations

2.2.1 The Schrédinger Equation

We take as a starting point the time-independent Schrodemeation (TISE) for
an isolated molecular system. The TISE is an operator egeawequation which

states

Hly) = E[¢)

where’H is the Hamiltonian operator. Neglecting relativistic effe and written

in atomic units, the Hamiltonian operator for a system wittelectrons and\//

nuclei is
N 1 M 1 N M Z N N 1 M M ZZ
H=— —Vi— V2 — 44 — 4+ ALB

Here, uppercase labels refer to nuclei, while lowercass tefelectronsZ repre-
sents the atomic number of the nucl&i, refers to nuclear masses. Denominators
r refer to the distances between two objects, e,g.= |r,4| is the distance be-
tween electron a and nucleus A. See Figure 2.1 for an illistraf the definitions.
With the exception of a few universal constants, the TISEpsi@ly mathemati-
cal statement that describes the nature of a quantum syktisna. multi-variable
partial differential equation, solvable in closed form &mly a few special cases.
Various approximation techniques can be employed to pmdomething com-
putationally tractable Ab initio techniques refer to the class of methods derived
from the TISE without reference to empirically obtainedoimhation. In a sci-
entific sense, this not only improves our ability to assessvilidity of such a

method, it also places it in formal relationship to the exaeory. Though this



Tab

(=2

A rAB .

Figure 2.1: Diagram illustrating the molecular coordirgtetem definitions used.
Uppercase labels refer to nuclei (shown in red), lowercaisel$ refer to electrons
(shown in blue)

may not always guarantee that an approach can be systeliyatigaroved, it is
a powerful benefit in this regard. With this in mind, we outlithe approxima-
tions necessary to arrive at the HF equations, the most coityrasedab initio

method.

2.2.2 Born-Oppenheimer Approximation

The TISE contains both electronic and nuclear terms. Nactesufficiently mas-
sive compared to electrons that, in chemical systems, tood gpproximation
electrons can be viewed as moving in a field of fixed nuclei.hig,tthe Born-
Oppenheimer approximation, the nuclear kinetic energylmmneglected. The
nuclear-nuclear repulsion energy becomes a constant anassoo effect on the
wavefunction. Dropping those terms from the Hamiltoniaaoltain a new equa-

tion for what we will call the electronic wavefunction

H8|we> :Ee|¢e> (21)
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Where N 1 N M ZA N N 1
_ \72 _ __
H, = ; SV ; ; S ; ; - (2.2)

The electronic wavefunction still depends on the nucleardioates, but in a
parametric fashion. The effects of finite nuclear mass careiogroduced after
solving this equation. However, for most applications i camply be ignored.
For our purposes then,. ) becomes the item of interest. From here on, we will

drop the subscript, and refer to the electronic wavefuna®| v ) .

2.2.3 The Functional Variation Technique

Eq. (2.1), while simpler, is still intractable. Hartreegnally derived the precur-
sors to the HF equations by making an ansatz at this stage. il&rnive at the
same results using a general technique known as functianaton. Rather than
solving Eq. (2.1) explicitly for| ¢ ) , we introduce a trial wavefunctioh@ . The

expectation vaIuéE[@ﬂ of the Hamiltonian for this function is

E[¢] = (¢ [H|¥) (2.3)

i.e. E[zﬂ is a functional of | @E> . It can be easily shown that the eneigyf the
true wavefunction is a lower bound on the ene@w } , given the normalization
constraint( ¢ | ) = 1. Hence, within the spectrum of normalized functions rep-
resentable by the trial function, the one with the lowestgnéest approximates
the exact wavefunction. Formally, to enforce the norméliraconstraint, we use

the method of Lagrange’s undetermined multipliers, anchddfie new functional

L[] = (D H[$) — (P |¥) - 1)
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The condition that the energ@[@ﬂ] be minimum is equivalent to requiring that
the first order variation ofﬁ[zﬂ with respect to infinitesimal changes in))
equal 0. (Technically this just guarantees thas stationary, but normally it will

be a minimum); i.e. we require that

oL
oY
Before we can carry out the variation, we must choose a fortiéotrial function.

This choice differentiates HF from other theories.

2.2.4 The Hartree-Fock Approximation - Slater Determigant

Hartree originally proposed using a trial function consigtof a product of sin-
gle electron spin orbita® This form is the simplest possible. It includes no
electron-electron correlation effects and is equivalertking each electron as
moving in the average field of all others. The wavefunctiothe Hartree ap-
proximation lacks a crucial property, however. The wavefiom has no specific
symmetry, and doesn’t (automatically) satisfy the Pautil@sion principle. To
overcome this, we use an anti-symmetrized product of sfuitats. Certain prop-
erties of this trial function are most easily understood wités written as a Slater

determinant. We write

Xa(X1)  xp(x1) o0 Xe(X1)

@D (Xl, Xg, . .. ,XN) _ (N')_% Xa<:X2> Xb(:x2) Ce Xc(:x2) (25)

Xa(XN) Xp(XN) o0 Xe(Xn)
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where the vertical lines symbolize the usual notation fdedrinants. Herey
denotes a spin orbitalV is the number of electrons. Note that exchanging any two
electrons corresponds to the interchange of two rows otaighiwhich changes
the sign of the determinant, and, by extension, of the wanatfon. Thus any
trial function constructed from a linear combination oft8tadeterminants will be
antisymmetric with respect to the exchange of two electrdrise Hartree-Fock
approximation equates to choosing a single Slater detamhfor the form of the

trial wavefunction. For brevity we denote this function fag; xs - - - xn ) -

2.2.5 Orthonormality Constraints

Using the usual properties of determinants, it becomes thedawe may require
the spin orbitals to be orthogonal without loss of generalihis restriction sim-
plifies the expression for the expectation vam[ezﬁ ] greatly by eliminating over-
lap terms. With a single Slater determinant, becomes a functional of the set
of spin orbitals{ Xa}- To enforce orthonormality, we must use a set of Lagrange

multipliers. For an arbitrary choice, we have in general

N

L{xa}] = Oaxe v HIxaxa - xw) = DY can({ Xa | Xb) — 6at)

a=1 b=1

Because” is real, the multipliers,, form a Hermitian matrix. Therefore there
exists a unitary transformatidd which diagonalizes this matrix. The expectation
valueF [ 0 ] is invariant under a unitary transformation of the spin talsi so we

are free to restrict ourselves further to a set for which

ﬁ[{Xa}] = <X1X2"'XN |H|X1X2"'XN> —Z€a(<Xa|Xa> —1) (2.6)

a=1
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2.2.6 Derivation of the Hartree-Fock Equations

Having chosen the form of the trial wavefunction, we must revaluate the ex-
pectation value of the Hamiltonian. This can be done eagilndting that the
Hamiltonian is built from two types of operators, ones immg the coordinates
of a single electron and those dependent on a pair of electtdsingh(1) to de-
note a general single electron portion of the Hamiltoniaa ttuelectron one and
v(1,2) the portion involving the electron pair one and two, the etdc Hamil-

tonian (Eq. (2.2)) can be written as

The expectation values are then

<><1><2~-~><NIzh(i)lxl><2~-~><zv> = (Xa|hl Xa)

and
(xixz- XN|ZZ i J) xixa - xw )
i=1 j>1

N
D ((xaxe o] xaxs ) = (Xaxo [0] XoXa )
1 b>

I
M=
Q

N
D ({(Xaxs [0 XaXs ) = (XaXo [0] XoXa )
1 b=

l\DI»—t
WE

[y

Q
Il

All other terms are eliminated due to the orthogonality af pin orbitals. The

first term in the second equation comes from what one mightlwalnormally
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ordered product of spin orbitals. The second term represempurely quantum
mechanical effect due to the antisymmetry of the wavefonctilt comes from
the Slater term with the coordinates of electrons one andcekgbanged.

With these expressions in hand, we can immediately writendibwe expecta-

tion for the energy of| x1x2- - xn ) :

N

E[{xa}] = {Xalllxa)

a=1

N N
1
+ 52 2 (Oaxe [olxaxs ) = (xaxo [0 xexa )
a=1 b=1
Referring to Eqg. (2.2) we have
M
B1) = v -3 24 2.7)
2 Gy 1A
and
1
v(1,2) = — (2.8)
T12

Applying the requirement thaC remain stationary with respect to arbitrary

small variations in the functionSy, } then gives a set ol equations
N
[h(1) + )~ J(1) = Ko(1)] xa(x1) = €axa(x1) (2.9)

b=1

where we define the Coulomb operatfy(1) as

To(Uxalar) = [ / s X (%) X0 (32)] Xa (1)
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and the exchange operafoy(1) as

Ko(D)xa(xr) = [ / dxcs X (%23 v (32)] X (1)

These are the Hartree-Fock equations. The Fock operatefirsed as
N
F1) = h(1) + ) To(1) = Ky(1)

b=1

Thus Eq. (2.9) is an eigenvalue equation for the Fock operato

2.2.7 Restricted Closed-Shell Hartree-Fock

To this point we have used a generalized spin orhitalVe now make the transi-
tion to spatial orbitals. For simplicity, we will confine @alves to a closed-shell
system, i.e. one with an even number of electrons. The spitats can be written

in terms of spatial orbitals and two spin functions. We define

a(r)or(w)
a(r)B(w)

Xa(x> =

with o and representing orthonormal spin states. We impose thectstrithat
each spatial orbital be doubly occupied. They form a setg? orthonormal
functions{wa}. Substituting these definitions into Eq. (2.9) and integgpover

the spin variablev, we obtain the closed-shell spatial Hartree-Fock equation

f(1>¢a<r1) = 5a¢a(r1> (210)
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where

N/2

F1) =h(1)+ ) 2J,(1) — Ky(1)

Baler) = [ [ e vy e une)] atr)
Kil1)¢(r1) = [ [ dea i ra)ri valen)] e

are the spatial Fock, Coulomb and exchange operators,atesge. The phys-
ical interpretation here is intuitive. Each electron hasaul@mbic interaction
with all the others, but has an exchange interaction witly tvalf of the rest by
virtue of the orthogonality of the spin functions. This agnts for the factor of 2
multiplying the J operator that's missing from th& operator in the spatial Fock

operator.

2.3 TheRoothaan Equations

Roothaan suggested a method by which the integro-diffedesquations for the
spacial orbitals can be turned into a set of matrix equatidiesdo this, the un-
known spatial orbitalg+, } are approximated by an expansion in terms of a set

of known basis functions:

M
wa = Z CVG,¢I/ (211)
v=1

(Here M is the number of functions in the expansion). The solutiomldde

exact in the limit that the sef¢, } becomes complete. Substituting Eq. (2.11)
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into Eq. (2.10), multiplying byp,, on the left and integrating, we have

M M
ZFMVCVazgaZSuyCya a:1,2,...,N/2
v=1 v=1

where we define the Fock matixas

Fy = / dry & (r1) F(1) (1)

Since the basis functions are not typically orthogonal, i8e define the overlap

matrix S.

S = / dry & (11)6, (1)

The problem can now be written shorthand in matrix notat®n a
FC = SCe (2.12)

These are the Roothaan equations. Through this technigivingthe Hartree-
Fock equations has become a matter of solving an eigenvalugtien for the
Fock matrixF to obtain the coefficient§’,, and eigenvalues,.

The Coulomb and exchange terms in the Fock matrix become

N/2

2 — K= /dr1 on (1) [2J4(1) — Ko(1)] ¢y (r1)
N/2
= Z Z CraCiy [2(pv|Ao) — (po|Av)]
a=1 Mlo

- Zp)\a [(pv|Ao) — %(MO’P\I/)] (2.13)



where we define the the density matgibby
N/2

Pro = 2 2{: CjAa(j;a
a=1

and

(1v/70) = / . dead, (v1)0 (1) 65 (r2) o (12)

denotes the two-electron repulsion integrals (ERIS).

For completeness, we define the “core” matrix elements

Hﬁzofe = /drl ¢Z(r1)h(1)¢u(rl)

whereh(1) is given in Eq. (2.7).

In terms of these quantities

1 1
Be =D o +5 D pwpro [(nvIAo) = 5 (no|rv)]
%

2N

is the electronic energy of the system.

2.4 Gradient Calculations

18

For gradient calculations, we no longer assume the nuckefiaed. At most

temperatures of interest, the momenta of the nuclei atesgligible, but changes

in the nuclear-nuclear repulsion terms are not. The Hafek energy is

E= Ee + LCIUC
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whereE, is the electronic energy given in the previous section and

VA
Vnuc = Z Z RAABB

A B>A

is the nuclear repulsion potential energy.
In Roothaan’s method the energy depends on the positiohselzpticitly and
implicitly through the coefficients’,,. The total derivative with respect to a par-

ticular coordinate, then, of the energy is

JE  OF 9B 90,
IXy  0Xa 2“: 230, o%,s

a

whereX 4 represents any of the three Cartesian coordinates of dtom

We may rewrite a portion of the right hand side in a useful wagdnsidering
the following. In the Roothaan formulation, the variatibnandition Eq. (2.4)
becomes equivalent to the condition thatbe invariant to first order with respect

to changes in the coefficient,,. From Eq. (2.6) we then have

OE 0
acua = acua zb: €p %: CxwCupSi

=25, ) CaSp (2.14)
The orthonormality condition is

Z CuaS/u/Cub = 6ab

|n%
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from which we obtain the expression

0C 14 OSuw
2 Z = Sm/cub = - Z Cuacubﬁ
iy

8Hco7"e O(pv|ra)  10(uo|iv)

Combining everything gives
dXA Z p,uz/ + = ; p,uljp)\cr 8XA - 5 8XA ]

0SS, OWiue
_9 ; W“”—aXA + 50

where
Wuy == 2 Z gacuacl/a

is the energy weighted density matrix. This expression ira®eéneficial property
that it does not require calculating derivatives of the ficeitsC,,. However, it

does contain first derivatives of the ERIs.

2.5 Computational Consider ations of the Roothaan Equations

Because the matrix elements Bfin the Roothaan equations depend on the ex-
pansion coefficient§’,,, the eigenvalue equation fércan not be solved directly.
Instead, the usual procedure begins by making an initiadgte the density ma-
trix p, calculating the resultant Fock matrix, then solving EqL22 for a new set

of coefficients. This new set defines a new density matrixctvim turn gives

a new Fock matrix. The process repeats iteratively untildgxesity matrix con-
verges (meaning to some level of precision the coefficierts fone iteration

equal those of the previous one). Because the equationdmuspeatedly solved
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until the coefficients no longer change, this process isaftéerred to as the self-
consistent field method.

We have yet to discuss the actual functional form of the Hfasistions. Most
practical software implementations use either Slater arsSian orbitals (func-
tions where the main radial character goes dsande~"", respectively). Slater
orbitals provide a better qualitative fit to the charactermofual molecular or-
bitals, but they are difficult and inefficient to use in thesigrtals needed. Integrals
over Gaussians are much easier to compute. Boys first seggesing Gaussian
functions in 195(2 Researchers have since proposed the use of contracted sets o
Gaussians (basis functions formed from a linear combinati&Gaussians) to bet-
ter mimic the form of molecular orbitals whilst reducing qoutational cosg*-3¢
In particular, we use Cartesian Gaussian functions. Semsext9 on page 33 for
details and notation.

The class of approaches based on the direct evaluation &Rlseare known
as spectral methods. Note the ERIs depend on four basisdaoactFormally,
calculating all the ERIs scales as the number of basis fonsto the fourth power.
The computational effort required to form these integralthe main roadblock
limiting the size of the systems that can be solved. Psewdtis techniques

reduce the rate at which the computational effort scales.
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2.6 Pseudospectral Theory

Pseudospectral methods are based upon representing hetw«meintegra(uyp\a)

as a quadrature over grid points:
(nv|ro) Z Qu(8)(8) Aro (8) (2.15)

whereg,(g) is an atomic basis functiom evaluated at the grid point locatig

and
gp 22195 (r)

A)\cr(g) = |I'—g|

(2.16)

is a three-center, one-electron integral (potential irtggepresenting the field at
g due to the product charge distribution of basis functionande,. This integral
has the same form as the nuclear attraction integrals (N¥siled as part of the
one-electron portion of the Fock operator.

The matrix(),(g) is a least squares fitting operator which is designed to fit any
right hand sidey, (g) A\, (g) in the region of space relevant to atomic basis func-
tion ¢,,. Briefly, functions on the grid are approximated by an expans terms
of a fitting basis. The overlap integrals of the fitting andnaitobases are calcu-
lated analytically. The full mathematical details of thispedure have been given
in several papers and we shall not repeat them Hefe'* 1> For our purposes,
one can think ofy,(g) as a set of quadrature weights that are specially designed
to provide accurate integration over the functign Because of this design, the
accuracy of the result for a given number of grid points isassarily much better
than for a generic quadrature scheme (e.g. Gaussian quagjrahless there are

instabilities in the fitting procedure. From long experienwe have been able to
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control the instabilities by a variety of techniques so thatalgorithm provides a
robust performance for arbitrary molecules.

Because of the projection onto analytical overlap integralr method re-
duces to the analytical result in the limit that the quadeatscheme becomes
exact. This can be accomplished either by making the fittagidocomplete with
respect to the right hand side or by making the underlyinglcptare on the grid
exact (in the latter case, one of course would not need tohesfitting basis). In
practice a combination of the two approaches is used to niekB$ results very
close, but not identical to, those obtained from analyticabry.

Substituting Eq. (2.15) into Eq. (2.13) leads to the follogviPS expressions
for J and K:

T =) Qu(®) I (8)9.(8) (2.17)

where the physical space Coulomb operat@g) is given by

J(8) = proAio(g) (2.18)
Ao
and
Ku =) Qu®)K.(g) (2.19)
where
K,(g)=>_ Anx(g)T(g) (2.20)
A

is the pseudospectral physical space exchange field. Téematliate quantity

T\(g) is defined as
Ti(g) = Y _ prrto(8) (2.21)
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These are the equations used in our electronic structukagea®s-GvB, prior to
the methods presented here. The formal scaling of thes¢ieqsizs N2 M (Where

N is the basis set size aid the grid size). Since the grid size scales linearly with
the addition of new atoms, comparing systems of differereg solved with the
same basis set, the scaling is proportionahtb With the use of integral cutoffs

this becomesV? for large systems.

2.7 Two-Electron Integral Corrections

2.7.1 Overview

From an early point in its developmemts-GVB incorporated analytical integrals
for one-center Coulomb and exchange terms. These termsraiéis number
and their evaluation analytically is obviously trivial;ie, the computational cost
of this strategy is virtually nonexistent. Accuracy of timeal energy is typically
increased by one to two orders of magnitude as compared tly pseudospectral
calculation for a grid of 1000 points/atom.

The development of very fast recursive two-electron irdeglgorithms pro-
ceeded to the point where the calculation of additionalgrats analytically be-
came worthwhile. We will show that through a judicious ordgrof the integrals
into classes, we can calculate analytically only the larégsd, for PS methods,
most challenging) terms. If these are a sufficiently smalttion of the total
number of integrals (which can be enforced by the use of f3)iadhe CPU time
required is essentially negligible and permits a 3-5-felduction in grid size for
a comparable level of accuracy.

We consider three general types of integrals, those of tie faa’|bc), (aa’|bb')
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and (abla’t’). Primed letters indicate basis functions centered on theesgtom
as their unprimed counterpart. For example, with integrathe form (aa’|bc),
a anda’ are (possibly different) basis functions on the same ataom(a) andb
andc are basis functions on atoms B and C, respectively. Beset#sating the
number of integrals, these forms render the calculationdi¥idual integrals less
expensive than for the general for(raab|cd), as described below.

For the Coulomb operator, a justification of this strateggtraightforward.
Examination of statistics for the size of density matrixneéats indicates that
those in which both indices are valence functions on the santer are 100 or
more times larger than those for which the indices are ommifft atoms or for
which one index is a polarization function. This observatiollows from the
well-known fact that electron densities in molecules aralsmerturbations on
those in an atom. Hence, terms of the fo(nb|cd) where the pairga, b) and
(c, d) are both on different atoms, contribute 10 000 times lesdliardp to the
Coulomb energy.

For the exchange term, we have chosen to include only twtecanalytical
integrals in assembly of the exchange operator, on the bésisipirical experi-
mentation with the effects of three-center terms. This appnation works quite
well in practice and, in fact, can be restricted to neareigfhor two-center terms
for many of the self-consistent iterations (those wherg en01-.001 au accuracy
is required).

Several technical considerations have played an impaménin the develop-
ment of the scheme presented below. First, the terms to bputech analytically
must be subtracted from the pseudospectral operators td deable counting.

For an arbitrary set of two-electron integrals, the subimagprocedures are non-
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trivial and indeed easily could be considerably more experts implement than
the Fock matrix assembly itself. Consequently, it is impottto carry out ana-
lytical corrections on groups of terms which can be replagid relatively little
effort in the pseudospectral assembly scheme.

A second feature of the methodology is the use of overlagrats to estimate
the size of terms when considering whether to compute theatyt@eally or nu-
merically. Cutoff thresholds are established and termsselestimators are below
these thresholds are either done numerically or neglecttickly. This allows a
considerable reduction in CPU time as compared with haviragalytically eval-
uate the entire class of terms.

To calculate the integrals, we have implemented algorithased on the work
of Gill, Head-Gordon and Popl#(implemented in the well known GJSSIAN
package), but with extensive differences to optimize irgkgsharing an atomic

center.

2.7.2 Coulomb Corrections

For the Coulomb operator, we consider the following typesaaf-electron inte-

grals for analytical corrections:
1. One-center terms of the foraa’|a”a”),
2. Two-center terms of the forrfua’|bb'),
3. Two-center terms of the forfub|a’t’),
4. Two-center terms of the forifua’|a”b),

5. Three-center terms of the forfna’|bc).
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Herea, b, andc represent atomic basis functions on atoms A, B, and C respec-
tively.

A crude way to assess the importance of each class of termesaissign a
value of 1 to density matrix elements for occupied orbitaiglee same atom and
o for all other density matrix elements. In the expressiortlierCoulomb energy,

terms 1 through 5 are multiplied by the following density maglements:
1. PoatParrarm
2. Paa’ Poiv
3. PabParty
4. Paa’ Parrt
5. Paa’ Poe

Assuming that all of the functions are occupied orbitals kads to an approxi-

mate magnitude for each class of terms as follows:

O(1) :terms1and2;
O(9) :terms 4 and5;
O(6%) : term 3.

This leads to the following strategy (which must be testegiepally). Terms of

the form (1) and (2) should be done analytically for all atofnand all pairsa
andb. Notice as well that there is virtually no falloff in the si@éthe integrals in
class (2) as a function of thé—B separation distance, hence no distance cutoffs
are employed here. Terms of the form (4) and (5) are done teelly provided

the overlap of the function pair lacking a center coincidefc’v in (4), be in
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(5)] is greater than a specified threshold. The thresholdjissted empirically to
yield acceptable molecular properties in a given overaup®spectral scheme,
and hence will be a function of the grid, dealiasing schertee, Ehe cutoffs are
actually applied to blocks of integrals (e.g. a 2p-2p blamkgtaining 9 different
be function pairs) and utilize pseudo-overlaps computed leyaying the absolute
values of the individual overlap integrals in the block andding by the number
of integrals.

Terms of the form (3) are likely to be important only for atomglose phys-
ical proximity. Consequently, we employ here a simple aistacutoff in which
analytical corrections for these terms are carried outipgexalthe distance be-
tween atomsd and B is less than a specified tolerance. This may not be optimal
(perhaps different functions on the atoms should be treditéztently) but leads
to reasonable results as shown below.

Whena or @' is a polarization function in ana’ pair, the magnitude of the
corresponding density matrix element is considerably wiishied. For (1) and
(2), the cost of computing the analytical integrals is eBabwy trivial and we
ignore this effect. For (4) and (5), we set the cutoff thrédlom thebc overlaps
differently for this case than for the case where botnda’ are occupied. The
two cutoffs are empirically adjusted on a set of test molesub yield reliable
energies and other properties.

Having constructed our correction scheme, we must now deffient algo-
rithms for implementing the pseudospectral subtractidvis.define two types of
restricted Coulomb operators to be subtracted from theofudirator in differing
specific casesi 4, in which sums are over functioasa’ that are both on the same

atom, and/s, in which only terms where the absolute value of the overiéggral
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of the two basis functions is greater than a given threstsolgdluded:

JA(8) = pawAar (8) (2.22)
Js®) = Y. podi(g) (2.23)
Sxo>Smin

Note that the sum in EqQ. (2.22) extends over all atoms in thiecote.

Two versions ofJ, and.Js are constructed. Fof,, one term includes po-
larization functions and one does not. EBy, two different threshold$,,;, are
defined, one of which$}, is to be used when a polarization function is involved
and the otherS,, which is used when no polarization function is involvede(th
usage of/4 and.Js are described below). The computational cost of assembling
these four operators is identical to that for evaluatinghglsi operator, as partial
sums can be constructed and then added into the appromate t

Once the four operators are constructed, the final assenflilyeospectral
Coulomb matrix is carried out with the appropriate operater one in which the
terms to be computed analytically are subtracted from tleeigespectral eval-
uation of matrix element, so as to avoid double counting. é&s@mple, in the
evaluation of a Coulomb matrix elemehy,, between two occupied orbitadlsand

a’, we would subtract operatofs, if a or a’ is a polarization function:
Jow =Y Qu(8)(J(8) — J5,(8)) b () (2.24)
g

If neithera or @’ is a polarization function, Eq. (2.24) would be used with
replacingJs,. Similarly, if functionsb andc are on different atoms B and C, we

would subtract eithev4,, J4,, or nothing, depending upon the size of the overlap
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integral Sy,

The principal reason for the use of these cutoffs is to lihethnumber of three-
center, two-electron integrals of the for(ma’\bc) that must be evaluated analyt-
ically. The same criteria involving the overlap integréals, are implemented in
the two-electron integral code and only terms satisfyirgdtiteria (e.g., for an
(aa’\bc) integral witha, a’ not polarization functionss,. > S;) are evaluated.

The above algorithm deals with all relevant terms above@X{oe those of the
form (abla’t’). In this case, one must compute a “diatomic” Coulomb coiwect

matrix via the equation
To) =" Qu(g)o(g)n(s) (2.25)
g
where the diatomic pseudospectral Coulomb figldg) is defined by:
Io(8) = parAas(g) (2.26)
ab

the sum being restricted to function®n atom A,b on atom B.

While Jp(g) itself does not involve extra computation (it can be formed a
an intermediate step in ordinary Coulomb assembly), aslyenhlbhe correction
matrix J(S?) in Eq. (2.25) is additional Work](gf) is then subtracted from the usual
Ju. FOrtunately, for most iterations in the PS scheme, caoestof this type can

be restricted to atom pairs that are nearest neighbors.



31

2.7.3 Exchange Corrections

For exchange, an analysis of the density matrix elementisg@mas to that given

above for the Coulomb operator yields, for the cases 1-5ekkfaove:

O(1) :terms1and3;
O(9) :term4;
O(6?) : terms 2 and 5.

This suggests that we treat only two-center terms analijptifta exchange. Some
compelling reasons for this are: (1) corrections for thed¢hcenter terms of the
fifth case are quite expensive; also, there is no reason tevbdahat these terms
are larger than many four center terms; (2) a simple distantaf can be used.

The correction procedure involves calculation of a “diait@nk matrix & Sb)):

KD =3 Q)K" (g) (2.27)
where
EP(g)= Y Ang)hig) (2.28)
Ae{a,b}

is the pseudospectral physical space exchange field forahentic AB pair and

the intermediate quantity,(g) is defined as:

Tag) = D Prods(g) (2.29)
o€{a,b}
The sum over again is restricted to functions on A or B.
Once K Sbj) is computed, it can be subtracted from the usual pseudaapect

K matrix. Again, distance cutoffs are used to restrict theherge corrections
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(which do involve extra work) to a small subset of atom pairs.

2.8 Recurrence Techniques

As can be seen from the preceding discussion, the overatspieour algorithm
is fundamentally limited by the ability to calculate NAlsigkly. In addition,
an obvious advantage is gained when fast techniques existfculating ERIs.
Standard spectral codes are themselves constrained byedbhd sf ERI calcula-
tion. This fact has lead over the years to a great deal oftaitebeing focused on
ERIs in particular. Although they focused primarily on ERis1986 Obara-Saika
reported a significant advance in the efficient calculatiba wariety of integrals
over Cartesian Gaussian functions, including NAls. Simesnf others have aug-
mented and improved the Obara-Saika approach, again niostiging on ERISs.
Atthe core of all of these methods are sets of recurrenceoefa These formulas
share characteristics which make them particularly attraéor implementation
on computers.

Before discussing particular cases, it may be instructiveansider the ad-
vantages achieved by the discovery and usage of the recarrelations, and the
common features that lie at the core of their usefulnessedtian 2.10 we will
derive recurrence relations applicable to nuclear attacnd related integrals.

Without going into detail yet, one example is
[Pl Ag)[s]"” = (P, — A, [s|A(g)]s] ™ + (P — Cu)[s] Alg)]s]

wherep, represents a-type orbital (angular momentum of one) ands an s-

type orbital (angular momentum of zero). Taking the equetibface value for
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the moment, we see how it allows us to write an integral comgihigher angular
momentum elements in terms of integrals of the same formvartfanctions with
lower angular momenta. This demonstrates important gefeataires of this and
other recurrence equations. They provide a known path teceethtegrals of any
starting function (e.gs, p, d, f and so on) to quantities we know how to calculate.
And, as a by-product, they tend to highlight common terms ¢aa be grouped
together beneficially, both within the calculation of a $enmtegral, and in the
calculation of groups of integrals. For example, many oftdrens above would
be identical for g, or p, integral, so we gain extra efficiencies in calculating a
related set simultaneously.

Although exemplified here by the relatively simple case afiel@ar attraction-
type integral, workers have obtained relations having #raeskey attributes for
other important cases as well. In particular, Pople and ckeve have developed
a complete set of expressions from which any two-electemuiision integral and
their nth-order derivatives may be constructed. In comhapters we will discuss
our use of and modifications to both the Obara-Saika relataord the GHGP

techniques.

2.9 Notation and Common Relations

In this work we restrict ourselves to using Cartesian Gaunssior basis functions.
An unnormalized primitive Cartesian Gaussian functoentered at position

A is given by

Ga(r;a,a, A) = (z — A)™ (y — Ay)™ (2 — A,)* exp[—a(r — A)?], (2.30)
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wherer = (z,y, z) represents the coordinates of the electrorhe orbital ex-
ponent, anca denotes a set of non-negative integéts, a,, a,) known as the
angular momentum vector. The angular momentum of the fongs defined as

a = a, + a, + a,. Following the usual nomenclature, the functions with angu
lar momentun), 1, 2,...are referred to as, p, d,..., respectively. A group of
functions with a common center, angular momentum and exgaunstitute a
shell. Each function in the shell is called a component oftinal, with each shell
containing(a + 1)(a + 2)/2 components in all. For examplepahell consists of

a set of three functions, with momentum vect6rso, 0), (0, 1,0), and(0, 0, 1),
labeledp,, p,, andp, respectively. The angular momentum vector with i a

Cartesian variable, is defined by
]-i = (62':(:7 5iy7 62z)

whered represents the Kronecker delfs;(a) takes the value of thecomponent

of a. Itis useful to note that
N;(a+a’) = N;(a) + N;(a),

and that
Ni(1;) = bi;.

The normalization constant for a primitive Gaussian, otgdiby requiring

that the integral of the square of the function equal one, is

2aztay+taz (2a)aw+ay+az+%
N(a,a) =
(2) ((2%—1)!!(2ay—1)!!(2az—1)!!7r%

[SIE
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This is normally left out of discussions for convenience.

Primitive Gaussians satisfy the important differentidtienship

0
87%1(1';04,3, A) =2ap,(r;a,a+1;,A) — N;(a)p,(r;o,a—1;,A) (2.31)
Current calculations usually employ basis functions mauefuinear combi-
nations of primitive Gaussians, calledntracted Cartesian Gaussidanctions,

defined as

o(r;a A) ZD Yar (15, @, A)

whereD is the contraction coefficient. The indéxuns over all the primitives
in a contracted function. We will often leave this index offigve it is clearly
implied by the context. In the recurrence relations to fwllencontracted terms
will be denoted by square brackets, while parenthesesatelimontracted terms
(wherein uncontracted functions of primitive Gaussiangehaeen multiplied by

the related contraction coefficients and summed).
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2.10 CorePseudospectral A,,(g) Calculations

2.10.1 Overview

Previously we showed that calculations of integrals of trenf

/dr gpa(r;oz,a, A) @b(r;/67b7B)

r — g

are central to the pseudospectral method. These integeislentical in form

to the nuclear attraction integrals needed as part of th&é¢aFock core term,
with the gridpoints replacing the role of the atomic nuclii.their 1985 paper,
Obara and Saika derived, among other things, a generalemdsion relation
for nuclear attraction integrals in terms of auxiliary igtals. Their approach
provides a highly efficient method of calculating nucledreation integrals over
primitive Gaussian functions. In the following sections derive the standard
Obara-Saika equations, present two modifications to thedatd relationships
that produce further reductions in computational cost,aralyze the application

of these techniques in detail.

2.10.2 The Obara-Saika Equations

We define the uncontracted potential integral for a gridploicated ag as

[alA(g)[b] = / 0r gu(r; 0,8, A)—— (x5, b, B)

1
Ir — g

where we have denoted the electric potential operater(gs = ﬁ. Using the
identity
Ity —rp| ' = — du exp[—u®(r1 — 1)’
w2 Jo
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we may rewrite this as

[alA(g)[b] =

3
[N Do

/ T du [a]0,|b] (2.32)
0
where

[alo,[b] = / dr g, (r; 0, A)py(r; 3, b, B) exp[—u?(r — )] (2.33)

The exponential in Eq. (2.33) corresponds to an s-type SlarteGaussian
centered org with exponent.?. This integral, then, is a special case of a more

general integral
[alc[b] = /dr a(r; o, a, A)pe(r; 7, ¢, C)pp(r; 5, b, B),
known as a three-center overlap integral.

Three-center overlap integrals

Using Eq. (2.31), the integrah + 1,|c|b] can be rewritten as

[a—i— 1Z-|c|b} = 1 0

20 A, [alelb] + %Ni@ [a — 1,lc[b] (2.34)

Evaluating the right hand side of this equation provideddass for a useful
recursion relation. We proceed by finding an expressionHerintegral[a|c|b].

To do this, recall that each function has the form of an exptakmultiplied by
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a polynomial. We first combine the exponential factors tdevri

a(r— A)? +3(r —B)? +y(r — C)?

_op 2
_a+ﬁ(A B)* +

(a+B)y P

— ()2
a+ 6B+ )+

(a+B+7)(r—G)* (2.35)

P represents the usual product center of two Gaussians:

aA + 5B
P=— " 2.36
P (2.36)
G is the combined product center for all three Gaussians:
A B
G:(a+ﬁﬁkwﬂlza + 8B ++C (2.37)

at B+ at B+

We now have a single Gaussian centered®multiplied by a constant ex-
ponential prefactor. With a bit of algebra, the exponenthef prefactor can be

written in a more symmetric form:

(@+8)Y 5 2, OB
e e

= (a+8+7){

(A - B)?

aA? + B? + yC?
a+06+7y

~G?)} (2.38)

To evaluate the remaining integral over a Gaussian centardd, we must

express the original polynomial coefficients in terms ofypoimials centered on
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G, using the following equation.

n;

k) (ri — G)*(Gi— R;)"™ ™" (2.39)

k=0
Combining the steps above, we can write
[alc|b] = KapeZr(aa, by, ¢2) Ly (ay, by, ¢,) T (az, b., c.) (2.40)

where

(2.41)

Kape = €xXp {(a+ﬁ+7) {G2 _ aA? + B2 +~yC? H

a+ B+

and
T;(a;, by, c;)
:/driexp[ (a+ 6+ Zm;)/;)( )( )( )
(r — Go)F (G — Ag) Fe(r; — Gi)™(G; — By)" P (ry — Gy)Fe(Gi — )™
-EEE (@) ar-s-aa-ar

/ driexp [+ B+ 7)(rs — Gi)?] (ri — Gyt

() EXEEEE)

(ka+kp+ke even)

(ko + Ky + k)] ek - -
2(ac+ B + ) |kathothe (Gi — 4) (Gi — By) (G — )

(2.42)
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We may now take the derivative required in Eq. (2.34). Thevdsave of the

product centefs is
0 Q@

G- 5.
8AZGJ Oé"—ﬂ‘i"}/ !

The derivative of the prefactor is then

1 0

%a—&lcabc = (Gz - Ai)lcabc

Looking at a simplified polynomial sum, we have

1 0 < [a
_ v A%k
s 2 (1))

ko=

a;—1
- a; — 1 sk Q
—a 3 (" )@ ar s )

Inserting in Eq. (2.42) gives

1 0 1 1
T =0,{ —— — — 3 T.(a;, — 1,b;, c;
2@0142 ‘ az{2(a+ﬁ+,}/) 20[} Z(a'l 7bzacz)
1
bi——————Ti(a;, b; — 1, ¢
T ary )

1
DY R isbis¢i — 1
c o 7)Z (a c )

= i(ai — ka) <Z) (G — A,.)ai—ki—l(%ﬁ+7 —1)

(2.43)

(2.44)

(2.45)

(2.46)
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Assembling all the derivative terms, Eq. (2.34) becomes

[a+ 1;|c|b] = (G; — 4;)[alc|b]

1
+ a—Ni(a) [a — 1,]c|b]
A +16 ) (2.47)
1
+ m]\@(c) [a\c — li\b]

Recurrence Relationships

The previous equation gives an expression for the genesal @ba three-center

overlap integral. Returning to the particular case of egéeand defining = o+

we have

[a+ 1,]0,[b] = (G, — A;)[a]0,[b]
1

TR

L1

2(¢ 4 u?)

N;(a)[a — 1;|0,|b]

N;(b)[al0y[b — 1;]

—i——l N;(b) 1—7u2 [a\O \b—l‘]
207 ¢+ u? g '
We now define an auxiliary integral

o0 U2 m
[a|A(g)\b}(m’:il O du (W) [a]0,[b] (2.49)

T2
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which reduces to Eq. (2.32) fon. = 0. Finally, with this definition, inserting
Eq. (2.48) into Eq. (2.32) we have the Obara-Saika recurglation

[a+ 1|A(g)b] ™ = (P — A)[alA(g)b] "™ — (P, — ;) [al A(g)[b] "™

+ Ni(@){[a— LilAE)Ib] "™ — [a— L[ A(g)b] "}

2¢
+ 5 Nb){alAg) b - 1]~ [alA()b - 1)
(2.50)

By symmetry, we also have

[a]A(g)|b+ 15" = (P, — B))[alA(g)[b] ™ — (P — i) [al A(g)[b] "™

+ Q%Ni(a){ [a— 1;|A(g)[b] "™ — [a— 1] A(g)[b] "}
5Nl ~ 1]~ [alag)b - 1 ")

(2.51)

By applying these relationships iteratively, we can redaicg potential inte-
gral to a combination of integrals overfunctions. The problem then becomes
that of evaluating three-center integralssdiunctions. Starting with Eq. (2.40),
we have

3

T 3
[OA‘OC|OB} = (m) Kabe

_(_atB ) (a+ B)y
- (75557) Pavs) el R - 0] 252

[04]05] is the overlap integral between twofunctions centered aA and B,
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which can be expressed in closed form:

04]05] = (aiﬂ) exp[—aofﬁ(A— B)?| (2.53)

W

Inserting these results into the definition of the auxilientggrals gives
0.4|A(g)|05] "™
[04]A(g)|05]

9 [oo 2 m ¢ 3 2
- () (Gw) oslee -0
=2(£) [oul0a] FnteP - )

(2.54)

where the function

(e NN u?
fm(T)_/o du(¢+u2) (<+u2) P [_Tng}

was first introduced by Boys and is found throughout theditene!” & 33Wwith a

transformation of variables
2
u

t? =
¢+ u?

we obtain the familiar alternate form
1
Fu(T) = / dt t*™ exp(—T1?)
0

See the discussion of Eq. (2.75) for further details on cdmgwalues of this

function.

Using these expressions it is a straightforward matter itewexplicitly or
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implicitly, any potential integral in terms of auxiliarytegrals ofs functions. The

following examples illustrate a few pertinent cases.

(il Ag)ls]” = (P — A)[s|Ag)[s]” + (P, — Ci) [s] A(g)]s]™

il Ag)lp;]"” = (P — B;) [pilAlg)ls]” + (P, — C))[mil A(g)]s]™

+%HW@WWLhM@M”}

[dislAg)ls]” = (P — A [pilAlg)[s]” + (P — C;) [pil Ag)s]

+§%hM®M@—kM@mWG

[dij|A(g)ps) ) = (P — By) [dis]| A(g)[s]"” + (P — Ci) [dis] A(g)]s] "
+%wwmw@—mwm$%

+ %{[pilA(g)IS] Y [plAe)ls] ")

[dij| A(g) i) = (P = By) [dis| Alg)|pe] " + (P — O [ds | A(g) lpu]
+ Al - [l )

+ g_jgl{ pilA@I] " — [plA@)d] )
+ 2 {[dslA@)]” - [dlAw)1s]")
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2.10.3 Analysis of the Computational Costs of an Algorittasdgl on the

Obara-Saika Equations

It is useful to study the number of mathematical operatioaquired to form one
of the sets of integrals given previously. Such analysissdus tell the whole
story of the computational efficiency of an algorithm, butialsy uncovers the
main character. At this point we note that the equations lh@en given with-
out regard to contraction of the basis functions. This ismapdrtant factor that
adds complexity to the problem. Due to the recursive nattitheoequations, it
becomes necessary to look at the cost of computing bothamatt and uncon-
tracted integrals, in order to know the final cost of a set oftiaxted terms.

For the purposes of this discussion we consider quantities as [0A|OB}
andF,, to be fundamental. They are required by essentially allrélyos such
as the one under discussion. Forming these terms can bed/esngeconstant cost
common to all, and therefore left out of consideration.

In constructing contracted integrals, we note the follayvin
» A, and B, are constants.

» C; depends on the gridpoint.

» P, and( depend on the contraction pair.

* [alA(g)|b] m) depends on the contraction pair and gridpoint.

*By “operations” we mean any of the elemental mathematicatations normally available
on computers, i.e. adds, subtracts, multiplies and divides
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Computational cost of(s| A(g)|s) )

The uncontracted integrals|A(g)|s] ) is calculated directly from the related
overlap andF,, terms, as given in Eq. (2.54). The contracted integral is the

K, K

(slA@)ls)™ =3 Dubi[slA(g)ls] ™ (2.55)

k=1 l=1

Let n, denote the number of contraction pairs (if€, K;), andn, the number of
gridpoints. Then the computational effort to perform thensuation in Eq. (2.55)
requiresn,n, + (n, — 1)n, operations (assuming the coefficiefitgD; have pre-

viously been combined).

Computational cost Of(p|A(g)|S)(m)

All three instances of thép;|A(g)|s] ™) case have the form
1A®g)|s]™ = (P, — A4)[s]A(g)[s]"™ + (P, — ) [s]A(g)|s] ™™ (2.56
[pilA(g)]s] (P, — A))[slA(g)[s] ™ + (P, — Ci)[s|A(g) 3] (2.56)

The three terms$P, — A;), i € (z,y, z) require3n, operations to form. Forming
all (P, — C;) requires3n,n,. With these values, the final assembly of each term
[pil A(g)]s] ™) in Eq. (2.56) requiresn,n, operations, o9n,n, for all three.

The total cost for a set of uncontracté|A(g)|s] o)

integrals is ther8n,, +
3npng + Inyng = 3n, + 12n,n,. Summing to perform the contraction requires
33n,n, + 3(n, — 1)n, steps. The total operation count for a single group of

contracted integralfp;| A(g)|s) e (x,y,2) s 3n, — 3n, + 18n,n,.
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Computational cost of p| A(g)|p)"”

[pil A(g)|pi] )i € {2,y, 2} have the form

il A)Ip]) "™ = (P = B) [pil Alg)[s]"™ + (P — C)) [pil A(g)]s] ™
+2i§ [s|Ag)]s] ™ — [slA(g)]s] ™)

(2.57)
whereas[p;| A(g)|p;] ()i j e {w,y, 2}, i £ j have the form
il A@)pi] ™ = (P = B) [pil A®)ls] ™ + (P, = C)) [l Alg) 5] ™ (2.58)

Here we see the first instance where we can do something betjenerate the
contracted case than just forming the uncontracted terchs@amming. Three of
the integrals have the tergh{[s|A(g)|s] ™ _ [s|A(g)

the uncontracted case we obtain some savings by calcullismgerm once and

] "+ in common. For

adding it to all three integrals. For the contracted case avesave even more
by formingand contracting separatelyis term, then adding it to the appropriate

sums. Compare the implied order of operations in

(il A(g)lp) ™ =
>3 DeDi[(P - B [pilA)ls) ™ + (P - C) [l Ag)ls]

+2iC [slAg)ls] ™ — [slA(g)ls] ™)) (2.59)
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Vversus

(nilA)lp) ™ =
SN DD [(P - B [l Alg)ls] ™ + (P — C) [l Al)ls] "]

+3° 3 D, [Qic{[sm(g)\s] " [slA@)ls] ™Y (2.60)

Ignoring steps common to both Egs. (2.59) and (2.60), weamily consider the
differences. The factor®, D, can be folded in with other terms, so we ignore
them too. Adding the uncontracted terms in Eq. (2.59) regun,n, opera-
tions. Contracting the combined terms tak¢s, — 1)n, operations, for a total
of 12n,n, — 9n, steps for completion. Performing the two contraction sums i
Eq. (2.60) used(n, — 1)n, and(n, — 1)n, operations, respectively. The final
addition of contracted terms takes,, for a total of10n,n, — 7n, steps for com-
pletion. Subtracting the totals for comparison, we havéfar@ince o2n,n,—2n,
fewer operations using the second method.

Forn, = 1, the operation counts are the same, as would be expectednyfor
contraction degree, > 1, the second method takes fewer operations. higre
acts only as a scale factor. Itis a very important scale fdotdhe Pseudospectral
method, though, because of the large number of gridpoimd.usrom this com-
parison, we can see explicitly that the computational sg/itomes from being
able to drop threey,n, additions of uncontracted terms for an extrg — 1)n,
contraction step and threg additions of contracted terms. By comparison to the
overall cost of computing these integrals, savingn, — 2n, is not overly signif-

icant. Following the same methodology, though, the savgmge/s rapidly as the
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angular momenta of the functions involved increase. Thaatoh comes at the
expense of little effort, due to the form of the recursioratieins. Furthermore,

we shall see that related techniques can cut the compugiagéiort even more.
2.10.4 Improvements to the Obara-Saika Equations in thebdar Frame

It turns out we can improve upon the Obara-Saika method ewgheir for the
contracted case. Combining Egs. (2.50) and (2.51) resutteei simple relation

[alA(g)b + 1™ = [a+ 1Li|A(g)[b] ™ + (A — B))[a]A(g)|b] ™ (2.61)

This allows us to write any integral in terms of integrals wehene function is
always ans type. Forming an uncontracted set of integrals this way taadly
more expensive than the previous method, but we if we makeoliiee same
technique of contracting the terms on the right of Eq. (2l&&fpre adding them
together, we achieve a savings for any contraction degregterthan one. To
illustrate this, using the same example of twiunctions from the last section, we

have

il A)lps] ™ = [yl A)ls] ™ + (4; — By) [pilAlg)ls]™  (2.62)

Because the coefficients!; — B;) depend only on the coordinates of the atomic

centers, we can immediately write

(p:l Alg)p;) ™ = (Al A@)]s)™ + (4, — B) (il Alg)]s)™  (2.63)

Besides the benefit of contracting common terms, this foatman has other



50

advantages. Becaugdunctions are invariant under interchange of the indices
andj, there are only six independent terms (mlij|A(g)\s)(m) , hot nine. Re-
calling Eq. (2.50) we also see that the second integral orrigte¢ hand side

™ so0 we have it on

[pi| A(g)|s] ™) is required to form the first,[d;;|A(g)]s]
hand at no additional computational expense.

The steps in computing Egs. (2.60) and (2.63) diverge at dieestage than
in the previous example. Examining Eq. (2.60), forming tbenbined uncon-
tracted terms on the right hand side usgs,n, operations. The rest of the com-
putational cost follows as given previously, for a total 38,n, — 7Tn, steps
for completion. Turning to Eq. (2.63), forming the uncowcted components of
[di;| A(g)|s] ") takes20n,n, operations. Contracting and assembling the con-

(m

' calls for anothef(n, — 1)ng + 3n,. Forming
(m)

tracted integrals(d;;| A(g)|s)

the contracted set{p;|A(g)|s)" adds anothe8(n, — 1)n,. Pulling together

the final contracted integralép;| A(g)|p;) o)

usesl8n, operations, for a total of
11n4 4 30n,n, step for completion.

Comparing, form, = 1 using Eq. (2.60) take32n, versus4ln, steps. But
for anyn, > 1, Eq. (2.63) takes fewer operations. The trade comes in ngedi
to construct nine fewer uncontracted components for E§3J2n exchange for
an extral8n, operations combining contracted terms. Note the invaeamzier
the interchange of indices gives increasing gains at highgular momenta. A
[d|A(g)|d] set has 36 unique integrals, whereas the relat¢d(g)|s] set has

only 15.
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2.10.5 The Diatomic Frame

The previous section discussed the Obara-Saika relatging the general mole-
cular frame, i.e. a frame in which the atom pairs involvedehaw special spatial
orientation or position with regards to the coordinate eyst Because the large
number of gridpoints used allows us to block out operationséts of gridpoints
for efficiency, we can treat one atom pair at a time. Once am gtair has been
selected we transform the system to a new coordinate systevhich the pair
is aligned with the z-axis, i.e. the x and y coordinates ofdtamic centers are
zero. This eliminates a number of terms from the calculatidescribed previ-
ously, enough to more than make up for the cost of transfagrttie grid to the

new coordinate system. Looking at Eq. (2.50), we have; fofx, y),

[a + 1i|A(g)|b} (m) _ c, [a|A(g)|b} (m+1)

* Q%Ni(aﬂ [a— 1| A(g)b] ™ — [a— 1] A(g)b] "}

+ 5N alA(g)b — 1)~ [alA()b — 1] ") (269

Not only have several terms been eliminated, but the coefficf the first
term on the right side (the grid point coordinate) is now jmeledent of the func-
tion pair. This leads to another instance where a common ¢ambe contracted
separately and added in to reduce the overall computatomsal

Eq. (2.62) reduces to something even simpler in the same Agsé, withi,

j € (z,y)
[pilA®)lp] ™ = [dylA®)ls]) ™ (2.65)

Becausel,, = d,,, this means we only need to compute three integrals, not four
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2.10.6 Superblocks

Another advantage of the Obara-Saika recursion formuldmaist is particularly
easy to take advantage of superblocks. Superblocks arefsetegrals of dif-
ferent angular momenta that share the same exponents., Enaxample, an
integral of ap function requires the construction of the related zeroteos
auxiliary function, we essentially get thefunction for free as a side benefit, at
only the cost of performing the contraction. In contrase, tfder direct methods
could only make use of some common elements that still requsonsiderable
extra manipulation to obtain results. Basis sets most aftertains andp type

functions in superblocks.
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211 Two-Electron Integral Calculation

2.11.1 Overview

The Pseudospectral method has been shown previously tgbbleaof attaining
chemical accuracy with a computational effort that scalesenfavorably with
system size than spectral methods. A hybrid approach go#eefulimiting the
number of two-electron integrals that dominate the scatihgpectral methods
while reducing the number of gridpoints needed for the paded Pseudospec-
tral quadrature. This hybrid method significantly redu¢esdomputational costs
relative to both non-hybrid methods without compromisinguaacy.

In the following pages, we describe an efficient generalizstirrence tech-
nique for calculating two-electron integrals, based onwloek by Gill, Head-
Gordon and Popl& The recurrence relationships used share similarities with
the Obara-Saika work discussed previously, but here thénasipwill be on the
somewhat complex details necessary to make a hybrid agppractical and ef-
fective. Gill et al. described a general algorithm for computing two-electrde-i
grals using their recurrence relationships. Since we anearoed with a number
of special cases, our implementation differs greatly. W therefore discuss
the recurrence relationships, then describe the actugbetanimplementation in

some depth.
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2.11.2 Notation

Gill et al. defined a notation to aid in manipulating ERIs and their deénes.

First, from previous definitions, we writegaimitive ERIlas the integral

[axbg|cind,] = //dl“1d1“2 Pak (11) 61 (T1) 775 Pom (T2) Pan (T2)

Following the usual route we then define@ntracted ERBsS

(abled) = Za Zb ZC Zd D(a D(c DY [axby|c,d.,]

k=1 /=1 m=1n=1

We refer to the set of all integral@b|cd) formed from a quartet of shells as a
class For example, a class consisting of a quartet/,0f and twop functions
would have6 - 1 - 3 - 3 = 54 unique ERIs.

Recalling Eq. (2.30), we rewrite the pairs of one-electuamctions as

[ab| = exp[—a(r1 — A)’ = B(r, = B)’] ] (i — A)"(in — B))"

1=x,Y,2

and

‘cd] = exp[—y(r; — C)* = 6(r; — D)?] H (iy — Cy)% (iy — D;)%
1=x,Y,2
to make the following connection. We now present a notatwrafgeneral one-
electron function which can describe the pairs just givehtarir derivatives with
respect to the nuclear coordinates. The notation makes omemeference to the

usual quantum bra and ket notation by framing the integriisterest as inner
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products with the kernel;,'. That is

[ablcd] = / / dry drs[ab|ry |cd]

With this in mind we denote primitive braas

a b , , o 00
b (QQ)CL (Qﬁ)b aa—l-b b
a - 7 — — = — a
P (20" 9Am0A™ 9 AT-0BYOBL OBY- P
ad v op 000
where
0 0
a b p|=exp[-a(r—A)’—Bx—B)*] [] (i—A)"(i—B:)"¢"/*H,, [¢"*(i—P)]
1=x,Y,2
0

Here H,, indicates a Hermite polynomiaj,= « + 3, andP is the product center

(A + B) /(. Similarly aprimitive ketis written as

c d o o 00
(27)° (26)" o+ .
C = 7 - _ T _ C
4 (2n)7 gCeaCt 90 DI9D™ dDi- 4
d d ¢ 00 0
where
00

¢ d q | =exp[-y(r=C)*~5(r—D)’] [] (i—=Ci)(i—Dy)"n**H,, [n'/*(i-Qs)]
00 0 e
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with n = v + 6 andQ = (yC + 6D)/n. From this, recalling the definition of an

inner product, we can make the immediate associatiorpoiaitive braketas

b ¢ d

V]

a b c d
a b p|lc dq ://drl dry| a b p e | ¢ q
CL/ b/ p/ Cl d/ q/ a/ b/ p/ Cl d/ q/

This notation may appear complicated, and indeed a greabtiedormation is
summarized using it. However, if one keeps in mind that tret fiow refers to
derivatives, the second row to the combination of GaussidrHermite functions
and the third row describes a scaling factor, it becomesivelg easy to under-
stand the basics of equations with this notation at a glafi¢e generalization
of the one-electron functions to include Hermite polyndsiraakes possible the
recurrence relations that follow.

It is straightforward to identify @ontracted braas

a b K K, a b
a bop|=>>D"D" abop
a v p/ k=1 t=1 a v p/
and, correspondingly, @ontracted keas
c d K Ky c d
cdaq |=> > DD c d q
m=1 n=1

C/ d/ q/ C/ d/ q/
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and, finally, acontracted brakeas

]

o Tl
I

Qul

a/ b/ p/ C/ d/ q/
K, Ky K. Ky

>3 D nPpn | o

k=1 /=1 m=1 n=1

I
o Tl

ol
o Al

In this notation, any contracted ERI or derivative equalsmrti@acted braket with

a,:b,:p/:C,:d/:qlzoandp:qzo,

2.11.3 Recurrence Relationships

The notation of the previous section allows us to write cooapéd relations be-
tween bras in a compact fashion. In this section, throughisiesof a few elemen-
tary identities, we will derive a set of recurrence relasioips. We will use the

following, starting with Leibnitz’ rule for theath derivative of a product.

anA—H’LB
G40 [(A=B)f(A,B)] =
aTLA—i-an aTLA—‘rnB—lf anA""nB_lf
W= D) g amams T A gpm ~ "Paamopm1 00
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(z—B)=(x—A) +(A—B) (2.66b)
(P—A) = (20/20)(B — A) (2.660)
wHo(z) = nHy 1 (z) + Hppo(2)/2 (2.66d)
dfg;x) = 9nH,_(z) (2.66¢)

Applying Eg. (2.66b) to Eqg. (2.11.2) gives

0 O 0 0 0 O
CL/ b/ p/ al b/ pl CL/ b/ pl
0 0 0 O
=|at+l; b-1, p |+(A—Bi)|a b-1, p| (2.67)
a/ b/ p/ a/ b/ p/
Applying Eg. (2.66b), then Egs. (2.66d) and (2.66c), respely, yields
0 O 0 0 0 0
a b pl|=(—-P)|a-1, b p|+F—-4)| a1 b p
CL/ b/ p/ CL/ b/ p/ al bl p/
0 0 0 0 0 0
a b p/ a b p/ +1 a’ b+1 p/ +1

(2.68)
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The(a — a) Recurrence Relation

Differentiating a bra once with respect #y and using Eqg. (2.66e), we obtain

a b

a b p|=

a b p
a-1; b a-1; b a-1, b

at+l, b p|—a | a-1, b p|—pi| a b p—-1; (2.69)
a+1 v p a’ vy a+1 v p

This equation relates the derivative of an integral to irdesgof higher and lower

angular momenta. It has origins in part in the identity shaw&q. (2.31).

The(b — a) Recurrence Relation

Applying Leibnitz’ rule Eq. (2.66a) to differentiate Eq..67) we have

oI
o Tl

al b/ p/ al b/ p/

+ a; a b_]-i P _bi a b_]-i P (270)
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Note the common feature on the right hand side is the reductidghe angular

momenturb by one in every term.

The(a — p) Recurrence Relation

Applying Eg. (2.66a) to differentiate Eq. (2.68) gives

a b a b
a b p|=p|a-1l b p-1,
a v p a vy
a b a b

+|a-1, b p+1, |+(Bi—4)|a b-1;, p

a’ vop'+1 a b+1 p'+1
a-1; b a b—1;
—a | a-1; b p +b | a1, b p (2.71)
a' V+1 p'+1 a V+1 p'+1

Here the angular momentumis reduced in every term on the right hand side.
The Gaussian coefficients are reduced in order in trade éoeasing the order of
the Hermite polynomials.

The recurrence relations above were derived for uncomigatimitive bras.
The resulting coefficients are, in all cases, independeangfprimitive quartet
specific variables (e.g. the exponentand so on). Therefore, these relations hold
for contracted bras without modification. Gét al. derived two more recurrence
relationships. Our application only requires ERIs andrthiest derivatives, for

which the equations given suffice. Following the sequencahith they were
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given, we see that Eq. (2.69) can be iteratively applied tteveny bra in terms

of bras witha = b = 0, i.e. all derivative terms can be expressed as linear
combinations of integral only terms. Then Eq. (2.70) cantbetively applied

to write such terms as combinations where= 0. Finally Eq. (2.71) can reduce

these terms to combinations wih= 0.

2.11.4 Construction gfg-brakets

As was shown in the last section, using equations 2.70 tr@ugP and the cor-
responding relationships for contracted kets, any ERI &t flerivative on an
ERI can be systematically reduced to a combinatioraritractedpq-brakets

i.e. brakets of the form

The original integrals over quartets of Gaussians have braesformed to inte-
grals over scaled Hermite polynomials and simplype Gaussians. Writing a

pg-braket as

0 0p| 00 q|=EFEDwwpyPt+adeay
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Gill et al.and McMurchie and Davidsdhidentify the right hand side of the pre-

vious equations with auxiliary integrals (*)

i A ) (20720 o
vy (P + Qeay = ZZ Z Z 2( yp—a- b (2n)7——d K@ @72
k=1 ¢=1 m=1 n=1
wherer = (r,,r,,r,) is a triplet of integers and, b, ¢, andd are the angular
momenta of the quartet of the end-product ERI.
We will now show how to construct the auxiliary integrat® from the el-
ementary quantities of the primitive Gaussians. We defieedltal angular mo-

mentumL of the target braket class as
L=a+b+ct+d+a+b+e+d

Starting with the following two-center terms

1
2(a+ p)

Op =

oA+ (B
a4+ p

Up = (87?3)1/20?3+b+3/2D(a)D(b) exp|—2afop(A — B)?

1
727 90y 1 9)

~ 1C+4D
Q= v+

Up = (87%)/255 32 plo) pd) exp[—2v80o(C — D)?
Q Q Y00Q
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we can directly calculate these seven elementary fouecepantities:
R=Q-P

R’ =R+ R+ R’

ot = 1

O'P“—O'Q
2T = 29° R? (2.73)
U = UpUg

These quantities are used to form {BE™ integrals,n = 0, .. ., L defined as
(0] = U(20*)" V2@, (T) (2.74)

where

GmaU::@ﬁﬂU{Aiﬁﬂmemx—Tﬁ) (2.75)

Here it is important to note that faf less than a valué, G,,(7T") can be calcu-
lated via standard series expansion methods. For valuategtéani,., we may
profitably employ the asymptotic series

<;m(7):<(z/ﬁ)ﬂ25%§%§§5§9-—(z/w)ﬂ29§%§%33-(1+-31§%112(14-.n>)

The series is formally divergent, but the deviation fromtitue value of the inte-
gral is less than the magnitude of the last term included.sSEnies is particularly
useful when all but the first term can be neglected. Requittregratio of the

error and integral estimates be less than a tolerateads to the transcendental
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equation
T Y2 exp(=T) = el'(m + 1/2)

which may be solved to determifié for a givenm. Going back to the definition
of T, it becomes apparent that this limit corresponds to thewdest at which the
charge clouds of electrons 1 and 2 no longer overlap apggcidhe integrals

[0]™) can then be calculated by the approximate formula

Uty (2 —1
olm — = | | 2.76
0] RZ_:1< R? ) ( )
which Gill et al. call the classical regime.

Returning to the auxiliary integrals, we make use of the Modhie-Davidson

(MD) recurrence relatiol whereby

With this identification, we have a complete sequence fomfdating any con-
tracted ERI and derivatives of the same. We give a simple plamext, after
which we shall consider the modifications that can be madth&oparticular spe-

cial cases of integrals of interest.

Example — Calculation of §p,s|ss) Integral

To illustrate the Gillet al. notation and use of the recurrence relationships, we

examine the application of the equations above to the {relgatsimple) case of a

(pzs|ss) ERI. This would be one of three integrals making up a comglettss)
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class. Moving to the braket notation, we have

0 0 0 0
(peslss)=| (1,0,0) 0 0| 0 0 O
0 00000

where we have explicitly written out theelement in the bra rather than using the

vector shorthand. Applying the — p) relation gives

0 0 0 0
(1,0,0) 0 0| 0 O O
0 00|00O0O
0 0 0 0 0 0 0 0
=100 (1,0,0)| 0 0 0 |+(B.—4)| 00 0| 00O
001 000 011,000

= 001(1,0,0)000 + (Bz — Az)011(0, 0, 0)o00

where several terms from Eq. (2.71) have dropped out be¢hagecoefficients

are0. Recalling Eq. (2.72) we see that

K. Ky K. Ky

001 (1, 0,0)000 = ZZ Z Z[l, 0,0]©

k=1 {=1 m=1 n=1

and
K, Ky K. Ky

011(07 07 O)OOO = Z Z Z Z 255[0, 0, O](O)

k=1 ¢=1 m=1 n=1
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where the second equation already has an integral reduct {6]™ form.

Application of the MD relation to thél,]® term produces
[1,0,0/9 = R,[0]V
This is, of course, the reverse of the path actually usedltulede the target ERI.

2.11.5 Simplifications and Special Cases

The example calculation demonstrates that the actualcgtigin of the braket
recurrence relationships often simplifies because somestare eliminated since
they have a coefficient equal to zero. In our application, meeoaly interested in
ERIs and gradient terms, so we never have a derivative of gréater than one.
We use Eg. (2.69) to write derivative terms as a combinatfamdifferentiated
ERIs for whicha = b = 0 always. Examining the other two recurrence equations,
we see that in both this means two terms are eliminated onighehand sides
from the more general form.

With the exception of integrals of the fortab|a’d’), all the correction terms
used have at least one paired set of basis functions that ahavmmon center.
For any such bra or ket, coefficients that depend on the diifex between coordi-
nates of the functions centers reduce to zero, eliminatiogerterms. Explicitly,
then, for the special case of an undifferentiated coindidenter, the contracted
versions of Eqgs. (2.70) and (2.71) simplify to

0 0 0 0
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and
0 0 0 0 0 0
a b p|=p| a-1, b p—1,|+] a—-1;, b p+1
a/ b/ p/ a/ b/ p/ a/ b/ p + 1
respectively.

Finally, a more subtle but powerful optimization can be &aplo integrals
of the form (aa’|bc) in the limit of the classical regime. Recall the four-center
quantity R = |P — Q| shown earlier. When a paired set of basis functions have a
common center, the product center becomes independerd sp#tific primitive
pair quantities and subsequentl only depends on théc pair quantities and
the centerA. The MD recurrence also only multiplies terms by factors rod t
coordinate difference®;. Examining Eqs. (2.76) and (2.77) shows that all the

auxiliary [r]'™ functions have the form

[I‘] (m) - Uaa’ chf(RAbc)

where we use the labédlbc as a reminder of the dependenciedpand by exten-

sion of the functionf. Factoring Eq. (2.72) as

a Kb C Kd d
a’b’ / /d/ / E E 2<_ p —a_ b aa g E q —c— d chf<RAbC>
k=1 ¢=1 m=1 n=1

it becomes apparent that the sums can be performed indeggndéerefore, in
the limit’T" > T, of the classical regime, we can form the second sum once yor an

bc pair and centerd, then form the first sum for every function pait’ centered
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at A and multiply to obtain the requisite contractegtbrakets. We define the

coefficient
a Kb

/b” ZZ QCP ab aa

k=1 (=1

for future reference.

2.11.6 Two Electron Corrections — Computer Implementation

In this section we describe the computer code we implemebésegd on the
GHGP relationships. Because our hybrid method requireg oaitain special
subsets of all integrals, we chose to implement four diffesets of subroutines,
each taking advantage of the special properties of a phticase to optimize
the computations. Although the actual computation of aegrdl from the proper
elementary quantities is numerically expensive, great caust be taken in opti-
mizing the drivers that select and prepare integrals fautation. A more general
approach would be easier to implement. However, our approaes memory ef-
ficiently, and creates large batches of integrals of the simakttype. Specialized
hardware can often obtain significant speed increases kjappéng operations
in long inner loops, so the batch size can be important far i@son (and the
code must be written in such a way that a compiler can idepiifential opti-
mizations). It also avoids spending too much time moving g down through
layers of subroutines.

The uppermost driver routine is outlined in Figure 2.2. Tdriser mostly calls
other routines based on the correction type flags set forgheeplar iteration. We
have omitted much of the detail here and in the other codenestin order to more

clearly show the important structure.
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For each angul ar nmoment um
call CALCTCUT to formT cutoffs
Next angul ar nmoment um

call ATPR to form atom pair data

call MKDIST to form atom di stance table

call SETAPCUT to form pair cutoff

call LOADUP to initialize density and storage arrays

call AAAA to form (ad'|a”a) integrals

For each Fock matrix strip
call AABB to form (ad|bb’) integrals
call AABC to form (ad’lbc) integrals
call ABAB to form (abla’d’) integrals
Next strip

Figure 2.2: Schematic representation of subrouBREGPINT

Several stages in these integral routines make use of vadueed from func-
tion pairs in which both functions are centered on a singdenatSince the data
only depends on atom type and requires little storage spaeealculate it prior
to calling the main integral routines. SubroutiA€ PR calculates the values of
U.o ando,, for every primitive contraction on each atom type, alonghwiie
set of all(_]a/b/p/ which might be needed for classical integrals. The ando,.
are stored in arrays indexed by three values; contractionbeua within a pair,
pair number on an atom type, and atom type. For a particulampanber and
atom type, the values are stored in order sorted by incrgasjn (and therefore
by decreasing values @ when matched with a particulae pair). U, values
are just sums of th&,, values needed in cases where the classical approximation

holds. With thelU,,, terms sorted, éfa,b/p/ value is generated for the case where
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all the contracted primitives for @’ pair can be done classically, the case where
all but the contraction with the largest,, can be done classically, and so on down
to the case where only the contraction with the smabggtfor the pair can be
done classically.

SETAPCUT creates an atomic pair distance cutoff array used both in the
(ad’|bc) case and théub|a't’) case. This cutoff forms a crude estimate of the mag-
nitude of an integral by assuming all terms in Eq. (2.74) dr@rder unity except
the pair coefficientd/» and U, and by factoring in the scaling from Eq. (2.72).
Multiplying by the largest scaling factors for an integralquiring that, for exam-
ple,Up be greater than a minimum value can be rearranged in the foamwoff
for the pair distancéA — B| where the cutoff value depends on other pair quan-
tities. This cutoff must therefore be calculated for alldgmf function pairs, then
used to throw out inconsequential primitive pairs based istadce. We found
empirically that this cutoff could be used to noticeablyuee the computational

effort without loss of accuracy.

Special Cases {ad'|a”a"), (aa’|bb")

The algorithms for(ad’|a”a”) and (ad’|bb) are nearly identical. Other than a
deeply nested set of loops, they are also quite simple. M@syting necessary
has already been arrangedAmPR. The structure of the loops allows batches of
integrals to be automatically formed by indexing over btaksgular momenta,
contraction degrees and atom types. No cutoffs are usedcl@ksical approx-
imation for the auxiliary integrals could be used, but thenber of integrals is
relatively small and there would be a trade off of extra caxjpy and decreased

batch sizes.
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Special Case {ad’|bc)

The special case in which one function pair shares a cemerat’|bc) case,
is probably the most complex. This case accounts for the magbrity of the
analytic integrals needed for larger molecules, scalimpé&ly in number asv3.
We devised a scheme that rapidly partitions brakets aacogridi the number of
bra and ket primitives that can be treated classically. These uses two cutoffs
rather than one, producing a more restrictive criteria far partitioning than a
strict implementation of the GHGP approach, but one thaidavihve prohibitive
cost of forming an individual cutoff parameter for everymitive braket.

Recall that an integral may be computed using the classpaloaimation
given in Eq. (2.76) whenever the arguménof the functionG,, in Eq. (2.75)
exceeds some control parametgr Using the definition of” from Eq. (2.73), we
may write this condition as

P*R* > T,
Substituting from Eq. (2.11.4) (and using, and o, in place ofop andog
respectively), this becomes

R* > 2(040 + 03)T.

R only depends on thig: primitive pair and the centet, but this condition would
require a cutoff for every quartet of primitive combinatsoim order to apply it
strictly. Instead, assume, for the sake of illustratiomatth,,, > o,.. Then it

becomes immediately apparent that

40 4a Te > 2(0aqr + 0pe)Te > 4opc T, (2.78)
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Therefore, rather than forming individual cutoffs for dletaa’ andbce primitive
combinations, an effort that scales as the product of thebeuwf primitives pairs,
we instead use a double check based on the leftmost and nghterms in the
previous inequality, at least one of which is guaranteecetmbre restrictive than
the precise cutoff of Eq. (2.11.6). As we will show in the &lling discussion of
the computer code, this method scales only as the sum of thbenof primitives
pairs.

The algorithm is structured using a “cascading bucket” nhofleeach stage,
groups of similar quantities are accumulated until the mgmioucket” allotted

fills. That bucket then gets passed to the next stage for psoug

For each ket angul ar nmoment um
call RPOINT
For each atom B
For each function b on atomB
For each atomC in strip
For each function ¢ on atomC
check pseudooverl ap, neighbor matrix
and correction type
For each primitive of function b
For each primtive of function c
check di stance cutof f
Next function c primtive
Next function b primtive
store function pair information indexed
by contraction degree
if max storage reached call PROCBC
Next function c
Next atom C
Next function b
Next atom B
Next ket angul ar nmonment um

Figure 2.3: Schematic representation of subroutiAé3C
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Figure 2.3 shows the uppermost driver for tlae’|bc) integrals. AABC cy-
cles through all the possible ket angular momenta. With tbenenta of the two
ket functions fixed, and hence the total momentum of the ketcall subrou-
tine RPOINT, described in detail later, to create a sorted table ofthedistance
cutoffs for use in determining the classical/non-cladgiagtitionings. The cutoffs
depend on the total angular momentum of the braket, so they ttebe recom-
puted for each ket type. Following the construction of theoffuable, AABC
selects pairs of basis functions on different centers viéhcorrect momenta. We
use the distance cutoff froSBETAPCUT to eliminate small primitive contrac-
tions, resulting in an actual contraction degree for thecfiom pair that is often
less than the formal degree. Having determined the actuabeuof contracted
primitives to use, we store the atom and function indexesbuocket labeled by
contraction degree. Once a maximum numbebicgbairs with the same contrac-

tion degree have been accumulated, we BRIDCBC to process them.

For each atomtype
For each pair of functions on atomtype
For each prinmitive contraction of the function pair
store pair/contraction info, o, distance cutoff
Next contraction
Next function pair

sort information in order of increasing distance cutoff
Next atomtype

Figure 2.4: Schematic representation of subrouRROINT

RPOINT is a short routine that builds two arrays, as outlined in Feg2i4.
These arrays contain information abaut function pairs that will later be matched

with bc pairs. R2CUT is an array of distance cutoffs based @), sorted in in-
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creasing orderiTOPS stores the function pair index and the contraction number
within a function pair that correspond to eaRBcuT entry. The arrays are in-
dexed by total primitive number (out of all the contractednitives on an atom
type) and atom typeRPOINT loops over all atom types, and each function pair
on every atom type, generating the data forall pairs at once. The value @t
used for the classical distance cutoff depends on the totallar momentum of
the integral, and so these tables must be recomputed fokeatlpe, as discussed

previously in the description &AABC.

For each bc function pair for batch
For each primtives on atomb
For each primtives on atomc
store contraction info
store classical cutoff information based on o
Next atomc
Next atom b
Next bc function pair

For each atom a
For each bc function pair for batch
classify correction type
For each primitive contractions
cal cul ate distance froma atomto bc product center
check o,. based cl assical distance cutoff
count pair as (possibly) classical
save m ni num a- bc cl assi cal distance
Next primtive contractions

store a-bc info based on type and
nunber of pairs marked as cl assi cal
call PROCABC for batch
Next bc function pair
Next atom a

Figure 2.5: Schematic representation of subroudR©CBC
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PROCBC, shown in Figure 2.5, gets called with batcheshofpairs of the
same type. The routine starts out by first rechecking theipviencontraction
cutoff to determine which contractions get kept for eactcfiom pair, but this time
keeping track ot,., U,., the product centerg,. and a distance cutoff based on
ope. We chose not to store this information previously in roet®yABC because
to do so would have required setting aside extra storageedpacach type of
ket while we accumulated batches. Instead, oh&8C has a full batch of one
type, we can generate the information for that one batcheatait of redoing the
primitive contraction checks.

Next a set of loops over atomsand pairshc performs the first check based
on the inequalities Eq. (2.78), based@p. This set of loops counts the number
of primitive pairs that can be treated classically basechandstimate. The mini-
muma-bc center distance is saved for use in the next subroutinecdésdire kept
organized by the number of contractions to be treated clalbgi Once the bucket
size for a particular classical partitioning has fillB(BROCABC is called for that
batch.

The code enterBROCABC with a set of cutoffs ordered hy,,, and a cer-
tain classical/non-classical partitioning of théc triples. The triples are sorted
according to the minimum-bc distance found ilPROCBC. Starting at the be-
ginning of the sorted array of,,, based cutoffs, we step through the distance
array checking the distance cutoff until the classical agination is no longer
valid for thataa’ primitive. An index is stored to mark that segment of the batc
triples, then we move to the next largey,, and repeat the process. Thus for a set
of aa’ andbc primitives, we have a partitioning indicating whieh’ pairs can be

treated classically with the premarked classieapairs. Some situations where
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sort a-bc triple info based on nini num a-bc di stance

For each a-bc triples in batch
check o,, based cl assical distance cutoff
set pointer for last a-bc triple to be done with
a particular aa' classical degree
Next a-bc triples

cal | GENCLDAT

For each aa’ function pairs
For each primtive contractions of function pair
call MKAABC
Next primtives
Next aa’

Figure 2.6: Schematic representation of driver subrolRR&CABC

Eq. (2.76) could apply will be missed, but this approachvedl@fficient batch
processing with less overhead.

It is easy to come up with pathological cases in which thi@digm will
do a poor job of identifying terms for which the classical epgmation holds.
Conceivably this could cause the method to be considerddlyes than one that
doesn’t attempt to use that approximation at all. Expegemas shown that in
actual use the performance is sufficient to not only provigeoaf of concept of

the whole TEC approach, but to use in “production” code.

Special Case {ub|a't’)

In this section we discuss another sort of two-center irtlethie(ab|a’t’) special
case. They require a significantly different approach tihamh tised for the other

integral types. In the other cases, bras and kets can be edatdth little depen-
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dence on eachother. Here, of course, the basis functios paist center on the

same atom pair.

For each atom A
For each atomB in strip
check sinple A-B distance cutoff
store atom pair data by pair class
Next atom B
Next atom A

For each atom pair cl ass
For each pair
sort pairs by distance
Next pair
Next atom pair class

Esti mat e nenory usage
Determine work array | ayout
Det er mi ne maxi mum pair bl ock size

For each atom pair cl ass
For each bra bl ock type
call GETAB
call SORTAB
call CALCAB
For each ket bl ock type
call MKABAB
Next ket bl ock type
Next bra bl ock type
Next atom pair class

Figure 2.7: Schematic representatiorAdSAB

In order to make optimal use of memory, tABAB driver uses only a few
fixed size arrays. Information needed to calculate pair dalizes is placed in a

single, large, general-purpose array. Since the layoutsisrmemory region are
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not pre-set, data can be stored in the least amount of spditeugh the size of
the pair data can not be determined exactly before somenarmation process-
ing occurs, certain run-time parameters can be used to astiin In this way,
the program can automatically and adjustably determinepipeopriate number
of atom pairs to operate on in each cycle. Later, when theabsize required is
known, as a by-product of the way it is calculated, the pata @ads up confined
to a single, contiguous, minimal portion of the scratchariide rest can then be
used for batch processing.

The pair data is calculated in three steps, informationegath, sorting, then
computation. This implementation was chosen for two reasmher than the
memory usage considerations given above. The so-calledmation gathering
step is a necessity. This is where function pairs are seleotd their actual con-
traction degree determined. The pair data could be comphées] ending the
process, but the loop lengths are short, making it inefftcierdo so. Instead,
integer indices are stored which allow the requisite fuorctnformation to be re-
trieved later. These indices are then sorted. The sortintpadeallows the use
of a simpler, cheaper (in the sense of memory use) indexingnse in building
guartet batches. It also places the pair information in glsjrcontiguous block
of memory. The flop intensive computation stage can then blerpeed in one
long loop over all the contraction pairs at once.

A schematic outline of the driver is given in Figure 2.7. Amare assigned
classes according to atomic number, and the number in easbk © recorded.
Atoms in the same class will have similar basis sets (e.ggemxyand carbon ver-
sus hydrogen). Selecting blocks of atom pairs that come fhesame classes im-

proves the likelihood that each pair will contribute menslterthe same batches.
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After pairing up atoms and forming them in to a list arranggdhe pair classes,
each sub-list is sorted according to interatomic distanfeis ensures the lists
will fall into blocks with the same contraction degree latgnen distance cut-
offs are applied. The program now performs memory estintatdgtermine the
maximum number of atom pairs to process at once.

The code is now ready to process blocks of pairs. It entensslaver atom
pair class, blocks and block types (essentially a loop oxeabgular momenta).
Routine GETAB performs the check to eliminate small primitive contragtio
(discussed elsewhere in regard to routi@$4GPINT and AABC) and gathers
pair index data according to the sort ordering. Again, bseaf the contraction
pair cutoff, the actual pair contraction degree may be |bas the product of
the contraction degrees of the function pair under conatamsr. Once routine
GETAB has finished, the storage needed for the pair data is knownmitiriRo
SORTAB does a simple sorting of the index arrays into a region pastevthe
pair data will go. Routin€€AL CAB then retrieves the actual pair data and stores
it in the beginning region of the scratch array, leaving tst ppen for processing
batches.

Last comes a loop over ket block types (ket angular momeBiage the bra
and ket pair data is from the same atom pair, the bra pair dgatebe reused.
Batches of function quadruplets are accumulated and padgséat integral as-
sembly through routin K ABAB.

2.11.7 Final Transformation sq-brakets to ERIs

Once the requisitgg-brakets have been constructed, they must be transformed in

to the final desired ERIs. This phase of the algorithm is onthefmost com-
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putationally expensive, especially for integrals overhgigangular momentum
functions. It is therefore critical that it be implementetiogently. One should
note that the transformation sequence, or path throughrethesion relations, for

each side (bra or ket) is independent of the other.

do 10 i=1,n

strawm(i, 66)=straw(i, 66)+ba(i,1l)*strawmi, 72)+straw(i, 75)
strawm(i, 67)=straw(i, 67)+ba(i,1l)*strawmi, 73)

strawm(i, 68)=straw(i, 68)+ba(i,1l)*strawmi, 74)

10 conti nue

do 20 i=1,n

straw(i, 69)=straw(i, 69)+ba(i,2)*straw(i, 73)+straw(i, 75)
straw(i, 70)=straw(i, 70) +ba(i, 2)*strawi, 74)

straw(i, 71)=straw(i, 71) +ba(i, 3)*straw(i, 74) +straw(i, 75)
20 conti nue

Figure 2.8: Schematic representation of a sample transfitmmcode snippet

Figure 2.8 shows a short example of the code from a typicakfaamation
step. Although one could code a general purpose versiorcbf@&ahe recursion
formulas 2.69-2.71, we chose to write special case subresitior all possible
transformations througlid functions. The entire transformation from the base
pg-brakets through to the final integrals is handled in a sisglgroutine. In ad-
dition, since significant computational savings can beead when the function
pair shares a center, we broke the cases into one and twa eenseons. This
approach requires perhaps a great deal more coding thaneageoeralized im-
plementation such as the one described in GHGP. The roltewsne quite com-
plex for higher angular momenta. Subroutiii2c, the two-center sequence for

fd integrals, is roughly 1400 lines long, for example. In castrthe repeated use
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of a few generalized routines simplifies debugging. Rostinged for a variety
of transformation stages need only be debugged once, antiarselves rela-
tively simple. However, writing individualized routinegptically produces code
that compilers can optimize much more effectively. In somages, this can pro-
duce enormous speed increases. Our code is particulardygwdd for vector or
deep-pipelining architectures, although virtually anyd®am hardware will bene-
fit. The transforms are all performed using only the memoguired to hold the
input primitives and the final results. A general routine Woequire substantial
extra memory to hold intermediate results, which would sigantly reduce the
number of integrals that could be performed at once in a b@&tohlyzing how to
do this was a painstaking process, one for which we found haon@ated proce-
dure. Even if one could be formulated, it would almost celtarequire a control

structure that would be difficult to optimize, either by hawdor a compiler.

2.11.8 ERI Gradients

For first derivative terms, it is quite straightforward toeusll the control and
calculational structures just described. In fact much efdbde proceeds without
any deviation. First derivative terms, as noted from equia.69, are nearly
trivial sums of undifferentiated ERIs. The TEC algorithmmply runs calculations
for the component ERIs, and then hands the results off totanethat combines

them.
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2.12 Resultsand Discussion

2.12.1 Overview

We present results here for single point Hartree-Fock ¢atioms using the 6-
31G** basis set and preliminary cc-pVTZ basis ¥t® In general, the advan-
tages of the PS method increase as the basis set becomesansee(d.g. for a
triple zeta basis) and when the shells in the basis set dohaoe £xponents, as
is the case in the present basis. Despite the fact that tkemqtrbasis is the most
advantageous DZP basis for standard two electron methaglshaw here that
significant timing improvements as compared tauSsIAN 92 can be obtained
with minimal sacrifice of accuracy.

In previous work, we emphasized the agreement of absoletgies fronps
GVB and GAUSSIAN. However, insistence on such agreement for large molecules
leads to loss of efficiency iRs-GvB. The only chemically relevant quantities are
energy differences; indeed, it should be remembered tharges obtained by
GAussIAN are themselves off by hundreds of kcals/mole from the exiffetrd
ential equation solutions, due to basis set incomplete#bde absolute energy
agreement is still in general very good (within a few tentha kcal/mole for the
vast majority of cases), we have succeeded in developimg,gdiealiasing sets,
and iteration sequences in which the internal cancellasfoerror inPS-GVB is
very reliable despite absolute energy differences witu&sIAN of as much as
1 kcal/mole for large molecules.

We have, in addition, developed parameter sets which dabiglreproduce
the absolute energies fromaBssIAN within 0.2 kcal/mole, even for quite large

molecules where summation of the long range Coulomb fieldstaccuracy of
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one part in10” is very demanding. These parameter sets~36% slower than
the default parameters; however, they allow the user to eoenfptal energies

directly with GAUSSIAN if this is desired.

2.12.2 Total Energies

Table A.1 presents total energies for a wide range of modsciunl their equilib-
rium geometries using A&JSSIAN 92 and the default and tight parameter sets for
the 6-31G** basis. For the cases shown here, the parametdeseribed above
gives total energies that are very close to theJ&sIAN results. These results are
obtained with grids that are considerably smaller thanghsd in other numer-
ical methods in electronic structure theory1(00 points/atom on most iterations
as compared withR-1000 points/atom in typical density functional codes tcagbt
an accuracy that is significantly worse than what we repag)héhe improved
performance is obtained by the use of pseudospectral me#nudl two-electron

integral corrections as described above.

2.12.3 Relative Energies

Table A.2 compares energy differences for a selected sebtdaular torsional
barriers and conformations forABSSIAN 92 andPs-GVvB for our parameter set,
again using the 6-31G** basis. In all cases, the relativegas agree to better
than0.1 kcal/mole, independent of the size of the molecule. Thisaestrates
thatPsGvB now has its own cancellation of error comparable to that &
SIAN 92. Again, we emphasize that thean@GssIAN 92 results are nowhere near
the Hartree-Fock limit due to basis set incompletenesd)atoenergy differences

are in fact the only basis for a fair comparison of the two rodth
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We have done preliminary studies of torsional energies asetibn of elec-
tron correlation. Correlation effects can be on the ordesewskral kcal/mole even
for systems as simple as butane or urea. Consequently, tiees’ein PS-GVB
energy differences are trivial compared to uncertaintiestd basis set and corre-
lation effects. This argument applies even more stronglyotad energies where
correlation effects are still larger. In summary, then, pleeformance oPs-GvB
with regard to accuracy is quite adequate at the level of amaupeter set opti-
mized for computational efficiency and timing comparisonthhvGAUSSIAN at

this level are meaningful.

2.12.4 Timing Results: 6-31G** Basis

Table A.3 presents CPU times for a selected set of molecslempared to
GAUSSIAN 92. For small molecules, a factor of 2 is obtained routinely 6-
31G** while for larger molecules a factor between 3—4 is aied for both a
Cray vector supercomputer and for am IBM Model 580 RISC wiattisn. These
results do not represent a major breakthrough but they dectedl significant
guantitative advantage for the PS method. For other batsistee advantages are
greater; the larger and more complex the basis set, the meradvantage of PS
grows, as stated above. To illustrate this, we presenttsefulthe the Dunning

correlation-consistent TZP basis below.

2.12.5 Timing Results: cc-pVTZ Basis

In table A.4 we show our preliminary cc-pV %38 results for a subset of mole-
cules presented above. The larger molecules were choseziter lustrate the

scaling advantage of the PS method. Up to a factor of 6.5 ivgonent over



85

GAuUssIAN 92 run with its default cutoffs is achieved in this size regjmshowing
the PS method’s better scaling with basis set size. It shbeldoted that this
basis set uses general contractions, which forcessSIAN 92 to recalculate el-
ementary integrals. Howevers-GvB must also recalculate these quantities, and
therefore this timing comparison is more directly illusitra than those for basis
sets with shared exponents, such as 6-31G**, where asy/evB does not take
advantage of this construct in its analytical two-electrankage described above.
With the expectation that future research will focus onéangolecules, as well
as bigger basis sets to better model chemical propertiesitility of such a better

scaling algorithm as the PS methodaib initio chemistry is apparent.

2.13 Conclusion

We have demonstrated that PS methods are capable of retiaiviputing en-
ergy differences and total energies for the Hartree-Foclagons while display-
ing substantial acceleration of CPU time as comparedA0<3IAN 92, which
is generally accepted as the standard in the field; for sipgiet Hartree-Fock
direct SCF calculations on large molecules without symynete believe that
GAUSSIAN 92 is the most efficient conventional electronic structuwdecavail-
able. A graphical user interface for UNIX systems has beerstrocted which

makesPs-GVB easy to use as well.



PROTEIN STRUCTURE DETERMINATION VIA X-RAY
CRYSTALLOGRAPHY

3.1 Oveview

Proteins, a vital class of large molecules key to the fumatig of cells, don't
have a regular structure like the famous double helix of DSthwucture here refers
specifically to the three dimensional arrangement of atorspace, also known as
the protein fold®® Instead, proteins come in a nearly infinite variety of shapeb
sizes. It has long been recognized that knowing a proteirnistsire can supply
critical information about its function. One generally ags of the protein’s active
site, shorthand for the region in the structure where thenoted activity related to
the protein’s function takes place. Determining the layafithe amide backbone
chain and the amino acid residues around the active sitetisydarly important.
While great strides have been made in tleenovoand comparative model-
ing of protein structures, particularly in the past ten gear so, non-empirical
methods have not yet proven reliable enough to supplantiexeet. Several ex-
perimental methods exist which can establish the confoomatf a protein, of

which X-ray crystallography remains the technique resfm@g$or the most new

86
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structure determinations. The most common alternatived ase nuclear mag-
netic resonance (NMR) and electron microscopy (EM), algfoa few structures
have been determined by other methods, including neutffsaction and powder
diffraction® To give a sense of the relative importance of the methods)@b 2
there were 34345 structures total in the Protein Data BaBBJP%*2 Of these,
29004 structures had been determined using X-ray crygtalihy, 4514 of them
new in 2005. 5161 were determined by NMR with 884 new, and 1&i8leen
determined by EM, of which 23 were new.

Histograms of the deposits in the PDB show that almost 40%rat&ires
were solved from data with a resolution in the range of 1GBA2 Over 60% fell in
the range 1.5-2.5A. This, no doubt, reflects the fact thatsire determination is
significantly easier when experiments achieve resoluti@hsw 2.5 A. Our work
primarily intends to enhance the ability of researcher®teesstructures of poorer
resolution, 2.5 A and above.

X-ray techniques suffer from two primary bottlenecks. Nafmsisingly, both
bottlenecks arise because there are no sets of definedlsé¢gsiarantee success,
so each requires the attention and effort of a highly traiegokrt to carry out.
Due to the nature of proteins, their irregular structure sizd, they are difficult
to crystallize. This, of course, affects all following sésgof the experimental
work. However, that stage is not the focus here. The secartaps less obvious
issue, is the act of deriving a quality model from the experntal data. This is
the problem our work intends to address.

In the following pages we will describe our advances in orical stage of
structure determination from X-ray crystallography d#te, initial identification

of features and concomitant placement of fragmentary pieta potential model.
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When high resolution data exists, typical methods migleragt to trace the pro-
tein backbone directly, but at poorer resolutions thisroftéls. In this case one
often begins by identifying probable locations of largealeanotifs, particularly

the ubiquitous alpha helix and beta sheet conformations.

3.2 X-ray Crystallography

We refer the reader to such texts as those by Drenth or Rhodesthorough
introduction to X-ray crystallography as it pertains to siiedy of macromolecular
systems such as proteifis** There is, of course, an extensive body of literature
in journals, but there are also a wide range of resourceseWtrld Wide Web,
including many tutorials. We will give a comparatively shoverview here for
context.

All present day X-ray crystallography has some major comsteps. Suffi-
cient quantities of the material under study must be prodiuCeystals are grown
from this material. While this step might seem simple (adi&rfor many common
materials like salt, one can grow crystals at home undeeduiide conditions)
this is in fact one of the more difficult, often rate limitinteps in the overall pro-
cess. There is no guarantee that a crystal can be formedyfpaaticular material,
and even when done successfully, they are often of poortgudlnis limits the
resolution obtainable in collecting data.

With a crystal (or, more often, several crystals, some maole fmodified
versions of the material) in hand, one can collect X-rayrddfion data. At this
point, one cannot escape mention of the ubiquitous “phagklgm” of X-ray
crystallography*® X-rays, though simply a name for part of the spectrum of light

cannot be focused like visible light through a lense. Ratiherthree dimensional
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spacial image of a material must be reconstructed from thdteeof the scattering
of X-rays from the electrons surrounding atoms (known asdiffraction). X-

rays diffracted from a regular system like a crystal willrfoa pattern of dark
regions and high intensity spots. The spots are usuallyresf¢o as reflections.
Technically they are not reflections, but Bragg developedreceptually useful
framework in which the spots can be thought of as derivingfreaves reflecting
off of imaginary planes connected to the crystal latticengsfi® We will discuss

reflections and show the origin of the phase problem exylistortly.

3.2.1 Electron Density Maps

Classical electromagnetic theory provides a model for eoting the intensities
of reflections measured in an X-ray experiment to a three soaal image of
the electron clouds around the atoms in the specithé&h?’ This picture of the
electron distribution is commonly referred to as an electttensity map or EDM.

The formula for the electron density is

1 .
ple.y,2) =1 ; ; ; F(h, k,0) exp[-2mi(he + ky + (z)]  (3.1)
wherep denotes the electron density at locatiany, z). V' is the volume of the
unit cell. The sum takes place over the integers (both pesitnd negative), k

and! that designate each reflection, known as the Miller indigé%. &, [) are the

so-called structure factors. Nokeis a complex quantity. This is made explicit in
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an alternative form of Eq. (3.1):

pr..7) = o Xh: Xk: %]F(h, k, 0)| exp[—2mi(he + ky + €2) + ia(h, k, 0]
(3.2)

The actual measured intensities are proportional to theniate of the structure
factors. As discussed previously, this means that, in desgyperiment, a critical
component of the information needed to calculate the EDMoisdiscernable
directly, namely the phasegh, k, ) in Eq. (3.2). This is the source of the phase
problem. Phases must be determined indirectly. Commomiggés include
using phases from a molecule expected to be closely relateztigrally to the one
under study (referred to as molecular replacement) or uséayy atoms (atoms
with relatively high atomic numbers such as selenium or mmg)dn isomorphous

or anomalous dispersion methods.

3.2.2 Difficulties in Structure Assignment

In principle, the wavelengths of typical X-ray sources §l¢éisan 1 A) are suffi-
ciently short to easily resolve structure at the atomiclleaed to derive precise
phase information. In practice, protein crystals contamumber of kinds of dis-
order. These range everywhere from deviation of individiams from exact lat-
tice position because of ordinary thermal atomic motiornrézking of the crystal
during cooling (a now standard practice). Other factorsuithe impurities, the
existence of flexible regions, crystal growth faults andfoomational changes.
The list is quite lond?

These imperfections in crystals restrict the effectiveh&son obtainable in an

experiment. At some maximum scattering angjlene can no longer adequately
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distinguish different reflections. This maximum angle esponds to a minimum
spatial distance. This distance is what is commonly refetoeas the resolution
of the experiment. We showed previously the majority of iedeposited in the
PDB have a resolution of 1.5-2.5A.

In some cases, the reflections for which phase informatiarbeadetermined
are even more restricted. During model building, it is ofparssible to use in-
formation from a partial model to allow inclusion of addital reflections. This
is known as phase extension, phase refinement or simply pingsevement?
Many of the models derived from the experimental data usedisnwork have a
higher final than initial effective resolution.

With such seemingly poor resolving power (relative to tgbimolecular scales)
how, then, can we expect to arrive at an accurate model? diygitutions make
use of various forms of outside information (meaning angrinfation not directly
derived from the experiment in question). This includegra@sing models to
match known bond lengths and angles, making use of nonatiygtaphic sym-
metry when it exists, and density modification methods sscdodvent flattening
and histogram matching. Various estimation techniquegesighat the RMSD
of typical models is on the order of 0.2-0.3 A, although thsuesis not entirely
resolved*3 >0

The most common single measure of model quality in use toslttyeiR . .
factor, originally introduced by Briingé&t,>? although this should be interpreted

with caution®® The reciprocal spacg factor is defined as

— thl||FObS| - k|Fcalc||

R
Ehkl|Fob8|

Here h, k and! refer to the Miller indices, so the sums are over all refledio
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| Fops| @and | Fy.| are the magnitudes of the observed structure factors arse tho
calculated from the model, respectively. The multipkeis there to adjust for
differences in scaling between the structure factors. d¢hisen to minimize the
R factor.

It is important to note that the phase information actualg more to do with
the quality of a density map than the structure factor magieis do. Injudicious
phase refinement can lead to a completely wrong interpoetafithe map (i.e. a
model that, by naive measures, fits the map well, but doesaraespond to the
actual protein structuré}:® The R factor defined above has been demonstrated
to suffer from model bias. Model bias occurs because thejrration of phase
information from a partial model will tend to reinforce th®&'’s matching of the
model. R;,.. avoids this problem by selecting a test set of reflectionglvare not
included in the refinement proce¥s>’ Typically around 10% of the reflections
are chosen to make up the test set. Since these structusesfdonn’t incorporate
model phase informatiorR,.. avoids bias introduced during model refinement.

The equation folR,.. is given as

Rf _ EhleT||FObs| _k|Fcalc||
ree —
thlCT|FObS|

This is identical to the expression f& except the sum runs only ovekl C T,
the set of reflections belonging to the test set.

One might naively assume that thg, .. factor would typically be quite small
for a well-determined structure, but this is rarely the casdistogram ofR ..
values from the PDB shows a balanced distribution with atm6%6 of deposited
structures falling the the 0.228-0.266 range. Only a faactf a percent of struc-

tures are listed with a®,.. value of less than 0.1.
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3.3 Current Model Building Methods

Automated protein structure determination is a highlywactirea of research. In
a review published in 2000, Lamzin and Perr&kissted only one tool under
the heading of “Automated model building”, the ARBXRP suite. Several new
additions have become available in a few short years siree thhe journal Acta
Crystallographica Section D has taken to devoting an erssige once each year
to the “Proceedings of the CCP4 study weekéfid” The 2004 special issue is
devoted entirely to model building and refinemé&htThe problem is far from
“solved”, even in regimes where researchers can succhsbtuld models fairly
reliably by hand. In this section we give an overview of thetdmy and current
state of the efforts to automate the initial model buildimggess.

Greer published perhaps the first automated method dedigasdist in model
building %* Through an iterative procedure, points are removed from & §bd,
starting at low density and moving to progressively higheugs, leaving points
that connect to form a “skeletonized” trace of the proteiokb®ne.C“ sites are
identified by the branch points where side-chain densitySfaff from the back-
bone trace. This technique is still in use today, incorpmanhto many of the
most widely used graphics systems such & Qevitt's MAID and Oldfield’s
QUANTA packages both make use of forms of skeletonizatiopaas of their
automated build procedurés?5°

The CAPRA system also begins by skeletonizing an EB®.The remain-
ing trace points are considered candidatesfoiplacements. The approach then
uses pattern-recognition techniques to identify tfl¢epositions. This consists of

a two step sequence. First a large number of rotationallgriamat quantities are

*CCP4 refers to a widely-used package of software tools falyaimg crystallography data
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calculated based of spheres of density around the locatigneéstion. Features
include quantities such as the moments of inertia, meantgieasd other statis-
tics. These values are fed into a neural network. The netawiut predicts how
far the current location lies from a trd¢* position. These predictions are ranked
by increasing distance and a chain built by moving througHit in rank order.

Kleywegt and Jones developed a method specifically intetmléelp detect
secondary structure featur€sTheir program, ESSENS, calculates a crude score
at each pointin areal-space map reflecting how well the aloatemplate match
the neighboring density. Scores are calculated for sevetational orientations
of the template. A map consisting of the best score founddt paint for all the
orientations sampled is produced, along with a PDB file gj\thre coordinates of
the best overall match. In this way, ESSENS created a visddbaidentifying
smaller features (e.g. helical fragments as opposed to e elomain) rather
than a true automatic detection tool.

Cowtan extended the approach of Kleywegl. to create a true automatic
feature detection todf: ° The progranFrFEAR calculates a masked square resid-
ual between the fragment and map densities. For a particofational orien-
tation of the fragment, the translational search is caraedusing fast Fourier
transforms. Combined with other techniques (for example, to deal wéhsity
scaling),FFFEAR is capable of performing the equivalent of an exhaustive six
dimensional search for any template specified as a set of R mordinates
using a more sophisticated scoring function, in relatiVigiie computer time. Co-
ordinates corresponding to the top matches (100 by defanglyutput in PDB for-

mat. Cowtan also introduces a statistical search functiseth on Bayesian prob-

fIn Cowtan’s terms “Fast Fourier Feature Recognition”, leciie name&FFEAR
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ability theory, with some improvement in discriminationhd statistical method
has a drawback in that the search models require significapapation FFFEAR

is included in the popular CCP4 suite of crystallographaigoRecently, Cowtan
published another hybrid approach that uses a similar maxitikelihood search
function to identifyC'* positions, which are then formed into chains to produce a
backbone tracé

The output ofFFFEAR can be combined with other tools in the CCP4 suite to
attempt to assemble a model, but this procedure is not atomahe program
RESOLVE adopted Cowtan’s FFT search and the use of a maxinketihbod
target as the first stage in a fully automated procedure ¢apébuilding a com-
plete model. Two templates are used, a six segment helix fod aegment beta
sheet form. Best match locations for each template arecstoreé used as the seed
sites for the rest of the process.

Perhaps the earliest approach capable of producing a reariplete model
automatically is the ARRYARP suite. This method works using an entirely dif-
ferent approach. Models are built iteratively by placingrahay atoms at density
peaks, then matching patterns of dummy atoms to known pratetifs, refining
the positions, then repeating. One particularly intengstispect of this method is
the fact that dummy atoms can be removed or added at eactioteliatroducing
the possibility that the model can make discontinuous shiftilike most other
approaches. However, since ARWRP essentially depends on picking density
peaks, it can generally only build a significant portion of ad@l at resolutions
below~2.5A.

We have tried to capture our estimation of the most signifieend mature

methods for aiding in or automating the initial model builglistage of the protein
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structure determination process. This list is hardly catelFor a more detailed
look at the field we suggest reading Lamzin and Perrakis, RagpMorris®® 72 73
Of particular interest, too, is the paper by Badger comggtiire model building
capabilities of ARPWARP, MAID and RESOLVE The literature unfortu-

nately has a dearth of this sort of direct comparison at ptese

3.4 Improving Feature Detection

3.4.1 Overview

In the following sections we will present our efforts at imaping the first steps
of model building by enhancing feature detection. We follaywath similar to
Kleywegtet al.in using a molecular fragment as a template in a six-dimerdio
search. While the program we developed is capable of perfigran exhaustive
search, rather than rely on this alone we follow the searc¢h aifurther rigid-
body minimization. As we will show, we found that reasonatdsults, often
superior to that oFFFEAR can be achieved using a much coarser initial search
when followed by refinement of the template placement. We aificuss the
algorithm in detail in a later section, but the main elemeasiprise sampling
a number of potential template match locations, obtainisgae reflecting the
initial fit, then refining the promising initial placementsey elements for success
then are the adequacy of the sampling, the discriminatowepof the scoring
function, and level of enhancement obtained in performé@imements. These all

intertwine inextricably to shape the final method.
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3.4.2 Mathematical Basis

Let us begin, then, by discussing scoring. We primarily iigefollowing scoring

function

Z'fimz’
S(ry,...,xp)=1— L - 3.3
( ) (Zz ff)ﬁ(zi m?)g 59

Here we definef; = F, — (F') andm; = M, — (M) where(F) = ZTF and
(M) = ZTM F; and M; are the density values of the fragment and the molecule
at grid pointi, respectively.V is the total number of grid points used in scoring.
x1,...,x, are the coordinates that specify the fragment pose. Sincemowe
the fragment as a rigid body, there will be six degrees ofdoee, although not
necessarily six independent coordinates.

The last term on the right hand side of the equation is comyriardwn as the
correlation coefficient. If one thinks of the numerator as dot product of two
vectors (albeit ones made up of density values), it is easgdlize that this term
varies between 1 and -1. The particular form, then, of theisgdunction varies
between 0 and 2, with lower values indicating a better fit.sTast detail is done
simply so that the refinement can take the form of a minimirggpiroblem. There
are hidden details in this scoring method. In particulag, ¢hoice and number
of grid points to use are critical factors both to the diséniatory power obtained
and the efficiency of the algorithm. We will discuss theseésswhen describing
the implementation.

Two other values have proven useful in evaluating a fit. Timetion

Ulxy,...,x,) =1— i (3.4)

(3, F)2 (32, M2)>
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uses the values of the densities rather than their devitbomthe average. Both
this and the primary scoring function can be related to a Engast squares
score by including an overall multiplicative factor and altiplicative factor and
an offset, respectively, to the data. Recall the data isdcatbitrarily and has
an unknown offset (corresponding to the unmeaslit@d 0, 0) structure factor).
Once again appealing to vector arithmetic, one can seedimstin equation 3.3
correspond to the angle between two unit vectors, whereaatieq 3.4 has a
correspondence with the scalar product of two arbitraryorsc

Since both equations 3.3 and 3.4 effectively allow fits witiegions of very
low density, it turns out to be useful to include a cutoff lthea the sum of the
squares of the molecular density at the grid points cons@iérhese three values,
then, are all considered in evaluating a fit. The use of csitwffl be discussed
further in the implementation section.

The refinement process takes the form of adjusting the fragpusition and
orientation from the initial pose to find a better local fit. \Wee a quasi-Newton
minimizer’® ®to do this, which essentially requires that the score hasmnaitytic
gradient. To evaluate the components of the gradggnWe first note thatn; is
independent of the coordinates Breaking down the substituent pieces of the

formula, we have
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Factoring out% we have then the general form
J

- (S AT Bl = (3 fom) (1 £ 195 35)
J k i

Since(F') is independent of gridpoint, for any set of coefficiefits: >, ¢; = 0},

it follows that
of; OF;

Ci— = Ci—
; al'j ; Oxj

The derivative term% always has multipliers that meet this requirement, so it
remains then only to find expressions %{% in order to evaluate Eq. (3.5). Fol-
lowing the method of Agarwal and others, we approximate thetmn density
surrounding an atom with a sum of Gaussiah§’8 The fragment density at a

pointr in space is given as

=3 Canexp[—Aan(r — 1,)’] (3.6)

where the sum is over all atoms and the sums over the number of terms in the
Gaussian approximation for the density contributed by amatr, denotes the
position of atonu in space. Denoting grid locatiarby r;, we haveF; = F(r;).
Though not explicitly shown, the exponential facfoincorporates a temperature
factor.

The positions of the atoms at the sample pose are obtainedtaiyng and

translating the reference fragment. Hence

=R-r,+T

iThis assumes all the coordinates are independent.
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wherer’, is the original position of atom & is the rotation matrix and is the
translation vector needed to transform from the refereadbd sample posek

andT are given by

B+ad—a—a¢  2ae — ) 2(q193 + qo0q2)
R = 2(q1q2 + qogs) qé — gl +q5— q§ 2(¢2q3 — q0q1)
2(¢193 — 902) 2(qs +901) @ -G -G+ 4

a
T=1p
C

T is a straight-forward Cartesian translation vector. IrcakdtingR we chose to
use a quaternion representation. We have identify as auateli(z4, ..., 27) =
(qo, - - -, g3, a, b, ¢). With this choice, the coordinates used to locate a poseadre n
allindependent. Rather, the four valugsy; must satisfy the constraing + ¢ +
¢3+q3 = 1. Strictly speaking, then, equation 3.5 does not give thed tigtrivative
of S. We will examine different approaches to address this whecudsing the
implementation details.

The quaternion representation has a number of advantagesother meth-

ods’® In particular, we initially used a rotation matrix calcwddtusing Euler

angles®°
cos(a)cos(B)cos(y) —sin(a)cos(B)cos(y) sin(B)cos(y)
—sin(a)sin(y) —cos(a)sin(y)
R = cos(a)cos(fB)sin(y) —sin(a)cos(B)sin(y) sin(B)sin(7y)
+sin(a)cos(y +cos(a)cos()
—cos(a)sin(f) sin(a)sin(3) cos(3)
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The Eular angle representation suffers some well-knowhlpros, including the

difficulty in obtaining a uniform sampling of rotations anégkneracies where
widely different sets of angles produce the same rotgfichhose reasons alone
make the quaternion representation preferable. Experisnggests that conver-
gence of the quasi-Newton minimization technique is s@p@rsing quaternions,
too.

Continuing with the derivation of the gradient of the scgrianction, we have

aE . ara 2
o, —2;(& r,) o, ;AanC(m exp[—Aan(r; — 1,)7]

r/ is independent of the coordinates, so

or, 8R_ , 0T

oz, ow, T o

371; is particularly simple. We havgzlj =0forj e (1,...,4) and, e.g.,%—}: =
<é) Similarly, g% = 0for j € (5,6,7). The equations fo%,j € (1,...,4)

are more complicated. Explicitly,

dgo —q3 QG2
R _
90 2 q3 do —q1
—42 G qo0
q1 42 qs
R _
a1 2 q2 —q1 —4qo

43 Go —q1
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—q2 41 o
3—52 = 2 Q1 G2 Qg3
—qo 93 —q2
—43 —qo 41
g—i = 2 G —43 Q2
q1 q2 g3

With these terms in place we have the necessary analytiessipn for the

gradient of the scoring functiofi.
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3.5 Algorithm

The core algorithm is shown in Figure 3.1 on the next pagerdisesupporting
code for performing necessary initializations, readintracsured control file and
reading electron density maps (not illustrated). The cods written in the C
programming language, which is reflected in the style of tieematic represen-
tation. Terms ending in empty parentheses indicate subesit Indentation is
used to reflect the code structure. Subroutine calls and woaleped by control
structure (loops, conditional statements) are indentedlevel further than the
surrounding code.

Routinedr _fit _fragments() begins by looping over a list of fragments
to be fitted. The list of fragments is specified in the the aarfite in a format
of our own design. Each fragment entry comprises a fragngnbumber of
atoms, number of scoring rounds, the number of points aradfsdior each round,
a fragment “pad” distance and the coordinates and typesdl ti@latoms. The
coordinates are given in a regular orthogonal system, ins&koms. They are
automatically recentered to a system with the origin at g@ngetric center of the
fragment.

The code then enters a set of nested loops. The outermostuospover a
sampling of unit quaternions, up to the requested numbeatafional poses. The
guaternions are taken in order from a preset table designpdbvide uniform,
deterministic sampling. We will discuss the sampling mdtiothe discussion
section. Next there is a loop over divisions, which allows{grain sampling
of translational offsets. Normally the reference fragmisradjusted to have its
geometric center at the origin. If an integral division ieesified, sampling is

also done starting with the reference fragment centeradedial divisions of the



| oop over fragnents, quaternions, divisions
gd_gen_search_grid()
gn_set _rotation()
as_transform)
fragnment _cell ()
fragment _grid()
gd_set _density()
us_sort _grid_i ndex()
gd_gen_i ndexes()
| oop over vertex grid positions
fs_check _fit()
| oop over scoring rounds
fs_score()
eval uat e scores
pass: continue | oop
fail: return for next position
end | oop over scoring rounds

re_| bfgs()

eval uate scores, convergence
pass: continue
fail: return for next position

as_transform)

| oop over existing clusters
find | owest RMSD match
end | oop over existing clusters

i f RVSD cutoff met
updat e_cl uster()
el se
add_cl uster()
end if
end | oop over vertex grid positions

end | oop over divisions, quaternions, fragments

Figure 3.1: Schematic representatiordof fi t _fragnment s()
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grid spacing in all three dimensions. Rotations are alwayfopmed about this
origin (i.e. the geometric center and, potentially, a seaesmall offsets near the
geometric center).

With the fragment, rotational pose and center offset datexd) we are now
ready to generate a set of fragment values which will be usedlfthe transla-
tional searches. Calculating the electron densities ogedaalthough optimized,
is computationally expensive. The translational seargierformed by calculat-
ing the fragment densities on a grid with the same axes addgrnt spacings as
the molecular grid. Since the relative offsets of the grigsmaatched, translational
sampling amounts to selecting different base indices imtbkecular grid.

The subroutinggd_gen_sear ch_gri d() encapsulates all the functions in-
volved in creating the fragment grid. It calls subroutime set _rot ati on() to
calculate the rotation matriR given the quaternion value for the pose. Subrou-
tineas_transf orn() then effects the rotation of the reference fragment about
the origin, that is, it calculates the new atomic positiomisdach atom. It will
also add a translational offset, although not in this ihit@se. Given a set of
atomic coordinated,r agnent _cel | () calculates the vertices of a cell around
the atoms. The cell must have the same shape as the unit tedl ofystal (angles
and relative axes lengths). The cell is chosen so that no atones closer to a
cell face than the distance of the pad parameter (that igdlhsize ensures that
every atom has a certain radius of room around it in the grid).

Continuing ingd_gen_search_gri d(), subroutind r agnent _gri d() gen-
erates all the Cartesian coordinates of the grid pointsHerdell. Subroutine
gd_set _densi ty() calculates the fragment density at each grid point from the

sum of the density contributions of all the atoms. The dgn=intributions are
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calculated from a standard approximation in the form of a sfiaussians’
This step is optimized using a table lookup with a linearrpbdation. This al-
lows an excellent approximation of density distributionegi by equation 3.6,
including the temperature factor, without the computadl@xpense of evaluating
exponentials. It should be noted that while any temperdaater can be specified
at run time, only one factor is applied during a run, to allnaso An index array
of the grid points is sorted ins_sort _gri d_i ndex(), so the points may be
directly accessed ordered by density value, highest todowkhe search prepa-
rations are completed lyd_gen_i ndexes() which calculates the index offsets
necessary to access a molecular grid point given a fragnmehpgint and a base
offset. See the description of the translational searcifdtiaws.

After generating the fragment grid for this particular taiaal orientation,
dr_fit_fragnments() enters a set of loops over molecular grid points. The
fragment grid, which has the same cell axes and grid spaailigns with the
molecular grid. Identifying a vertex point from the fragmemnid with a molecu-
lar grid point is equivalent to calculating the fragment signwith the fragment
shifted to a new origin. This amounts to moving the fragmeotiad the molecule
in discrete steps. Note this means any single search carhaplyen at discrete
displacements of the fragment center. The code describkdrdar shifting the
fragment center slightly makes up for this, allowing dersssarches.

Once we have a fragment grid, and have selected the molagidigpoint at
which to overlay this grid, we drop into subroutifie_check_fit(). Subrou-
tinefs_check_fit() begins by scoring the now completely determined frag-
ment pose. This is done in a loop over cutoff rounds. Eachdauciudes more

points in the score than the previous round, with the idebakimemely poor fits
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can be discarded without the cost of computing the full scohere are three cut-
offs evaluated at present, the two scores described irose®#.2 on page 97 and
the sum of the square of the molecular density over the satref geid points.
All values necessary for these three sums are easily acateduand fed from
one round to the next. Because the fragment grid is orderedehgity, scoring
starts with the highest density grid points and includesisewith progressively
lower density. If all the points were included at which thegment density was
non-negligible, the last term of Eq. (3.3) would be the d#ticed correlation co-
efficient between the fragment and the molecule. This is bothputationally
expensive and unnecessary. We will show in the results thequate discrim-
ination is achieved with a relatively small number of poiniBhe actual score
calculation is performed ifis_scor e( ), which takes as input the fragment den-
sities, the molecular densities, and an index array to mapdsn fragment and
molecular grid points.

If a position passes the initial scoring rounds, we enteré¢fieement stage.
The refinement step searches for a local minimum of the pyis@oring function
using the limited-memory BFGS quasi-Newton library by Naeleand collab-
orators (version 2.1) (hereafter referred to as LBFGS%.828The refinement
algorithm is shown in Figure 3.2 on the next page.

Subroutineset ul b() is the entry point for the LBFGS library. Calling rou-
tines interact through a number of variables and the cheractay TASK. The
first call toset ul b() initializes the code. Subsequently the surrounding code is
driven by the return values in TASK. If TASK returns NEW_ X tag vector array
contains the coordinates of a new minimum. If TASK returns #@® calling rou-

tine is expected to supply the value of the function and igslgmt at the position
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set start conditions

| oop indefinitely
set ul b()

if TASK is
NEW X:
save new coordi nat es
optionally adjust constraints

FG

rescal e quat erni on coordi nates

gd_gen_refinenment _grid()
gn_set _rotation()
as_transforn()
build grid tag table
gd_set _density()
us_sort_grid_index()

fs_score()

gs_qgn_grad()

end if

optionally adjust constraints and conti nue | oop

i f converged break | oop
end | oop

rescal e quat erni on coordi nates
gd_gen_refinenment _grid()
fs_score()

Figure 3.2: Schematic representation ef | bf gs()
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given by the step vector. Finally, TASK can return with a waONVERGED,
meaning one or more of the convergence criteria has beenndeha refinement
cycle has ended.

Because of the relatively simple form of our scoring funetiave can calcu-
late the gradient analytically. To calculate both the s@é gradient at a new
pose we need to re-evaluate the fragment density. This caoreutationally
expensive. With the exception of the way in which we seleetgbints to include
in the score/gradient calculation, the steps involved taioing the fragment den-
sities for a new pose are essentially the same as those fainolg the original
grid. Consequently, subroutige_gen_r ef i nement _gri d() calls many of the
same routines agd_gen_sear ch_gri d(). We will discuss the approach used
to reduce the number of points in more detail further alorge Section 3.6.2 on
page 111.

Subroutinegs_qgn_gr ad() builds the quaternion-based gradient. As pointed
out earlier, quaternions do not form a set of independentdioates. This is
dealt with in two ways. Quaternion coordinates are alwayswatized whenever
new ones are generated. And, after the gradient is calcylate remove the
component normal to the three-sphere. This means that tmfder a step will
rotate a quaternion without changing its length. This eesuhat the gradient
is not dominated by a false term (the change in the score ddewviation from
unit quaternions). Other methods could be used as well. diicp&ar, we tested
Lagrange multiplier and Augmented Lagrange multipliehteques, but these
proved unreliable, with no advantage over the simple arettimethod described
here8

Once the refinement rounds are done, the code performs ghdtfarward
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clustering of the results. A match is compared against tineenticluster list. If

the RMSD of the atomic distances is less than the controlnpeter value, the
match score is compared to that of the current cluster reptasve. If the score
is better, the new match is kept and the old one thrown oui ther match has

a sufficiently small RMSD, a new cluster is added to the list.

3.6 Algorithm Discussion

3.6.1 Minimization Method

The scoring function used is infinitely differentiable.dtempting to consider try-
ing to use a true Newton-Raphson method, or otherwise makefuke Hessian
of the scoring function. In practice, this does not work vesil.?®> The LBFGS
code is quite mature and sophisticated, in fact more so tharecessary for a
problem with relatively few dimensions. There is no reasmmhink that other
methods would not work equally well, although the abilityajgply constraints to
the variables is critical.

The quasi-Newton minimization technique works most effittieand reliably
when the function in question can be accurately approxidiayequadratic terms
over wide regions near any minimum. WhiRis quadratic in the variableg F;
is not. Itis intuitively tempting to believe the non-linedn andcos functions that
appear as coefficients in the derivatives of the scoringtianavhen using the
Euler representation will limit the domains over which a dyadic approximation
works well, but an analysis of Eq. (3.6) does not suggestshastually the case.
Coefficients beyond the second derivative in a Taylor exipansf a simplified

function of the exponential term in Eq. (3.6) do not drop ofimarapidly in mag-
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nitude with quaternions. Despite this, and the fact thadmairig the normalization
of the quaternions adds a small amount of complexity, oteaebts of using this
representation (some of which were mentioned previousty3ymded us to this
form. While not demonstrated rigorously, experience sagggthe minimization

is more efficient and stable using quaternions.

3.6.2 Efficiency

Evaluating Eq. (3.6) and the related derivative terms gedgiwould be pro-
hibitively expensive because of the need to compute nursenguonentials. Since
the functionF'(r) depends only on the magnitugé, it is simple to precompute
the values once and use a table lookup scheme instead. Tatgesenough to
hold all the terms with a granularity sufficient to provides threcision needed
would require large amounts of memory. Instead, we perfolookup combined
with a linear interpolation. This requires only a little extomputational effort,
but roughly doubles the accuracy of a straight lookup, ahgwhe use of much
smaller lookup tables.

During the minimization phase, the fragment is moved to nesgitfpns with-
out regard to the grid spacing. The fragment density can loalfusefully) calcu-
lated at positions corresponding to molecular grid poiitss necessarily means
that the scoring function can't “track” the fragment, meanthe positions used
to calculate the score move relative to the fragment as #gnfent moves. The
original scoring points are chosen by calculating the fraghdensity over a grid
contained within a cell framing the fragment and then usisglaset of the points
with the highest density. The number of scoring points usegtpically signifi-

cantly smaller than the number of points over which the dgnsievaluated (on
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the order of a factor of 10 or more). Clearly it is preferalderécalculate the
densities during the minimization only for the grid poinktat will be used in
scoring. Initially we kept the points fixed and recomputeel diensity only at the
positions used for initial scoring. It soon became appadtattthe fragment could
move far enough that important elements were missed. Weftirerdeveloped
an algorithm which tags the allowed position closest to wlaeprevious scoring
position lies after being shifted, and all of that point’'sgidors in the grid. We
then obtain the densities for those points and sort themljyfingain taking the
subset of points ordered by decreasing density. Seledtmgridpoints this way
can be done quickly using integer operations, greatly neduthe cost of each
minimization step.

With the algorithm in place, the choices of cutoffs and sangpparameters
obviously have the largest effect on the final CPU times. Whik obtained a
great deal of insight during the development and testingisfrhethod, it is com-
putationally intractable to fully explore the range of pbdgies. The parameters
used are adequate to carry out meaningful comparisonsréatimost certainly
far from optimal. It is particularly notable that values dietscoring function
are only meaningful to about two significant figures, but thlerances used in
the LBFGS method cause the minimization to converge to riyuighur figures.
We found that loosening the convergence criteria oftentedatgorithm to miss
many correct placements. Apparently it is fairly commontfar scoring function

to have relatively flat regions near local minima.
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3.6.3 Sampling Rotations

We chose the unit quaternion representation of rotatiotisrge dimensions (i.e.

the groupSO(3)). Coutsias and Rometbshow that a quaternion

q = (cos(0/2),sin(6/2)p)

with p a unit vector, represents a rotation by an artgégound the axip. They
also show that g and -q represent the same rotation (as céy lmaseen from
the expression for the rotation matrix given previously)uiform distribution
of unit quaternions with antipodal points identified therefprovides a uniform
sampling of rotational poses. We chose the quaternion septation in part be-
cause obtaining a uniform sampling of rotations in otheresentations (notably
Euler angles) is quite difficult. With quaternions, the desb becomes one of
sampling over a unit three-hemisphere. Note here we arenterested in a ran-
dom sampling, but rather a deterministic one that increasesrage ofSO(3)
uniformly as more points are added.

Sampling values on a unit sphere in four dimensions is stiliffecult prob-
lem 8%-87.88 Exact solutions have only been found for relatively smathiers of
points, but many methods exist that provide good approxrealutions. In order
to allow a user to determine the number of poses sampled &imen a list of
guaternions was generated using a program that producesdidorepancy, low-
dispersion, deterministic sampling over the three-hehdsg® *° Lindemannet

al.®* define one uniformity measure, the dispersion of a poinPsets

§(P, p) = sup min p(q, p)
gex peP
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where X represents the space of all possible samplespathehotes any metric.
From this definition one can see that a low-dispersion p&ntraist be uniformly
distributed. An intuitive metric is the angle between twarps, 0 = arccos(%).
Examiningcos(f) gives an indication of the uniformity of a point set. We com-
puted the maximum and minimum valuescof(¢) for each point and its nearest
neighbor, and the average of those values over the whol®@ssaimple sets of
increasing size for the sequence of quaternions we usedisliar each point in
the set, we calculates(d) with every other point and track the minimum values
for each point. The maximum values provide an approximatoathe definition
of dispersion above. The average and the minimum valuesayiveasure of
the discrepancy of the distribution. These calculatiorsa&d that the selected
guaternions do indeed give good uniformity over a large eaofgsample sizes

(currently up to a maximum of 1000).

3.7 Resultsand Discussion

3.7.1 Comparison

In order to assess our results, we compared fragment ssaushey theFFFEAR
program from the CCP4 suite (version 6.0) against the ctiwerk using the ex-
perimental results for ten different proteins (suppliedPbgfessor L. Tong, whom
we gratefully thank for the assistance). We will discasSEAR in some detail
here, but the we direct the reader to the work of Cof*@hfor complete details.
We also recommend reading the seminal work of Kleywegt aneésdescribing
their program ESSEN®, an earlier effort to aid in identifying features.

Summary information about the proteins, including the P@Bnitifier, the
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PDB (NESG) Residues Initial Solvent FreeR Final

ID. (Chain A) Resolution Fraction Factor Resolution
1XQ4 (ber40) 139 3.00A 0.48 0.286 2.70A
1SQ1 (br19) 370 2.80A 0.55 0.279 2.80A
1TZ9 (efr41) 367 3.00A 0.42 0.292 2.90A
1TMO (Ir31) 350 2.84A 0.45  0.312 2.80A
1SQ4 (par14) 278 2.70A 050  0.262 2.70A
1RUS (pfr23) 232 2.70A 0.47 0.277 2.70A
1YXB (rr8) 98 2.60A 0.51 0.295 2.60A
1ZEE (sor52) 403 2.50A 0.47  0.275 2.31A
1YDO (sr181) 307 2.90A 0.50  0.303 2.71A
1YVK (sr237) 163 3.20A 0.67 0.284 3.01A

Table 3.1: A brief summary of the data sets used.

Northeast Structural Genomics Consortium (NESG) idenfifi¢he number of
residues in the A chainthe resolution of the data initially used for structure de-
termination, the solvent fraction initially used, the FReneasure of the structure
quality and the final (phase improved) resolution of the dépd (PDB) model
are given in table 3.1. Note the initial resolutions rangerfr2.50 A to 3.20 A.
A representative graphic image for chain A of each model eafobnd in ap-
pendix B on page 131. More information can be found in the PDBies for
each protein or on the NESG web site.

We took the original reflection data obtained from SOLVE amdfgrmed
standard pre-model building modification using RESOLVEsi@r 2.10. That
is, we ran RESOLVE supplying only the same estimated solgentent used

in the original structure determination and using the “noldj keyword. With

$Most of the models have more than one molecule of the sameipiiatthe asymmetric unit.
None contain more than one protein.
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this input, RESOLVE performs no model building or phase iovement, but
performs other modifications as discussed in Terwilliged eand produces mod-
ified reflection data.

The CCP4 suite comes with a library of 11 fragments used ast#melard set
for feature recognition with the prograrrFEAR®® Of these, one (a 70 segment
helix model) has no use here. Two other models, the emgyridatermined nine
segment helix and the nine segment “maximum-likelihoodtielmnly deviate
from each other by 0.15 RMSD. The results for these two fragmare quite
similar, so in most cases only the data for the first of the twibb& shown. (N.B.
The CCP4 graphical user interface excludes both the 70 sagmedix model
and the nine segment maximum-likelihood helix model from ltkt of fragment
choices.)

We ranFFFEAR using standard parameters suggested by the program docu-
mentation’* The exact keyword input is

SOLC <sol vent rati o>

SEARCH STEP 10

RESO 1000. 0 <resol ution>

LABI FP=FP SI GFP=SI G-P PHI O=PH M FOMO=FQOWM
END

where the terms in angle brackets (<>) represent the agptegrotein-specific
parameters, namely the solvent ratio and upper resolutiahtb use.

FFFEAR uses an exhaustive search technique that relies on faseFtans-
forms for efficiency. The translational search takes placksarete points spaced
on the order of 0.5A apart in each dimension. With an anguarch step of
10 degrees (recommendedifFEAR sampled 1781, 3154, 6055 or 12139 orienta-
tions, depending on the symmetry group of the target.

The base scoring function used ESFEAR (also known as a translation search
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function) is simply a weighted (or masked) squared diffeecbetween fragment
and map densities. In the notation of Cowtan (2001), for éiqudar fragment

orientation the function is
tHa) = > up(y) [ps(y) — ply — 2)]° (3.7)

where p¢(z) is the fragment density,((z) is the fragment mask angx) is
the map density. The program simply reports the lowest gdlaethis function
(rather than performing any sort of minimization of the sguesidual).

The current work, as discussed previously, performs a $ardé&haustive sam-
pling. The translational search takes place at points omtter of 4 A apart in
each dimension (i.e. at approximatglgyas many positions aFFEAR). The ex-
act spacing depends on the sample spacing of the densitywmégh, in turn,
varies slightly for convenience in calculating the map fritna reflection data via
FFT techniques. The maps used were generated from the i@fléetta using the
CCP4FFT program?®® The rotational search uniformly sampled 150 orientations.
The program does not currently take into account any synyn&utoffs were
enforced so that a sample pose had to have either a primany &q. (3.3)) or
secondary score (Eg. (3.4)) less than or equal to 1.0 and ia saei@red molecular
density of not less than 0.008 for each scoring round beffireament would be
performed. Scoring is split into two rounds; the first using fpoints per atom
and the second using ten points per atom. The cutoff valuet beumet each
round before proceeding to the next step.

We used the LBFGS package to refine qualified poses. Threatampparam-
eters control the behavior of the LBFGS algorithm, the nunad@&FGS correc-
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tions, the termination tolerance and the projected gradoderance. We specified

20 corrections (the recommended maximum). The first teroin@ondition is

(fx — fee1)/ max(| fxl, | fes1], 1) < ftol*epsmach (3.8)

where f, denotes the value of the function being minimized atktreiteration,
epsmach is the “machine precision”, meaning the smalldsévhat can be added
to 1.0 with a result different from.0 in the double precision floating point rep-
resentation for the computer used, and ftol is the user dktmlerance. In our
control input we combined ftol and epsmach so the input patanmore intu-
itively approximates the number of significant digits in #eore that remain the
same for termination. Explicitly, this is simply teyi@psmach. We used a value
of 1.0210~* for term. The second termination condition specifies a &wiee for
the projected gradient

|proj g|| < pgtol (3.9)

This allows the refinement to end when the magnitude of thaigmavector drops
below a certain value, indicating a stationary point hasibeached within toler-
ance. We used a value ©f0210~2. Only converged positions with scores of 0.5
(primary) and 0.5 (secondary) are kept. We usétifactor of 50 unless otherwise
noted.

The LBFGS package can perform constrained minimizatiéowahg the user
to fix upper bounds, lower bounds or both on any selection ablbbks. We
constrain the amount the translational coordinates cangehduring refinement.
We set the upper and lower bounds on each translational icabedto allow a

range ot+-2.4x wherex here denotes the incremental distance between grid points
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along an axis. This was found to have two benefits. In testa# found that
the fragment could slide a long distance when refined ag&msir resolution
maps. Applying constraints allows us to find a best fit withilingited region.
Also, the LBFGS code will, on occasion, attempt a very largg smuch larger
than one wants for a local search on a molecular scale. Astithe step would
even move the fragment completely off the grid. Usually tiappens early on
in the refinement process. Applying the constraints prosluesults much more
in keeping with the desired search, and can allow a minin@agb continue in
cases where a move would otherwise cause an outright failure

Appendix B contains graphs comparing results from the twthods. The
FFFEARTresults are shown on top, with the corresponding resulta fre current
work below. Each program outputs a set of atomic coordinatethe fragment
and score for each placement. A separate analysis progrdstiie lowest RMSD
match between each putative fragment location and the nbad&bone positions
(taking into account both the crystal symmetries and péssitisets by integral
factors of the crystal cell dimensions). This match is panied using only back-
bone atoms (i.eC” atoms are excluded even if present in the search fragment).
Each match is further categorized according to whether tthes atom types in
sequence (denoted by green circles), matches in a forweedded direction, but
out of sequence (the black squares), or matches a reveeselihg (red triangles).
A pose is considered a duplicate if it has an RMSD from a prevjgose of less
than 1.65A.

FFFEAR outputs the top 100 best scoring positions found, while aonkists
as many as meet the cutoff criteria. In order to keep the tesodnageable,

we only match the top fifty results. Duplicates are removedfithat top fifty,
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CCP4 FFFEAR  current
fragment work
emp-helix-9 942.13 10160.67

emp-helixend-9 945,93 9168.89
emp-strand-9 937.97 4431.27
emp-turn_a-9 958.45 8581.89
emp-turn_b-9 943.35 8904.51
ml-helix-9 951.34 10709.23

theor-helix-10 946.76 11041.73
theor-helix-5 952,59 6199.48

theor-strand-10  935.20  4498.60
theor-strand-5 958.09 5013.60

Table 3.2: User CPU times in seconds for searches agains® 1RU

so the final number of poses plotted is often less than fiftythencase of the
current work, it is fairly common for few, if any, poses to sedelow the 0.5
level cutoff. In those cases, only the qualifying poses hoavs (again, excluding
duplicates). Each plot includes a line drawn at the 1.65A RM&el in red.

Roughly speaking, this can be considered the cutoff for tjooatches. We will

discuss this in section 3.7.2 on the next page.

Put concisely, then, the graphs in appendix B show plotsairacy of a pose
as measured by RMSD versus the pose score for each methgginatype and
data set.

Table 3.2 shows the user times taken by each program, usimghss in the
data for 1RU8 as an exampl€FFEAR runs in nearly the same amount of time,
independent of fragment details. Our approach takes ceraity longer, and

varies with the longest linear dimension of the fragment.
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3.7.2 Discussion

The data sets used in the comparisons were chosen only basiaeiraresolution,
without regard to other factors such as the most prominesurgkary-structure
motifs, model temperature factors, free R factors or angmotietail. As can be
quickly seen from the model images (Figures B.1 through Bxi(page 134),
they include a variety of folds. The resolution range is acbwhere current
automated methods are not reliable, but within the spectrfstructures that one
might expect to be solvable with good results. These telstsetore, provide
an appropriate and stringent measure of the efficacy of theife recognition
techniques examined.

To make an assessment of good versus poor fits, we, of cowse to define
a measure. In describing their work on the application ofutated annealing to
crystallographic refinement, Bringer and Rice state treatdlsion angle method
can correct backbone RMSD “of at least 1.65%RCertainly there is no hard and
fast rule, but we take this as an appropriate approximateatat of good fits
or “hits”. A dashed line indicating the 1.65A RMSD mark is limded in the
comparison graphs in Appendix B.

The current work, like others, is the result of both a numbdealgorithmic
choices and a selection of parameters. The “space” of pbssgto consider
are beyond the capabilities of current computing systenexpdore thoroughly.
However, we believe we attained enough experience thrasjimyy to make good
heuristic choices for the purposes of this investigatiors motable that the deter-
mination of the run-time parameters was made before any anegms taFFFEAR,
using different test sets. It is particularly interestiogconsider the structure of

the cutoffs for refinement and their implications. It quicklecame clear that,
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with the current method, primary scores greater than ab&utn@ant that a pose
was incorrect. There is some grey area with scores betwemrt 86 and 0.35.

A score of below 0.35 starts to reliably indicate a good mafihce the scoring

function achieves reasonable discrimination, the questien becomes one of
how to balance initial sampling with refinement in order todte a high number
of good final poses.

Using the parameters described in section 3.7.1 on pagetid4un of the
CCP4 theor-strand-5 fragment against 1SQ4 (see Figuredd p2ge 136) sam-
pled a total of 292420 trial poses, of which 121871 were refifwer 1/3), re-
quiring 7112279 gradient calculations, meaning there weez 20 gradients for
every trial pose or an average of roughly 58 gradients redquor each refinement.
Gradient calculations are much more expensive than aalisgtoring calculation.
Recall that, while the entire fragment grid density doeshate to be recalcu-
lated for each gradient, a portion of it is, while the grid floe initial search need
only be calculated once for each sampled orientation (15€his case). In the
test cases examinedgkFEAR sampled factors of between approximately 5000 to
40000 times more poses. Given run-times on the order of leglsdsf minutes, it
is apparent that to perform the same proportion of refinesnhtle sampling as
many points asFFEAR the current method could literally take years. In testing,
we considered both increasing the sampling with a concomitavering of the
cutoffs for refinement and decreased sampling with loostffsufor refinement.
Our experience indicated that, in order to achieve a goodoeuiof hits using the
more sampling/fewer refinements approach, the samplingohaelso fine as to be
prohibitive with our method. The obvious point here is toatése why we chose

the parameters described, but, as the comparisons will,shewnore significant
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point is that even the vastly denser sampling ratereEAR often does not alone
perform well.

With ten data sets and limiting ourselves to the nine stah@&P4 fragments,
we examined 90 comparisons. We will not discuss them allrddber a represen-
tative selection. Of the 90 comparisons, quite a few showaumldits for either
method, but generally in cases where one would not expect Boly example,
1XQ4 is made up almost entirely of beta sheets and loops, avith very short
helical segments. Figure B.11 on page 135 shows a fairlgéypesult. Exam-
ining the graph, which compares the results for a nine-seghedix template, we
see that neither method finds a match with an RMSD of less thaatd A, in
keeping with the lack of any long helices in the model. Botis & scores are in
ranges that, when compared to other results, can be saidontidence to indi-
cate poor fits. These cases tell us nothing about the relpéisfermance of the
methods, except to say that neither produces blatantlyriecoresults.

Of the remaining cases, the current method can be seen torpeeiqually
well or better in all but one. Classification of the succesa séarch is somewhat
heuristic, since we assume there must be a certain tolefanfedse positives (pu-
tative matches with an RMSD greater than 1.65 A). Examirtieggraphs, though,
it is typically clear when a search is overwhelmed by falssifpes. The cur-
rent method achieves more hits in many cases, for examphetingtfive segment
strand fragment against 1SQ4 (Figure B.12 on page 136).caipithe results
using the empirical helix and strand fragments are simidnose of the theoreti-

cal ones, so the illustrations focus mostly on the lattehe®improved outcomes

YThis graph is shown in large format to more easily see whatpasison is being made. The
legend illustrated in the upper left area of this graph agsplo all the others. Smaller graphs are
included to further illustrate similar results.
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are seen in searches using the plain helical fragmentssidss@Q1 (Figures B.14
and B.15) and both the plain helices and the five segmentdstrigainst 1TMO
(Figures B.20, B.21 and B.22). Some contain only sparsesgmetimes surpris-
ing) hits, as in the case of the empirical “b” turn against K{Figure B.25 on
page 141). In that case the current method gets only one godmitiwith a well
separated score, where=a=FEAR has two hits mixed in with two misplacements
(too high a false positive rate). One such hit hardly cont# greater success,
but the case is noteworthy.

Tables B.1 and B.2 show the details of the top fifteen nonfrddat matches
from the results illustrated in Figures B.12 and B.18, retipely. The first two
columns list the score and RMSD for the match. Column thriésit¢he fragment
matched with the proper threading direction, while columunrfindicates whether
the matched fragment and model atom types were the samewhether the
fragment backbone and the model backbone aligned). Thiseisnformation
represented in the graphs. The last columns of the tabteidis the PDB entries
in the model, the atom number, atom type, three-letter vesidde, chain ID and
residue number of the first atom matched. Examining thesesmemonstrates
that the matches find hits in several non-overlapping pdiseoproteins. That is
to say, the hits shown in the graphs are not simply overlappimear-duplicates
in one location, although that does happen. Note this résldts generally for
all cases, even when identifying positions in separatenshas equivalent. There
is some duplication and overlap, but this occurs VAHFEAR too, although the
degree to which this happens varies from case-to-case.

The one case in whickFFEARTfinds noticeably better placements is also rather

sparse. This is the case of the search of the five segment dggist 1SQ1
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(Figure B.29 on page 142). In fact, neither method does qaatily well, but
FFFEAR does have two good, well distinguished hits.

Careful examination of the graphs suggests Hf&EAR does get the thread-
ing direction correct a higher proportion of the time. It st surprising that the
threading direction is somewhat troublesome, given thelréy Kleywegt and
Jones that demonstrated the ease with which an entire magdhkt be reverse-
threaded? %2 Obviously one could mitigate this problem by adopti#RFEARS
scoring as a final check. We presume there are other appo#eitevould guard

against this problem, too, but that is outside the scopeisftbrk.

3.8 Conclusion

The solution of protein structures remains a challengifygfone that, in partic-
ular, is tedious yet takes the time and attention of a higkiliesl scientist to carry
out in many cases. The beginning steps in model building eacritical, espe-
cially if phase information from the model is integrated bato the original data
in the iterative steps used by the standard protocols. We pasented a highly
flexible method for performing initial feature searches.sTinethod has certain
novel aspects, particularly the use of a grid-based cdnsttaninimization to ob-
tain superior feature location. We showed that this methwodlyces improved
results over similar efforts, albeit at greater cost in cateptime. In future work
we plan to combine this method with the fast Fourier techesgsuch as those
used inFFFEAR to perform the initial search, with the expectation that asde
initial search followed by minimization will benefit from éhbest aspects of each
technique. Given that the minimization method can cleaolyverge hits despite

relatively sparse sampling, we expect that we could use ifinlisearch that is
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simultaneously much denser than practical with the cumesgthod, but signifi-
cantly sparser than that éFFEAR Since FFT methods scale @&n logn), this
suggests the possibility of performing complete searcimeduding minimiza-
tions) in a matter of minutes per fragment (assuming a tagiosial search a%
the linear density ofFFFEAR), opening the way to performing feature recognition

with a much larger library of fragments.



Appendix A

PSEUDOSPECTRAL METHOD COMPARISONS TO
GAUSSIAN 92
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E(G92) E(PS) AE(PS-G92)
Molecule (hartrees) (hartrees) (kcal/mole)
CoHo —76.821835 —76.821825 0.0063
CeHe —230.701680 —230.701660 0.0125
C2H4S —475.525899 —475.525982 —0.0521
C3S2Hy —910.814150 —910.814115 0.0220
CyHy —153.634912 —153.634860 0.0326
CH,PH —380.209898 —380.209865 0.0207
CHsCl —499.088628 —499.088617 0.0069
CHsSH —437.664129 —437.664034 0.0596
CH3SiH3 —330.279077 —330.279204 —0.0797
CH2NH —94.035705 —94.035658 0.0295
CHsF —139.038781 —139.038719 0.0389
CH3CH>OH —154.089013 —154.088985 0.0176
H>CO —113.869736 —113.869687 0.0307
Glycylglycine —489.550210 —489.549941 0.1688
Glutamine —528.646741 —528.646595 0.0916
Glycine 0° —282.844462 —282.844579 —0.0734
H202 —150.770782 —150.770599 0.1148
Hf —1.293591 —1.293587 0.0025
HCN —92.865967 —92.865995 —0.0176
H2CS —436.469855 —436.469858 —0.0019
H2S2 —796.177451 —1796.177420 0.0195
H3SiCl —1750.181166 —750.181154 0.0075
HCP —379.106572 —379.106702 —0.0816
HOCI —534.847156 —534.847147 0.0056
HOCN —167.729020 —167.729334 —0.1970
CH30H —115.045719 —115.045630 0.0558
CHy —40.201399 —40.201470 —0.0445
NH>CHO —168.937654 —168.937572 0.0515
NH.F —154.959172 —154.959114 0.0364
Porphine —983.163305 —983.163186 0.0747
PoHy —683.756972 —683.757103 —0.0822
Ss3 —1192.441335 | —1192.441380 —0.0282
SC4H4 —550.917166 —550.917146 0.0125
SioHs —581.311568 —581.311723 —0.0973
Sis —866.607046 —866.607057 —0.0069
Sis —1444.431461 | —1444.431561 —0.0627
Sis —1733.362994 | —1733.362841 0.0960
SiF —487.862531 —487.862486 0.0282
SiH, —290.002560 —290.002566 —0.0038
SiHsF —390.145882 —390.145858 0.0151
SiHy4 —291.230804 —291.230822 —0.0113
SOs3 —621.980612 —621.980732 —0.0753
Tyrosine —626.232318 —626.232230 0.0552
Uracil —412.479477 —412.479089 0.2435
H20 —76.023615 —176.023596 0.0119
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Table A.1: Absolute energy comparisons: 6-31G** basis.ti¢arFock energies
(1 keal/mole = 0.0016 au). Default cutoffs used with ®USsIAN 92.



FE(G92) AE® E(PS) AAE®
Molecule (hartree) (kcal/mole) (hartree) (kcal/mole)
glycine0° —282.844462 — —282.844579 —
glycine 150° —282.841392 1.926 —282.841434 0.047
glycine 180° —282.841665 1.755 —282.841680 0.064
biphenyl0° —460.266416 — —460.266008 —
biphenyl22.5° —460.268991 —1.616 —460.268656 0.045
biphenyl45.0° —460.270672 —2.670 —460.270335 —0.045
biphenyl67.5° —460.269115 —1.693 —460.268682 —0.015
biphenyl90.0° —460.267927 —0.948 —460.267480 —0.024
diphenylethe0°-30° | —535.105210 — —535.104526 —
diphenylethert0°-40° | —535.111927 —4.216 —535.111174 —0.045
diphenyletheb0°-50° | —535.113118 —4.962 —535.112326 —0.068
diphenylethe60°-60° | —535.112484 —4.564 —535.111768 —0.020
diphenyletherr0°-70° | —535.111329 —3.839 —535.110672 0.017
diphenyletheR0°-80° | —535.110248 —3.161 —535.109641 0.048
diphenylethe®0°-90° | —535.109773 —2.863 —535.109104 0.009
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Table A.2: Relative energy comparisons: 6-31G** basis. tiéarFock energies

(1kcal/mole = 0.0016 au). () GAUSSIAN 92 energy differences calculated rel-

ative to the top listed energy for each method: @heonformers of glycine and
biphenyl; the30°-30° conformer of diphenyl ether(?) Deviation of PS relative
energies from the correspondingrGssIAN difference.



Number of Workstation Supercomputer
Molecule | Basis Fcns| G92 Time | PS Time | G92 Time | PS Time
water 25 6.3 13.7 4.35 5.00
glycine0° 100 187.1 172.9 40.88 24.91
uracil 140 542.3 340.9 76.42 36.93
glutamine 200 1400.5 770.6 186.55 68.84
tyrosine 250 2674.5 1207.8 311.02 104.90
porphine 430 9941.0 3683.9 948.25 275.82
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Table A.3: User CPU time comparisons: 6-31G** basis. Allésrin user CPU
seconds. Workstation is an IBM RS/6000 Model 580. Supereaenps a Cray
Y-MP C90. All calculations utilize direct SCF methods wigmsmetry explicitly
turned off. Default cutoffs used with AbSSIAN 92.

Number of Supercomputer AFE
Molecule Basis Fcns| G92 Time | PS Time | (kcal/mole)
glycine0° 170 270.3196| 160.3925 -0.0471
uracil 236 728.8067| 272.9761 0.0477
glutamine 340 2201.4424| 533.4242 -0.1004
diphenyletheB0°-30° 415 3615.1448| 734.0660 0.0201
tyrosine 424 4322.0474| 809.7973 -0.0998
porphine 726 15131.2271| 2428.6439 0.1161

Table A.4: User cpu time comparisons: cc-pVTZ basis. Allegrare user CPU
seconds. Supercomputer is a Cray Y-MP C90. All calculatidilize direct SCF
methods with symmetry explictly turned off. Default cutffsed in all cases.
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Figure B.1: PDB ID 1XQ4, Figure B.2: PDB ID 1SQ1,
NESG ID ber40 (chain A only) NESG ID br19

Figure B.3: PDB ID 1TZ9, Figure B.4: PDB ID 1TMO,
NESG ID efr41 (chain A only) NESG ID Ir31 (chain A only)



133

Figure B.5: PDB ID 1SQ4, Figure B.6: PDB ID 1RUS,
NESG ID parl4 (chain A only) NESG ID pfr23 (chain A only)

Figure B.7: PDB ID 1YXB, Figure B.8: PDB ID 1ZEE,
NESG ID rr8 (chain A only) NESG ID sor52 (chain A only)
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Figure B.9: PDB ID 1YDO, Figure B.10: PDB ID 1YVK,
NESG ID sr181 (chain A only) NESG ID sr237 (chain A only)



135

Forward threaded, sequence aligned
Forward threaded, sequence not alighed
« Reverse threaded
20 T | T T
151 A : NI .
g B A:.!A - -:-h. Aqf ]
o “ "
o 10— —
= L i
m L
5 | . . i a —
o0 - L
21 22 23 24
(a) fffear search function value (arbitrary scale)
20 T T | T | T | T | T
15— —
< | 4
o)
= L J
[ N
5 — —]
oL+ | o L L N L
0.2 0.25 0.3 0.35 0.4 0.45 0.5

(b) Sear.ch function value, current work (0.0 - 2.0)

Figure B.11:Search results for the CCP4 emp-helix-9 fragment in a 3.@&Alution
map of 1XQ4 . The dashed lines show the 1.65A RMSD mark. TopeSQlts each
(redundancies removed). (a) Standard¢eAR search. (b) Current approach, 150 angles
sampled,B = 50.
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Figure B.12:Search results for the CCP4 theor-strand-5 fragment in@A2:&solution
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(redundancies removed). (a) Standarg¢eAR search. (b) Current approach, 150 angles
sampled,B = 50.
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Score RMSD Forward Sequence PDB Entry
Threaded  Aligned

0.251 0.92 Yes Yes 4182 N LEU B 261
0.261 0.56 Yes Yes 1652 N HIS A 214
0.271 0.58 Yes Yes 2639 N PHE B 68
0.281 1.20 No No 3059 O ALA B 124
0.284 0.45 Yes Yes 1026 N PHE A 138
0.287 0.50 Yes Yes 3171 N PHE B 138
0.290 0.56 Yes Yes 677 N ALA A 92
0.293 0.60 Yes Yes 1037 N HIS A 139
0.295 0.78 Yes Yes 3610 N ASP B 190
0.301 1.29 Yes Yes 2897 N SER B 102
0.302 0.60 Yes Yes 3643 N ASN B 194
0.306 0.67 Yes Yes 3061 N ASP B 125
0.306 1.16 Yes Yes 286 N THR A 43
0.307 0.71 Yes Yes 2502 N ASN B 51
0.308 1.01 No No 854 CA GLY A 116

Table B.1: Details of the top fifteen search results for theP@QGheor-strand-5
fragment using the data for 1SQ4. The entries correspondeataph of the
current work shown in Figure B.12.

Score RMSD Forward Sequence PDB Entry
Threaded  Aligned

0.203 0.64 Yes Yes 2592 N ARG A 336
0.203 0.35 Yes Yes 5048 N LEU B 301
0.210 0.95 No No 2592 N ARG A 336
0.214 1.04 No No 5304 N TYR B 334
0.219 0.31 Yes Yes 5379 N ILE B 343
0.220 0.33 Yes Yes 5324 N ARG B 336
0.222 0.21 Yes Yes 5034 N ALA B 299
0.223 0.74 Yes Yes 2286 N ASP A 297
0.224 0.37 Yes Yes 2302 N ALA A 299
0.226 0.45 Yes Yes 1420 N TYR A 188
0.228 1.04 No No 525 N HIS A 70
0.228 0.90 No No 5367 N TYR B 342
0.228 1.05 No No 2635 N TYR A 342
0.230 0.49 Yes Yes 2635 N TYR A 342
0.231 0.41 Yes Yes 5367 N TYR B 342

Table B.2: Details of the top fifteen search results for theP@Gheor-helix-5
fragment using the data for 1TZ9. The entries correspondhéogtaph of the
current work shown in Figure B.18.
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